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ABSTRACT

In this paper, we propose a generation-detection cycle consistent (GDCC) learn-
ing framework that jointly optimizes both layout-to-image (L2I) generation and
object detection (OD) tasks in an end-to-end manner. The key of GDCC lies in
the inherent duality between the two tasks, where L2I takes all object boxes and
labels as input conditions to generate images, and OD maps images back to these
layout conditions. Specifically, in GDCC, L2I generation is guided by a layout
translation cycle loss, ensuring that the layouts used to generate images align with
those predicted from the synthesized images. Similarly, OD benefits from an im-
age translation cycle loss, which enforces consistency between the synthesized
images fed into the detector and those generated from predicted layouts. While
current L2I and OD tasks benefit from large-scale annotated layout-image pairs,
our GDCC enables more efficient use of unpaired layout data, thereby further en-
hancing data efficiency. It is worth noting that our GDCC framework is compu-
tationally efficient thanks to the perturbative single-step sampling strategy and a
priority timestep re-sampling strategy during training, while maintaining the same
inference cost as the original L2I and OD models. Extensive experiments demon-
strate that GDCC significantly improves the controllability of diffusion models and
the accuracy of object detectors. Our code will be released.

1 INTRODUCTION

Recent advancements in both layout-to-image (L2I) generation [36] and object detection (OD) [20]
tasks have achieved remarkable success, largely driven by the availability of large-scale annotated
datasets. Specifically, L2I generation methods incorporate image-based [36; 75; 33] or prompt-
based [6; 73] conditional controls into text-to-image (T2I) diffusion models [51] to achieve more
precise control over the instance placement during image synthesis. These methods train diffusion
models to generate realistic images from structured layouts, which include bounding boxes and
object class labels that define the spatial positioning and types of objects in the scene. On the other
hand, OD takes an image as input and identifies the objects within it by predicting their bounding
boxes and class labels. Current advancements have led to significant improvements in the precision
of instance placement for L2I generation and the prediction accuracy of OD models.

Although both L2I generation and OD have been extensively studied, few have noticed the strong
correlation between these two tasks, i.e., they can be viewed as inverse tasks of each other, where
L2I maps layouts to images and OD maps images to layouts. This natural duality between these
two tasks has largely been overlooked in previous research. Our key finding is that such duality
can be effectively leveraged to improve the performance of both tasks. Specifically, if we map an
image to its corresponding layout using an OD model, and then map that layout back to an image
using an L2I model, we should ideally recover the original image. Similarly, mapping a layout to
an image and then mapping that image back should yield the original layout. This cycle consistency
not only enforces tighter alignment between the two tasks but also provides a natural regularization
that enhances the learning processes of both tasks. Moreover, the cycle consistency allows for the
use of unpaired data, opening up new possibilities for improving data efficiency.

Based on the above insight, in this paper, we are the first to propose a generation-detection cycle
consistent (GDCC) learning framework that jointly optimizes L2I generation and OD in an end-to-
end manner. In GDCC, consistency is maintained in two directions through two key components:
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Figure 1: Overall comparison. (a) Some works such as [33] use a pre-trained discriminative reward
model R to fine-tune the L2I generator G. (b) Some [6; 67] show that the synthesized images
provided by a pre-trained G can improve the performance of the object detector D. (c) GDCC enables
mutual enhancement between G and D through cycle-consistent learning. See §1 for details.

(i) the layout translation cycle loss, which ensures consistency between the original layouts used
to generate images and those predicted from the synthesized images, and (ii) the image translation
cycle loss, which enforces consistency between the synthesized images and those reconstructed
from the layouts predicted by the detector. These two losses guide the learning process in a cycle-
consistent manner, ensuring tight alignment between the tasks during training and fostering mutual
enhancement, which leads to more controllable diffusion models and more accurate object detectors.

Our GDCC framework offers several key advantages. First, GDCC enables mutual enhancement be-
tween L2I generation and OD, setting it apart from earlier approaches that focus on using one task
to improve the other [33; 6; 67]. Such mutual enhancement results in more powerful L2I or OD
models, as opposed to relying on pre-trained ones that are not fully optimized for improving the
other task and may introduce errors during the training. Second, GDCC demonstrates superior data
efficiency by effectively utilizing unpaired layout data, a capability not achieved by previous meth-
ods. Third, GDCC is computationally efficient in both training and inference. Our training process
is accelerated by a perturbative single-step sampling strategy and a priority timestep re-sampling
strategy, and our inference cost remains unchanged because the original network architectures of the
L2I and OD models are preserved.

