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Abstract
Discovering causal relationships from time series
data is significant in fields such as finance, climate
science, and neuroscience. However, contempo-
rary techniques rely on the simplifying assump-
tion that data originates from the same causal
model, while in practice, data is heterogeneous
and can stem from different causal models. In
this work, we relax this assumption and perform
causal discovery from time series data originating
from a mixture of causal models. We propose
a general variational inference-based framework
called MCD to infer the underlying causal mod-
els as well as the mixing probability of each sam-
ple. Our approach employs an end-to-end train-
ing process that maximizes an evidence-lower
bound for the data likelihood. We present two
variants: MCD-Linear for linear relationships and
independent noise, and MCD-Nonlinear for non-
linear causal relationships and history-dependent
noise. We demonstrate that our method surpasses
state-of-the-art benchmarks in causal discovery
tasks through extensive experimentation on syn-
thetic and real-world datasets, particularly when
the data emanates from diverse underlying causal
graphs. Theoretically, we prove the identifiabil-
ity of such a model under some mild assump-
tions. Implementation is available at https:
//github.com/Rose-STL-Lab/MCD.

1. Introduction
Causal discovery extends and complements the scope of
prediction-focused machine learning with the notions of
controllability and counterfactual reasoning. It aims to infer
the underlying causal structure among observed variables
in the data (Spirtes et al., 2000). Many methods have been
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Figure 1. MCD discovers multiple causal graphs from time-series
data by determining the mixture component membership for each
sample and inferring one graph per mixture component.

developed for causal discovery from time-series data based
on structural causal models (SCMs) (Hyvärinen et al., 2010;
Pamfil et al., 2020; Yao et al., 2022; Gong et al., 2022),
conditional independence tests (Malinsky & Spirtes, 2018;
Runge et al., 2019; Runge, 2020), as well as the weaker
notion of Granger causality (Granger, 1969; Khanna & Tan,
2020; Tank et al., 2021).

Unfortunately, the existing methods predominantly assume
that a single causal model applies to the entire data set.
In machine learning tasks, data are often multi-modal and
highly heterogeneous. For example, gene regulatory net-
works are particular to different cells at different develop-
mental stages. But during experiments for cell lineage, one
can only track the RNA expression levels of different cells
with related but distinct gene regulatory networks, since
every measurement destroys the cell (Qiu et al., 2022). Sim-
ilarly, stock market interactions can vary over different time
periods. Using a single causal model to explain the data
can result in oversimplification and an inability to capture
diverse causal mechanisms.

The task of discovering mixtures of causal graphs from
data has received limited attention in the literature. Recent
work, such as Thiesson et al. (1998); Saeed et al. (2020);
Markham et al. (2022), have tackled the challenge of infer-
ring causal models from mixture distributions. However,
these approaches primarily focus on independent data and
do not specifically address time series data. Löwe et al.
(2022) touched upon this problem by inferring a per-sample
summary graph in an amortized framework, but their ap-
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proach is limited to inferring Granger causal relationships
and does not account for instantaneous effects.

In this paper, we investigate a more realistic setting in which
time series data is generated from a mixture of unknown
structural causal models (SCMs). We assume there are K
mixture components. The membership of which time series
comes from which SCM component is also unknown. Our
goal is to perform causal discovery by learning the complete
SCMs as well as the corresponding membership for each
time series sample. A complete SCM includes both the
causal graph and its associated functional equations. Figure
1 summarizes the problem setting that MCD tackles.

We propose a variational inference-based framework, Mix-
ture Causal Discovery (MCD), for causal discovery from
heterogeneous time series data. Our approach learns the
complete SCM and the mixture membership of each sam-
ple. To compute the intractable posterior, we derive and
optimize a novel Evidence Lower Bound (ELBO) of the
data likelihood. We present two variants: (1) MCD-Linear,
which models linear relationships and independent noise,
and (2) MCD-Nonlinear, which uses neural networks to
model functional relationships and history-dependent noise.
Theoretically, we characterize a necessary and sufficient con-
dition for the identifiability of a mixture of linear Gaussian
SCMs and derive a sufficient condition for the identifia-
bility of general SCMs under some mild assumptions. In
summary, our contributions are as follows:

• We tackle the realistic and challenging setting of dis-
covering mixtures of SCMs for time series data with ad-
ditive noise. We propose a novel variational inference
approach, MCD, to simultaneously infer the complete
SCM and the mixture membership of each sample.

• Theoretically, we show that under mild assumptions,
mixtures of identifiable causal models are identifiable
for both linear Gaussian and general SCMs. We also
derive the relationship between our proposed ELBO
objective and true data likelihood.

• We derive two instances of MCD: (1) MCD-Linear,
which models linear relationships with independent
noise, and (2) MCD-Nonlinear, which models nonlin-
ear relationships with history-dependent noise.

• Experimentally, we demonstrate the strong perfor-
mance of our method on both synthetic and real-world
datasets. Notably, MCD can accurately infer the mix-
ture causal graphs and mixture membership informa-
tion, even when the number of SCMs is misspecified.

2. Related work
In this section, we provide a focused literature survey on
causal discovery for time series and multiple causal models.

Causal Discovery for time series data. Many works on
time series causal discovery use the notion of Granger
causality (Granger, 1969). Tank et al. (2021) use component-
wise Multi-Layer Perceptrons (cMLP) or Long Short Term
Memory Networks (cLSTMs) with sparsity constraints on
weight matrices to infer non-linear Granger causal links.
Khanna & Tan (2020) use component-wise Statistical Re-
current Units (SRU), which incorporate single and multi-
scale summary statistics from multi-variate time series for
Granger causal detection. Amortized Causal Discovery.
(Löwe et al., 2022) aims to infer Granger causality from
time series data using a variational auto-encoder frame-
work in conjunction with Graph Neural Networks. However,
Granger causality is not true causality; it only indicates the
presence of a predictive relationship. Granger causality also
cannot account for instantaneous effects, latent confounders,
or history-dependent noise (Peters et al., 2017).

In contrast to Granger Causality, the framework of
SCMs can theoretically model instantaneous effects, la-
tent confounders, and history-dependent noise. Hyväri-
nen et al. (2010) incorporate vector autoregressive mod-
els to the LiNGAM (Shimizu et al., 2006) algorithm to
propose the VARLiNGAM algorithm for time series data.
DYNOTEARS, proposed in Pamfil et al. (2020), uses the
NOTEARS DAG constraint (Zheng et al., 2018) to learn a
dynamic Bayesian network. However, VARLiNGAM and
DYNOTEARS only account for linear causal relationships
and do not account for history-dependent noise. Runge et al.
(2019) extend the PC algorithm to time series data with
the PCMCI method. PCMCI+ (Runge, 2020) can handle
instantaneous edges. Rhino (Gong et al., 2022) learns the
temporal adjacency matrix given observational data while
modeling the exogenous history-dependent noise distribu-
tion. However, these methods assume a single causal graph
for the whole data distribution.

Learning mixtures of causal models. Several works focus
on the problem of causal discovery from heterogeneous in-
dependent data, but not time series. Thiesson et al. (1998)
use a heuristic search-and-score method to learn mixture of
directed acyclic graph (DAG) models. However, this method
only models linear causal relationships and Gaussian noise.
Saeed et al. (2020) use the FCI algorithm (Spirtes, 2001)
to recover the maximal ancestral graph (MAG) and use it
to detect variables with varying conditional distributions
across the mixture components. Strobl (2022) propose us-
ing longitudinal data, i.e., data about the same variables
measured across different, potentially irregularly-spaced
points of time, to infer a mixture of DAGs. However, they
do not infer causal relationships across time. Markham
et al. (2022) define a distance covariance-based kernel used
to cluster sample points based on the underlying causal
model. Any causal discovery algorithm can be used to infer
a DAG for each inferred cluster. Huang et al. (2019) pre-
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sume ‘individuals’ have multiple associated samples and
cluster them into groups. They learn individual-specific
and shared causal structures across groups using a linear
non-Gaussian mixture model.

Recent work (Huang et al., 2020; Zhou et al., 2022) tackled
causal discovery from data governed by heterogeneous and
non-stationary causal mechanisms over time. Unlike our
approach, they infer a single graph for all samples. In con-
trast, we model the heterogeneity of causal models across
samples. Our method learns one SCM per inferred mixture
component and the mixture membership of each sample.

Another line of work deals with causal discovery from non-
stationary time-series. Regime-PCMCI (Saggioro et al.,
2020) assumes that a time series can be divided into dif-
ferent regimes (albeit with linear causal relationships) with
distinct DAGs, and aims to infer the appropriate regime for
each time index. PCMCIΩ (Gao et al., 2023) uses condi-
tional independence tests for semistationary time series, in
which a finite number of causal models occur sequentially
and periodically over time. This differs from our setting,
in which we assume different causal graphs govern differ-
ent samples. In certain scenarios, for example, analyzing
climate patterns over different locations, our approach can
pool information from different samples. On the other hand,
Regime PCMCI and PCMCIΩ would have to infer causal
graphs from different locations separately.

Preliminaries. A Structural Causal Model (Pearl, 2009)
(SCM) explicitly encodes the causal relationships between
variables. Formally, an SCM over D variables consists of a
5-tuple ⟨X , ε,F ,G, P (ϵ)⟩:

1. A set of endogenous (observed) variables X ={
X1, X2, . . . , XD

}
;

2. A set of exogenous (noise) variables ε ={
ϵ1, ϵ2, . . . , ϵm

}
which influence the endogenous vari-

ables. In general, m ≥ D due to latent confounders;
but we assume causal sufficiency, i.e., m = D;

3. A Directed Acyclic Graph (DAG) G, denoting the
causal links amongst the members of X ;

4. A set of D functions F =
{
f1, f2, . . . , fD

}
de-

termining X through the structural equations Xi =
f i(PaiG , ϵ

i), where PaiG ⊂ X denotes the parents of
node i in graph G and ϵi ⊂ ε;

5. P (ϵ), which describes a distribution over noise ϵ.

Given time series data X ∈ RD×T , where T is the number
of time steps, we can describe the causal relationships as:

Xd
t = fdt (PadG(< t),PadG(t), ϵ

d
t ), (1)

where Xd
t denotes the value of the dth variable of the time-

series at time step t, PadG(< t) denote the parents of node d
from the preceding time-steps (lagged parents) and PadG(t)
are the parents at the current time-step (instantaneous par-

ents). We assume that Xt is influenced by at most time-lag
L preceding time steps, i.e. PaG(< t) ⊆ {Xt−1, ..., Xt−L}.
This is a common assumption, shared with Rhino (Gong
et al., 2022), VARLiNGaM (Hyvärinen et al., 2010) and
PCMCI (Runge et al., 2019) amongst others. The causal re-
lationships can be modeled as a temporal adjacency matrix
G0:L, where G1:L represents the lagged relationships, and
G0 represents the instantaneous edges. We set Gi,jτ = 1 if
Xi
t−τ → Xj

t , and 0 otherwise. In practice, we input L as a
hyperparameter. We use the additive noise model due to its
identifiability (Gong et al., 2022):

Xt = ft(PaG(< t),PaG(t)) + ϵt (2)

We mute the variable index d for simplicity. Xt ∈ RD
represents the values of all variables at time t.

