Under review as a conference paper at ICLR 2025

FINE-TUNING DISCRETE DIFFUSION MODELS VIA RE-
WARD OPTIMIZATION WITH APPLICATIONS TO DNA
AND PROTEIN DESIGN

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent studies have demonstrated the strong empirical performance of diffusion
models on discrete sequences (i.e., discrete diffusion models) across domains from
natural language to biological sequence generation. For example, in the protein
inverse folding task, where the goal is to generate a protein sequence from a given
backbone structure, conditional diffusion models have achieved impressive re-
sults in generating natural-like sequences that fold back into the original structure.
However, practical design tasks often require not only modeling a conditional
distribution but also optimizing specific task objectives. For instance, in the inverse
folding task, we may prefer protein sequences with high stability. To address
this, we consider the scenario where we have pre-trained discrete diffusion mod-
els that can generate natural-like sequences, as well as reward models that map
sequences to task objectives. We then formulate the reward maximization problem
within discrete diffusion models, analogous to reinforcement learning (RL), while
minimizing the KL divergence against pretrained diffusion models to preserve
naturalness. To solve this RL problem, we propose a novel algorithm, DRAKES,
that enables direct backpropagation of rewards through entire trajectories gener-
ated by diffusion models, by making the originally non-differentiable trajectories
differentiable using the Gumbel-Softmax trick. Our theoretical analysis indicates
that our approach can generate sequences that are both natural-like (i.e., have a
high probability under a pretrained model) and yield high rewards. While similar
tasks have been recently explored in diffusion models for continuous domains, our
work addresses unique algorithmic and theoretical challenges specific to discrete
diffusion models, which arise from their foundation in continuous-time Markov
chains rather than Brownian motion. Finally, we demonstrate the effectiveness of
our algorithm in generating DNA and protein sequences that optimize enhancer
activity and protein stability, respectively, important tasks for gene therapies and
protein-based therapeutics.

1 INTRODUCTION

Diffusion models have gained widespread recognition as effective generative models in continuous
spaces, such as image and video generation (Song et al.,|2020; Ho et al.,2022). Inspired by seminal
works (e.g., |Austin et al| (2021)); (Campbell et al.| (2022); [Sun et al.| (2022)), recent studies (Lou
et al., 2023} |Shi et al., [2024; |Sahoo et al.| [2024) have shown that diffusion models are also highly
effective in discrete spaces, including natural language and biological sequence generation (DNA,
RNA, proteins). Unlike autoregressive models commonly used in language modeling, diffusion
models are particularly well-suited for biological sequences, where long-range interactions are crucial
for the physical behavior of molecules arising from those sequences (e.g., the 3D folded structure of
RNA or proteins).

While discrete diffusion models effectively capture conditional distributions (e.g., the distribution of
sequences given a specific backbone structure in an inverse protein folding design problem (Dauparas
et al.| 2022; |Campbell et al.| |2024))), in many applications, especially for therapeutic discovery, we
often aim to generate sequences that are both natural-like and optimize a downstream performance

Under review as a conference paper at ICLR 2025

Conditioned on
7 Protein Backbones

!

S

g
Sampling _ "‘1""%? ’

Back-Propagation

Gumbel Softmax

>;exp ((logp; + Gj) /A)

Stop Gradient
Without gradient ﬂ With gradient

M M M M M M M N

° P
M-—>M-—»>A —+>A >A_»A_»A_>A_» gJ.z
s

M M M M E E E E
0 t 1
0* = arg max E[reward] — o - KL term
4

QFFE(r) Q7)) @) QTC() @) @) @F() Q7°()

lelelelelelels]

em Qv Lo Lo Cu Lo QLv QL

Figure 1: DRAKES. We maximize the reward with a penalty term relative to pre-trained discrete
diffusion models using the Gumbel-Softmax trick.

objective. For instance, in the inverse folding problem, we may prefer stable protein sequences
(i.e., sequences that fold back into stable protein conformations (Widatalla et al.,|2024)); for mRNA
vaccine production we desire 5° UTRs that drive high translational efficiency (Castillo-Hair and;
Seelig), 2021); for gene and cell therapies, we desire regulatory DNA elements, such as promoters
and enhancers, that drive high gene expression only in specific cell types (Taskiran et al.|[2024); and
for natural language we optimize to minimize harmfulness (Touvron et al.l 2023)).

To address these challenges, our work introduces a fine-tuning approach for well-pretrained discrete
diffusion models that maximizes downstream reward functions. Specifically, we aim to optimize
these reward functions while ensuring that the generated sequences maintain a high probability
under the original conditional distribution (e.g., the distribution of sequences that fold into a given
backbone structure). To achieve this, we formulate the problem as a reward maximization task,
analogous to reinforcement learning (RL), where the objective function integrates both the reward
terms and the KL divergence with respect to the pre-trained discrete diffusion model, which ensures
that the generated sequences remain close to the pre-trained model, preserving their naturalness after
fine-tuning. To solve this RL problem, we propose a novel algorithm, DRAKES, that enables direct
backpropagation of rewards through entire trajectories by making the originally non-differentiable
trajectories differentiable using the Gumbel-Softmax trick (Jang et al.|[2016; |Maddison et al.l 2016).

Our main contribution is an RL-based fine-tuning algorithm, Direct Reward bAcKpropagation with
gumbkEl Softmax trick (DRAKES), that enables reward-maximizing finetuning for discrete diffusion
models (Figure T)). We derive a theoretical guarantee that demonstrates its ability to generate natural
and high-reward designs, and demonstrate its performance empirically on DNA and protein design
tasks. While similar algorithms exist for continuous spaces (Fan et al.| 2023} |[Black et al.| 2023}
Uehara et al., 2024} |Venkatraman et al .| |2024{ |Yuan et al.| 2023} |Guo et al .| [2024)), our work is the first,
to the best of our knowledge, to address these aspects in (continuous-time) discrete diffusion models.
This requires addressing unique challenges, as discrete diffusion models are formulated as continuous-
time Markov chains (CTMC), which differ from Brownian motion, and the induced trajectories from
CTMC are no longer differentiable, unlike in continuous spaces. Our novel theoretical guarantee
also establishes a connection with recent advancements in classifier guidance for discrete diffusion
models (Nisonoff et al., [2024).

2 RELATED WORKS

Discrete diffusion models and their application in biology. Building on the seminal works of
Austin et al.| (2021); |(Campbell et al.| (2022)), recent studies on masked diffusion models (Lou et al.,
2023} [Shi et al., [2024; [Sahoo et al.| 2024) have demonstrated strong performance in natural language
generation. Recent advances in masked discrete diffusion models have been successfully applied to
biological sequence generation, including DNA and protein sequences (Sarkar et al.| 2024} [Campbell
et al.| [2024)). Compared to autoregressive models, diffusion models may be particularly well-suited
for biological sequences, which typically yield molecules that fold into complex three-dimensional
(3D) structures.

Under review as a conference paper at ICLR 2025

In contrast to these works, our study focuses on fine-tuning diffusion models to optimize downstream
reward functions. One application of our approach is the fine-tuning of protein inverse folding
generative models to optimize stability, as discussed in|Widatalla et al.| (2024). However, unlike this
prior work, we employ discrete diffusion models as the generative model.

Controlled generation in diffusion models. There are three primary approaches:

* Guidance: Techniques such as classifier guidance (Song et al., 2020} [Dhariwal and Nichol,
2021) and its variants (e.g.,[Bansal et al.| (2023)); |(Chung et al.| (2022);|Ho et al.| (2022))) introduce
gradients from proxy models during inference. However, since gradients are not formally well-
defined for discrete states in diffusion, a recent study (Nisonoff et al.,|2024) proposed a method
specifically designed for discrete diffusion models. Alternative approaches directly applicable to
discrete diffusion models include sequential Monte Carlo (SMC)-based methods (Wu et al., 2024;
Trippe et al.l[2022; |Dou and Song} [2024; |(Cardoso et al., [2023}; |Phillips et al.,|2024). While these
guidance-based inference techniques have their own advantages, they generally lead to longer
inference times compared to fine-tuned models. We compare our methods against these in terms

of generation quality in[Section 6

¢ RL-based fine-tuning: To maximize reward functions for pretrained diffusion models, numerous
recent studies have explored RL-based fine-tuning in continuous diffusion models (i.e., diffusion
models for continuous objectives) (Fan et al) [2023} Black et al., 2023} |Clark et al., 2023}
Prabhudesai et al.,|2023)). Our work, in contrast, focuses on discrete diffusion models.

L]

Classifier-free fine-tuning (Ho and Salimans, 2022): This approach constructs conditional
generative models, applicable in our setting by conditioning on high reward values. Although not
originally designed as a fine-tuning method, it can also be adapted for fine-tuning (Zhang et al.,
2023) by adding further controls to optimize. However, in the context of continuous diffusion
models, compared to RL-based fine-tuning, several works (Uehara et al.,|2024) have shown that
conditioning on high reward values is suboptimal, because such high-reward samples are rare.
We will likewise compare this approach to ours in [Section 6] Lastly, when pretrained models
are conditional diffusion models (i.e., p(z|c)) and the offline dataset size consisting of triplets
(¢, z,r(x)) is limited, it is challenging to achieve success. Indeed, for this reason, most current
RL-based fine-tuning papers (e.g., Fan et al.| (2023); Black et al.| (2023); |Clark et al.| (2023)) do
not empirically compare their algorithms with classifier-free guidance.

3 PRELIMINARY

3.1 DIFFUSION MODELS ON DISCRETE SPACES

In diffusion models, our goal is to model the data distribution pgata € A(X) using the training
data, where X’ represents the domain. We focus on the case where X = {1,2,---,N}. The
fundamental principle is (1) introducing a known forward model that maps the data distribution to a
noise distribution, and (2) learning the time reversal that maps the noise distribution back to the data
distribution (detailed inLou et al. (2023); Sahoo et al.| (2024); Shi1 et al. (2024)).

First, we consider the family of distributions j; € R (a vector summing to 1) that evolves from
t = 0tot = T according to a continuous-time Markov chain (CTMC):

4t = Q(t)ji, Po ~ Paatas (1

where Q(t) € RYV*¥ is the generator. Generally, j; is designed so that p; approaches a simple limiting
distribution at ¢ = T". A common approach is to add Mask into X’ and gradually mask a sequence so
that the limiting distribution becomes completely masked (Shi et al.| [2024;|Sahoo et al., 2024)).

