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Abstract

We study the problem of offline-to-online rein-
forcement learning from high-dimensional pixel
observations. While recent model-free ap-
proaches successfully use offline pre-training with
online fine-tuning to either improve the perfor-
mance of the data-collection policy or adapt to
novel tasks, model-based approaches still remain
underutilized in this setting. In this work, we ar-
gue that existing methods for high-dimensional
model-based offline RL are not suitable for offline-
to-online fine-tuning due to issues with repre-
sentation learning shifts, off-dynamics data, and
non-stationary rewards. We propose a simple on-
policy model-based method with adaptive behav-
ior regularization. In our simulation experiments,
we find that our approach successfully solves long-
horizon robot manipulation tasks completely from
images by using a combination of offline data and
online interactions.

1. Introduction
Offline reinforcement learning (Lange et al., 2012; Levine
et al., 2020) is a promising approach for scaling reinforce-
ment learning (RL) to broad datasets, and can serve as a
pre-training step for efficiently learning a new task. In such
an offline-to-online fine-tuning problem, the agent is pro-
vided with a static, pre-collected dataset and is tasked with
leveraging this dataset and a small amount of online inter-
action to effectively solve a task. We study this problem
with a focus on settings with high-dimensional pixel obser-
vations, as is common in real-world applications such as
robotics. Prior works for offline-to-online fine-tuning often
simply train a policy with model-free offline RL objectives
throughout both the offline and online phases (Kostrikov
et al., 2021; Kumar et al., 2020; Nair et al., 2020; Yang &
Nachum, 2021; Chen et al., 2021; Reed et al., 2022). While
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this approach addresses the challenge of distribution shift in
the offline phase, it leads to excessive conservatism in the
online phase.

An alternative to prior model-free algorithms are model-
based methods, in which the agent learns a representation
and dynamics model from the provided offline dataset and
uses model-generated rollouts for policy training or plan-
ning (Yu et al., 2020; Kidambi et al., 2020; Matsushima
et al., 2020; Argenson & Dulac-Arnold, 2020; Yu et al.,
2021c; Cang et al., 2021; Rafailov et al., 2020). These ap-
proaches have shown good performance on more diverse
datasets and can also generalize to new within-distribution
tasks (Yu et al., 2020; 2021c; Cang et al., 2021; Rafailov
et al., 2021). Predictive models can also naturally learn
stable representations, which makes them suitable for use in
realistic high-dimensional domains (Hu et al., 2022; 2021;
Akan & Güney, 2022; Rafailov et al., 2020). However, the
pre-training and fine-tuning approaches for model-based RL
are still under-explored, as the literature has mostly focused
on model-free methods.

In this work, we argue that existing algorithms for offline
model-based RL are not suitable to the pre-training and fine-
tuning or continual learning regimes. In particular, algo-
rithms that use replay buffers of model-generated data, such
as (Yu et al., 2020; 2021c; Cang et al., 2021; Rafailov et al.,
2020), create significant distributional shift issues, as the
learned model dynamics and reward functions change with
additional online interactions. Moreover, models with high-
dimensional observations, such as (Rafailov et al., 2020; Yu
et al., 2021c), deal with the additional complexity of repre-
sentation shift of the latent data. These algorithms are also
not feasible in large models with high-dimensional represen-
tation spaces, which are common in real-world applications
(Hu et al., 2022; 2021; Akan & Güney, 2022). On the other
hand, on-policy model-based RL methods such as (Kidambi
et al., 2020; Matsushima et al., 2020) are amenable to fine-
tuning but do not make efficient use of high-quality data in
the policy training objective or are not scalable to models
with changing representation spaces.

To alleviate these issues, we propose MOTO (Model-based
Offline-To-Online) algorithm. MOTO is a model-based
actor-critic algorithm which operates in high-dimensional
observation spaces. Crucially, MOTO uses model-based
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value expansion, which removes the need for large replay
buffers, alleviates the distributional shift issue, and allows
for the use of large-scale predictive models while still allow-
ing us to use high-quality offline data in the critic learning.
To prevent model exploitation, we additionally implement
ensemble model-based uncertainty estimation and policy
regularization. We evaluate MOTO on two tasks in the
Franka Kitchen domain (Gupta et al., 2019; Fu et al., 2020),
completely from vision. Our approach solves both tasks and,
as far as we are aware, is the first method to solve this en-
vironment completely from vision. Moreover, by studying
the fine-tuning regime, we empirically validate theoretical
performance bounds from prior model-based offline RL,
which have import implications for multi-task and transfer
learning.