Our model shares similar assumptions to Gong et al. (2022),
including causal stationarity, minimality and sufficiency,
and some mild conditions on the likelihood function. These
assumptions are restated in Appendix A.2.

3. Mixture Causal Discovery (MCD)

Figure 2. Probabilistic
graphical model diagram of
a mixture of SCMs. Shaded
circles are observed and
hollow circles are latent.

In this section, we detail our
approach to learning mixtures
of structural causal models
from time-series data.

3.1. Problem setting.

We are given N samples of
multi-variate time series with
D variables, each of length T ,

denoted by
{
X

1:D,(n)
1:T

}N
n=1

.
We assume that each sample
is generated by one of the K
unknown SCMs, each consist-
ing of a DAG Gk, represented
as a temporal adjacency matrix of size (L + 1) ×D ×D,
and its structural equations.

Our goal is to infer the DAG, the structural equations for all
K SCMs, as well as the mixture membership of each sample
in an unsupervised fashion. As shown in the graphical model
of Figure 2, we represent the K SCMs as random variables
M1:K . For each data sample indexed by n, we assign a
categorical variable Z(n) ∈ {1, . . . ,K} to represent the
membership of each sample to an SCM component.

We model each SCM Mk as a pair (Gk,Θk), where Gk
is the adjacency matrix, and Θk represents the trainable
parameters of the structural equations and noise models. We
model the causal relationships of X(n)

t under SCM k as:

X
(n)
t

∣∣∣
k
= fk(PaGk(≤ t)) + gk(PaGk(< t), ϵt), (3)
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Figure 3. Overview of how the ELBO from Eq. (4) is calculated for (left) MCD-Linear, and (right) MCD-Nonlinear. Given time-series

data
{
X

1:D,(n)
t−L

}N
n=1

, and a DAG sample G1:K from the variational distribution qϕ(M1:K), we calculate the likelihood of the data under

all the K causal models. The likelihood is weighted by the mixing probabilities
{
rψ

(
Z(n) | X(n)

)}N
n=1

to calculate the ELBO.

where the function fk denotes the structural equation model
and gk denotes the exogenous noise model.

3.2. Variational inference

Our goal is to infer the true posterior distribution
p
(
M1:K | X(1:N)

)
. However, it is intractable due to the

presence of latent variables M1:K and {Z(n)}. We propose
a variational inference framework to infer the parameters of
the data generation process.

Proposition 1. Under the data generation process de-
scribed in Figure 2, the data likelihood admits the following
evidence lower bound (ELBO):

log pθ

(
X

(1:N)
1:T

)
≥

N∑
n=1

Eqϕ(M1:K)

[
E
rψ

(
Z(n)|X(n)

1:T

)[ log pθ (X(n)
1:T | MZ(n)

)
+ log p

(
Z(n)

)
+H

(
rψ

(
Z(n) | X(n)

1:T

)) ]]

+

K∑
k=1

Eqϕ(Mk) [log p(Mk)] +H (qϕ(Mk)) (4)

≡ ELBO(θ, ϕ, ψ).

For derivation details, we refer the reader to Section A.1.
Here, log pθ

(
X

(n)
1:T | MZ(n)

)
represents the marginal like-

lihood of X(n) under model MZ(n) , qϕ (Mk) represents
the variational distribution of the causal model Mk, and
rψ(Z

(n) | X(n)) represents the variational posterior distri-
bution of the mixing rate for sample X(n). The number of

causal models K is a hyperparameter. p(Z) represents our
prior belief about the membership of samples to the causal
models, typically considered to be a uniform distribution.

3.3. Model implementation

We describe how to parameterize the different loss terms in
Eq. (4). Figure 3 shows the ELBO calculation for MCD.

Causal model. We parameterize the variational distribution

of the causal models as qϕ (M1:K) =

K∏
k=1

qϕk (Gk) δ(Θk),

where δ represents the Dirac-δ function, and Θk represents
the (learned) parameters of the structural equations and
noise models. The distribution of the DAG adjacency ma-
trix qϕk (Gk) is represented as a product of independent
Bernoulli distributions. The expectation over qϕ (M1:K) is
computed by sampling once through Monte-Carlo sampling,
using the Gumbel-Softmax trick (Jang et al., 2017).

Mixing probabilities. We specify the mixing rates varia-
tional distribution rψ

(
Z(n) | X(n)

)
as a K-way categor-

ical distribution, and learn it for each sample. We set

rψ

(
Z(n) | X(n)

)
= softmax

(
w(n)

τr

)
, where w(n) =[

w
(n)
1 , . . . , w

(n)
K

]
∈ RK are learnable weight parameters

for each sample, and τr is a temperature hyperparameter.
The number of parameters in the learned membership ma-
trix grows linearly with the number of samples. This depen-
dence on the sample size can be eliminated using a classifier
that inputs a D × T multivariate time series and outputs a
categorical distribution over the mixture components. How-
ever, in practice, we observe that the number of parameters
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for the learned membership matrix W is quite small.

We also need an expectation of the likelihood term over
rψ
(
Z(n) | X(n)

)
. This involves computing the marginal

likelihood of each sample under all K causal models, the-
oretically requiring K times more operations than using a
single model. In practice, we can calculate the marginal like-
lihoods under all causal models in parallel using PyTorch
vectorization. Empirically, the computational complexity in-
crease over using a single model leads to a modest increase
in run-time, much less than a factor of K (Appendix B.8).

In theory, any likelihood-based causal structure learning
algorithm can be used to implement the marginal likelihood
loss term log pθ

(
X

(n)
1:T | MZ(n)

)
in Eq. (4). Appendix C

details the computation of log pθ
(
X

(n)
1:T | MZ(n)

)
based

on the model for fk in Eq (3). We implement two vari-
ants of MCD to show the flexibility of our framework: (1)
MCD-Linear, which handles linear causal relationships and
independent noise, and (2) MCD-Nonlinear, which handles
nonlinear structural equations and history-dependent noise.

MCD-Linear. We implement each of the K models using
a linear model:

fdk (PaGk(≤ t)) =

L∑
τ=0

D∑
j=1

(Gk ◦Wk)
j,d
τ ×X

j,(n)
t−τ , (5)

where ◦ denotes the Hadamard product, and Wk ∈
R(L+1)×D×D is a learned weight tensor. The parame-
ters of each SCM are given by Θk = {Wk}. Since we
do not model the history-dependence of the noise, we set
gk(PaGk(< t), ϵt) = ϵt, i.e., the identity function.

MCD-Nonlinear. We implement each of the K causal
models based on Rhino (Gong et al., 2022) as it can han-
dle instantaneous effects and history-dependent noise. We
parameterize the structural equations fk in (2) with em-
beddings Ek, which are used in conjunction with neural
networks, denoted by Ξf and ℓf :

fdk
(
PaGk(≤t)

)
= Ξf

 L∑
τ=0

D∑
j=1

(Gk)j,dτ ×

ℓf

([
X
j,(n)
t−τ , (Ek)

j
τ

])
, (Ek)d0

])
. (6)

Ek ∈ R(L+1)×D×e are trainable embeddings (with embed-
ding dimension e) corresponding to model Mk, and Ξf
and ℓf are multi-layer perceptron networks that are shared
across all nodes and causal models M1:K . The noise model
gk(PaGk(< t), ϵt) is described using conditional spline flow.
The network that predicts parameters for the conditional
spline flow model uses a similar architecture, utilizing em-
beddings Fk with neural networks Ξϵ and ℓϵ. Thus, the
SCM parameters are Θk = {Ek,Fk,Ξf , ℓf ,Ξϵ, ℓϵ}.

4. Theoretical analysis
In this section, we examine (1) conditions under which the
mixture model is identifiable (2) the relationship between
the derived ELBO objective and the true data likelihood.

Structural identifiability. We examine when the mixtures
of SCM models are identifiable. Structural identifiability
dictates that two distinct mixtures of SCMs cannot result
in the same observational distribution. Identifiability is
an important statistical property to ensure that the causal
discovery problem is meaningful (Peters et al., 2011).

We establish a necessary and sufficient condition for the
identifiability of mixtures of linear structural vector autore-
gressive models (SVARs) with Gaussian noise.

Theorem 2 (Identifiability of linear SVARs with equal–
variance additive Gaussian noise). Let F be a family of
distributions of K structural vector autoregressive (SVAR)
models of lag L ≥ 1 with zero-mean Gaussian noise of
equal variance, i.e.

F =
{
LM(k) : M(k) is specified by the equations

Xt = W(k)Xt +

L∑
τ=1

A(k)
τ Xt−τ + ε(k),

ε(k) ∼ N
(
0, σ2I

)
, 1 ≤ k ≤ K

}
and let HK be the family of all K−finite mixtures of ele-
ments from F . Then the family HK is identifiable if and
only if the following condition is met: The ordered pairs([

B(k)
]−1

A
(k)
1 , ...,

[
B(k)

]−1
A

(k)
L ,
[
B(k)

] [
B(k)

]T)
,

(7)
are distinct over all k, where B(k) = I−W(k).

To illustrate this condition, we consider the 2D SCM case
when L = 0, i.e. there are no lagged effects. The SCM

is specified by W (k) =

[
0 w

(k)
1

w
(k)
2 0

]
, and the matrix

B(k) takes the form B(k) =

[
1 −w(k)

1

−w(k)
2 1

]
, where

w
(k)
1 w

(k)
2 = 0 due to acyclicity. Then

[
B(k)

] [
B(k)

]T
= 1 +

(
w

(k)
1

)2
−(w

(k)
1 + w

(k)
2 )

−(w
(k)
1 + w

(k)
2 ) 1 +

(
w

(k)
2

)2
, and the condition is

violated iff W (i) = W (j), i.e., they have the same SCM
equations. The mixture of linear Gaussian SCMs is identifi-
able when the structural equation matrices are distinct.

We now examine the identifiability of mixtures of general
SCMs. We derive an intuitive sufficient condition for mix-
ture model identifiability in terms of the existence of K
representative points from the sample space X. These points
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exhibit a key characteristic: their association with a partic-
ular causal model is unequivocal, as determined by their
marginal likelihood functions of the mixture components.