Next, we consider the time-reversal CTMC (Sun et al.;2022) that preserves the marginal distribution.
This can be expressed as follows:

) B jt(y) 9
dJch;t =Q(T —t)jr—t, Quy(t) = {f(g:Qy,wg) (?(thé(yx)_)
yFx vy b

where Q) (1) is a (z, y)-entry of a generator Q(t), representing the transition rate matrix from state
2 to state y. This implies that if we can learn the marginal density ratio p;(y)/p:(x), we can sample

@

Under review as a conference paper at ICLR 2025

from the data distribution at t = T" by following the above CTMC controlled by Q(T — t). Existing
works (e.g.,|Lou et al.[(2023))) demonstrate how to train this ratio from the training data. Especially
when we use masked diffusion models (Sahoo et al., 2024; |Shi et al., [2024), we get

vElzg = y|z: = Mask] (y # Mask, z; = Mask),
Quy(t) = § = 2. 2vack VE[xo = 2|2y = Mask] (y = Mask, #, = Mask) 3)
0 (z¢ # Mask)

for a certain constant -, where the expectation is taken with respect to (w.r.t.) the distribution induced
by the forward CTMC. Notably, the above formulation suggests that masked diffusion models could
be viewed as a hierarchical extension of BERT (Devlin, [2018)).

Remark 1 (Sequence of multiple tokens). When dealing with sequences of length M, © =
[V M) we simply consider the factorized rate matrix, i.e., Qu, = . Qy i) (Campbell
et al.| |2022), thereby avoiding exponential blowup.

Remark 2 (Conditioning). We can easily construct a conditional generative model for any c € C by
allowing the generator to be a function of ¢ € C.

3.2 GOAL: GENERATING NATURAL SAMPLES WHILE OPTIMIZING REWARD FUNCTIONS

In our work, we consider a scenario with a pretrained masked discrete diffusion model pP™(x|c) €
[C — A(X)] trained on an extensive dataset and a downstream reward function r : X — R. The
pretrained diffusion model captures the naturalness or validity of samples. For example, in protein
design, pP™(+|-) could be a protein inverse-folding model that generates amino acid sequences that
fold back into the given backbone structure (similar to (Campbell et al.| (2024))), and r could be
a function that evaluates stability. Our objective is to fine-tune a generative model to generate
natural-like samples (high log pP*®(|-)) with desirable properties (high 7(-)).

Notation. We introduce a discrete diffusion model parameterized by 6 from¢ =0tot = Yﬂ

e = Q(H)pr, Po = Plim-)

The parameter ¢ from the pretrained model is denoted by ;. and pji, denotes the initial distribution.
The distribution at time 7T is denoted as pP™¢(+), which approximates the training data distribution
pdat2 We denote an element of the generated trajectory from ¢ = 0 to t = T' by x¢.7. For simplicity,
we assume the initial distribution is a Dirac delta distribution (completely masked state), and we
often treat the original pretrained diffusion model as an unconditional model for a single token for

notational convenience. In this paper, all of the proofs are in

4 ALGORITHM

In this section, we present our proposed method, DRAKES, for fine-tuning diffusion models to
optimize downstream reward functions. We begin by discussing the motivation behind our algorithm.

4.1 KEY FORMULATION

Perhaps the most obvious starting point for fine-tuning diffusion models to maximize a reward
function r(z7) is to simply maximize the expected value of the reward under the model’s distribution,
ie., E, po [r(zr)], where the expectation is taken over the distribution P?(x.7) induced by (@)
(i.e., the generator Q). However, using only this objective could lead to over-optimization, where
the model produces unrealistic or unnatural samples that technically achieve a high reward, but are
impossible to generate in reality. Such samples typically exploit flaws in the reward function, for
example, by being outside the training distribution of a learned reward or violating the physical
assumptions of a hand-engineered physics-based reward (Levine et al., [2020; |Clark et al., 2023}
Uehara et al.,2024). We address this challenge by constraining the optimized model to remain close
to a pretrained diffusion model, which captures the distribution over natural or realistic samples.
More specifically, we introduce a penalization term by incorporating the KL divergence between the
fine-tuned model P?(x¢.7) and the pretrained diffusion model P (2¢.7) in CTMC.

!Starting from [Section 3.2| to simply the notation, we go from ¢ = 0 to t = T to represent noise to data.

Under review as a conference paper at ICLR 2025

Accordingly, our goal during fine-tuning is to solve the following reinforcement learning (RL)
problem:
0% = argmaxE, . po [r(z7)] 5)
—_———

fco
Reward term

T
— OéEZO:TNPG / E
t=0

YFTt

2 (t)
2y () = Q4 (1) + Q5 (1) log —5Et= 6 d
{ t,y(t:Y) t:Y Qgsf;(t)

KL term
The first term is designed to generate samples with desired properties, while the second term represents
the KL divergence. The parameter « controls the strength of this regularization term.

Finally, after fine-tuning, by using the following CTMC from¢ =0tot =T"

e = Q" (H)pr, Po = Piim- ©)
we generate samples at time 7. Interestingly, we can show the following.

Theorem 1 (Fine-Tuned Distribution). When {Q° : 6 € ©} is fully nonparametric (i.e., realizability
holds), the generated distribution at time T' by (0) is proportional to

exp(r(-)/a)p” (). 0

This theorem offers valuable insights. The first term, exp(r(x)), represents high rewards. Addition-
ally, the second term, pP™¢(+), can be seen as prior information that characterizes the natural sequence.
For example, in the context of inverse protein folding, this refers to the ability to fold back into the
target backbone structure.

Remark 3. A similar theorem has been derived for continuous diffusion models (Uehara et al.|
2024) Theorem 1). However, our formulation (3)) differs significantly as our framework is based on a
CTMC, whereas those works are centered around the Brownian motion. Furthermore, while the use
of a similar distribution is common in the literature on (autoregressive) large language models (e.g.,
Ziegler et al.|(12019)), its application in discrete diffusion models is novel, considering that pP*(-)
cannot be explicitly obtained in our context, unlike autoregressive models.

4.2 DIRECT REWARD BACKPROPAGATION WITH GUMBEL SOFTMAX TRICK (DRAKES)

Based on the key formulation presented in[Section 4.1} we introduce our proposed method
[rithm T]and [Figure TJ), which is designed to solve the RL problem (3)). The core approach involves

iteratively (a) sampling from zo.7 ~ P? and (b) updating # by approximating the objective func-
tion (5) with its empirical counterpart and adding its gradient with respect to 6 into the current 6.
Importantly, for step (b) to be valid, step (a) must retain the gradients from 6. After explaining the
representation of z;, we will provide details on each step.

Representation. To represent « € {1,--- , N}, we often use the N-dimensional one-hot encoding
representation within R” interchangeably. From this perspective, while the original generator
corresponds to a map X x X — R, we can also regard it as an extended mapping: RN x RV — R.
We will use this extended mapping when we consider our algorithm later.

Stage 1: Data collection (Step 2{9) We aim to sample from the distribution induced by the
generator Qe. In the standard discretization of CTMC, for (y,z) € X x X, at time ¢, we use

p(aeear = yloe =) =1z = y) + Q7 , (t)(At). ®
Thus, by defining 7, = [QY , (t)(AL), -+, (14+Qf ()AL ---, Q% n(t)(At)], we sample ;4 ar ~
Cat(m;), where Cat(-) denotes the categorical distribution.

However, this procedure is not differentiable with respect to 6, which limits its applicability for
optimization. To address this, we first recognize that sampling from the categorical distribution can be
reduced to a Gumbel-max operation. Although this operation itself remains non-differentiable, we can
modify it by replacing the max operation with a softmax, as shown in Line[/| which is also utilized in
discrete VAE (Jang et al., 2016). This modification results in a new variable, z; ~ [0, 1]N , which
maintains differentiability with respect to 6. As the temperature 7 approaches zero, T; converges to a
sample from the exact categorical distribution Cat(m;), effectively becoming x;. Thus, we typically
set the temperature to a low value to closely approximate the true distribution.

Under review as a conference paper at ICLR 2025

Algorithm 1 DRAKES (Direct Reward bAcKpropagation with gumbEl Softmax trick)

1: Require: Pretrained diffusion models Qf)r"e RY xRN 5 R rewardr : X — R, learning rate
B, Batch size B, Iteration S, Time-step At, Temperature 7, Regularization parameter «

2: forse[l,---,S]do
3 foriell,---,B]do
4: fort € [0,At,--- ,T] do
() (1) 05
3: Set [x(t)1,--- ,7(t)n] € A(X) where 7 (t), = [7,2,]y + At Dwex[@i21]aQyl (t > 0)
pim(y) (¢ = 0)

6: Sample k € [1,-- -, N]; G ~ Gumbel(0, 1)
7: Set a differentiable counterpart of the sample at time ¢:

20 |_ep((@h +G)/7) - exp((r(t)n + Gn)/T)

' Yyexp((m(t)y +Gy)/7)" 73, exp(w(t)y + Gy)/7)

8: end for

9: end for
10: Set the loss:

B T 0
] Z ZOEEDIDY LD {-wa()+ QU (1) + QU () og) }
i=1 t=1z€X yeX 2y (1)

11: Update a parameter: 05,1 < 05 + SVag(0)|o=s.
12: end for
13: Output: 051

Stage 2: Optimization (Step[I0H1I) After appr0x1mately sampling from the distribution induced
by P’ we update the parameter f, by maximizing the empirical objective. Although z; itself may
not have a valid gradient, T; retains the gradient with respect to 6. Therefore, we use the empirical
approximation based on Z;. We offer several remarks below, with details in[Appendix D}

¢ Validity of z;: While z; does not strictly belong to X, this is practically acceptable since the
generator Q% (t) is parameterized as a map RY x RV — R,

* SGD Variants: Although Line[TT|uses the standard SGD update, any off-the-shelf SGD algorithm,
such as Adam (Kingma, [2014), can be applied in practice.

* Soft Calculation with z,: Transition probability 7 (¢), and the KL divergence term in g(#) are
modified to their soft counterparts by using Z; in place of x;.

¢ Straight-Through Gumbel Softmax: Non-relaxed computations can be used in the forward
pass (in Line[TI0). This is commonly known as straight-through Gumbel softmax estimator.

¢ Truncated Backpropagration: In practice, it is often more effective to backpropagate from
intermediate time steps rather than starting from ¢ = 0. In practice, we adopted this truncation
approach, as in|Clark et al.| (2023).

 Optimization Objective g(6): For the masked diffusion models |(3)|that we utilized, g(#) can be
further simplified to reduce computational complexity, as detailed in[Appendix D.2}

5 THEORY OF DRAKES

In this section, we provide an overview of the proof for[Theorem 1] Based on the insights gained from
this proof, we reinterpret state-of-the-art classifier guidance for discrete diffusion models (Nisonoff]
et al.| 2024)) from a new perspective.