The key contributions of this paper are as follows:

• We are the first to identify the duality between L2I generation and OD, an insight that has
previously been overlooked in the literature.

• Inspired by the task duality, we propose a generation-detection cycle consistent (GDCC) frame-
work that jointly optimizes both tasks in an end-to-end manner and enables mutual enhancement
between them.

• Our GDCC demonstrates both data and computational efficiency by allowing for the use of un-
paired data and incorporating a perturbative single-step sampling strategy along with a priority
timestep re-sampling strategy to accelerate training.

Extensive experimental results confirm that GDCC establishes new benchmarks in both L2I gener-
ation and OD. For L2I generation, it achieves up to a 2.1% FID improvement over baseline L2I
methods, and shows a 2.1% increase in YOLO score, indicating superior alignment between gener-
ated images and conditional layouts. For OD, GDCC achieves up to a 0.9% point gain in AP, further
validating the mutual enhancement between L2I generation and OD tasks. These results confirm the
effectiveness of our cycle-consistent framework in improving the controllability of diffusion models
for image synthesis and the accuracy of object detectors.

2 RELATED WORK

Diffusion Models. Diffusion probabilistic models, first introduced in [56], have witnessed signifi-
cant advancements both theoretically [13; 24; 31] and methodologically [25; 57; 58] in recent years.
Latent Diffusion Model [51] further reduces computational costs by applying the diffusion process
in the latent feature space rather than the pixel space. Due to their exceptional sample quality,
diffusion models have set new standards across various benchmarks [11; 63; 72], including image
editing [2; 29; 40; 44; 22], image-to-image transformation [53; 62; 32], and text-to-image (T2I)
generation [45; 46; 49; 48; 51; 54; 16]. Recent layout-to-image (L2I) studies seek to achieve more
precise control over instance placement by extending pre-trained T2I models with layout condi-
tions such as bounding boxes and object labels. Early approaches [76; 36; 27; 74; 59; 60] relied
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on a closed-set vocabulary from training labels (e.g., COCO [3]) without using text prompts. With
the emergence of image-text models such as CLIP [47], open-vocabulary methods became feasi-
ble [77; 9; 73; 6; 67; 10; 69; 7]. These methods incorporate layout information as text embeddings
into pre-trained T2I diffusion models [51] to achieve more precise control over instance positioning.

In this paper, we boost L2I generation performance from a new perspective by proposing a cycle-
consistent learning framework to achieve mutual benefits with OD, which naturally performs the
inverse mapping of L2I from images to layouts. Our framework is computationally efficient thanks
to the perturbative single-step sampling strategy and a priority timestep re-sampling strategy during
training, while maintaining the same inference cost as the original L2I and OD models.

L2I Generation and OD. Several works have involved both L2I and OD tasks, but primarily use
one to enhance the other. For example, ControlNet++ [33] uses pre-trained discriminative reward
models to fine-tune controllable diffusion models. However, these reward models are constrained by
their original training data and struggle to adapt to the styles of synthesized images, which hinders
their ability to provide more accurate feedback signals for training L2I models. On the other hand,
GeoDiffusion [6] demonstrates that OD can benefit from high-quality synthesized data generated by
L2I models. DetDiffusion [67] further exploits the synergy between L2I and perceptive models (e.g.,
semantic segmentation models) to enhance generation controllability, and show that the synthesized
images can improve the performance in downstream tasks such as OD. Despite these advances, the
potential of tuning L2I models to generate samples specifically designed to boost OD performance
remains underexplored.

This paper, for the first time, fully recognizes the duality between L2I and OD tasks and proposes
a unified framework GDCC that enables mutual enhancement between the two tasks. Furthermore,
in addition to leveraging large-scale paired layout-image data, our framework can effectively utilize
unpaired layout data, resulting in superior data efficiency.

Cycle-Consistent Learning. Cycle-consistent learning is a technique that leverages cyclic trans-
formations to regularize the training process, ensuring that the data or tasks remain aligned when
converted back and forth between representations. It can be applied within a single task through
sample cycling, such as object tracking [65; 43; 68], temporal representation learning [14] and im-
age generation [78; 30; 71; 37; 8; 33]. It has also been shown to improve model performance
across related tasks such as question answering v.s. question generation [61; 55; 34], captioning v.s.
grounding [18; 66], vision-language navigation v.s. instruction generation [64], etc.