Theorem 3 (Identifiability of finite mixture of causal mod-
els). Let F be a family ofK identifiable causal models, F ={
L(k)
M : M is an identifiable causal model , 1 ≤ k ≤ K

}
and let HK be the family of all K−finite mixtures of
elements from F , i.e.

HK =

{
h : h =

K∑
k=1

πkLMk
,LMk

∈ F ,

πk > 0,

K∑
k=1

πk = 1

}

where LMk
(x) =

∑
M

p(x | M)p(Mk = M) denotes the

likelihood of x evaluated with causal model Mk. Further,
assume that the following condition is met:

For every k = 1, . . . ,K, ∃ak ∈ X such that

LMk
(ak)∑K

j=1 LMj
(ak)

>
1

2
. (*)

Then the family HK is identifiable.

Appendix A.3 contains the relevant definitions and proofs.
To draw a parallel with clustering, this implies that each
cluster has at least one point whose membership can be
established with a high level of certainty to that specific
cluster. Directly verifying the condition (*) is generally
difficult because we rarely know the exact form of the like-
lihood function. However, this condition can be verified
approximately using the estimated likelihood functions for
each mixture component, as with our approach, MCD. The
validity of this verification critically depends on how closely
the estimated likelihood function approximates the true like-
lihood function.

Furthermore, as a direct consequence of the structural iden-
tifiability of the Rhino model (Gong et al., 2022), a mixture
of Rhino models is also identifiable, provided that the as-
sumptions in Section A.2 and condition (∗) are satisfied.

Relationship between ELBO and log-likelihood. We ver-
ify the soundness of our derived ELBO objective in Eq. (4).
By maximizing the ELBO, we can simultaneously learn
the K underlying causal graphs, their associated functional
equations, and the membership of each sample to its respec-

tive causal model. We show that (Appendix A.4):

log pθ(X) = ELBO(θ, ϕ, ψ)

+

N∑
n=1

Eqϕ(M1:K)

[
KL
(
rψ

(
Z(n)|X(n)

)
∥p(Z(n)|X(n),M1:K)

)]
+KL (qϕ (M1:K) ∥p (M1:K |X)) .

Maximizing ELBO(θ, ϕ, ψ) with respect to (θ, ϕ, ψ) is
equivalent to jointly (1) maximizing the log-likelihood
log pθ(X) (2) minimizing the KL divergence between the
variational distribution qϕ (M1:K) and the true posterior
p (M1:K | X), and (3) minimizing the expectation, under
the variational distribution qϕ(M1:K), of the KL divergence
between the variational posterior rψ

(
Z(n) | X(n)

)
for each

sample X(n) and the true posterior for mixture component
selection p

(
Z(n) | X(n),M1:K

)
.

5. Experiments
5.1. Experimental setup

We train the model on 80% of the data and validate on
the remaining 20%. We pick the model with the lowest
validation likelihood and evaluate the corresponding causal
graphs. Details about model validation are in Appendix D.2.

Baselines. We benchmark against several state-of-the-
art temporal causal discovery methods, including Rhino
(Gong et al., 2022), PCMCI+ (Runge, 2020), DYNOTEARS
(Pamfil et al., 2020), and VARLiNGaM (Hyvärinen et al.,
2010). PCMCI+ and DYNOTEARS can be used with two
options - one where the algorithm predicts one causal graph
per sample and one where the algorithm predicts one graph
to explain the whole dataset. We denote these options with
suffixes -s and -o, respectively. Since these baseline methods
cannot discover mixtures of causal graphs, we also report
results by grouping samples by their true causal graph. We
then predict one causal graph per group. This option is
reported for PCMCI+, DYNOTEARS, and Rhino and is
denoted by the suffix -g in the results. Appendix D.4 details
the steps for post-processing PCMCI+’s output.

In practice, the number of mixture components, which we
treat as a hyperparameter, is often unknown. We use K∗

to denote the true number of SCMs, and K to represent
the input to MCD. We report the clustering accuracy for
MCD in addition to traditional causal discovery metrics like
orientation F1 score and AUROC (Area Under the Receiver
Operator Curve). We define clustering accuracy as:

Cluster Acc.
(
Z̃, Z

)
= max
π∈SK

1

N

N∑
n=1

1
(
π(Z̃n) = Zn

)
,

where Z̃ are the assigned mixture labels and Z are the true
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labels. We refer the reader to Appendix C.1 for details about
the calculation of clustering accuracy.

5.2. Datasets

Synthetic datasets. We generate a pool of K∗ random
graphs (specifically, Erdős-Rényi graphs) and treat them as
ground-truth causal graphs. To generate a sample X(n), we
first randomly sample a graph Gk from this pool and use it to
model relationships between the variables. We experiment
withD = 5, 10, 20 nodes. For each value ofD, we generate
datasets with K∗ = 1, 5, 10, 20 graphs having N = 1000
samples each. The time series length T is 100, and the time
lag L is set to 2 for all the methods, which is the lag value
used to simulate the data. The number of causal graphs K
is set to 2K∗. We experiment with two sets of synthetic
datasets: (1) Linear datasets, in which linear causal rela-
tionships are modeled with Gaussian noise; (2) Nonlinear
datasets, in which the functional relationships are modeled
as randomly generated multi-layer perceptions with history-
dependent noise. We refer the reader to Appendix D.1 for
more details about the setup.

Netsim Brain Connectivity. The Netsim benchmark
dataset (Smith et al., 2011) consists of simulated blood
oxygenation level-dependent (BOLD) imaging data. Each
variable represents a region of the brain, with the goal be-
ing to infer the interactions between the different regions.
The dataset has 28 different simulations, which differ in the
number of variables and time length over which the mea-
surements are recorded. In our experiments, we consider the
samples from simulation 3 comprising N = 50 time series,
each with D = 15 nodes and T = 200 timepoints. These
samples share the same ground-truth causal graph. We in-
troduce heterogeneity by considering a pool of K∗ = 3
random permutations and applying a randomly chosen one
to the nodes of each sample and its corresponding ground
truth causal graph. This setup is denoted as Netsim-mixture.
We use a uniform prior for p(Z) and set L = 2 and K = 5.

DREAM3 Gene Network. The DREAM3 dataset (Prill
et al., 2010) is a real-world biology dataset consisting of
measurements of gene expression levels obtained from yeast
and E.coli cells. There are 5 distinct ground-truth networks,
comprising 2 for E.coli and 3 for Yeast, each with D = 100
nodes. Each time series consists of T = 21 timesteps,
with 46 trajectories recorded per graph. Thus, a total of
N = 230 samples are combined across all the networks. We
mix samples from all 5 networks to simulate the scenario
in which the identity of the cell from which the data is
obtained is unknown. This is a challenging dataset due to
the high dimensionality of the data and the small number of
available samples. We set the time lag L = 2 and K = 10.
We discuss how we post-process the model outputs on the
Netsim and DREAM3 datasets in Appendix D.5.

Netsim-mixture DREAM3
Method AUROC

(x) F1
(x) AUROC

(x) F1
(x)

PCMCI+-s 0.82 0.67 0.50 0.01
PCMCI+-o 0.71 0.49 0.51 0.04
PCMCI+-g 0.72 0.52 0.51 0.05

VARLiNGAM 0.78 0.60 NA NA
DYNOTEARS-s 0.85 0.28 0.50 0.03
DYNOTEARS-o 0.83 0.45 0.50 0.03
DYNOTEARS-g 0.85 0.46 0.50 0.03

Rhino 0.84± 0.01 0.62± 0.01 0.57± 0.01 0.08± 0.01
MCD-Nonlinear (this paper) 0.94± 0.03 0.69± 0.08 0.58± 0.01 0.10± 0.01

MCD-Linear (this paper) 0.73± 0.02 0.62± 0.02 0.51± 0.01 0.00± 0.00

Table 1. Results on Netsim-mixture and DREAM3. -s indicates
that the baseline predicts one graph per sample. -o indicates that
the baseline predicts one graph for the whole dataset. -g signifies
that the baseline is run on samples grouped according to the ground
truth causal graph. VARLiNGAM does not run on the DREAM3
dataset. MCD-Nonlinear achieves a clustering accuracy of 86.8±
26.3% on Netsim-mixture and 95.6± 4.8% on DREAM3.

S&P 100. We also run MCD on daily stock returns
of companies from the S&P 100 index. We use the
yahoofinancials package to retrieve the daily clos-
ing prices of D = 100 stocks from January 1, 2016 to July
1, 2023. Similar to the setup in Pamfil et al. (2020), we use
log-returns, i.e., differences of the logarithm of the closing
prices of successive days. In addition, we normalize the
log-returns to have zero mean and unit variance. We chunk
the data into segments of length T = 31 each, resulting in
N = 60 samples. We train our model on the first 48 samples
and validate with the last 12 samples. Following Pamfil et al.
(2020), we set L = 1. We set K = 5 and threshold the edge
probabilities at 0.4. We qualitatively analyze the results on
this dataset since it lacks ground truth causal graphs.

5.3. Results on synthetic and real-world datasets

Synthetic datasets results. Results are presented in Fig-
ure 4. On the nonlinear dataset, MCD-Nonlinear handily
outperforms all the baselines except Rhino-g. Notably, it
performs better than PCMCI+-g, even though PCMCI+ has
additional information (i.e., ground truth membership in-
formation) that MCD-Nonlinear does not. MCD-Nonlinear
achieves comparable, and sometimes better, performance
than Rhino-g, especially on the D = 10 and D = 20
datasets. The baseline variants that predict one graph per
sample perform poorly as expected since one sample does
not provide adequate information to infer all the causal rela-
tionships. DYNOTEARS and VARLiNGAM, which assume
that the causal relationships are linear, perform poorly on
these datasets. We also omit MCD-Linear for this reason.

On the linear dataset, MCD-Linear achieves a similar or
better F1 score than the grouped baseline methods when the
number of graphs K∗ is 5, 10, 20. It achieves a comparable
level of performance to the baselines for K∗ = 1 despite
the misspecification of the number of graphs. MCD-Linear
expectedly outperforms MCD-Nonlinear across all settings
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Figure 5. Clustering accuracy of (left) MCD-Nonlinear on the non-
linear synthetic datasets (right) MCD-Linear on the linear synthetic
datasets, as a function of the true number of causal graphs K∗.
The accuracy is averaged across 5 runs and data dimensionality
D = 5, 10, 20. Hyperparameter K is set to 2K∗ for all settings.

since its model matches the parametric form of the data gen-
eration process. Nevertheless, MCD-Nonlinear performs
better than all the baselines that do not use ground truth
membership information. Although VARLiNGAM is a lin-
ear model, it performs poorly since it cannot handle linear
SCMs with Gaussian noise.