2. Related Work
Our work is at the intersection of offline RL, model-based
RL and control from high-dimensional observations (i.e.
images). We review related work from these fields below.

2.1. Model-Based Offline RL

Model-based offline RL algorithms (Kidambi et al., 2020;
Yu et al., 2020; Argenson & Dulac-Arnold, 2020; Mat-
sushima et al., 2020; Swazinna et al., 2020; Rafailov et al.,
2020; Yu et al., 2021c) learn a predictive model from the of-
fline dataset and use it for policy training. Several works (Yu
et al., 2020; Kidambi et al., 2020; Cang et al., 2021; Rafailov
et al., 2020) train ensemble of dynamics models and use
model disagreement as a measure of model uncertainty. The
RL policies are optimized by explicitly incorporating dis-
agreement into the expected return, which encourages the
agent to remain with the part of the state-action distribu-
tion with low model epistemic uncertainty. Another major
approach is incorporating explicit data constraint into the
policy optimization, such as (Matsushima et al., 2020; Ar-
genson & Dulac-Arnold, 2020; Swazinna et al., 2020; Cang
et al., 2021). The COMBO approach (Yu et al., 2021c) uses
a single model to generate data and combines model-based
RL with off-policy conservative optimization (Kumar et al.,
2020). With the exception of (Rafailov et al., 2020) and
limited experiments in (Yu et al., 2021c) the above works
mostly focus on simple low-dimensional control problems
with short planning horizons.

2.2. Variational Dynamics Models

Variational predictive models have demonstrated success in
a variety of challenging applications. One line of research
(Hu et al., 2022; 2021; Watter et al., 2015; Zhang et al.,
2019; Lee et al., 2020a) utilizes the model for representation
purposes only and use standard RL, control or imitation on
top of it. Others such as (Hafner et al., 2019; 2020a;b; Ha &

Schmidhuber, 2018) use the latent dynamics model either
to learn a policy within the model or deploy shooting-based
planning methods. However, most of those prior works
focus on the online setting and do not make good use of
highly-structured prior data or account for distribution shift.
Our method utilizes model-based value expansion, which
allows us to take advantage of the efficiency of model-based
training, while also using offline data for critic supervision.

3. Preliminaries
We briefly review variational dynamics models and their
prior use in offline RL.

3.1. Control As Inference

Our setting fits well within the control as inference problem
(Levine, 2018; Lee et al., 2020b) in the standard POMDP
setup. Let M “ pX ,S,A, T, p, r, µ0, γq where X de-
notes the the high-dimensional observation space, S the
unobserved state space, A the action space, T ps1|s,aq

the latent transition distribution, ppx|sq the observation
model, rps,aq the reward function, µ0ps0q the initial la-
tent state distribution, and γ P p0, 1q the discount factor.
In this setting, the control problem is equivalent to an in-
ference problem in a PGM with a binary random variable
ppOt “ 1|st,atq9 expprpst,atqq, which depends on the
latent state and action and indicates whether the agent be-
haviour is optimal or not. Under a suitable choice for a
variational distribution, we can then optimize the represen-
tation and control problem jointly via the ELBO:

log pθpx1:τ`1,Oτ`1:T |a1:τ q ě Eqθ
”

τ
ÿ

t“1

log pθpxt|stq

loooooooomoooooooon

reconstruction

´

DKLpqθpst|xt, st´1,at´1q||Tθpst|st´1,at´1qq
looooooooooooooooooooooooooooomooooooooooooooooooooooooooooon

latent forward model

`

T
ÿ

t“τ

rpst,atq ` log ppatq ´ log πψpat|stq
looooooooooooooooooooooomooooooooooooooooooooooon

policy optimisation

ı

(1)

This choice of factorization has several nice properties: 1)
the policy depends only on the belief state and can be op-
timized entirely within the model latent space, including
model-based roll-outs and 2) the learned belief space repre-
sents an MDP and we can apply theoretical insights from
the low-dimensional model-based literature to our problem.
There is a rich literature on learning variational models, but
we base our design implementation on the recurrent state-
space model of (Hafner et al., 2020a) as it has demonstrated
success across a variety of domains.