In this paper, we explore the uncharted potential of cycle-consistent learning between L2I generation
and OD tasks, wherein the correlation and inherent duality have long been overlooked. These two
tasks are seamlessly integrated into an end-to-end cycle-consistent learning framework, where their
symmetrical structures provide informative feedback signals that enhance each other. Moreover, our
framework allows for the usage of unpaired layout data, leading to superior data efficiency.

3 METHODOLOGY

In §3.1, we first introduce the preliminaries of diffusion-based L2I generation and OD. In §3.2.1, we
then explore the inherent duality between these two tasks and show how our GDCC leverages cycle
consistency to achieve mutual improvement. Finally, we present GDCC in both paired (§3.2.2) and
unpaired (§3.2.3) data settings.

3.1 PRELIMINARY

Diffusion-based L2I Generation. Diffusion models (DMs) [11; 13; 25], functioning by pro-
gressively transforming an initial random noise distribution into a coherent image, have arisen as
renowned T2I generation methods. DMs define a T -step Markovian diffusion forward process to
add Gaussian noise ϵ into input image x0:

xt =
√
ᾱtx0 +

√
1− ᾱtϵ, ϵ ∼ N (0, I), (1)

where xt is the perturbed image, t is the timestep, ᾱt=
∏t

s=0 αs, and αt=1−βt is a differentiable
function of t determined by the denoising sampler.
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Diffusion-based L2I generation introduces additional control over DMs by incorporating layout con-
ditions. Given a text prompt y and a layout condition l, the training loss can be formulated as:

Ldm = Et,x0,y,l,ϵ∼N (0,1)

∥∥ϵ− ϵθ
(
t,xt,y, l

) ∥∥2
2
, (2)

where ϵθ is the noise predictor realized as a U-Net [52].

During the sampling stage of L2I generation, the denoising process progressively eliminates the
noise estimated by the diffusion model from a randomly sampled noise to predict the final image.
Given a random noise ϵ, conditional text y, and layout l, the sampling process can be simplified to:

xsyn = GT
(
t, ϵ,y, l

)
, ϵ ∼ N (0, I), (3)

where xsyn ∈ RH×W×3 represents the synthesized image, and GT denotes an L2I generator that
performs T denoising steps. The layout l = {(bn, cn)}Nn=1∈RN×5 consists of N bounding boxes,
where each bounding box bn = [xn,1, yn,1, xn,2, yn,2] defines the spatial location of object n, and
cn∈C denotes its corresponding semantic class.

Object Detection. This task aims to train a detector D(·) to identify and localize objects within an
image by predicting bounding boxes and their corresponding class labels:

l = D
(
x
)
, (4)

where x∈RH×W×3 denotes the input image, and l = {(bn, cn)}Nn=1∈RN×5 is the predicted layouts
for the N objects in the image.

3.2 GENERATION-DETECTION CYCLE-CONSISTENT (GDCC) LEARNING FRAMEWORK

3.2.1 TASK DUALITY AND CYCLE-CONSISTENCY

From §3.1, it becomes evident that L2I and OD can be viewed as inverse tasks of each other, where
the input and output of L2I generation correspond to the output and input of OD, respectively.
Though largely overlooked in previous research, such task duality can be effectively leveraged to
improve the performance of both tasks through cycle consistency learning.

Specifically, if a layout is mapped to an image using an L2I generator G, and then mapped back to a
layout using an object detector D, the process should recover the original layout. This forces consis-
tency in what we term a layout translation cycle. In this cycle, D remains fixed while G is trained
to minimize the discrepancy between the predicted and the original input layouts, ensuring more
precise and realistic image generation that faithfully reflects the input layout. Similarly, mapping
an image to a layout and then back again should ideally recover the original image. This ensures
consistency in an image translation cycle. In this case, G is fixed, and D is trained to minimize
the difference between the predicted and original images, thus enhancing its ability to accurately
predict layouts from images. These two cycle-consistent learning processes improve both G and D
in an end-to-end manner similar to GAN [17], with each receiving feedback from the other. In the
following, we will present GDCC in both paired (§3.2.2) and unpaired (§3.2.3) data settings.

3.2.2 GDCC IN PAIRED DATA SETTING

In the paired data setting, each image x0∈RH×W×3 is annotated with a structured layout l∈RN×5

that includes bounding boxes and class labels for the objects in the image. The framework is shown
in Fig. 2. Below, we detail the learning process of GDCC in this context.

Layout Translation Cycle. As discussed in §3.2.1, in this process, D remains fixed while G is
trained to minimize the discrepancy between the predicted and the original input layouts to achieve
more precise and realistic image generation that faithfully reflects the input layout.