We report the clustering accuracy for MCD in Figure 5 for
different values of K∗, averaged over the data dimensionali-
ties D = 5, 10, 20. MCD-Nonlinear achieves near-perfect
clustering for scenarios with multiple underlying graphs.
MCD-Linear also achieves strong clustering performance,
although it shows high variability across D. The low clus-
tering accuracy and relatively low F1 and AUROC scores
for K∗ = 1 are explained by the observation that MCD
learns two similar mixture components to explain the single
underlying mode in the distribution.

Netsim-mixture results. The results on the Netsim dataset

are presented in Table 1. MCD-Nonlinear outperforms all
baselines as measured by AUROC and F1 scores. This
setting illustrates the benefits of modeling heterogeneity,
even when it comes from a simple permutation of nodes. In
this setting, MCD-Nonlinear achieves a clustering accuracy
of 86.8± 26.3%, highlighting its ability to accurately group
samples when the underlying causal models are sufficiently
diverse. MCD-Linear learns a single mode for the dataset
and achieves similar results to Rhino.

DREAM3 results. The results on the DREAM3 dataset
are presented in Table 1. All methods fare poorly at in-
ferring the causal relationships. However, out of all the
considered baselines, MCD-Nonlinear achieves relatively
better performance in terms of AUROC and F1 score. It is
especially encouraging that MCD-Nonlinear can accurately
cluster samples by their causal models, with a remarkable
clustering accuracy of 95.6± 4.8%. MCD-Linear infers a
single mode from the dataset.

S&P100 results. MCD-Nonlinear infers two distinct causal
graphs for the S&P100 dataset. We aggregate the adjacency
matrices across time as described in Appendix D.5. Figure
6 shows subgraphs of the two discovered causal graphs
for stocks in the energy, financials, industrials, and real
estate sectors. The model identifies that companies from
the same sector interact more than those across sectors,
which is evident from the block-diagonal structure of the
inferred graphs. Further, the two inferred causal graphs have
important differences; e.g., Graph 1 shows more interactions
between the financial and industrial sectors than Graph 2,
and the direction of the causal influences for XOM in the
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Figure 6. (Left) Sub-graphs of the two inferred graphs from MCD-Nonlinear (Right) S&P 100 index overlaid with the mixture membership
from MCD-Nonlinear. Red indicates that Graph 1 from Figure 11 is used, while blue indicates that Graph 2 is active.

energy sector is reversed between the two graphs.

We also overlay the inferred mixture membership for each
sample onto the S&P100 index in Figure 6 (right). We note
that the model automatically identifies that several consecu-
tive time windows are governed by the same causal graph.
In addition, the changes in the governing causal graph suc-
cessfully capture several important events. For example, the
stock market crashes in December 2018 and March 2020
(due to COVID-19) are captured by the red (first) causal
graph. The ‘blue’ periods, in which Graph 2 is active, ex-
hibit relatively less pronounced trends. Additionally, Graph
2 is much sparser than Graph 1. We show the full causal
graphs and interesting patterns that MCD-Nonlinear cap-
tures in selected stocks in Appendix B.2.

5.4. Ablation Studies

Robustness of MCD to the misspecification of number of
components. We examine the performance of MCD when
the number of mixture components K is misspecified, and
does not equal the true number of underlying components
K∗. Figure 7 shows the performance of MCD-Nonlinear
as a function of K on the nonlinear synthetic dataset with
dimensionality D = 10 and ground truth number of graphs
K∗ = 10. We note that when the number of models is un-
derspecified, our model performs poorly as expected since
it cannot fully explain all the modes in the data. Surpris-
ingly, the performance increases with increasing K. The
clustering accuracy and performance metrics show high stan-
dard deviation when K is set to the true number of mixture
components K∗ = 10. While some random seeds achieve
high clustering accuracy, others tend to saturate at a subop-
timal grouping when K = K∗. On the other hand, when
K > K∗, the additional SCMs are used as ‘buffers,’ and
the correct grouping is learned during the later epochs as
the SCMs are inferred more accurately. This phenomenon
is further explored in Appendix B.6

We perform additional ablation studies on synthetic datasets
to investigate the behavior of MCD as K∗ increases, com-
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Figure 7. Performance of MCD-Nonlinear as a function of hyper-
parameter input K on synthetic data with D = 10,K∗ = 10 .
Surprisingly, MCD-Nonlinear performs better when the number
of graphs is overspecified.

pare causal discovery performance using ground-truth mem-
bership assignments, and examine the impact of the simi-
larity of the causal graphs. Details of these studies can be
found in Appendix B.4.

6. Conclusion and Discussion
In this work, we examine the problem of discovering mix-
tures of structural causal models from time series data. This
problem has far-reaching applications in climate, finance,
and healthcare, among other fields, since multimodal and
heterogeneous data is ubiquitous in practice. We propose
MCD, an end-to-end variational inference method, to learn
both the underlying SCMs and the mixture component mem-
bership of each sample. We demonstrate the empirical effi-
cacy of our method on both synthetic and real-world hetero-
geneous datasets. We conduct ablation studies on synthetic
datasets to investigate MCD’s behavior with varying num-
bers of causal graphs, its robustness to misspecification of
the number of graphs, and the impact of similarity among
the causal graphs associated with each mixture component.
In addition, we discuss the structural identifiability of mix-
tures of causal models. Future work could tackle data with
latent confounders and non-stationarity in time.
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Figure 8. The assumed data generation model. First, the mixture index Z(n) is drawn from a K-way categorical distribution (Z(n) ∼
Cat(K), Z(n) ∈ {1, . . . ,K}), and a causal model is drawn from the corresponding mixture component distribution M ∼ p (MZ(n)). A
sample X(n) is then drawn in according to the chosen causal model M.

A. Theory
A.1. ELBO derivation

Proposition 1. Under the data generation process described in Figure 2, the data likelihood admits the following evidence
lower bound (ELBO):

log pθ

(
X

(1:N)
1:T

)
≥

N∑
n=1

Eqϕ(M1:K)

[
E
rψ

(
Z(n)|X(n)

1:T

)[ log pθ (X(n)
1:T | MZ(n)

)
+ log p

(
Z(n)

) ]
+H

(
rψ

(
Z(n) | X(n)

1:T

))]

+

K∑
i=1

Eqϕ(Mi) [log p(Mi)] +H (qϕ(Mi))

Proof. Denote the causal models as M1:K = (M1, . . . ,MK) and the sample X =
{
X(n)

}N
n=1

. Then, we can write the
log-likelihood under the assumed model as follows:

log pθ(X) = log

[ ∑
M1:K

pθ (X | M1:K) p(M1:K)× qϕ(M1:K)

qϕ(M1:K)

]

= logEqϕ(M1:K)

[
pθ (X | M1:K) p(M1:K)

qϕ(M1:K)

]
≥ Eqϕ(M1:K)

[
log

pθ (X | M1:K) p(M1:K)

qϕ(M1:K)

]
(using Jensen’s inequality)

= Eqϕ(M1:K) [log pθ (X | M1:K) + log p(M1:K)− log qϕ(M1:K)]

Since the sample points are conditionally independent given the causal models, we can write:

log pθ(X) ≥
N∑
n=1

Eqϕ(M1:K)

[
log pθ

(
X(n) | M1:K

)]
+ Eqϕ(M1:K) [log p(M1:K)− log qϕ(M1:K)]
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Further, note that:

log pθ(X
(n) | M1:K) = log

[∑
Z(n)

pθ(X
(n) | Z(n),M1:K)p(Z(n) | M1:K)

]

= log

[∑
Z(n)

pθ(X
(n) | Z(n),M1:K)p(Z(n))×

rψ
(
Z(n) | X(n)

)
rψ
(
Z(n) | X(n)

)]

= logErψ(Z(n)|X(n))

[
pθ(X

(n) | Z(n),M1:K)p(Z(n))

rψ
(
Z(n) | X(n)

) ]

≥ Erψ(Z(n)|X(n))

[
log

pθ(X
(n) | Z(n),M1:K)p(Z(n))

rψ
(
Z(n) | X(n)

) ]
(using Jensen’s inequality)

= Erψ(Z(n)|X(n))

[
log pθ(X

(n) | Z(n),M1:K) + log p(Z(n))− log rψ

(
Z(n) | X(n)

)]
.

We use the fact that pθ(X(n) | Z(n),M1:K) = pθ
(
X(n) | MZ(n)

)
. Putting it all together, and using the independence of

the causal models, we obtain:

log pθ(X) ≥
N∑
n=1

Eqϕ(M1:K)

[
Erψ(Z(n)|X(n))

[
log pθ(X

(n) | MZ(n)) + log p(Z(n))− log rψ

(
Z(n) | X(n)

)]]
+

K∑
i=1

Eqϕ(Mi) [log p(Mi)− log qϕ(Mi)]

≡ ELBO(θ, ϕ, ψ)

A.2. Theoretical assumptions

In this section, we list out the theoretical assumptions used in Rhino (Gong et al., 2022). Our model also operates under
similar assumptions, since we implement the component SCMs as Rhino models.

Assumption 1 (Causal Stationarity). (Runge, 2018) The time series X with a graph G is called causally stationary over a
time index set T if and only if for all links Xi

t−τ → Xj
t in the graph

Xi
t−τ ⊥̸⊥ Xj

t | Xt\
{
Xi
t−τ
}

holds for all t ∈ T .

Informally, this assumption states that the causal graph does not change over time, i.e., the resulting time series is stationary.

Assumption 2 (Causal Markov Property). (Peters et al., 2017) Given a DAG G and a probability distribution p, p is said to

satisfy the causal Markov property, if it factorizes according to G, i.e. p(x) =
D∏
i=1

p
(
xi | PaiG(xi)

)
. In other words, each

variable is independent of its non-descendent given its parents.

Assumption 3 (Causal Minimality). Given a DAGG and a probability distribution p, p is said to satisfy the causal minimality
with respect to G, if p is Markovian with respect to G but not to any proper subgraph of G.

Assumption 4 (Causal Sufficiency). A set of observed variables V is said to be causally sufficient for a process Xt if, in the
process, every common cause of two or more variables in V is also in V , or is constant for all units in the population. In
other words, causal sufficiency implies the absence of latent confounders in the data.

Assumption 5 (Well-defined Density). The likelihood of each mixture component (i.e. the likelihood function of each
Rhino model) is absolutely continuous with respect to a Lebesgue or counting measure and |log p (X0:T ;G)| <∞ for all
possible G.