110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

MOTO: Offline to Online Fine-tuning for Model-Based Reinforcement Learning

Figure 1. We evaluate the trained predictive model at the end of the offline pre-training phase on the ”partial” task. We samle episodes
from the trained exert agent and condition the model on the completion of the first three tasks (which are seen in the offline dataset), after
which we rollout the expert actions. The model predicts the microwave, kettle, bottom burner and light switch in the correct configuration,
even though the training dataset does not contain a configuration with those four objects.

3.2. Offline Model-Based RL From High-Dimensional
Observations

Previous works have considered conservative-based models
for offline RL from high-dimensional observations (Rafailov
et al., 2020; Yu et al., 2021c). These approaches consider
an MBPO-style approach (Janner et al., 2019) in the latent
space of a variational model. In particular, they first train
a variational dynamics model using Eq. 1 once from the
available offline dataset. Rafailov et al. (2020) leverages the
approach from Yu et al. (2020) and trains an ensemble of
latent models tTθipst`1|st,atquMi“1 by randomly selecting
an ensemble member at each time step to optimize in Eq.
1. During policy training it maintains a latent replay buffer
which consist of real transitions sampled from the infer-
ence model qθ as well as off-policy model-generated data
from the latent policy rollouts. Similarly to MOPO model-
based conservatism is implemented by penalizing the model-
sampled rewards using a measure of model-disagreement.
All experiments in this work use the penalty

uθpst,atq “ stdptlθipst,atquMi“1q (2)

where liθpst,atq is the logit outputs of the discrete distribu-
tion Tθip¨|st,atq. And the final reward function is

prθpst,at, st`1q “ rθpst`1q ´ αuθpst,atq (3)

Follow-up work (Yu et al., 2021c) uses the same modeling
approach but disposes of model ensembles and adapts the
conservative Q-learning approach of (Kumar et al., 2020)
into an MBPO critic optimization.

4. Model-based Offline to Online Fine-tuning
(MOTO)

We would like to design a model-based reinforcement learn-

Algorithm 1 MOTO: Model-based Offline to Online Fine-
tuning
Require: Offline dataset D, initialized policy πψ and critics Qψ ,

initialized prediction and reward model Mθ , policy rollout
length H , number of offline training steps Noffline.

1: for i “ 1, 2, 3, ¨ ¨ ¨ , do
2: Sample a batch of trajectories B „ D.
3: Update Mθ on B according to Eq. 1.
4: Generate H-step latent policy rollouts where the rewards

are computed according to Eq. 3.
5: Update πψ according to Eq. 10 and update Qψ according

to Eq. 8 on the real and model data.
6: if i ą Noffline then
7: Rollout the policy πθ in the environment to collect new

trajectories D1

8: D “ D Y D1

9: end if
10: end for

ing algorithm that can efficiently utilize offline datasets,
while being easily amenable to continual learning and online
fine-tuning. A line of prior works (Yu et al., 2020; 2021c;
Cang et al., 2021) use MBPO-style optimization (Janner
et al., 2019), which mixes real and model-generated data
in a replay buffer used for policy training. (Rafailov et al.,
2020) generalizes this approach to more realistic domains
using variational models and latent ensembles and manages
to solve a real robot task involving desk manipulation. How-
ever, these methods are not well-suited to the fine-tuning
tasks, since the data in the replay buffer is sampled form
the model’s internal representation space, which suffers
from significant distribution shift as the model is fine-tuned.
Moreover, the need for replay buffers limits the scalability
of these algorithms, as state-of-the-art predictive models
in many realistic applications (such as autonomous driving
(Hu et al., 2022; 2021; Akan & Güney, 2022)) require very
large model and representation sizes. These issues make
it impractical to carry large replay buffer of states, which
have to be re-populated every time the predictive model
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is updated. Several algorithms such as MOREL (Kidambi
et al., 2020) and BREMEN (Matsushima et al., 2020) use
on-policy training within the learned model without the
need for large replay buffers, which make them well-suited
to continual learning settings. However, in this case the
training procedure is unable to use potentially high-quality
data from the offline dataset to supervise the critic train-
ing. In this work we train a model using Eq. 1 similarly to
(Rafailov et al., 2020; Yu et al., 2021c), but instead we build
the MOTO policy optimization on the three main design
choices: 1) model-based value expansion, 2) uncertainty-
aware predictive modelling, and 3) behaviour-regularized
policy optimization. The full algorithm training outline is
presented in Algorithm 1.