5.1 PROOF SKETCH OF
We define the optimal value function V; : X — R as follows:

ETtTNpe* .%‘T —a/ E
s=t

QF 4(5)
{Qzé,y gi‘,ey()+Qz5,y(s)log —=—— b ds |z = x
YFTs

Under review as a conference paper at ICLR 2025

This is the expected return starting from state x at time ¢ following the optimal policy. Once the
optimal value function is defined, the optimal generator can be expressed in terms of this value
function using the Hamilton-Jacobi-Bellman (HJB) equation in CTMC, as shown below.

Theorem 2 (Optimal generator). For x # y (x,y € X), we have
QU () = Q% (1) exp({Valy) — Va(w)}/a). ©)

Next, consider an alternative expression for the soft value function, derived using the Kolmogorov
backward equations in CTMC. This expression is particularly useful for learning value functions.

Theorem 3 (Feynman—Kac Formula in CTMC).
exp(Ve(a) /@) =E, __ popeelexp(r(wr) /) |; = 2] (10)

With this preparation, we can prove our main theorem, which reduces to[Theorem 1{when ¢ = T'.

Theorem 4 (Marginal distribution induced by the optimal generator Q°” (t)). The marginal distribu-
tion at time t by (0), p; € A(X), is proportional to

exp(Vi(+)/e)py™* (") an
where pY*¢ € A(X) is a marginal distribution induced by pretrained model at t.

This is proved by showing the Kolmogorov forward equation in CTMC: dp} /dt = Q%" (t)p}.

5.2 RELATION TO CLASSIFIER GUIDANCE FOR DISCRETE DIFFUSION MODELS

Now, we derive an alternative fine-tuning-free algorithm by leveraging observations in
for reward maximization. If we can directly obtain the optimal generator Q" , we can achieve our
objective. suggests that the optimal generator Q" is a product of the generator from the

pretrained model and the value functions. Although we don’t know the exact value functions, they
can be learned through regression using based on

exp(Vi()/a) = argminE __ popre ., [{exp(r(zr)/a) — g(z)}?]. (12)
g:X—=R .

9

In practice, while we can’t calculate the exact expectation, we can still replace it with its empirical
analog. Alternatively, we can approximate it by using a map from z; to z(in pretrained models
following DPS (Chung et al.,2022)) or reconstruction guidance (Ho et al., 2022).

Interestingly, a similar algorithm was previously proposed by [Nisonoff et al.|(2024). While |Nisonoff
et al.[(2024) originally focused on conditional generation, their approach can also be applied to
reward maximization or vice versa. In their framework for conditional generation, they define
r(x) = logp(z|z) (e.g., the log-likelihood from a classifier) and set & = 1. By adapting
and to their setting, we obtain:

QU (0) = QP () x pe(aly) pi(ele), prlelen) =B, popee Ip(zlor) | 2. (13)

Thus, we can rederive the formula in Nisonoff et al.|(2024)). Here, we also note that this type of result
is commonly referred to as the Doob transform in the literature on stochastic processes (Levin and
Peres| 2017, Section 17).

While this argument suggests that classifier guidance and RL-based fine-tuning approaches theo-
retically achieve the same goal in an ideal setting (without function approximation, sampling, or
optimization errors), their practical behavior can differ significantly, as we demonstrate in
At a high level, the advantage of classifier guidance is that it requires no fine-tuning, but the inference
time may be significantly longer due to the need to recalculate the generator during inference. Indeed,
this classifier guidance requires O (/N M) computations of value functions at each step to calculate
the normalizing constant. While this can be mitigated using a Taylor approximation, there is no
theoretical guarantee for this heuristic in discrete diffusion models. Lastly, learning value functions
in classifier guidance can often be practically challenging.

6 EXPERIMENTS

Our experiments focus on the design of regulatory DNA sequences for enhancer activity and protein
sequences for stability. Our results include comprehensive evaluations, highlighting the ability of
DRAKES to produce natural-like sequences while effectively optimizing the desired properties.

Under review as a conference paper at ICLR 2025

6.1 BASELINES
We compare DRAKES against several baseline methods discussed in[Section 2| which we summarize

below with further details in[Appendix E.T]

* Guidance-based Methods (CG, SMC, TDS). We compare our approach with representative
guidance-based methods, including state-of-the-art classifier guidance (CG) tailored to discrete
diffusion models (Nisonoff et al., 2024), SMC-based guidance methods (e.g., 'Wu et al.| (2024)):
SMC, where the proposal is a pretrained model and TDS, where the proposal is CG.

¢ Classifier-free Guidance (CFG) (Ho and Salimans, 2022)). CFG is trained on labeled datasets
with the measured attributes we aim to optimize.

* Pretrained. We generated sequences using pretrained models without fine-tuning.

* DRAKES w/o KL. This ablation of DRAKES omits the KL regularization term, evaluating how
well this term mitigates over-optimization (discussed in [Section 4.1).

6.2 REGULATORY DNA SEQUENCE DESIGN

Here we aim to optimize the activity of regulatory DNA sequences such that they drive gene expression
in specific cell types, a critical task for cell and gene therapy (Taskiran et al., 2024).

Dataset and settings. We experiment on a publicly available large-scale enhancer dataset (Gosai
et al., 2023), which measures the enhancer activity of ~700k DNA sequences (200-bp length) in
human cell lines using massively parallel reporter assays (MPRAs), where the expression driven by
each sequence is measured. We pretrain the masked discrete diffusion model (Sahoo et al.|, [2024)
on all the sequences. We then split the dataset and train two reward oracles (one for finetuning and
one for evaluation) on each subset, using the Enformer (Avsec et al., 2021)) architecture to predict
the activity level in the HepG?2 cell line. These datasets and reward models are widely used in the
literature on computational enhancer design (Lal et al.l |2024; |Uehara et al., 2024; [Sarkar et al., [2024)).
Detailed information about the pretrained model and reward oracles is in

Evaluations. To comprehensively evaluate each model’s performance in enhancer generation, we
use the following metrics:

* Predicted activity based on the evaluation reward oracle (Pred-Activity). We predict the enhancer
activity level in the HepG2 cell line using the reward oracle trained on the evaluation subset. Note
that the diffusion models are fine-tuned (or guided) with the oracle trained on a different subset of
the data, splitting based on chromosome following conventions (but in the same cell lines) (Lal
et al., 2024).

* Binary classification on chromatin accessibility (ATAC-Acc). We use an independent binary
classification model trained on chromatin accessibility data in the HepG2 cell line (Consortium
et al.l [2012) (active enhancers should have accessible chromatin). While this is not used for
fine-tuning, we use it for evaluation to further validate the predicted activity of the synthetic
sequences, following Lal et al.|(2024).

e 3-mer Pearson correlation (3-mer Corr). We calculate the 3-mer Pearson correlation between the
synthetic sequences and the sequences in the dataset (Gosai et al., [2023) with top 0.1% HepG2
activity level. Models that generate sequences that are more natural-like and in-distribution have
a higher correlation.

* JASPAR motif analysis (JASPAR Corr). We scan the generated sequences of each model with
JASPAR transcription factor binding profiles |(Castro-Mondragon et al.| (2022), which identify
potential transcription factor binding motifs in the enhancer sequences (which are expected to
drive enhancer activity). We then count the occurrence frequency of each motif and calculate
the Spearman correlation of motif frequency between the synthetic sequences generated by each
model and the top 0.1% HepG2 activity sequences in the dataset.

* Approximated log-likelihood of sequences (App-Log-Lik). We calculate the log-likelihood of the
generated sequences with respect to the pretrained model to measure how likely the sequences
are to be natural-like. Models that over-optimize the reward oracle generate out-of-distribution
sequences and would have a low likelihood to the pretrained model. The likelihood is calculated
using the ELBO of the discrete diffusion model in |Sahoo et al.[(2024)).

Under review as a conference paper at ICLR 2025

Results. DRAKES generates sequences with high predicted activity in the HepG2 cell line, as
robustly measured by Pred-Activity and ATAC-Acc (Table [I). The generated sequences closely
resemble natural enhancers, as indicated by high 3-mer and JASPAR motif correlations, and a similar
likelihood to the pretrained model. These highlight DRAKES’s effectiveness in generating plausible
high-activity enhancer sequences. Notably, while DRAKES, without KL regularization achieves
higher Pred-Activity, this can be attributed to over-optimization. Despite splitting the data for fine-
tuning and evaluation, the sequences remain highly similar due to many analogous regions within each
chromosome. However, when evaluated with an independent activity oracle, ATAC-Acc, DRAKES
demonstrates superior performance while maintaining higher correlations and log likelihood.

Table 1: Model performance on regulatory DNA sequence design. DRAKES generates sequences
with high activity in the HepG2 cell line, measured by Pred-Activity and ATAC-Acc, while being
natural-like by high 3-mer and JASPAR motif correlations and likelihood. We report the mean across
3 random seeds, with standard deviations in parentheses.

Method Pred-Activity (median) T ATAC-Acc? (%) 3-mer Corr? JASPAR Corrt App-Log-Lik (median) 1
Pretrained 0.17(0.04) 1.5(0.2) -0.061(0.034) 0.249(0.015) -261(0.6)
CG 3.30(0.00) 0.0(0.0) -0.065(0.001) 0.212(0.035) -266(0.6)
SMC 4.15(0.33) 39.98.7) 0.840(0.045) 0.756(0.068) -259(2.5)
TDS 4.64(0.21) 45.3(16.4) 0.848(0.008) 0.846(0.044) -257(1.5)
CFG 5.04(0.06) 92.1(0.9) 0.746(0.001) 0.864(0.011) -265(0.6)
DRAKES w/o KL 6.44(0.04) 82.5(2.8) 0.307(0.001) 0.557(0.015) -281(0.6)
DRAKES 5.61(0.07) 92.5(0.6) 0.887(0.002) 0.911(0.002) -264(0.6)

6.3 PROTEIN SEQUENCE DESIGN: OPTIMIZING STABILITY IN INVERSE FOLDING MODEL

In this task, given a pretrained inverse folding model that generates sequences conditioned on the
backbone’s conformation (3D structure), our goal is to optimize the stability of these generated
sequences, following Widatalla et al.| (2024)).