13
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A.3. Identifiability of the mixture of causal models

Definition 1 (Identifiability). Let P = {pθ : θ ∈ T } be a family of distributions, each member of which is parameterized
by the parameter θ from a parameter space T . Then P is said to be identifiable if

pθ1 = pθ2 =⇒ θ1 = θ2 ∀θ1, θ2 ∈ T .

Definition 2 (Identifiability of finite mixtures). Let F be a family of distributions. The family of K−mixture distributions

on F , defined as HK =

{
h : h =

K∑
k=1

πkfk, fk ∈ F , πk > 0,

K∑
k=1

πk = 1

}
, is said to be identifiable if

K∑
k=1

πkfk =

K∑
j=1

π′
jf

′
j =⇒ ∀k ∃j such that πk = π′

j and fk = f ′j .

Here, we quote a result from Yakowitz & Spragins (1968) that established a necessary and sufficient condition for the
identifiability of finite mixtures of multivariate distributions.

Theorem A (Identifiability of finite mixtures of distributions (Yakowitz & Spragins, 1968)). Let F =
{F (x;α), α ∈ Rm, x ∈ Rn} be a finite mixture of distributions. Then F is identifiable if and only if F is a linearly
independent set over the field of real numbers.

In other words, this theorem states that a mixture of distributions is identifiable if and only if none of the individual mixture
components can be expressed as a mixture of distributions from the same family. In general, it can be difficult to comment
on the identifiability of a mixture of arbitrary random distributions. However, it is known that the mixture of multivariate
Gaussian distributions is identifiable. We use this result to prove the identifiability of a mixture of linear SCMs with Gaussian
noise.

Proposition A (Identifiability of mixture of multivariate Gaussian distributions (Yakowitz & Spragins, 1968)). The family
of n-dimensional Gaussian distributions generates identifiable finite mixtures.

Theorem B (Identifiability of linear SCMs with equal-variance additive Gaussian noise). Let F be a family of distributions
of K linear causal models with Gaussian noise of equal variance, i.e.

F =
{
LM(k) : M(k) is specified by the equations X = W(k)X+ ε(k), ε(k) ∼ N

(
µ(k), σ2I

)
, 1 ≤ k ≤ K

}
and let HK be the family of all K−finite mixtures of elements from F , i.e.

HK =

{
h : h =

K∑
k=1

πkLM(k) ,LM(k) ∈ F , πk > 0,
K∑
k=1

πk = 1

}

where LM(k)(x) = p
(
x | M(k)

)
denotes the likelihood of x evaluated with causal model M(k).

Then the family HK is identifiable if and only if the following condition is met:

The ordered pairs
([

B(k)
]−1

µ(k),
[
B(k)

] [
B(k)

]T)
are distinct over all k, 1 ≤ k ≤ K, (8)

where B(k) = I−W(k).

Proof. Note that the equations for a linear SCM can equivalently be written as:

X(k) =
[
B(k)

]−1

ε(k) ∼ N
([

B(k)
]−1

µ(k), σ2
[
B(k)

]−1 [
B(k)

]−T)
where B(k) =

(
I−W(k)

)
.

14
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A linear SCM with equal variance Gaussian additive noise is known to be identifiable (Peters & Bühlmann, 2014). Thus,
from Proposition A, we have that the finite mixture is identifiable, as long as the parameters of the resultant Gaussian
distributions are distinct, as required by the condition in (8).

Conversely, if condition (8) does not hold, then ∃k ̸= j such that

p(x | M(k)) = p(x | M(j)),

i.e. there are two mixture components with identical distributions. This family cannot be identifiable, since any mixture of
the form h = αp

(
x | M(k)

)
+ (1− α)p

(
x | M(j)

)
= p(x | M(k)) for any α ∈ [0, 1]

Theorem 2 (Identifiability of linear SVARs with equal-variance additive Gaussian noise). Let F be a family of distributions
of K structural vector autoregressive (SVAR) models of lag L ≥ 1 with zero-mean Gaussian noise of equal variance, i.e.

F =

{
LM(k) : M(k) is specified by the equations Xt = W(k)Xt +

L∑
τ=1

A(k)
τ Xt−τ + ε(k),

ε(k) ∼ N
(
0, σ2I

)
, 1 ≤ k ≤ K

}

and let HK be the family of all K−finite mixtures of elements from F , i.e.

HK =

{
h : h =

K∑
k=1

πkLM(k) ,LM(k) ∈ F , πk > 0,

K∑
k=1

πk = 1

}

where LM(k)(x) = p
(
x | M(k)

)
denotes the likelihood of x evaluated with causal model M(k).

Then the family HK is identifiable if and only if the following condition is met:

The ordered pairs
([

B(k)
]−1

A
(k)
1 , ...,

[
B(k)

]−1

A
(k)
L ,
[
B(k)

] [
B(k)

]T)
are distinct over all k, (9)

where B(k) = I−W(k).

Proof. Note that the SVAR equations can equivalently be written as:

Xt =
[
B(k)

]−1 L∑
τ=1

A(k)
τ Xt−τ +

[
B(k)

]−1

ε(k)

where B(k) =
(
I−W(k)

)
.

This implies that

p
(
Xt | Xt−1, ...,Xt−L,M(k)

)
∼ N

([
B(k)

]−1 L∑
τ=1

A(k)
τ Xt−τ , σ

2
[
B(k)

]−1 [
B(k)

]−T)
.

Following a similar argument as in the proof of Theorem B, the finite mixture is identifiable if and only if the parameters of
the resultant Gaussian distributions are distinct as a function of {Xt−τ}Lτ=1. Hence, the condition.

It can be difficult to reason about the identifiability of a mixture of SCMs whose structural equations come from a general
class of functions, or whose noise distribution is non-Gaussian. However, the likelihood can be evaluated quite easily on a
finite number of points, at least approximately if not exactly.

Here, we describe a sufficient condition for the identifiability of finite mixtures of identifiable causal models.
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Theorem 3 (Identifiability of finite mixture of causal models). Let F be a family of K identifiable causal models, i.e.
F =

{
L(k)
M : M is an identifiable causal model , 1 ≤ k ≤ K

}
and let HK be the family of all K−finite mixtures of

elements from F , i.e.

HK =

{
h : h =

K∑
k=1

πkLMk
,LMk

∈ F , πk > 0,

K∑
k=1

πk = 1

}
where LMk

(x) =
∑
M

p(x | M)p(Mk = M) denotes the likelihood of x evaluated with causal model Mk. Further,

assume that the following condition is met:

For every k, 1 ≤ k ≤ K,∃ak ∈ X such that
LMk

(ak)∑K
j=1 LMj (ak)

>
1

2
. (*)

Then the family HK is identifiable, i.e., if h1 =

K∑
k=1

πkLMk
and h2 =

K∑
j=1

π′
jLM′

j
∈ HK then:

h1 = h2 =⇒ ∀k ∈ {1, . . . ,K} ∃j ∈ {1, . . . ,K} such that πk = π′
j and Mk = M′

j .

Proof. From Theorem A, we have that HK is identifiable if and only if for any α1, . . . , αK ∈ R,

K∑
j=1

αjLMj = 0 =⇒ αj = 0 ∀j ∈ {1, . . . ,K}

Note that
K∑
j=1

αjLMj
= 0 =⇒

K∑
j=1

αjLMj
(x) = 0 ∀x ∈ X. In particular,

K∑
j=1

αjLMj
(ak) = 0 ∀k ∈ {1, . . . ,K} , (10)

where ak is as defined in Condition ((*)). Denote LMj
(ak) = βkj . Then Equation (10) can be written as:

β11 . . . β1K
...

...
βK1 . . . βKK


α1

...
αK

 = 0. (11)

Or equivalently
βα = 0. (12)

Note that α = 0 if and only if β is full rank. We now show that Condition ((*)) implies that β is strictly diagonally
dominant and hence full rank. Note that Condition ((*)) can be equivalently written as:

βkk∑K
j=1 βkj

>
1

2
=⇒ 2βkk >

K∑
j=1

βkj

=⇒ βkk >

K∑
j=1,j ̸=k

βkj

which implies strict diagonal dominance since βkj ≥ 0 ∀k, j. Hence α = 0 thus implying linear independence.

Note that ak refers to any point in the support of the mixture distribution such that the condition (*) is satisfied. It does not
constitute a ’sample’ from the kth SCM in the conventional sense of being randomly drawn from the SCM. Instead, it can be
intentionally chosen to meet the specified condition.
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A.4. Relationship between ELBO and log-likelihood

In this section, we derive an exact relationship between the derived evidence lower bound ELBO(θ, ϕ, ψ) and the log-
likelihood log pθ(X).

First, note that:
pθ(X)p (M1:K | X) = pθ (X | M1:K) p (M1:K)

and hence:

pθ(X) =
pθ (X | M1:K) p (M1:K)

p (M1:K | X)
.

The log-likelihood can be written as:

log pθ(X) = Eqϕ(M1:K) [log pθ(X)]

= Eqϕ(M1:K)

[
log

pθ (X | M1:K) p (M1:K)

p (M1:K | X)
× qϕ(M1:K)

qϕ(M1:K)

]
= Eqϕ(M1:K) [log pθ (X | M1:K) + log p (M1:K)]

+

K∑
i=1

H (qϕ(Mi)) + KL (qϕ (M1:K) || p (M1:K | X))

= Eqϕ(M1:K)

[
N∑
n=1

log pθ

(
X(n) | M1:K

)
+

K∑
i=1

log p (Mi)

]

+

K∑
i=1

H (qϕ(Mi)) + KL (qϕ (M1:K) || p (M1:K | X))

Also note that, using the rules of conditional probability:

pθ(X
(n) | M1:K)

pθ(X(n) | M1:K , Z(n))
=
pθ(X

(n),M1:K)

p(M1:K)
× p(Z(n),M1:K)

pθ(X(n), Z(n),M1:K)

=
p(Z(n) | M1:K)

p(Z(n) | X(n),M1:K)

=
p(Z(n))

p(Z(n) | X(n),M1:K)

where the last step follows from the fact that Z(n) and Mi are independent.