4.1. Variational Model-Based Value Expansion

To alleviate the issues discussed in Section 3.2, we would
like to train a policy using model-based training, that can
utilize previously collected data without the use of latent
replay buffers. To this goal we adapt ideas from the
model-based value expansion literature (Feinberg et al.,
2018; Buckman et al., 2018; Amos et al., 2021; Clavera
et al., 2020). We will still train a policy inside the latent
space of our variational dynamics model using on-policy
model-based rollouts. We consider sequences of data of
the form τ “ px1:T ,a1:T , r1:T q. At each agent training
step, we infer latent states s01:T „ qθps1:T |x1:T ,a1:T q.
We also denote a1:T and r1:T as a0

1:T and r01:T respec-
tively. Using these states as starting points, we use the
policy πψ to generate H-step rollouts steps with the follow-
ing notation: âtj „ πψpa|ŝt´1

j q, ŝt`1
j „ pθps|âtj , ŝ

t
jq and

r̂tj „ pθpr|ŝtjq, where the rewards are computed according
to Eq. 3. We also set ŝ0j “ s0j . Following standard off-
policy learning algorithms, we use critics tQψiu

m
i“1 and and

target networks t sQψiu
m
i“1. We can then use our model to

estimate Monte-Carlo base policy returns:

V
πψ
0 pŝtjq “ min

i“1:m
tQψipŝ

t
j , â

t
jqu

V
πψ
K pŝtjq “

K
ÿ

k“1

γk´1r̂k`t
j ` γKV

πψ
0 pŝt`Kj q

And evaluate the compute the standard TDpλq estimate:

V πψ pŝtjq “ p1 ´ λq

H´t´1
ÿ

k“1

λk´1V
πψ
k pŝtjq`

λH´t´1V
πψ
H´tpŝ

t
jq (4)

We use the the actor objective is then:

Lmodel
πψ

“ ´
1

HT

«

H´1,T
ÿ

t“0,j“1

λV πψ pŝtjq ` p1 ´ λqV
πψ
0 pŝtjq

ff

(5)

which maximizes the expected MC return at the dataset and
rollout states together. Notice that this fully differentiable
function of the policy parameters, by using straight-through
gradient estimation.

We can use MC return estimates to train the critics as well.
We recompute the critic target values sV kpŝtjq for all states
similarly to Eq. 4 using the target networks t sQψiu

m
i“1. Crit-

ics are trained on both the model-generated and real data
with two losses:

Lmodel
Qψi

“
1

HT

«

H´1,T
ÿ

t“0,j“1

pQψipŝ
t
j , â

t
jq ´ sV πψ pŝtjqq2

ff

(6)

Ldata
Qψi

“
1

T ´ 1

«

T´1
ÿ

j“1

´

Qψips
0
j ,a

0
j q´

pr0j`1 ` γ
`

p1 ´ λq sV
πψ
0 ps0j`1q ` λsV πψ ps0j`1q

˘

¯2
ff

(7)

The final critic loss is a combination of the two losses:

LQψi “ Lmodel
Qψi

` Ldata
Qψi

(8)

The loss Ldata
Qψi

is computed on transitions sampled form
the dataset trajectories through the inference model qθ and
have ground-truth environment rewards. Training the critic
networks on the available offline data serves as a strong
supervision when the dataset already contains trajectories
with high returns.