Dataset and settings. First, we pretrained an inverse folding model based on the diffusion model
(Campbell et al.,2024) and the ProteinMPNN (Dauparas et al.,[2022)) architecture, using the PDB
training set from |Dauparas et al.| (2022)). Next, we trained the reward oracles using a different
large-scale protein stability dataset, Megascale (T'suboyama et al., [2023)), which includes stability
measurements (i.e., the Gibbs free energy change) for ~1.8M sequence variants from 983 natural
and designed domains. Following dataset curation and a train-validation-test splitting procedure
from |Widatalla et al.| (2024) (which leads to ~0.5M sequences on 333 domains) and using the
ProteinMPNN architecture, we constructed two reward oracles — one for fine-tuning and one for
evaluation, that predict stability from the protein sequence and wild-type conformation. Detailed

information on the pretrained model and reward oracles is in

Evaluations. We use the following metrics to evaluate the stability of the generated sequences and
their ability to fold into the desired structure. During evaluation, we always condition on protein
backbone conformations from the test data that are not used during fine-tuning.

* Predicted stability on the evaluation reward oracle (Pred-ddG). The evaluation oracle is trained
with the full Megascale dataset (train+val+test) to predict protein stability. Conversely, the fine-
tuning oracle is trained only with data from the Megascale training set. Thus, during fine-tuning,
the algorithms do not encounter any proteins used for evaluation.

e Self-consistency RMSD of structures (scRMSD). To assess how well a generated sequence folds
into the desired structure, we use ESMFold (Lin et al., |2023) to predict the structures of the
generated sequences and calculate their RMSD relative to the wild-type structure (i.e., the original
backbone structure we are conditioning on). This is a widely used metric (Campbell et al., 2024;
Trippe et al., 2022} |Chu et al., [2024)).

Following prior works (Campbell et al., [2024; Nisonoff et al., [2024), we calculate the success rate of
inverse folding as the ratio of generated sequences with Pred-ddG> 0 and scRMSD< 2.

Results. For inverse protein folding, DRAKES generates high-stability protein sequences capable of
folding into the conditioned structure (Table[2). It achieves the highest Pred-ddG among all methods,

Under review as a conference paper at ICLR 2025

Table 2: Model performance on inverse protein folding. DRAKES generates protein sequences that
have high stability and fold to the desired structure, outperforming baselines in the overall success
rate. We report the mean across 3 random seeds, with standard deviations in parentheses.

Method Pred-ddG (median) T %(ddG> 0) (%)1 scRMSD (median)| %(scRMSD< 2)(%)1 Success Rate (%) 1
Pretrained -0.544(0.037) 36.6(1.0) 0.849(0.013) 90.9(0.6) 34.4(0.5)
CG -0.561(0.045) 36.9(1.1) 0.839(0.012) 90.9(0.6) 34.7(0.9)
SMC 0.659(0.044) 68.5(3.1) 0.841(0.006) 93.8(0.4) 63.6(4.0)
TDS 0.674(0.086) 68.2(2.4) 0.834(0.001) 94.4(1.2) 62.9(2.8)
CFG -1.186(0.035) 11.0(0.4) 3.146(0.062) 29.4(1.0) 1.3(0.4)
DRAKES w/o KL 1.108(0.004) 100.0(0.0) 7.307(0.054) 34.1(0.2) 34.1(0.2)
DRAKES 1.095(0.026) 86.4(0.2) 0.918(0.006) 91.8(0.5) 78.6(0.7)

73K / 2KRU

DRAKES
DS
SMC
Pretrained
————— Wild-type

DRAKES
DS
SMC
Pretrained
~ Wild-type

T T T T T T 0.00 - T T
150 125 100 75 50 25 160 140 120 100

Energy (AG) Energy (AG)

(a) Conditioning on the backbone structure of 7JJK. (b) Conditioning on the backbone structure of 2KRU.

Figure 2: Examples of generated proteins. Red: Wild-type backbone structure (the one we condition
on), Yellow: Structure predicted by ESMFold from the wild-type (true) sequence, : Structure
predicted by ESMFold from the sequence generated by DRAKES. The structures for sequences
generated by DRAKES show good alignment with the original structure (the scRMSDs are 0.768 for
7JJK and 0.492 for 2KRU). Histograms: Gibbs free energy for each generated sequence, calculated
using physics-based simulations. In these two cases, the sequences generated by DRAKES appear to
be more stable than the baselines.

while maintaining a similar success rate of inverse folding (measured by %(scRMSD< 2), the
percentage of scRMSD smaller than 2) as the pretrained model. Considering both factors, DRAKES
significantly outperforms all baseline methods in terms of overall success rate. Note that CFG does
not work well for protein sequence design due to limited labeled data, as Megascale includes only a
few hundred backbones, making generalization difficult. This is expected, as we mention in[Section 2]

Further details are provided in

Moreover, the results highlight the importance of the KL term, as DRAKES without KL regularization
tends to suffer from over-optimization, with high scRMSD (i.e., failing to fold back to the target
backbone structure), even though Pred-ddG may remain high.

In silico validation. For validation purposes, we calculate the stability (i.e., Gibbs free energy) of
the generated sequences using physics-based simulations (PyRosetta (Chaudhury et al., 2010)) for
wild-type protein backbone structures in following (Widatalla et al.,[2024). Although all
models are conditioned on the same set of protein backbones, different sets of sequences generated by
generative methods can lead to significant differences in side chain interactions, which affect folding
energies. The results demonstrate that sequences generated by our algorithms are more stable in this
in silico validation compared to other baseline methods. For additional results, refer to[Figure 6in

7 CONCLUSIONS

We propose a novel algorithm that incorporates reward maximization into discrete diffusion models,
leveraging the Gumbel-Softmax trick to enable differentiable reward backpropagation, and demon-
strate its effectiveness in generating DNA and protein sequences optimized for task-specific objectives.
For future work, we plan to conduct more extensive in silico validation and pursue wet-lab validation.

10

Under review as a conference paper at ICLR 2025

REPRODUCIBILITY STATEMENT

For the theoretical results presented in the paper, we provide explanations of assumptions and
complete proofs in For the proposed algorithm and experimental results, we provide
detailed explanations of the algorithm implementations and experimental setup in
[Section 6| [Appendix D} and|Appendix E} and the code and data can be found in the anonymous link
https://anonymous.4open.science/r/DRAKES—code—-5B62/. For the datasets used
in the experiments, we utilize publicly available datasets and elaborate the data processing procedures
in[Section 6|and |Appendix E}

11

https://anonymous.4open.science/r/DRAKES-code-5B62/

Under review as a conference paper at ICLR 2025

REFERENCES

Austin, J., D. D. Johnson, J. Ho, D. Tarlow, and R. Van Den Berg (2021). Structured denoising
diffusion models in discrete state-spaces. Advances in Neural Information Processing Systems 34,
17981-17993.

Avdeyev, P., C. Shi, Y. Tan, K. Dudnyk, and J. Zhou (2023). Dirichlet diffusion score model for
biological sequence generation. arXiv preprint arXiv:2305.10699.

Avsec, Z., V. Agarwal, D. Visentin, J. R. Ledsam, A. Grabska-Barwinska, K. R. Taylor, Y. Assael,
J. Jumper, P. Kohli, and D. R. Kelley (2021). Effective gene expression prediction from sequence
by integrating long-range interactions. Nature methods 18(10), 1196—1203.

Bansal, A., H.-M. Chu, A. Schwarzschild, S. Sengupta, M. Goldblum, J. Geiping, and T. Goldstein
(2023). Universal guidance for diffusion models. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 843-852.

Black, K., M. Janner, Y. Du, I. Kostrikov, and S. Levine (2023). Training diffusion models with
reinforcement learning. arXiv preprint arXiv:2305.13301.

Campbell, A., J. Benton, V. De Bortoli, T. Rainforth, G. Deligiannidis, and A. Doucet (2022).
A continuous time framework for discrete denoising models. Advances in Neural Information
Processing Systems 35, 28266-28279.

Campbell, A., J. Yim, R. Barzilay, T. Rainforth, and T. Jaakkola (2024). Generative flows on discrete
state-spaces: Enabling multimodal flows with applications to protein co-design. arXiv preprint
arXiv:2402.04997.

Cardoso, G., Y. J. E. Idrissi, S. L. Corff, and E. Moulines (2023). Monte carlo guided diffusion for
bayesian linear inverse problems. arXiv preprint arXiv:2308.07983.

Castillo-Hair, S. M. and G. Seelig (2021). Machine learning for designing next-generation mrna
therapeutics. Accounts of Chemical Research 55(1), 24-34.

Castro-Mondragon, J. A., R. Riudavets-Puig, I. Rauluseviciute, R. Berhanu Lemma, L. Turchi,
R. Blanc-Mathieu, J. Lucas, P. Boddie, A. Khan, N. Manosalva Pérez, et al. (2022). Jaspar 2022:
the 9th release of the open-access database of transcription factor binding profiles. Nucleic acids
research 50(D1), D165-D173.

Chaudhury, S., S. Lyskov, and J. J. Gray (2010). Pyrosetta: a script-based interface for implementing
molecular modeling algorithms using rosetta. Bioinformatics 26(5), 689—-691.

Chu, A. E,, J. Kim, L. Cheng, G. El Nesr, M. Xu, R. W. Shuai, and P.-S. Huang (2024). An all-atom
protein generative model. Proceedings of the National Academy of Sciences 121(27), €2311500121.

Chung, H., J. Kim, M. T. Mccann, M. L. Klasky, and J. C. Ye (2022). Diffusion posterior sampling
for general noisy inverse problems. arXiv preprint arXiv:2209.14687.

Chung, H., B. Sim, D. Ryu, and J. C. Ye (2022). Improving diffusion models for inverse problems
using manifold constraints. Advances in Neural Information Processing Systems 35, 25683-25696.

Clark, K., P. Vicol, K. Swersky, and D. J. Fleet (2023). Directly fine-tuning diffusion models on
differentiable rewards. arXiv preprint arXiv:2309.17400.

Consortium, E. P. et al. (2012). An integrated encyclopedia of dna elements in the human genome.
Nature 489(7414), 57.

Dauparas, J., I. Anishchenko, N. Bennett, H. Bai, R. J. Ragotte, L. F. Milles, B. I. Wicky, A. Courbet,
R.J. de Haas, N. Bethel, et al. (2022). Robust deep learning—based protein sequence design using
proteinmpnn. Science 378(6615), 49-56.

Devlin, J. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805.

12

Under review as a conference paper at ICLR 2025

Dhariwal, P. and A. Nichol (2021). Diffusion models beat gans on image synthesis. Advances in
neural information processing systems 34, 8780-8794.

Dou, Z. and Y. Song (2024). Diffusion posterior sampling for linear inverse problem solving: A
filtering perspective. In The Twelfth International Conference on Learning Representations.

Fan, Y., O. Watkins, Y. Du, H. Liu, M. Ryu, C. Boutilier, P. Abbeel, M. Ghavamzadeh, K. Lee, and
K. Lee (2023). DPOK: Reinforcement learning for fine-tuning text-to-image diffusion models.
arXiv preprint arXiv:2305.16381.