Thus, we can write:

pθ(X
(n) | M1:K) = Erψ(Z(n)|X(n))

[
pθ(X

(n) | M1:K)
]

= Erψ(Z(n)|X(n))

[
pθ(X

(n) | M1:K , Z
(n))p(Z(n))

p(Z(n) | X(n),M1:K)

]
= Erψ(Z(n)|X(n))

[
pθ(X

(n) | MZ(n))p(Z(n))

p(Z(n) | X(n),M1:K)
×
rψ
(
Z(n) | X(n)

)
rψ
(
Z(n) | X(n)

)] .
Thus,

log pθ(X) = Eqϕ(M1:K)

[
N∑
n=1

Erψ(Z(n)|X(n))

[
log pθ

(
X(n) | MZ(n)

)
+ log p(Z(n))

]
+ H

(
rψ

(
Z(n) | X(n)

))
+ KL

(
rψ(Z

(n) | X(n)) || p(Z(n) | X(n),M1:K)
)
+

K∑
i=1

log p (Mi)

]
+

K∑
i=1

H (qϕ(Mi))

+ KL (qϕ (M1:K) || p (M1:K | X)) .
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Figure 9. Results on the linear synthetic dataset for D = 5, 10, 20. We report both the orientation F1 and AUROC scores. Average of 5
runs reported.

Noting that

ELBO(θ, ϕ, ψ) ≡
N∑
n=1

Eqϕ(M1:K)

[
Erψ(Z(n)|X(n))

[
log pθ(X

(n) | MZ(n)) + log p(Z(n))− log rψ

(
Z(n) | X(n)

)]]

+

K∑
i=1

Eqϕ(Mi) [log p(Mi)− log qϕ(Mi)]

we obtain that:

log pθ(X) = ELBO(θ, ϕ, ψ) +

N∑
n=1

Eqϕ(M1:K)

[
KL
(
rψ

(
Z(n) | X(n)

)
|| p(Z(n) | X(n),M1:K)

)]
+ KL (qϕ (M1:K) || p (M1:K | X)) .

B. Additional experiments
B.1. More results on the synthetic datasets

Figure 9 shows the results of all methods on the linear synthetic datasets, and Figure 10 shows the results on the nonlinear
synthetic datasets. We observe that the difference in performance between MCD and Rhino-g is much lower in terms of
AUROC compared to orientation F1. MCD is able to achieve similar performance to the ‘gold-standard’ baseline Rhino-g
despite not having ground-truth membership information.

B.2. S&P100

Setup. We provide more details on the setup for the experiment with the S&P 100 dataset. We used grid search to iterate over
multiple values for the sparsity term λ in equation (18), number of graphs K, and 5 random seeds. We picked the setting
that yielded the lowest validation loss and reported results using the inferred causal graphs. We aggregate the temporal
adjacency matrix following the procedure described in Appendix D.5.

Additional results. Figure 11 shows the heatmap of the two aggregated causal graphs inferred by MCD-Nonlinear. As noted
in the main paper, we observe several interesting differences between the two graphs. Many sectors such as ‘Industrials’,
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Figure 10. Results on the nonlinear synthetic dataset for D = 5, 10, 20. We report both the orientation F1 and AUROC scores. Average
of 5 runs reported.

‘Utilities’ and ‘Technology’ seem to have different patterns of intra-sector interactions in the two graphs. Further, Graph 1
shows more marked interactions for stocks in the ‘Real Estate’ sector.

We also visualize the stock prices of the companies whose interactions changed between the two graphs and overlaid the
membership information over their indices, as we did with Figure 6. Figure 12 provides examples of 6 such stocks. We
observe that in most cases, the ‘red’ periods, i.e., periods in which Graph 1 is active, show more pronounced trends and
marked movements of the stock prices compared to the ‘blue’ periods.

Additionally, we run MCD-Linear on this dataset and observe that it only discovers a single mode in the dataset. Figure 13
shows the discovered causal graph from MCD-Linear.

B.3. Netsim

Setup. We additionally experiment with a different setup on the Netsim Brain connectivity dataset. We combine the
time series with length T = 200 and number of nodes D = 5 from simulations 1, 8, 10, 13, 14, 15, 16, 18, 21, 22, 23,
and 24. This dataset comprises N = 600 samples, with K∗ = 14 distinct underlying causal graphs. We refer to this
setup as Netsim. This dataset exhibits significant graph membership imbalance, with the top 3 causal graphs accounting
for 500 out of the 600 samples. Hence, we consider an exponentially weighted prior for the membership indicators, i.e.
p(Z = k) ∝ exp (−λpk) ∀k ∈ {1, . . . ,K}. We set λp = 5 and K = 20.

Results. In this setup, we observe that MCD-Nonlinear and MCD-Linear are outperformed by the baselines PCMCI+ and
Rhino, even though they only predict one graph for the entire dataset. This is attributed to the similarity among the various
underlying graphs in the Netsim dataset and the strong imbalance in the data. Our model faces sample complexity issues
because it learns multiple causal graphs, whereas other methods perform reasonably well by predicting only one. This
highlights the idea that learning a mixture model is only beneficial when the underlying SCMs differ from one another
significantly. In such a scenario, the benefits of learning multiple graphs outweigh the drawbacks of limited samples
per model. This explanation is also supported by the observation that PCMCI+ (grouped) achieves lower performance
than its single graph counterpart. Further, MCD-Nonlinear and MCD-Linear achieve relatively low clustering accuracy of
35.2± 6.6% and 35.4± 5.2%, due to the inherent similarities in the underlying SCMs.

19



Discovering Mixtures of Structural Causal Models from Time Series Data

0 
M

ET
A

2 
DI

S
4 

CM
CS

A
6 

GO
OG

8 
TM

US
10

 T
SL

A
12

 S
BU

X
14

 T
GT

16
 M

CD
18

 N
KE

20
 A

M
ZN

22
 M

DL
Z

24
 C

L
26

 K
O

28
 C

OS
T

30
 W

M
T

32
 C

VX
34

 A
IG

36
 G

S
38

 JP
M

40
 C

42
 A

XP
44

 B
K

46
 U

SB
48

 B
LK

50
 P

FE
52

 A
BT

54
 L

LY
56

 D
HR

58
 U

NH
60

 T
M

O
62

 G
IL

D
64

 G
E

66
 G

D
68

 E
M

R
70

 U
NP

72
 C

AT
74

 L
M

T
76

 L
IN

78
 A

M
T

80
 V

82
 P

YP
L

84
 A

DB
E

86
 A

VG
O

88
 C

SC
O

90
 IN

TC
92

 M
SF

T
94

 O
RC

L
96

 D
UK

98
 S

O

Symbol

1 T
3 NFLX

5 GOOGL
7 VZ

9 CHTR
11 GM

13 F
15 LOW

17 HD
19 BKNG

21 KHC
23 PM
25 MO
27 PG

29 PEP
31 XOM
33 COP

35 SCHW
37 WFC

39 BRK-B
41 MS

43 BAC
45 MET
47 COF
49 MDT

51 ABBV
53 BMY
55 CVS
57 MRK

59 AMGN
61 JNJ

63 MMM
65 HON
67 FDX
69 DE

71 UPS
73 BA

75 RTX
77 SPG
79 TXN

81 AAPL
83 ACN
85 AMD
87 CRM

89 QCOM
91 MA

93 NVDA
95 IBM
97 NEE
99 EXC

Sy
m

bo
l

Communication Services

Consumer Discretionary

Consumer Staples

Energy

Financials

Healthcare

Industrials

MaterialsReal Estate

Technology

Utilities

Graph 1

0.0

0.2

0.4

0.6

0.8

0 
M

ET
A

2 
DI

S
4 

CM
CS

A
6 

GO
OG

8 
TM

US
10

 T
SL

A
12

 S
BU

X
14

 T
GT

16
 M

CD
18

 N
KE

20
 A

M
ZN

22
 M

DL
Z

24
 C

L
26

 K
O

28
 C

OS
T

30
 W

M
T

32
 C

VX
34

 A
IG

36
 G

S
38

 JP
M

40
 C

42
 A

XP
44

 B
K

46
 U

SB
48

 B
LK

50
 P

FE
52

 A
BT

54
 L

LY
56

 D
HR

58
 U

NH
60

 T
M

O
62

 G
IL

D
64

 G
E

66
 G

D
68

 E
M

R
70

 U
NP

72
 C

AT
74

 L
M

T
76

 L
IN

78
 A

M
T

80
 V

82
 P

YP
L

84
 A

DB
E

86
 A

VG
O

88
 C

SC
O

90
 IN

TC
92

 M
SF

T
94

 O
RC

L
96

 D
UK

98
 S

O

Symbol

1 T
3 NFLX

5 GOOGL
7 VZ

9 CHTR
11 GM

13 F
15 LOW

17 HD
19 BKNG

21 KHC
23 PM
25 MO
27 PG

29 PEP
31 XOM
33 COP

35 SCHW
37 WFC

39 BRK-B
41 MS

43 BAC
45 MET
47 COF
49 MDT

51 ABBV
53 BMY
55 CVS
57 MRK

59 AMGN
61 JNJ

63 MMM
65 HON
67 FDX
69 DE

71 UPS
73 BA

75 RTX
77 SPG
79 TXN

81 AAPL
83 ACN
85 AMD
87 CRM

89 QCOM
91 MA

93 NVDA
95 IBM
97 NEE
99 EXC

Sy
m

bo
l

Communication Services

Consumer Discretionary

Consumer Staples

Energy

Financials

Healthcare

Industrials

MaterialsReal Estate

Technology

Utilities

Graph 2

0.0

0.2

0.4

0.6

0.8

Figure 11. Discovered causal graphs from S&P 100. MCD-Nonlinear discovers two distinct graphs from the dataset.

Netsim
Method AUROC

(x) F1
(x)

PCMCI+-s 0.702 0.648
PCMCI+-o 0.827 0.803
PCMCI+-g 0.810 0.785

VARLiNGAM 0.638 0.598
DYNOTEARS-s 0.706 0.588
DYNOTEARS-o 0.674 0.626
DYNOTEARS-g 0.629 0.584

Rhino 0.873± 0.026 0.707± 0.033
MCD-Nonlinear (this paper) 0.733± 0.060 0.607± 0.052

MCD-Linear (this paper) 0.728± 0.018 0.623± 0.022

Table 2. Results on the Netsim dataset. -s indicates that the baseline predicts one graph per sample. -o indicates that the baseline predicts
one graph for the whole dataset. -g signifies that the baseline is run on samples grouped according to the ground truth causal graph.
VARLiNGAM does not run on the DREAM3 dataset. MCD-Nonlinear achieves a clustering accuracy of 35.2± 6.6% on Netsim, while
MCD-Linear has a clustering accuracy of 35.4± 5.2% .
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Figure 12. Segmentation of the stock prices of AT&T, Verizon, Tesla, NVIDIA, Bank of America, and Exxon Mobil stock prices with
respect to the inferred causal graphs from MCD-Nonlinear.
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Figure 13. Discovered causal graph from S&P100 using MCD-Linear. MCD-Linear only discovers a single mode in the dataset

B.4. Ablation studies

Effect of number of samples per component. We investigate the effect of a decreasing number of samples per mixture
component on the performance of MCD, as the number of ground truth SCMsK∗ increases. We consider synthetic nonlinear
data of dimension D = 10 with K∗ = 40, 60, 80, 100 ground truth graphs in addition to the settings discussed in the main
paper. We run MCD-Nonlinear, Rhino and PCMCI+ on N = 1000 samples generated from K∗ SCMs for increasing
values of K∗, with K = 2K∗. The results are presented in Figure 14. MCD-Nonlinear suffers a gradual decrease in model
performance, with roughly a 40% decrease in F1 and 22% decrease in AUROC from K∗ = 1 to K∗ = 100. Meanwhile, the
performance of Rhino falls off more drastically and becomes equivalent to random guessing for large K∗. The performance
of PCMCI+ (grouped) also decreases quite rapidly with the increase in K∗.