4.2. Model Uncertainty Corrections

Similarly to other model-based RL algorithms, without any
regularization, the proposed method would also suffer from
the model exploitation issue, which is especially prevalent
in the offline training/pre-training case. The conservative
critic optimization approach of (Kumar et al., 2020; Yu et al.,
2021c) is not applicable to the policy optimization outlined
in Section 4.1 as it is incompatible with multi-step returns
and thus require the use of replay buffers (which we aim to
avoid). Instead we opt to use model-based uncertainty esti-
mates: (Chua et al., 2018; Clavera et al., 2018; Deisenroth
& Rasmussen, 2011; Kurutach et al., 2018; Nagabandi et al.,
2020; Luo et al., 2018; Strehl & Littman, 2008; Zanette &
Brunskill, 2019). We utilize ensemble-based uncertainty es-
timates, which have proven efficient in many previous works.
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In particular, we follow the reward penalty formulation from
Section 3.2. We apply the correction as in Eq 3 only to the
model-generated rewards used in Eq. 6, and we still use
the ground-truth rewards in Eq. 7. Since the uncertainty
penalty uθps,aq ě 0, this implicitly builds conservatism
into the critic itself. Note that the uncertainty penalty in Eq.
3 is a fully differentiable function, hence the Eq. 5 is still a
differentiable function of the policy parameters.

4.3. Behaviour Prior Policy Regularization

Given the success of model-free behaviour priors in previous
works (Swazinna et al., 2020; Cang et al., 2021; Argenson &
Dulac-Arnold, 2020; Matsushima et al., 2020) we also eval-
uate such an approach in this method as well. One could use
a general policy-training regularizer with different choices
of divergence and priors yielding different algorithms. We
choose to not explicitly parameterize the behaviour prior
since that would require training an additional policy dur-
ing the fine-tuning phase. Instead, we choose the standard
forward KL divergence, which is equivalent to a behaviour
cloning regularization

Lreg
πψ

“ ´EρπE ps,aqrlog πψpa|sqs (9)

and the final policy loss is

Lπψ “ Lmodel
πψ

` βLreg
πψ

(10)

This method works surprisingly well in model-free RL (Fu-
jimoto & Gu, 2021; Emmons et al., 2021; Lu et al., 2022)
and does not require any additional computational overhead.
In addition, however, we apply the regularization only to tra-
jectories that successfully complete the tasks, an approach
known as ”filtered BC”, (Emmons et al., 2021; Nguyen
et al., 2022). During the fine-tuning phase new trajectories
are added to the BC buffer if they are successful.

4.4. Theoretical Results for Uncertainty-Aware
Model-based Training

Given our choice of variational parameterization and model
uncertainty estimation we can directly adapt certain the-
oretical guarantees from prior model-based RL literature
(Yu et al., 2020; Kidambi et al., 2020; Rafailov et al.,
2020). We consider the following result in particular: let
Tθps1|s,aq and T ps1|s,aq be the learned and true latent
dynamics models respectively. We define the discounted
state-action distribution ρπT ,µ0

ps,aq9
ř8

t“0 γ
tPπT ,µ0

pst “

sqπpa|sq in the standard way. The function ups,aq is an
admissible error estimator if dF rT ps1|s,aq||Tθps1|s,aqs ď

ups,aq. For any policy π we can then define ϵupπq “

Eps,aq„ρπTθ,µ0
rups,aqs. Then the following Theorem holds:

Theorem 4.1. (Informal) Let pπ˚psq be the optimal policy
under the learned model Tθps1|s,aq with an uncertainty-

penalized reward and π˚ the optimal policy in the ground-
truth MDP. Under certain mild assumptions, then the fol-
lowing inequality holds:

2αϵupπ˚q ě Eπ˚,T

”

8
ÿ

t“0

rt

ı

´ E
pπ˚,T

”

8
ÿ

t“0

rt

ı

(11)

Proof. Consult (Yu et al., 2020).

The policy under-performance is upper bounded by the dis-
counted model-based uncertainty over the state-action distri-
bution induced by the expert policy under the learned model.
In practice we do not have access to an oracle estimator
ups,aq and we use the ensemble disagreement from Eq.
2. While these results are not new, empirical verification
is difficult in the fully offline case, since we have a static
dataset, and all values are point estimates. However, in the
online fine-tuning case, we have a continuum of datasets
and we can empirically verify the claims of Theorem 4.1.