Gosai, S. J., R. I. Castro, N. Fuentes, J. C. Butts, S. Kales, R. R. Noche, K. Mouri, P. C. Sabeti, S. K.
Reilly, and R. Tewhey (2023). Machine-guided design of synthetic cell type-specific cis-regulatory
elements. bioRxiv.

Guo, Y., H. Yuan, Y. Yang, M. Chen, and M. Wang (2024). Gradient guidance for diffusion models:
An optimization perspective. arXiv preprint arXiv:2404.14743.

Ho, J. and T. Salimans (2022). Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598.

Ho, J., T. Salimans, A. Gritsenko, W. Chan, M. Norouzi, and D. J. Fleet (2022). Video diffusion
models. Advances in Neural Information Processing Systems 35, 8633-8646.

Jang, E., S. Gu, and B. Poole (2016). Categorical reparameterization with gumbel-softmax. arXiv
preprint arXiv:1611.01144.

Kingma, D. P. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.

Lal, A., D. Garfield, T. Biancalani, and G. Eraslan (2024). reglm: Designing realistic regulatory dna
with autoregressive language models. bioRxiv, 2024-02.

Levin, D. A. and Y. Peres (2017). Markov chains and mixing times, Volume 107. American
Mathematical Soc.

Levine, S., A. Kumar, G. Tucker, and J. Fu (2020). Offline reinforcement learning: Tutorial, review,
and perspectives on open problems. arXiv preprint arXiv:2005.01643.

Lin, Z., H. Akin, R. Rao, B. Hie, Z. Zhu, W. Lu, N. Smetanin, R. Verkuil, O. Kabeli, Y. Shmueli, et al.
(2023). Evolutionary-scale prediction of atomic-level protein structure with a language model.
Science 379(6637), 1123-1130.

Lou, A., C. Meng, and S. Ermon (2023). Discrete diffusion language modeling by estimating the
ratios of the data distribution. arXiv preprint arXiv:2310.16834.

Maddison, C. J., A. Mnih, and Y. W. Teh (2016). The concrete distribution: A continuous relaxation
of discrete random variables. arXiv preprint arXiv:1611.00712.

Nisonoff, H., J. Xiong, S. Allenspach, and J. Listgarten (2024). Unlocking guidance for discrete
state-space diffusion and flow models. arXiv preprint arXiv:2406.01572.

Phillips, A., H.-D. Dau, M. J. Hutchinson, V. De Bortoli, G. Deligiannidis, and A. Doucet (2024).
Particle denoising diffusion sampler. arXiv preprint arXiv:2402.06320.

Prabhudesai, M., A. Goyal, D. Pathak, and K. Fragkiadaki (2023). Aligning text-to-image diffusion
models with reward backpropagation. arXiv preprint arXiv:2310.03739.

Sahoo, S. S., M. Arriola, Y. Schiff, A. Gokaslan, E. Marroquin, J. T. Chiu, A. Rush, and V. Kuleshov
(2024). Simple and effective masked diffusion language models. arXiv preprint arXiv:2406.07524.

Sarkar, A., Z. Tang, C. Zhao, and P. Koo (2024). Designing dna with tunable regulatory activity using
discrete diffusion. bioRxiv, 2024-05.

Shi, J., K. Han, Z. Wang, A. Doucet, and M. K. Titsias (2024). Simplified and generalized masked
diffusion for discrete data. arXiv preprint arXiv:2406.04329.

13

Under review as a conference paper at ICLR 2025

Shi, Y., V. De Bortoli, A. Campbell, and A. Doucet (2024). Diffusion schrodinger bridge matching.
Advances in Neural Information Processing Systems 36.

Song, J., C. Meng, and S. Ermon (2020). Denoising diffusion implicit models. arXiv preprint
arXiv:2010.02502.

Song, Y., J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole (2020). Score-based
generative modeling through stochastic differential equations. arXiv preprint arXiv:2011.13456.

Stark, H., B. Jing, C. Wang, G. Corso, B. Berger, R. Barzilay, and T. Jaakkola (2024). Dirichlet flow
matching with applications to dna sequence design. arXiv preprint arXiv:2402.05841.

Sun, H., L. Yu, B. Dai, D. Schuurmans, and H. Dai (2022). Score-based continuous-time discrete
diffusion models. arXiv preprint arXiv:2211.16750.

Taskiran, I. I., K. I. Spanier, H. Dickminken, N. Kempynck, A. Panc¢ikov4, E. C. Eksi, G. Hulselmans,
J. N. Ismail, K. Theunis, R. Vandepoel, et al. (2024). Cell-type-directed design of synthetic
enhancers. Nature 626(7997), 212-220.

Touvron, H., L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov, S. Batra,
P. Bhargava, S. Bhosale, et al. (2023). Llama 2: Open foundation and fine-tuned chat models.
arXiv preprint arXiv:2307.09288.

Trippe, B. L., J. Yim, D. Tischer, D. Baker, T. Broderick, R. Barzilay, and T. Jaakkola (2022).
Diffusion probabilistic modeling of protein backbones in 3d for the motif-scaffolding problem.
arXiv preprint arXiv:2206.04119.

Tsuboyama, K., J. Dauparas, J. Chen, E. Laine, Y. Mohseni Behbahani, J. J. Weinstein, N. M. Mangan,
S. Ovchinnikov, and G. J. Rocklin (2023). Mega-scale experimental analysis of protein folding
stability in biology and design. Nature 620(7973), 434-444.

Uehara, M., Y. Zhao, T. Biancalani, and S. Levine (2024). Understanding reinforcement learning-
based fine-tuning of diffusion models: A tutorial and review. arXiv preprint arXiv:2407.13734.

Uehara, M., Y. Zhao, K. Black, E. Hajiramezanali, G. Scalia, N. L. Diamant, A. M. Tseng, T. Bian-
calani, and S. Levine (2024). Fine-tuning of continuous-time diffusion models as entropy-
regularized control. arXiv preprint arXiv:2402.15194.

Uehara, M., Y. Zhao, E. Hajiramezanali, G. Scalia, G. Eraslan, A. Lal, S. Levine, and T. Biancalani
(2024). Bridging model-based optimization and generative modeling via conservative fine-tuning
of diffusion models. arXiv preprint arXiv:2405.19673.

Venkatraman, S., M. Jain, L. Scimeca, M. Kim, M. Sendera, M. Hasan, L. Rowe, S. Mittal, P. Lemos,
E. Bengio, et al. (2024). Amortizing intractable inference in diffusion models for vision, language,
and control. arXiv preprint arXiv:2405.20971.

Widatalla, T., R. Rafailov, and B. Hie (2024). Aligning protein generative models with experimental
fitness via direct preference optimization. bioRxiv, 2024-05.

Wu, L., B. Trippe, C. Naesseth, D. Blei, and J. P. Cunningham (2024). Practical and asymptotically
exact conditional sampling in diffusion models. Advances in Neural Information Processing
Systems 36.

Yin, G. G. and Q. Zhang (2012). Continuous-time Markov chains and applications: a singular
perturbation approach, Volume 37. Springer.

Yuan, H., K. Huang, C. Ni, M. Chen, and M. Wang (2023). Reward-directed conditional diffusion:
Provable distribution estimation and reward improvement. In Thirty-seventh Conference on Neural
Information Processing Systems.

Zhang, L., A. Rao, and M. Agrawala (2023). Adding conditional control to text-to-image diffusion
models. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
3836-3847.

14

Under review as a conference paper at ICLR 2025

Zhou, M., T. Chen, Z. Wang, and H. Zheng (2024). Beta diffusion. Advances in Neural Information
Processing Systems 36.

Ziegler, D. M., N. Stiennon, J. Wu, T. B. Brown, A. Radford, D. Amodei, P. Christiano, and G. Irving
(2019). Fine-tuning language models from human preferences. arXiv preprint arXiv:1909.08593.

15

Under review as a conference paper at ICLR 2025

A MORE RELATED WORKS

Dirichlet diffusion models for discrete spaces. Another approach to diffusion models for discrete

spaces has been proposed (Stark et all, 2024} [Avdeyev et all, 2023} [Zhou et al.| [2024). In these

models, each intermediate state is represented as a vector within a simplex. This is in contrast to
masked diffusion models, where each state is a discrete variable.

Relative trajectory balance for posterior inference. [Venkatraman et al.| (2024)) proposed to use
relative trajectory balance to train a diffusion model that sample from a posterior z ~ pP*'(z) o
p(z)r(x). When r(x) is defined as the exponential reward, it can be utilized for reward optimization.
However, this approach requires estimation of the normalizing constant term of the unnormalized
density. In contrast, we solve a control problem with direct backpropagation. Besides,
models continuous diffusion as a Markovian generative process and is not specifically
tailored to discrete diffusion models.

B POTENTIAL LIMITATIONS

We have formulated the RL problem, [(5)] in the context of CTMC. The proposed algorithm in our
paper to solve this problem requires reward models to be differentiable. Since differentiable models
are necessary when working with experimental offline data, this assumption is not overly restrictive.
Moreover, many state-of-the-art sequence models mapping sequences to functions in biology are
available today, such as enformer borozi. In cases where creating differentiable models is challenging,

we recommend using PPO-based algorithms (Black et al} 2023} [Fan et al., 2023)) or reward-weighted
MLE (Uehara et al.,[2024), Section 6.1).

C PROOF OF THEOREMS

C.1 PREPARATION

We prepare two well-known theorems in CTMC for the pedagogic purpose. For example, refer to
(2012) for the more detailed proof. In these theorems, we suppose we have the CTMC:

dpt

Pt Qlt)ps. 14

o7 Q(t)pe (14)
Lemma 1 (Kolmogorov backward equation). We consider g(-,t) = E[r(xr)|z: =] where the

expectation is taken w.r.t. (T4). Then, this function g : X x [0,T] — R is characterized by the
following ODE:

dg(x

0D S Qoo t) —). 9. T) = r(ar).

y#x

Proof. Here, we prove that the p.d.f. g satisfies the above backward equation. To show the converse,
we technically require regularity conditions to claim the ODE solution is unique, which can often
be proved by the contraction mapping theorem under certain regularity conditions. Since this is a
well-known result, we skip the converse part. If readers are interested in details, we refer to

Zhang (2012).