Using ground truth membership assignments. We assess MCD performance with learned versus ground-truth membership
associations on synthetic data with D = 10. As before, we set K = 2K∗. Figure 15 shows the results of this ablative
experiment run with MCD-Nonlinear on the nonlinear synthetic dataset. The performance of MCD-Nonlinear with ground
truth labels and Rhino-g is theoretically an upper bound on its performance. Encouragingly, we observe that our model
performs close to this upper bound.

Effect of similarity of the graphs on performance We examine the performance of MCD when the causal graphs are
similar to each other. The dataset setup is as follows: we first generate a random ER graph. We then perturb each edge with
a probability p, i.e. flip the entry in the adjacency matrix from 0 to 1, and vice versa with probability p. We check if the
resulting graph is a DAG. If yes, we add it to the pool of generating graphs. We repeat this procedure until we obtain K∗

DAGs. We then generate the synthetic dataset (N = 1000 samples) with these K∗ DAGs using randomly generated MLPs
and spline functions. We run MCD-Nonlinear with K = 2K∗ on the resulting datasets with D = 10 and K = 5, 10. We
set p = 0.005, 0.008, 0.01, 0.05, 0.1, corresponding to varying levels of similarity of the underlying graphs. We also attach
the pair-wise statistics for the resulting graphs in Table 4. The results are reported in Figure 16

The results indicate that MCD can achieve good clustering accuracy and causal discovery performance even when the
constituent causal graphs are similar. In the K∗ = 5 case, we notice that the clustering accuracy remains high for all
considered settings, and the F1 score decreases slightly for the higher values of − log p when the causal graphs are similar.
For K∗ = 10, the clustering accuracy is considerably lower for p = 0.005, but nevertheless the F1 score remains high.
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Figure 14. Effect of increasing number K∗ of underlying SCMs on F1 and AUROC on synthetic data with D = 10. MCD’s performance
declines gradually with decreased number of samples per mixture component, while Rhino’s performance decays drastically. The
performance of Rhino (grouped) decays slightly faster than MCD.
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Figure 15. Comparison of model performance of MCD with ground-truth versus learned mixture assignments and Rhino (grouped) on
synthetic data with D = 10. Expectedly, MCD performs better with explicit information about the cluster assignments, but it achieves
comparable performance even with learned membership information.
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Figure 16. Causal discovery performance and clustering accuracy of MCD on synthetic datasets with similar graphs. MCD achieves good
causal discovery performance and clustering accuracy even when − log p is high, i.e., the graphs are similar.

On the other hand, PCMCI+-g suffers a gradual performance drop as the graphs become similar, while the single graph
baselines Rhino and PCMCI+-s have slightly better performance when the constituent causal graphs are more similar.

B.5. Clustering accuracy for D = 5, 10, 20 on synthetic datasets

Figure 17 shows the clustering accuracy of MCD-Linear and MCD-Nonlinear for different values of D on the linear and
nonlinear synthetic datasets, respectively. For all settings, we set the hyperparameter K = 2K∗. We observe that for
most values of K∗ > 1, the clustering accuracy is quite high, while it remains low for K∗ = 1. Both MCD-Linear and
MCD-Nonlinear are particularly good at clustering for higher number of nodes D. As noted earlier, the low clustering
accuracy for K∗ = 1 is expected since the single mode in the data distribution is ‘split’ across two learned causal graphs.

B.6. Clustering progression with training

We analyze the progression of clustering accuracy and the number of unique graphs learned with the number of training
steps for MCD-Nonlinear on the nonlinear synthetic dataset with D = 10,K∗ = 10. As training progresses, not all K
graphs are utilized. We count only those graphs for which at least one associated sample exists. Figure 18 shows the plots.
We observe that when K = 20, as training progresses, the algorithm groups together points from different causal graphs
until they converge to the “true" number of causal graphs K∗ = 10 and clustering accuracy converges to (approximately)
100%; however, when K = 10, we observe that the number of unique graphs can sometimes fall below K∗ = 10, resulting
in suboptimal clustering accuracy.

B.7. Netsim visualization

Figure 19 shows a visualization of a heatmap of the predictions for the Netsim-mixture dataset. The 3 ground truth adjacency
matrices and the top-3 discovered adjacency matrices, ranked by the prediction frequency, are shown. All 3 matrices achieve
a high AUROC score, even though the poor calibration of scores results in the prediction of many spurious edges.
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Figure 17. Plots showing the clustering accuracy of (top) MCD-Linear and (bottom) MCD-Nonlinear vs K∗ on the linear and nonlinear
synthetic datasets for D = 5, 10, 20.

B.8. Timing analysis

In this section, we analyze the run-time of MCD-Nonlinear as a function of the hyperparameter K. As noted in Section 3.3,
MCD-Nonlinear, in theory, needs roughly K times more operations than Rhino in each epoch due to the evaluation of the
expectation over the variational distribution rψ

(
Z(n) | X(n)

)
while calculating the ELBO. However, this does not translate

to a K times increase in model runtime. We measure and plot the total runtime for training our model for the synthetic
dataset with D = 10 nodes as a function of K. Figure 20 shows the plot.

We observe that although the plot shows an approximately linear trend, the slope is much lesser than 1. In fact, a 100×
increase in K from 2 to 200 results in a less than 4× increase in run-time. Thus, MCD scales reasonably well with the
number of mixture components K.

C. Implementation details
In this section, we elaborate more on how we model the terms in equation (4) for MCD-Linear and MCD-Nonlinear.

We model the K SCMs as additive noise models. For the kth causal model, we have:

X
(n)
t

∣∣∣
k
= fk(PaGk(< t),PaGk(t)) + gk(PaGk(< t), ϵt),

where the function fk models the structural equation between the nodes and gk models the exogenous noise under causal
model Mk.

MCD-Linear. We implement the each of the K models using a linear model:

fdk (PaGk(≤ t)) =

L∑
τ=0

D∑
j=1

(Gk ◦Wk)
j,d
τ ×X

j,(n)
t−τ , (13)

where ◦ denotes the Hadamard product, and Wk ∈ R(L+1)×D×D is a learned weight tensor. We only model independent
noise with this model, and set gk(PaGk(< t), ϵt) = ϵt, i.e., the identity function.
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Figure 18. Plots showing the progression of (left) clustering accuracy (right) number of unique learned graphs for MCD-Nonlinear with
the number of training steps on the nonlinear synthetic dataset with D = 10,K∗ = 10. We observe that as training progresses, clustering
accuracy increases for both the K = 10 and K = 20 runs; however, when K = 10, some runs tend to learn a lower number of graphs,
thus resulting in suboptimal clustering accuracy.
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Figure 19. Heatmap for the Netsim-mixture dataset showing the (top) adjacency matrices of the ground-truth causal graphs, and the
(bottom) edge probabilities for the top-3 discovered adjacency matrices (ranked by frequency of occurrence). We also report the graph-wise
AUROC metrics.
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Figure 20. Run time plot of MCD as a function of K. A 100× increase in K from 2 to 200 results in a less than 4× increase in run-time.
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Assuming that ϵt ∼ N (0, I), the marginal likelihood under each model Mk can be further simplified as follows, using the
causal Markov assumption:

log pθ

(
X

(n)
1:T

∣∣∣Mk

)
=

T∑
t=L

D∑
d=1

log pθ

(
X
d,(n)
t

∣∣∣PaGdk (< t),PadGk(t)
)

=

T∑
t=L

D∑
d=1

[
X
d,(n)
t − fdk

(
PadGk(< t),PaGk

)]2

=

T∑
t=L

D∑
d=1

Xd,(n)
t −

L∑
τ=0

D∑
j=1

(Gk ◦Wk)
j,d
τ ×X

j,(n)
t−τ

2

. (14)

MCD-Nonlinear. We use the Rhino model (Gong et al., 2022) to model each of theK SCMs. The functions fk are modeled
as follows:

fdk (PaGk(≤ t)) = Ξf

 L∑
τ=0

D∑
j=1

(Gk)j,dτ × ℓf

([
X
j,(n)
t−τ , (Ek)

j,(n)
τ

])
, (Ek)d,(n)0

 , (15)

where Ξf and ℓf are multi-layer perceptron networks that are shared across all K causal models M1:K and all D nodes,
and Ek ∈ R(L+1)×D×e are embeddings (with embedding dimension e) corresponding to model k. A similar architecture
is used for the hypernetwork that predicts parameters for the conditional spline flow model, with embeddings Fk, and
hypernetworks Ξϵ and ℓϵ. The only difference is that the output dimension of Ξϵ is different, being equal to the number of
spline parameters. The noise variables ϵdt are described using a conditional spline flow model,

pgdk(g
d
k(ϵ

d
t ) | PadGk(< t)) = pϵ(ϵ

d
t )

∣∣∣∣∂(gdk)−1

∂ϵdt

∣∣∣∣ , (16)

with ϵdt modeled as independent Gaussian noise.

Using the causal Markov assumption:

log pθ

(
X

(n)
1:T

∣∣∣Mk

)
=

T∑
t=L

D∑
d=1

log pθ

(
X
d,(n)
t

∣∣∣PadGk(< t),PadGk(t)
)

=

T∑
t=L

D∑
d=1

log pgdk

(
u
d,(n)
t

∣∣∣PadGk(< t)
)

(17)

where ud,(n)t = X
d,(n)
t − fdk

(
PadGk(< t),PadGk(t)

)
.

The prior distribution p(M1:K) is modeled as follows:

pθ(M1:K) ∝
K∏
k=1

exp
(
−λ ∥(Gk)1:T ∥

2 − σh ((Gk)0)
)
. (18)

The first term is a sparsity prior and h ((Gk)0) is the acyclicity constraint from (Zheng et al., 2018).