5. Experiments
For our experiments we use the Franka Kitchen environment
from (Gupta et al., 2019) (RPL). This is a challenging long-
range control problem, which involves a simulated 9-DOF
Franka Emika Robot in a kitchen setting. The robot uses
joint-space control and the observation is a single 64x64
RGB image; we do not assume access to object states or
robot proprioception. The goal of the agent is to manipulate
a set of 4 pre-defined objects and receives a reward of 1.0 for
each object in right configuration at each time step. This is
a very challenging environment due to 1) high-dimensional
observation spaces; 2) partial observability with non-trivial
object and robot state estimation; 3) need for very-fine-
grained control in order to operate the small elements of the
environment, such as turning knobs and flipping the light-
switch; 4) the long-range nature of the tasks; 5) the use of
sparse rewards, which provide limited intermediate supervi-
sion to the policy, and finally 6) the use of high-dimensional
control which requires learning forward kinematics from im-
ages alone. For our experiments we render the original RPL
datasets and consider two environments from the D4RL
benchmark (Fu et al., 2020). The ”mixed” task requires
operating the microwave, kettle, light switch and slide cab-
inet and has a small set of successful demos in the offline
dataset. The ”partial” task, which requires manipulating
the microwave, kettle, bottom burner and light switch does
not have any trajectories that successfully complete all four
objects, but has demonstrations for several configurations
which complete up to three objects. We will release this
dataset with our project to facilitate the development and
testing of vision-based offline RL algorithms.
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Figure 2. We pre-train offline RL algorithms on the offline dataset and fine-tune them with additional online interactions. MOTO solves
both the ”mixed” and ”partial” tasks. Model-free methods struggle due to partial observability of the environment and the need for
combinatorial generalization on the ”partial” task. Offline model-based RL algorithms have poor online performance due to distributional
shift issues in the latent replay buffers. DreamerV2 is the only other algorithm to achieve non-trivial success, but learns potentially unsafe
behaviours.

5.1. Results

We compare our method to prior vision-based offline model-
based RL algorithms LOMPO (Rafailov et al., 2020) and
COMBO (Yu et al., 2021c) as well as DreamerV2 (Hafner
et al., 2020b), a state-of-the art online model-based learning
algorithm. We also compare our approach against CQL
(Kumar et al., 2020) a successful model-free offline RL
algorithm, IQL (Kostrikov et al., 2021) a state-of-the art
model-free regression-based fine-tuning algorithm, SAC
(Haarnoja et al., 2018) and behaviour cloning. All meth-
ods are pre-trained offline for 10 thousand gradient steps
and fine-tuned with online interactions for a total of 500
thousand environment steps. Since the ”partial” task does
not contain successful trajectories for all four objects, we
only regularize policy training with respect to the first three
objects. Results are shown in Fig. 2. Our method suc-
cessfully solves both the ”mixed” and ”partial” tasks with
100% and 90.5% final success rates respectively, and it’s the
only method besides DreamerV2 to get non-trivial success
rates. While model-free methods make some progress, ulti-
mately they stagnate and cannot successfully complete all
four objects on either task. This is likely due to the partial
observability nature of the environment, since the robot can
occlude manipulated objects and also requires joint state
estimation directly from images. In contrast variational
models serve as Bayesian filters and naturally build state
estimations of the environment in the latent space. Model-
based methods LOMPO and COMBO achieve very limited
progress, due to the non-stationarity issues described in the
beginning of Section 4. The DreamerV2 algorithm is the
only other method that achieves some success but learns

more slowly and only reaches final success rates of 77.5%
and 13.5% versus 100% and 90.5% for our method on the
”mixed” and ”partial” task respectively. As far as we know
ours model is the first method to solve the Franka Kitchen
environment from images.

5.2. Ablation Studies

We also carry out a number of ablations to study how each
component of our model affects performance. In particular,
we test our method (”Full Model”), remove the behaviour
cloning regularization (”No Reg.”), remove the model un-
certainty reward penalty (”No Unc.”) and the final version
which removed both (”No Reg., No Unc.”), which corre-
sponds to a standard variational RL model where the critic
is trained on both the real and model-based data. We also
include the standard DreamerV2 algorithm for direct model-
based comparison. While all ablations make significant
progress on the ”mixed” task, only the full model manages
to fully solve it. Using our model-based value expansion
approach still outperforms the DreamerV2 algorithm, which
trains the actor and critic fully within the learned model.
This demonstrates that we can inject meaningful supervision
into the critic learning, when we have access to high-quality
data. We also note that without any data regularization both
the ”No Reg., No Unc.” and DreamerV2 methods learn
unsafe behaviours such as hitting the kettle into the goal
position or smashing the light switch with the robot head,
instead of using its gripper to grasp and place the objects.
These policies would be quite unsafe for both the hardware
and environment in a real setting. Such behaviours are not
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Figure 3. We carry out a number of ablations on the MOTO design,
such as not uncertainty penalties ”No Unc.”, not using policy regu-
larization ”No. Reg”, and removing both ”No Reg., No Unc.”. The
top graph presents the learning curves over the online fine-tuning
phase, while the bottom bar chart shows successful completions in
the last 200 evaluation episodes. We see that all model component
contribute to learning and final performance.