Specifically, given an L2I generation model G and the layout input l ∈RN×5, a conditionally syn-
thesized images xsyn

1 ∈RH×W×3 can be obtained as follows:

xsyn
1 = GT

(
t, ϵ,y, l

)
. (5)

Next, a pre-trained object detector D is employed to map xsyn
1 back into the layout space:

l̂ = D
(
xsyn
1

)
, (6)
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Figure 2: GDCC framework in paired data setting. The L2I generator G maps from the layout
space to the image space, while the object detector D performs the inverse mapping. Given a paired
data with an input image x0 and its corresponding layout l, G is trained with the layout translation
cycle loss LlayoutTC and the diffusion model loss Ldm, and D is trained with the image translation
cycle loss LimageTC and the prediction loss Lpred. See §3.2.2 for details.

where a score threshold sthre is applied to filter the predicted bounding boxes, leading to a more
stable training process. The layout translation cycle loss LlayoutTC is then computed by measuring
the similarity between the input layout l and its dual layout l̂∈RN×5:

LlayoutTC = Lbbox
(
l, l̂

)
= Lreg

(
{bn}Nn=1 , {b̂n}

N
n=1

)
+ Lcls

({
cn

}N

n=1
, {ĉn}Nn=1

)
, (7)

where the bounding box loss Lbbox consists of a smooth L1 loss Lreg for regression and a cross-
entropy loss Lcls for classification.

Perturbative Single-step Sampling. The T -step samplings process to generate xsyn
1 in Eq. (5) is

time-consuming and requires gradient storage at each timestep to facilitate backpropagation, which
reduces the efficiency of layout translation cycle. Inspired by [33], we implement a perturbative
single-step denoising strategy to accelerate the L2I process. Instead of generating xsyn

1 from Gaus-
sian noise, we obtain a special noise xpert

t by perturbing image x0 with a small noise ϵ0 for t≤ tthre
diffusion steps, where tthre is a hyper-parameter that constrains ϵ0 to be relatively small. We then
perform a single-step denoising process on xpert

t to achieve L2I generation and obtain xsyn
1 :

xsyn
1 =

xpert
t −

√
1− αt ϵθ

(
t− 1,xpert

t ,y, l
)

√
αt

= G
(
t,xpert

t ,y, l
)
, (8)

where G denotes the L2I generator that performs perturbative single-step denoising, which is guided
by the diffusion model loss Ldm defined in Eq. (2). In summary, the total loss for training G in the
layout transition cycle for the paired data setting is defined as follows:

Lgen =

{
Ldm + λ1 · LlayoutTC if t ≤ tthre

Ldm otherwise
. (9)

Here, λ1 adjusts the weight of the layout translation cycle loss LlayoutTC, and tthre denotes a threshold
beyond which LlayoutTC is no longer applied, as the noise introduced in the perturbative single-step
sampling process becomes too large to yield desired xpert

t and xsyn
1 for consistency learning.

Image Translation Cycle. As discussed in §3.2.1, in this process, G is fixed, and D is trained to
minimize the difference between the predicted and original images, thereby improving its ability to
accurately predict layouts from images.

Formally, the layout l̂ obtained from xsyn
1 (cf., Eq.(6)) can be remap to image space by G, resulting

in xsyn
2 ∈RH×W×3. The image translation cycle loss LimageTC is then computed by evaluating the

similarity between xsyn
1 (cf. Eq.(8)) and xsyn

2 :

LimageTC = Et,x0,y,l,ϵ∼N (0,1)∥G
(
t,xpert

t ,y, l
)
− G

(
t,xpert

t ,y, l̂
)
∥22

= Et,x0,y,l,ϵ∼N (0,1)

∥∥[xpert
t −

√
1− ᾱt ϵθ

(
t,xpert

t ,y, l
)]

/
√
ᾱt

− [xpert
t −

√
1− ᾱt ϵθ

(
t,xpert

t ,y, l̂
)
]/
√
ᾱt∥22

= Et,x0,y,l,ϵ∼N (0,1)

(√
(1− ᾱt)/ᾱt

)
∥ϵθ

(
t,xpert

t ,y, l
)
− ϵθ(t,x

pert
t ,y, l̂)∥22.

(10)
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We obtain LimageTC=Et,x0,y,l,ϵ∼N (0,1)∥ϵθ(t,xpert
t ,y, l)−ϵθ(t,x

pert
t ,y, l̂)∥22 by omitting the scaling

factor. As seen, with the above perturbative single-step denoising strategy, the image translation
cycle only requires to compute the noise predicted by the U-Net denoiser ϵθ at timestep t during two
generation forward translations, which significantly improves the efficiency of GDCC.