C.1. Calculation of clustering accuracy

We would like to evaluate the accuracy of our method in grouping samples based on the underlying SCMs. However, the
assigned cluster indices by the model and the ‘ground-truth’ cluster indices might not match nominally, even though they
refer to the same grouping assignment. For example, the cluster assignment of (1, 1, 1, 2, 2) for N = 5 points is equivalent
to the assignment (2, 2, 2, 1, 1). In other words, we want a permutation invariant accuracy metric between the inferred
cluster assignments Z̃ and true cluster assignments Z with Z̃, Z ∈ NN . We define

Cluster Acc.
(
Z̃, Z

)
= max
π∈SK

1

N

N∑
n=1

1
(
π(Z̃n) = Zn

)
28



Discovering Mixtures of Structural Causal Models from Time Series Data

with SK denoting the permutation group over K elements. Evaluating the cluster accuracy naively would require K!
operations. However, we use the Hungarian algorithm to find the correct permutation in O(K3) time1.

D. Experimental details
D.1. Synthetic datasets setup

This section provides more details about how we set up and run experiments using MCD on synthetic datasets. We
set the number of mixture components K to twice that of true graphs (i.e., K = 2K∗) to showcase its robustness
against over-specification of the number of components. We set a uniform prior for the mixing probabilities p

(
Z(n)

)
, i.e.

p(Z(n) = k) = 1
K ∀k ∈ {1, . . . ,K}. Our implementation of the likelihood function for Rhino-g on the synthetic datasets

matches the type of causal relationships modeled, i.e., we use the linear model described in Equation (5) on the linear dataset
and the nonlinear variant described in Equation (6) for the nonlinear datasets.

Dataset generation. We generate two separate sets of synthetic datasets: a linear dataset with independent Gaussian noise
and a nonlinear dataset with history-dependent noise modeled using conditional splines (Durkan et al., 2019). We generate a
pool of K∗ random graphs (specifically, Erdős-Rényi graphs) and treat them as ground-truth causal graphs. To generate a
sample X(n), we assign it to a graph by drawing Z(n) ∼ Categorical(K∗), and use the corresponding graph GZ(n) from this
pool to model relationships between the variables.

Linear dataset. We model the data as:

X
d,(n)
t =

L∑
τ=0

D∑
j=1

(GZ(n) ◦WZ(n))
j,d
τ ×X

j,(n)
t−τ + ϵdt ,

with ϵdt ∼ N (0, 0.25). Each entry of the matrices Wk, k = 1, . . . ,K is drawn independently from U [0.1, 0.5] ∪
U [−0.5,−0.1].

Nonlinear dataset. We model the data as:

X
d,(n)
t = fdk

(
PadGk(< t),PaiGk(t)

)
+ ϵdt ,

where fdk are randomly initialized multi-layer perceptrons (MLPs), and the random noise ϵdt is generated using history-
conditioned quadratic spline flow functions (Durkan et al., 2019).

D.2. Implementation of validation step for MCD

MCD learns a sample-wise membership variable Z(n) for every sample in the dataset by optimizing the ELBO. In order
to evaluate the log-likelihood of the samples in the validation set, we still need to infer their corresponding membership
information Z(n). Hence, during each validation step, we fix the weights of the other parameters and perform one step of
gradient descent for the membership weights Z(n) with respect to the ELBO for the samples in the validation set. This way,
we ensure that all samples in the input dataset are assigned to a mixture component, and the validation likelihood can be
evaluated.

D.3. Hyperparameter details

Since MCD uses the acyclicity constraint from Zheng et al. (2018), we use an augmented Lagrangian training procedure to
ensure that our model produces DAGs. We closely follow the implementation of the procedure from Geffner et al. (2022);
Gong et al. (2022) with one exception: we modify the convergence criteria by increasing the number of outer steps for
which the DAG penalty needs to be lower than a threshold (set to 10−8). This modification enables the model to train for
longer and prevents premature stopping. In the interest of fairness, we make this change to both MCD and Rhino.

We used the rational spline flow model described in (Durkan et al., 2019). We use the quadratic or linear rational spline
flow model in all our experiments, both with 8 bins. The MLPs ℓ and Ξ have 2 hidden layers each, with hidden dimensions

1This approach and implementation are adapted from https://smorbieu.gitlab.io/
accuracy-from-classification-to-clustering-evaluation/
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Dataset Synthetic (D = 5, 10, 20) Netsim-mixture DREAM3 S&P100 Netsim
Hyperparameter

Matrix LR 10−2 10−2 10−3 10−2 10−2

Likelihood LR 10−3 10−3 10−3 10−3 10−3

Batch Size 128 64 64 64 64
# Outer auglag steps 100 60 60 60 60

# Max inner auglag steps 6000 2000 6000 2000 2000
Embedding dim e = D 15 32 100 15
Sparsity factor λ 5 25 10 20 25

Spline type Quadratic Linear Linear Linear Linear

Table 3. Table showing the hyperparameters used with MCD.

set to max (4D, e, 64) with LeakyReLU activation functions, where e is the embedding dimension. We also use layer
normalization and skip connections. The temperature for sampling the adjacency matrix from qϕ (M1:K) using the Gumbel
Softmax distribution was set to 0.25, and the temperature τr for sampling from the mixing rates variational distribution
was set to 1. We used the same hyperparameters for both MCD-Nonlinear and MCD-Linear. Table 3 summarizes the
hyperparameters used for training.

Baselines. Rhino was trained with similar hyperparameters as MCD on all datasets. For all other baselines, the default
hyperparameter values are used. For Rhino and MCD, which parameterize the causal graphs as Bernoulli distributions over
each edge, we use the inferred edge probability matrix as the “score", and evaluate the AUROC metric between the score
matrix and the true adjacency matrix. For DYNOTEARS, we use the absolute value of the output scores and evaluate the
AUROC. Since PCMCI+ and VARLiNGAM only output adjacency matrices, we directly evaluate the AUROC between the
predicted and true adjacency matrices.

D.4. Post-processing the output of PCMCI+

PCMCI+ produces Markov equivalence classes rather than fully oriented causal graphs for the instantaneous adjacency
matrix. To make its outputs comparable, we post-process the resultant edges. We follow the setup in Gong et al. (2022)
and enumerate up to 3000 DAGs for the instantaneous matrix. We ignore the edges (i.e., set the corresponding entries in
the adjacency matrix to 0) whose orientations are undecided. We compare all outputs against the ground truth during the
evaluation and return the average metric across all enumerations.

D.5. Aggregating the temporal adjacency matrix across time

The Netsim and DREAM3 datasets used in the evaluation provide ground-truth time-aggregated causal graphs. In order
to make our model output comparable, we follow the procedure outlined in (Gong et al., 2022) to convert the time-lag
adjacency matrix to an aggregated matrix. The (i, j)th entry of the aggregated matrix Gagg is 1 iff Gijℓ = 1 for some lag
value ℓ in the time-lag matrix G. Both Rhino and MCD represent the edges as Bernoulli random variables, hence output a
probability score for each edge. For evaluating the F1 score, we threshold the probability values at 0.5, i.e., edges with a
probability ≥ 0.5 are considered as predicted edges.

D.6. Pair-wise graph distance in the mixture distributions

Table 4 shows the pairwise graph distances between the ground-truth graphs of the mixture distributions used in the paper.
We calculate the Structural Hamming Distance (SHD) between every pair of graphs in the mixture, and report the mean,
standard deviation, minimum and maximum values.

E. Toy example
We provide a toy example to illustrate the importance of modeling the heterogeneity of a multi-modal dataset. Consider a

dataset where each sample X(n) from the dataset
{
X

1:D,(n)
1:T

}N
n=1

is generated from one out of the two following SCMs,
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Dataset D K∗ Avg. SHD Std. dev. SHD Min. SHD Max. SHD
Synthetic (nonlinear) 5 5 21.00 2.57 15 24
Synthetic (nonlinear) 5 10 22.09 2.60 16 26
Synthetic (nonlinear) 5 20 22.19 2.92 14 32
Synthetic (nonlinear) 10 5 49.80 2.64 43 54
Synthetic (nonlinear) 10 10 53.42 3.03 47 59
Synthetic (nonlinear) 10 20 52.73 3.90 43 64
Synthetic (nonlinear) 20 5 120.20 2.14 117 124
Synthetic (nonlinear) 20 10 114.89 4.42 104 123
Synthetic (nonlinear) 20 20 114.28 5.13 101 127

Synthetic (linear) 5 5 21.40 3.14 16 27
Synthetic (linear) 5 10 22.18 2.81 16 28
Synthetic (linear) 5 20 22.07 3.16 12 30
Synthetic (linear) 10 5 48.60 3.75 41 54
Synthetic (linear) 10 10 54.16 3.53 45 60
Synthetic (linear) 10 20 54.52 4.14 42 67
Synthetic (linear) 20 5 114.20 2.23 111 118
Synthetic (linear) 20 10 111.58 5.17 103 124
Synthetic (linear) 20 20 113.42 4.82 101 126

Synthetic-Perturbed (p = 0.005) 10 5 2.40 0.92 1 4
Synthetic-Perturbed (p = 0.008) 10 5 5.20 0.98 4 7
Synthetic-Perturbed (p = 0.01) 10 5 7.00 0.89 5 8
Synthetic-Perturbed (p = 0.05) 10 5 21.40 5.37 15 30
Synthetic-Perturbed (p = 0.1) 10 5 48.20 2.64 45 53

Synthetic-Perturbed (p = 0.005) 10 10 2.44 1.04 1 5
Synthetic-Perturbed (p = 0.008) 10 10 3.56 1.36 1 6
Synthetic-Perturbed (p = 0.01) 10 10 6.11 2.51 1 12
Synthetic-Perturbed (p = 0.05) 10 10 23.04 4.17 15 32
Synthetic-Perturbed (p = 0.1) 10 10 47.56 8.56 29 65

DREAM3 100 5 517.60 202.13 234 896
Netsim-mixture 15 3 34.00 1.63 32 36

Netsim 5 14 2.59 1.17 1 5

Table 4. Pair-wise graph statistics for experimental datasets used in the paper.
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Figure 21. Temporal causal graphs which represent the causal relationships encoded by the SCMs.

Figure 22. PCMCI+ output on the toy-example. The algorithm infers a dense graph with many spurious causal relationships.

chosen with equal probability:
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These SCMs can be represented through the temporal causal graphs given in Figure 21.

However, if the graph membership of the samples is unknown, inferring a single causal graph to explain the causal
relationships from the dataset would result in spurious causal relationships. For example, going by conditional independence
tests, note that none of the nodes would be conditionally independent of each other for any conditioning set. This is also
shown in the output of the PCMCI+ algorithm, where a dense graph is inferred as shown in Figure 22. Thus, it is crucial to
use a mixture distribution to model observational data from such heterogeneous distributions.
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