When t = T, the statement g(x,T) = r(z7) is obvious. For the rest of the proof, we aim to show a
result when ¢ # T'. We have

g(we,t) = /Q(It+dtat + dt)p(Tt+at| vt)Tt ar-
The above implies

g(,1) = {1+ Qo (Dt} g(z,t +dt) + > {Quy ()t} gy, t + dt).
Yy#T

16

Under review as a conference paper at ICLR 2025

Now combined with the property of the generator as follows

0= Quylt+dt),
Y

With some algebra,

g(@,t) = g(z,t + dt) = > {Quy()dt}g(w,t + dt) + Y {Quy(t)dt}g(y,t + dt).
Then, we have

dt =" Quy(O{g(y,t +dt) - gla,t + dt))

y#x

Finally, by setting dt — 0, we obtain
dg x,t)

=3 Quy®{g(y.t) — g(x,1)}.
y#z
O]

Lemma 2 (Kolmogorov forward equation). The density p; € A(X) is characterized as the following
ODE:

d,
pt Z Qy,z(t)pe(y) — Z Quy(O)pe(z), Po = Pini-
y#e y#T

Proof. Here, we prove that the p.d.f. p; satisfies the above forward equation. To show the converse,
we technically require regularity conditions to claim the ODE solution is unique, which can often be
proved by the contraction mapping theorem. Here, we skip the converse part.

We first have

Perat(r) = /Pt+dt($|xt)19t(xt)dxt

This implies
Pitdr(x Z{Qy «(O)dtp(y)} + {1+ Qu.(t)dt}pi(x)
y#T
= {Qua(dtpe(y)} +{1 =D Quy()dt}py ().
Hence,
2D ZPUD) _§7 (pelw) — 3 @ (i)

y# y#z
By taking dt — 0, we obtain

dpt =" Quape(y) = Y Quy(pe()

y#x y#x
Then, the proof is completed. O

C.2 PROOF OF

We derive the Hamilton-Jacobi-Bellman (HJB) equation in CTMC. For this purpose, we consider the
recursive equation:

6
Viz,t) = m;%x [{ZQz,y(t) _ pre() — Qa: y()1o Q;:::(t) } dt

y#x z,y (t)

+ > {QL,(M)dtV (y,t +dt)} + {1+ Qo . ()}V (w,t + dt)}] .

y#£T

17

Under review as a conference paper at ICLR 2025

Using 3, ¢ y Qz,y(t) = 0, this is equal to

yF#xT T,y (t)

V(_max [{Z sz Gpre() sz()log QJ,prye(t) }dt

V(@ t+dt) + Y Q% ()d{V (y,t + dt) — V(x,t + dt)}] .
y#£T

By taking dt to 0, the above is equal to

0

(t)
dv(z,t) 9 0pm 0 o
- = e [0t @y - Q,y()longyt + 3 QO) = V()
Y7+x r y#x

(15)

This is the HIB equation in CTMC.

Finally, with simple algebra (i.e., taking functional derivative under the constraint 0 =
Syex Q4 (1), we can show

Va £ y;Q, (1) = QU (t) exp({V (y, 1) — V(z,1)}).
C.3 PROOF OF[THEOREM 3]

This theorem is proved by invoking the Kolmogorov backward equation.
First, by plugging
o 2 45 Q0, (1) = QP (1) exp({V (y,1) — V(x,1)}).
into (T3)), we get
= Q{1 —exp({V(y, 1) = V(z,)})}.
yF#w
By multiplying exp(V (z, t)) to both sides, it reduces to
d exp
TR = > Qe (0 {exp(V (. 1)) — exp(V (1)) (16)
yF#
Furthermore, clearly, V(x,T") = r(xr). Then, the statement is proved by invoking the Kolmogorov
backward equation.
C.4 PROOF OF[THEOREM 4]
We define
Hy(z) := exp(V (z,t))p:(x)/C.

We aim to prove that the above satisfies the Kolmogorov forward equation:

dH
it => Q0 .()= > QY (M H(x), pini = Ho(").
H/—/ y#x y#
Lh.s.
rhs.

First, we calculate the 1.h.s. Here, recall

dexpi ZQQPW MHexp(V(x,t)) —exp(V(y,t))}
yF#T

18

Under review as a conference paper at ICLR 2025

using (16), and

B =Sl (Om) — 3 Q0

yF#z yF#z

holds, using the Kolmogorov forward equation. Then, we obtain

dHy(z) 1 " {dexp(V(x,t))

it C dt

(o) + exp((a1 242 |

% |37 Q () exp(V (1) — exp(V(y. 1) Ipe ()

yF#w
1 Opre Opre
S
yF#T u#w
= x> Qe (1) exp(V(w,)pily) — = x > Qe (t) exp(V (y, 1))pi ().
yF#x yFx

On the other hand, the r.h.s. is

& QUL) — QY (i)

yF#T y#x

= XY QU O eV (1)~ Vi ODHl) — 5 3 QU (0 esp({V iy, t) — Vi,)} Hy(x)
yFT y#x

*XZQ"’“)exp(V (a, 1))t —*XZQGP“)exp(V (g, 1)p ().
y#x yF#x

Here, from the first line to the second line, we use
Vo # 4 QU (1) = Qe () exp({V (y,1) = V(z,1)})-

Finally, we can see that [.h.s. = r.h.s. Furthermore, recalling we have an assumption that p;,;
is Dirac delta distribution, we clearly have p;,,; = Ho(-). Hence, the statement is proved by the
Kolmogorov forward equation.

D DETAILS OF ALGORITHM

D.1 STRAIGHT-THROUGH GUMBEL SOFTMAX

We apply the straight-through Gumbel softmax estimator to the last time step, i.e.
ST(ay) == 2 + SG(al) — z)

where x(T) is the corresponding Gumbel-max variable, i.e. a:g) = argmax,. X[E(Ti)]m, and SG

denotes stop gradient. Then, ST(x(Ti)) is input into the reward function (.) instead of xT) for forward
and backward propagation.

We observe a boost in fine-tuning performance with the straight-through Gumbel softmax, as convert-
ing the input to r(.) into a one-hot vector makes it better aligned with the reward oracle’s training
distribution.

19

Under review as a conference paper at ICLR 2025

D.2 SIMPLIFIED FORMULA OF g(6)

The key objective function in DRAKES, ¢(#), can be further simplified for the masked diffusion
models that we utilized in the experiments.

| B NN 2y (t)
SB[- 5 Tl 5 {0 et s s gt

=1 ceX yex Qacm (t)
y#£T

We denote the second term estimating the KL divergence with the i-th sample as k;(6):

0) Ly (@) 0 0 20
KO0) = > D #]e Y- ~QLy (0 + Qe (1) + QL (1) log 5

t=1 zex yex oy (1)
y#T

When z = Mask, the value of Q. (t) is irrelevant to the parametrization 6, i.e.

0,y # Mask

0 0
t) = pre () —
:E,y() T,y () {_Fy’ y — MaSk

where y is a constant related to the forward process schedule (Sahoo et al.,[2024). In particular, when
applying a linear schedule (as in our experiments), v = 1/¢. Thus, the corresponding KL divergence
component equals 0.

When z # Mask,

0 0,y # Mask
Qg y(t) = _ _
vEg[zo = z|z1—1 = Mask], y = Mask

Denote Eg[zg = x|z;_1 = Mask] as [£§],.. The KL divergence term k() () can be simplified as

(4
ZZ Z Z{_ (0 + Qe (1) + Q1 (1) log géi(t)}

wy ()

- 2 s ()
T Z Z xt 1 { T Mdsk() + prli/iask() + Qz,Mask(t) IOg .’}

9 re
=1 ecx Qm},)Mask(t)
)4 e e 8
TZ > @200 § —[86)e + (307)a + [30]. log Opre
=1 mex ("]z
ask

The simplified formula reduces the computational complexity of calculating k() (6) to O(NT).

D.3 SCHEDULE OF GUMBEL SOFTMAX TEMPERATURE

We use a linear schedule for the Gumbel softmax temperature T, decreasing over time as 7 ~ 1/t.
In early time steps, the temperature is higher, introducing more uncertainty, while later steps have a
lower temperature, approximating the true distribution more closely. This improves the fine-tuning
procedure as the input becomes closer to clean data at later time steps and the uncertainty of model
prediction is reduced.

E EXPERIMENTAL DETAILS AND ADDITIONAL RESULTS

In this section, we first provide a more detailed explanation of the baseline. We then discuss additional
results and present more detailed settings for both regulatory DNA sequence design and protein
sequence design.

20

Under review as a conference paper at ICLR 2025

E.1 BASELINES
In this section, we provide a detailed overview of each baseline method.

* Guidance-based Methods. Guidance-based methods are based on the pretrained model while
adjusting during the sampling process according to the targeted property. This leads to longer
inference time compared to fine-tuning approaches.

— CG (Nisonoff et al, 2024). CG adjusts the transition rate of CTMC by calculating the

predictor guidance:
p(rly,t)
Qwv!ﬂ”'(t) p(r\m,t) ch,y(t)
where r is the target property, and the predictor guidance is further approximated using a
Taylor expansion, i.e.
o POl e
Og p(T‘lCE,t) (y x) v-/L ng(’r‘x7t)

The predictor p(r|z, t) is estimated using the posterior mean approach (Chung et al., 2022),
where the pretrained model is first utilized to estimate the clean data from the noisy input z;,
and then the reward oracle is applied to the predicted clean sequence. We remark that the
above Taylor approximation doesn’t have formal theoretical guarantees, considering that
is discrete. This could be a reason why it does not work well in the case of protein-inverse
folding in

— SMC (Wu et al.|, [2024). SMC is a sequential Monte Carlo-based approach that uses the
pretrained model as the proposal distribution. While it was originally designed for condition-
ing rather than reward maximization, it can be adapted for reward maximization by treating
rewards as classifiers. In our experiment, we use this adapted version.

— TDS (Wu et al.}[2024). Similar to SMC, TDS also applies sequential Monte Carlo, but utilizes
CG rather than the pretrained model as the proposal.

¢ Classifier-free Guidance (CFG) (Ho and Salimans| [2022). Unlike guidance-based methods,
CFG trains a conditional generative model from scratch and does not rely on the pretrained
model. To generate sequences x with desired properties r(z), CFG incorporates r(z) as an
additional input to the diffusion model and generates samples conditioning on high r(z) values.
Specifically, binary labels of r(x) are constructed according to the 95% quantile, and sampling is
done conditioned on the label corresponding to high values of r(z).
It is important to note that CFG requires labeled data pairs {x, r(x)} for training, which can limit
its performance in cases with limited labeled data, especially when the pretrained model is already
a conditional diffusion model p(z|c). For example, in the protein inverse folding task, where x is
the protein sequence, c is the protein structure, and r(x) is the protein stability, CFG struggles, as
shown in Table[2] This is due to the small size of the Megascale dataset (containing only a few
hundred different protein structures), which reduces its capability and generalizabilityﬂ While
data augmentation can be applied to construct additional training data, it is resource-intensive,
requires significant case-by-case design, and is beyond the scope of this work. For the DNA
sequence design task, since all sequences in the dataset are labeled, there is no such issue.