present in any of the regularized methods that either use
model uncertainty or behaviour cloning regularization. Our
method also significantly outperforms ablation baselines
on the ”partial” task as well. The ”No Reg.” version of
our model manages to manipulate three objects. This is
because the offline dataset contains several configurations
which manipulate three out of the four objects, but are mu-
tually inconsistent. The model-based uncertainty penalty
encourages the policy to stay closer to the data distribution,
which, given it’s multi-modality, creates a difficult optimiza-
tion problem. In contrast, versions of the model that use
behaviour cloning regularization (”Full model”, ”No Unc.”)
are grounded in a particular sequence of objects, removing
the multi-modality problem and models without uncertainty
penalties (”No Reg., No Unc.”, DreamerV2) are not as con-
strained to remain within distribution.

5.3. Model-Based Generalization

The ”partial” task also provides a good test bed for an algo-
rithm’s generalization capabilities, since the offline dataset
does not contain full solutions for it. This is a different prob-
lem than the standard dynamic programming (”stitching”)
issue of data-centric reinforcement learning since the dataset
does not contain a sequence of state-action pairs that lead
from the initial state to the goal state. Instead, to solve this
task, a learning agent must understand the compositional
nature of the scene and do combinatorial generalization over
the objects. In this section we seek to answer whether 1)

Figure 4. We evaluate the model’s generalization capabilities at the
end of the offline pre-training phase. The model correctly predicts
rewards of up to 4 on successful episodes in the “partial” task,
even though the maximum dataset reward is 3. (left). When doing
rollouts in the learned model, the policy solves all four objects in
the “partial” task and reaches rewards of up to 4 (right).

the learned model can do combinatorial generalization of
within distribution tasks and 2) whether policy optimization
can take advantage of the model’s capabilities. We evaluate
the agent at the end of the offline pre-training phase. To
answer the first question, we consider episodes that success-
fully complete the ”partial” task from the trained agent. We
condition our model on the frames that solves the first three
tasks (which are covered in the offline dataset) and rollout
the expert actions to predict the following frames. Results
are shown in Fig. 1. The model successfully predicts a
combination of the microwave, kettle, bottom burner and
light switch in the correct configuration, despite never en-
countering these four objects together in the offline dataset.
Moreover, we evaluate the model-predicted rewards on these
expert trajectories, plotted in Fig. 4 (left). We see that the
model predicts rewards of up to 4 with an average reward of
3.63, despite only being trained on trajectories with maxi-
mum reward of 3. This results show that the learned model
is capable of compositional generalization. To evaluate
whether the learned policy can take advantage of the model
generalization capabilities, we rollout the trained agent un-
der the model and evaluate the predicted rewards, results are
shown in Fig. 4 (right). The agent achieves an average final
reward of 3.52 under the learned model and solves all four
tasks. This suggest that the model-based RL agent is able
to do combinatorial generalization, but the offline dataset is
not enough to adequately learn the environment dynamics.

5.4. Performance Gap Empirical Verification

It is not possible to verify the bound from Eq. 11 empiri-
cally in the offline case, as we only have the point estimates
of the static dataset. However, in the online fine-tuning
setting, we have a continuum of datasets as we aggregate
additional data. We can then periodically evaluate ϵupπ˚q

and the expected model uncertainty induced under the ex-
pert state-action distribution in the learned model. At each
epoch E, we cannot generate model rollouts from the ex-



385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

MOTO: Offline to Online Fine-tuning for Model-Based Reinforcement Learning

Figure 5. Empirical evaluation of Theorem 4.1. We plot the per-
formance gap versus the the empirical estimates of (normalized)
expected model uncertainty using Eq. 12.