E.2 REGULATORY DNA SEQUENCE DESIGN

In this section, we first outline the training process for reward oracles and pre-trained models in the
regulatory DNA sequence design experiment. Subsequently, we provide additional explanations on
fine-tuning setups and present further results.

Reward Oracle. We train reward oracles to predict activity levels of enhancers in the HepG2 cell
line using the dataset from |Gosai et al.|(2023). Following standard practice (Lal et al., 2024)), we
split the dataset into two subsets based on chromosomes, with each containing enhancers from half
of the 23 human chromosomes. We train two reward oracles on each subset independently using
the Enformer (Avsec et al.,|2021) architecture initialized with its pretrained weights. One oracle is

*In contrast, other methods (guidance-based methods and fine-tuning methods) leverage the pretrained model
trained on the much larger PDB dataset (~ 23, 000 structures) and achieve better performance.

21

Under review as a conference paper at ICLR 2025

Distribution of HepG2 Activity for Generated and Original Sequences Comparison of Distributions

[Generated (FT)
[Generated (Eval)
[Original (FT)
[Original (Eval)
Original (True)

HepG2 Activity

=4 ¢) I ¢ > ¢) ¢) () 0.2
Y Y Y Y 0.]7
0.0 ; T T —
. -2 0 2 4 6
Generated (FT) Generated (Eval) ~ Original (FT) Original (Eval) Original (True) HepG2 Activity

Figure 3: Comparison of HepG2 activity distributions between original sequences and those generated
by the pretrained model. The activity distributions match closely with each other.

used for fine-tuning, while the other is reserved for evaluation (i.e. Pred-Activity in Table m) Denote
the subset used for training the fine-tuning oracle as FT and the subset for training the evaluation
oracle as Eval. Table 3| presents the model performance for both oracles on each subset. Both oracles
perform similarly, achieving a high Pearson correlation (> 0.85) on their respective held-out sets
(Eval for the fine-tuning oracle and FT for the evaluation oracle).

Table 3: Performance of the reward oracles for predicting HepG2 activity of enhancer sequences.

Model Eval Dataset MSE | Pearson Corr 1

Fine-Tuning Oracle FT 0.149 0.938
Eval 0.360 0.869

Evaluation Oracle FT 0.332 0.852
Eval 0.161 0.941

Pretrained Model. We pretrain the masked discrete diffusion model (Sahoo et al.,2024) on the
full dataset of |Gosai et al.|(2023)), using the same CNN architecture as in[Stark et al.|(2024) and a
linear noise schedule. Other hyperparameters are kept identical to those in|Sahoo et al.|(2024)). To
assess the model’s ability to generate realistic enhancer sequences, we sample 1280 sequences and
compare them with 1280 randomly selected sequences from the original dataset. [Figure 3|presents the
distribution of HepG?2 activity predicted by either the fine-tuning (FT) or evaluation (Eval) oracle for
both the generated and original sequences, along with the true observations for the original sequences.
The activity levels of the generated sequences align well with those of the original dataset, indicating
the effectiveness of pretrained model in generating in-distribution enhancer sequences. Furthermore,
shows the 3-mer and 4-mer Pearson correlation between the synthetic and original sequences,
both of which exceed 0.95, further validating the model’s performance.

Fine-tuning Setup. We utilize the pretrained masked discrete diffusion model and the fine-tuning
oracle described above for fine-tuning. During DRAKES’s stage 1 data collection, sequences are
generated from the pretrained model over 128 steps. We set a = 0.001 to govern the strength of
the KL regularization and truncate the backpropagation at step 50. The model is fine-tuned with
128 samples as a batch (32 samples per iteration, with gradient accumulated over 4 iterations) for
1000 steps. For DRAKES w/o KL, we follow the same setup, but set « to zero. For evaluation, we
generate 640 sequences per method (with batch size of 64 over 10 batches) for each random seed.
We report the mean and standard deviation of model performance across 3 random seeds.

Additional Results for Fine-Tuning. Along with the median Pred-Activity values shown in Table
presents the full distribution of Pred-Activity for each method, which shows consistent
patterns as Table|[T]

Ablation Study on Gradient Truncation Number. To show the impact of the gradient truncation
module, we conduct an ablation study on the gradient truncation number. As shown in Table[d] when

22

Under review as a conference paper at ICLR 2025

Comparison of 3-mer Counts Comparison of 4-mer Counts
=) =)
(o ® [e q
2 2
< <
e e
2 2
o X} [
o 2 © o
= ~
=) o
=3 E » d
5 © 5
O 30 O
- —
o | 13)
g g
| & A Q

k-mer Count (Original) k-mer Count (Original)

Figure 4: 3-mer and 4-mer Pearson correlation between the original and generated sequences.

Distribution of Predicted HepG2 Activity for Generated Sequences

RE2sdh

Pretramed TDS CFG DRAKES w/o KL DRAKES
Methods

[N} EN o)
! L I h

HepG2 Activity

o
!

Figure 5: Distribution of Pred-Activity for the generated sequences of each method.

the truncation number is small, the model cannot effectively update the early stage of the sampling
process, leading to suboptimal performance. Meanwhile, when the truncation number is large, the
memory cost of the model fine-tuning increases, and the optimization is harder due to the gradient

accumulation through the long trajectory. Therefore, an intermediate level of gradient truncation
leads to the best performance.

Table 4: Ablation study on gradient truncation number on regulatory DNA sequence design.

Truncation Number Pred-Activity (median) T ATAC-AccT (%) 3-mer CorrT JASPAR CorrT App-Log-Lik (median) 1

25 6.17 95.9 0.569 0.798 -278
50 5.61 92.5 0.887 0911 -264
75 4.61 52.8 0.238 0.644 -268

Ablation Study on Gumbel Softmax Temperature Schedule. We conduct an ablation study with
different temperature schedules of Gumbel Softmax, i.e. a linear schedule and a constant schedule.
As shown in Tableﬂ both schedules achieve similar performance, indicating the robustness of our
method. In the performance reported in Table[I] we utilize the linear schedule.

Table 5: Ablation study on Gumbel Softmax temperature schedule on regulatory DNA sequence
design.

Temperature Schedule Pred-Activity (median) T ATAC-Acc? (%) 3-mer Corr! JASPAR Corr{ App-Log-Lik (median) 1

Constant 5.89 91.6 0.852 0.914 -258
Linear 5.61 92.5 0.887 0911 -264

23

Under review as a conference paper at ICLR 2025

E.3 PROTEIN INVERSE FOLDING

We first discuss the setup of datasets used for training reward models. Next, we present the perfor-
mance of the pre-trained model, followed by an evaluation of the reward models. Finally, we describe
the fine-tuning setup and provide additional results.

Dataset Curation. We utilize the large-scale protein stability dataset, Megascale (Tsuboyama et al.,
2023) for the protein inverse folding experiment, which contains stability measurements for ~ 1.8M
sequence variants (for example, single mutants and double mutants) from 983 protein domains. We
follow the dataset curation and train-validation-test splitting procedure from Widatalla et al.| (2024).
Specifically, the wild-type protein structures are clustered with Foldseek clustering and the data is
split based on clusters. We then drop a few proteins with ambiguous wild type labels, and clip the AG
values that are outside the dynamic range of the experiment (> 5 or < 1) to the closest measurable
value (5 or 1) as in |Nisonoff et al.| (2024). We further exclude proteins where a significant proportion
of the corresponding variants’ AG measurements fall outside the experimental range. The final
dataset consists of 438,540 sequence variants from 311 proteins in the training set, 15,182 sequences
from 10 proteins in the validation set, and 23,466 sequences from 12 proteins in the test set.

Pretrained Model. We pretrain an inverse folding model using the discrete flow model loss from
(Campbell et al.,|2024) and the ProteinMPNN (Dauparas et al., [2022) architecture to encode both
sequence and structure as model input. The model is trained on the PDB training set used in|Dauparas
et al.[(2022), containing 23,349 protein structures and their ground truth sequences, which is distinct
from the dataset in|{Tsuboyama et al.|(2023). We first evaluate the effectiveness of the inverse folding
model on the PDB test set in |[Dauparas et al.| (2022)), which has 1,539 different proteins. As in
Nisonoff et al.|(2024), we set the temperature during sampling to be 0.1, and randomly sample one
sequence conditioned on each structure for both our pretrained discrete flow model and the de facto
inverse folding method, ProteinMPNN. As shown in Table [f] the pretrained model performs similarly
to ProteinMPNN, achieving comparable sequence recovery rate.

Table 6: Model performance of protein inverse folding on PDB test set.

Method Sequence Recovery Rate (%) 1
ProteinMPNN 479
Discrete Flow Model 48.6

We further evaluate the generalizability of the pretrained model to the proteins in the Megascale
dataset. Results on both Megascale training and test set are shown in Table [/} We calculate the
self-consistency RMSD (scRMSD) to assess how well a generated sequence folds into the desired
structure. Specifically, the generated sequences are folded into 3D structures using ESMFold (Lin
et al., 2023)), and scRMSD is calculated as their RMSD relative to the original backbone structure
we are conditioning on. An scRMSD lower than 24 is typically considered a successful inverse
folding (Nisonoff et al.,[2024; (Campbell et al.,|2024). As shown in Table the pretrained model
achieves a similar sequence recovery rate on Megascale as the PDB test set and low scRMSD, with a
success rate greater than 90%, indicating its effectiveness on the inverse folding task.

Table 7: Model performance of protein inverse folding on Megascale proteins.

Eval Dataset Sequence Recovery Rate (%)1 scRMSD (A) 1 %(scRMSD< 2)(%) 1

Megascale-Train 47.0 0.825 95.0
Megascale-Test 44.0 0.849 90.9

Reward Oracle. We train the reward oracles on the Megascale dataset using the ProteinMPNN
architecture. The oracles take both the protein sequence and the corresponding wild-type structure
as input to predict the stability of the sequence, measured by AAG (calculated as the difference in
AG between the variant and the wild-type from the dataset). Similar toNisonoff et al.| (2024)), the
final layer of the ProteinMPNN architecture is mean-pooled and mapped to a single scalar with a
2-layer MLP, and the model weights before the mean-pooling are initialized with the weights from
the pretrained inverse folding model.

24

Under review as a conference paper at ICLR 2025

Similar to the practice in the enhancer design experiment, we train two oracles — one for fine-tuning
and one for evaluation. The fine-tuning oracle is trained on Megascale training set. We select the best
epoch based on validation set performance, and report the Pearson correlation on both Megascale
training and test set in Table[8] The performance gap between the training and test sets highlights the
difficulty of generalizing to unseen protein structures in this task.