pert, since that would require training an expert policy under
the current inference model qθE . However, we can sample
expert episodes from the trained expert and the environment.
Given an expert trajectory τ exp “ x1:T ,a1:T we sample
latent belief states from the first T ´ H steps to obtain
s1:pT´Hq „ qθE p¨|x1:T´H ,a1:T´Hq. From each state sj
we then rollout the expert actions aj:j`H using the cur-
rent iteration of the dynamics model TθE and obtain states
tpŝtj ,a

t
ju
T´H,H
j“1,t“0 as in Section 4.1 (here atj “ aj`t from

the expert dataset. We can then obtain the empirical estimate
of

ϵupπ˚q « EqθE ps0
j |τ expq,TθE

” 1

HpT ´ Hq

ÿ

uθpŝtj ,a
t
jq

ı

(12)
Empirical results evaluated on the ”partial” task are shown in
Fig. 5 We see that the performance gap is strongly bounded
(up to a choice of the penalty scale) by the estimate from
Eq. 12, which verifies the claim of Theorem 4.1.

6. Discussion
We present a model-based RL algorithm which can effi-
ciently train offline and fine-tune online or continually. The
algorithm design does not require large replay buffers of
intermediate representations, while still allowing the use of
high-quality data to supervise the critic learning and boot-
strap the policy optimization. We believe that these qualities
make MOTO very suitable for realistic applications such as
autonomous driving. Large scale recurrent geometric pre-
diction models are standard in these applications (Hu et al.,
2022; 2021; Akan & Güney, 2022) and can be adapted to our
setting. Recently such work (Hu et al., 2022) reported state-
of-the-art performance on the CARLA driving benchmark
(Dosovitskiy et al., 2017) using a combination of model-
based representation and imitation learning. In the same
time concurrent work (Lu et al., 2022) demonstrated that
direct imitation learning can be sub-optimal in real world
driving cases, especially in scenarios with low data coverage

and high-stakes. Similarly to our work the authors use a
reinforcement learning approach with a behaviour cloning
regularization and show nearly two fold decrease in sub-
optimal behaviour in critical driving scenarios. We believe
that MOTO is well-suited for AV applications and plan to
pursue this direction in following work.

MOTO is also well-suited to the model-based imitation
learning setting (Baram et al., 2017; Rafailov et al., 2021;
Chang et al., 2021; Zhang et al., 2022), which has recently
been successfully applied to real world scenarios as well
(Lu et al., 2022; Bronstein et al., 2022). By using on-policy
roll-outs MOTO can maintain the stability and theoretical
guarantees of adversarial imitation learning (Ho & Ermon,
2016; Finn et al., 2016; Rafailov et al., 2020), while still
using the high-quality expert data to both provide supervi-
sion to the critic, as well as regularize the policy. Moreover,
MOTO can be applied to both the offline and online case.

Previous work (Yu et al., 2021a;b) has also shown that
model-free offline RL agents can struggle to utilize multi-
task data without specific adjustments, while model-based
works (Yu et al., 2020; 2021c; Argenson & Dulac-Arnold,
2020; Cang et al., 2021) have demonstrated good transfer
between related tasks in the low-dimensional domain. Our
generalization experiments from Section 5.3 as well as theo-
retical and empirical results from Section 4.4 and Section
5.4 indicate that MOTO can be well suited to multi-task
or the pre-training and downstream task fine-tuning regime
as long as these tasks share overlapping dynamics or be-
haviours. We plan to evaluate such capabilities on realistic
robotic tasks (Dasari et al., 2019; Ebert et al., 2021) in later
work.

7. Conclusion
We presented MOTO, a model-based reinforcement learning
algorithm specifically designed for the offline pre-training
and down-stream fine-tuning regime. MOTO learns a varia-
tional model directly from pixels, and trains and actor-critic
agent within the learned latent dynamics model using model-
based value expansion, ensembles and behaviour policy reg-
ularization. MOTO performs well on the established Franka
Kitchen benchmark and demonstrates capability for combi-
natorial generalization. As far as we are aware, MOTO is
the first algorithm to solve the environment directly from
images. Also, by studying the offline pre-training and fine-
tuning regime, we empirically verify long-standing theoreti-
cal results on the offline model-based RL problem, which
have implications for multi-task and transfer applications.
Finally, the structure of the algorithm makes it suitable for
use in very large scale models, which prior work was not
able to utilize, as well as a backbone for model-based imi-
tation, multi-task and transfer learning. We plan to further
pursue these directions in follow-up works.
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