The evaluation oracle is trained on the complete dataset (train+val+test). To attain the best hyper-
parameters, we randomly split the full dataset into two subsets, an in-distribution set for training,
denoted as I, and an out-of-distribution set for validation, denoted as O. Note that here the evaluation
oracle is trained part of the variants of all wild-type proteins (i.e. Megascale-Train-I & Megascale-
Val-I & Megascale-Test-I), and the out-of-distribution set contains unseen sequence variants, but no
new structures. The Pearson correlation on each subset is presented in Table 8] It achieves much
higher correlations than the fine-tuning oracle, indicating good generalizability of the evaluation
oracle to new sequences of in-distribution protein structures. For the final evaluation oracle used to
calculate results in Table 2] we train it on the full dataset using the best hyperparameters selected
as discussed. It achieves a Pearson correlation of 0.951 on Megascale training set and 0.959 on
Megascale test set (both being in-distribution for the evaluation oracle).

Table 8: Performance of the reward oracles for predicting stability conditioned on protein sequence
and structure, across a variety of Megascale subsets.

Model Eval Dataset Pearson Corr 1
Fine-Tuning Oracle = Megascale-Train 0.828
Megascale-Test 0.685
Megascale-Train-I 0.948
Evaluation Oracle = Megascale-Train-O 0.942
Megascale-Test-1 0.955
Megascale-Test-O 0.920

Finetuning Setup. We utilize the pretrained inverse folding model and the fine-tuning oracle
described above for fine-tuning. During DRAKES’s stage 1 data collection, we generate sequences
from the pretrained model over 50 steps. We set « = 0.0003 and truncate the backprogagtion at step
25. The model is finetuned with proteins in Megascale training set with batch size 128 (16 samples
per iteration, with gradient accumulated over 8 iterations) for 100 epochs. For DRAKES w/o KL,
we follow the same setup, but set o to zero. The model is evaluated on Megascale test set, where
we generate 128 sequences conditioned on each protein structure for every method (with batch size
of 16 over 8 batches) and each random seed. We report the mean and standard deviation of model
performance across 3 random seeds.

Evaluation Oracle Accounts for Over-Optimization. As discussed in for the enhancer
design experiment, significant over-optimization occurs when evaluating Pred-Activity, even with an
evaluation oracle trained on distinct data unseen during fine-tuning. In contrast, the protein inverse
folding experiment largely mitigates this issue. Table [Q]shows the median values of Pred-ddG for the
generated sequences based on both the evaluation oracle (same as those reported in Table [2)) and the
fine-tuning oracle. Although DRAKES w/o KL shows significantly higher Pred-ddG than DRAKES
with the fine-tuning oracle, their performance with the evaluation oracle remains similar, suggesting
less pronounced over-optimization in evaluation. This is because enhancer sequences are relatively
homogeneous, and even though we split based on chromosomes, each chromosome still has similar
regions. However, protein structures are more distinct, and training on different proteins creates
unique model landscapes.

Ablation Study on Gradient Truncation Number. To show the impact of the gradient truncation
module, we conduct an ablation study on the gradient truncation number. The results are shown in
Table[I0}] While the model performance is robust with different truncation numbers, an intermediate
level of gradient truncation leads to the best performance.

Ablation Study on Gumbel Softmax Temperature Schedule. We conduct an ablation study with
different temperature schedules of Gumbel Softmax, i.e. a linear schedule and a constant schedule.

25

Under review as a conference paper at ICLR 2025

Table 9: Model performance on protein inverse folding, with Pred-ddG calculated using either the
evaluation oracle (Eval) or the fine-tuning oracle (FT).

Method Pred-ddG-Eval (median) T Pred-ddG-FT (median) 1
Pretrained -0.544(0.037) 0.161(0.012)
CG -0.561(0.045) 0.158(0.017)
SMC 0.659(0.044) 0.543(0.013)
TDS 0.674(0.086) 0.557(0.005)
CFG -1.159(0.035) -1.243(0.013)
DRAKES w/o KL 1.108(0.004) 0.833(0.000)
DRAKES 1.095(0.026) 0.702(0.002)

Table 10: Ablation study on gradient truncation number on inverse protein folding.

Truncation Number Pred-ddG (median) 1 %(ddG> 0) (%)1 scRMSD (median) | %(scRMSD< 2)(%)1 Success Rate (%)

15 0.977 832 0.852 92.4 76.0
25 1.095 86.4 0.918 91.8 78.6
35 1.033 84.8 0.868 92.7 71.7

As shown in Table[TT] both schedules achieve similar performance, indicating the robustness of our
method. In the performance reported in Table 2} we utilize the linear schedule.

Table 11: Ablation study on Gumbel Softmax temperature schedule on inverse protein folding.

Temperature Schedule Pred-ddG (median) T %(ddG> 0) (%)1 scRMSD (median)] %(scRMSD< 2)(%)71 Success Rate (%) 1

Constant 1.178 86.5 0.897 93.2 80.3
Linear 1.095 86.4 0.918 91.8 78.6

Results with pLDDT. In addition to scRMSD, we further measure the self-consistency of the
generated sequences using pLDDT. The results are shown in Table T2} Following the common
practice as in [Widatalla et al.| (2024), we utilize 80 as the cutoff threshold and define a success
generation as having positive predicted stability (i.e., Pred-ddG>0) and confident ESMFold-predicted
structure (i.e., pLDDT > 80). The results align well with those in Table 2]using scRMSD. DRAKES
significantly outperforms all baseline methods in terms of the overall success rate.

Table 12: Model performance on inverse protein folding. DRAKES generates protein sequences
that have both high stability and high confidence in ESMFold predicted structures, outperforming
baselines in the overall success rate. We report the mean across 3 random seeds, with standard
deviations in parentheses.

Method Pred-ddG (median) T %(ddG> 0) (%)1 pLDDT (median)t %(pLDDT> 80)(%)1 Success Rate (%) 1
Pretrained -0.544(0.037) 36.6(1.0) 87.9(0.0) 87.5(0.1) 33.8(0.8)
CG -0.561(0.045) 36.9(1.1) 87.9(0.0) 87.5(0.2) 34.3(0.5)
SMC 0.659(0.044) 68.5(3.1) 88.3(0.1) 84.1(1.0) 53.7(4.3)
TDS 0.674(0.086) 68.2(2.4) 88.3(0.1) 85.6(0.7) 54.4(2.8)
CFG -1.186(0.035) 11.0(0.4) 65.7(0.0) 7.8(0.1) 0.0(0.0)
DRAKES w/o KL 1.108(0.004) 100.0(0.0) 73.4(0.2) 40.4(0.2) 40.4(0.2)
DRAKES 1.095(0.026) 86.4(0.2) 87.0(0.0) 85.6(0.7) 72.3(0.8)

Diversity of Generated Sequences. We evaluate the diversity of the protein sequences generated by
different methods using the average sequence entropy of each protein backbone in the test set. The
results are shown in Table[T3} DRAKES achieves a comparable level of diversity as the pretrained
model, significantly outperforming SMC and TDS. This further justifies the efficacy of DRAKES to
achieve the optimization objective of generating stable sequences, while maintaining high diversity.
Among all baselines, DRAKES is the only method that have both a high success rate and high
diversity.

26

Under review as a conference paper at ICLR 2025

Table 13: Average sequence entropy of the generated sequences on protein inverse folding.

Method Sequence Entropy 1
Pretrained 34.7(0.2)
CG 34.6(0.1)
SMC 24.9(1.2)
TDS 24.9(0.5)
CFG 8.4(0.1)
DRAKES w/o KL 25.7(0.1)
DRAKES 33.3(0.2)

Additional Results. We provide more examples of the generated proteins in in addition to
We also provide the specific values for energy, Pred-ddG and scRMSD of the visualized
protein generated by DRAKES, as well as the energy values for the corresponding wild-type structure.

27

Under review as a conference paper at ICLR 2025

0.044

0.12

0.10

0.08

0.06

0.04

0.02

71JK
i DRAKES
DS
SMC
Pretrained
- Wild-type
150 -125 -100 75 -0 25
Energy (AG)
2KRU
DRAKES
DS
SMC
Pretrained
- Wild-type
160 140 120 100
Energy (AG)
1IFOM
DRAKES
DS
sMC
Pretrained
»»»»» Wild-type
200 180 160
Energy (AG)
21.09
DRAKES
™S
SMC
Pretrained
----- Wild-type
T T - T T
160 -150 -140 130 120
Energy (AG)
2M2J
i DRAKES
™S
SMC
Pretrained
————— Wild-type
T T - T T
200 180 160 140
Energy (AG)

Wild type Energy: -113.4

For the visualized protein:
® scRMSD: 0.768
® Pred-ddG: 1.950
e Energy: -131.0

Across proteins generated
by DRAKES:
Energy-median: -121.2

Wild type Energy: -132.0

For the visualized protein:
® ScRMSD: 0.492
e Pred-ddG: 2224
e FEnergy: -142.0

Across proteins generated
by DRAKES:
Energy-median: -133.3

Wild type Energy: -159.5

For the visualized protein:
e ScRMSD: 0.771
® Pred-ddG: 1318
o Energy: -190.6

Across proteins generated
by DRAKES:
Energy-median: -191.5

Wild type Energy: -133.1

For the visualized protein:
e ScRMSD: 0.860
® Pred-ddG: 1.625
o FEnergy: -146.4

Across proteins generated
by DRAKES:
Energy-median: -143.7

Wild type Energy: -176.8

For the visualized protein:
o ScRMSD: 0.676
® Pred-ddG: 2.096
o Energy: -188.2

Across proteins generated
by DRAKES:
Energy-median: -187.6

Figure 6: Additional examples of generated proteins.

28

	Introduction
	Related Works
	Preliminary
	Diffusion Models on Discrete Spaces
	Goal: Generating Natural Samples While Optimizing Reward Functions

	Algorithm
	Key Formulation
	Direct Reward Backpropagation with Gumbel Softmax Trick (DRAKES)

	Theory of DRAKES
	Proof Sketch of Theorem 1
	Relation to Classifier Guidance for Discrete Diffusion Models

	Experiments
	Baselines
	Regulatory DNA Sequence Design
	Protein Sequence Design: Optimizing Stability in Inverse Folding Model

	Conclusions
	More Related Works
	Potential Limitations
	Proof of Theorems
	Preparation
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4

	Details of Algorithm
	Straight-Through Gumbel Softmax
	Simplified Formula of g()
	Schedule of Gumbel Softmax Temperature

	Experimental Details and Additional Results
	Baselines
	Regulatory DNA Sequence Design
	Protein Inverse Folding