To maintain the performance of D on real-world data, we make full use of the paired data by pre-
dicting the layout lpred∈RN×5 from image x0, and minimizing the prediction loss between lpred and
the annotated layout l, defined as Lpred =Lbbox(l, lpred), during the training of D. In summary, the
total loss for training D in the image translation cycle in paired data setting is as follows:

Ldet =

{
Lpred + λ2 · LimageTC if t ≤ tthre

Lpred otherwise
. (11)

Similar to Eq.(9), λ2 is the weight of LimageTC. The image translation cycle is performed within tthre
timesteps to fulfill the constraint of the perturbative single-step denoising strategy.

Priority Timestep Re-Sampling. In the training of DMs, a random timestep t is selected from 1
to tmax at each training step, and the model is trained to predict the added noise at this particular
timestep. However, in our experiment, since tthre ≪ tmax, the traditional uniform sampling strategy
results in a low probability of selecting a t∈ [1, tthre] to trigger the layout or image translation cycle
loss in Eq. (9) or (11). This leads to slow convergence during training. To alleviate this issue,
we propose a priority timestep re-sampling strategy, which applies a re-weighting factor w > 1
to prioritize the selection of t ∈ [1, tthre]. The re-weighted timestep probability density function
preweight(t) is defined as follows:

preweight(t) =

{
w/tthre if t ≤ tthre(
1− w · tthre/tmax

)
/
(
tmax − tthre

)
otherwise

. (12)

This strategy increases the frequency of triggering layout and image translation cycle losses during
training, thus accelerating convergence. The effectiveness of this re-sampling strategy is demon-
strated by the results shown in Table 6b. When combined with the perturbative single-step denoising
strategy introduced above, our GDCC becomes significantly more streamlined and efficient.

3.2.3 GDCC IN UNPAIRED DATA SETTING

In addition to leveraging large-scale annotated layout-image pairs to achieve mutual improvement
of the L2I generator and object detector, GDCC also facilitates more efficient use of unpaired data,
thereby further enhancing data efficiency. In this section, we explore GDCC learning with layouts as
the sole training data. To obtain more unpaired layouts, we utilize VisorGPT [70], a recent generative
pre-training model to automatically sample layouts based on its learned visual priors.

In the unparied data setting, the sampled layout lsyn ∈ RN×5 or the real-world layout lreal ∈ RN×5

functions identically to the layout input l in the paried data setting for the L2I generation described
in Eq.(5). This allows for the calculation of the layout translation cycle loss LlayoutTC in Eq.(7) and
image translation cycle loss LimageTC in Eq.(10). However, due to the absence of the corresponding
image x0, it becomes impossible to calculate Lldm and Lpred, and thus cannot apply the perturbative
single-step sampling and priority timestep re-sampling strategies. To reduce the GPU memory in
this situation, only a subset of the gradients is retained during the T -step samplings for L2I image
generation. In summary, the training loss of G reduces to Lgen = LlayoutTC and the training loss of D
simplifies to Ldet = LimageTC under the unpaired data setting for GDCC learning. Experiment results
are presented in Table 5. Related details are shown in Appendix §D.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Following [6], we train the models on the COCO-Stuff [3] training split and test on COCO
2017 [38], while for NuImages [4], we use its respective training and testing splits. For L2I
generation models, fidelity is evaluated using Frechet Inception Distance (FID) and the YOLO
score [36], while trainability is measured by the fine-tuning performance of object detection (OD)
models using Average Precision (AP). For OD models, both generation trainability and detec-
tion fine-tuning performance are assessed using AP. Related details are shown in Appendix §B.

6
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Table 1: Quantitative results of generation fidelity on COCO 2017.
GDCC is fune-tuned on pre-trained L2I methods. †: re-implementation
from GeoDiffusion [6]. ‡: with additional mask annotations. See §4.2.

Method Res. Epoch FID ↓ mAP ↑ AP50 ↑ AP75 ↑
LostGAN [59] [ICCV 19]

2562

200 42.55 9.1 15.3 9.8
LAMA [36] [ICCV 21] 200 31.12 13.4 19.7 14.9

CAL2IM [21] [CVPR 21] 200 25.95 10.0 14.9 11.1
Taming [27] [ArXiv 21] 128 33.68 - - -

TwFA [74] [CVPR 22] 300 22.15 - 28.2 20.1
Frido [15] [AAAI 23] 200 37.14 17.2 - -

L.Diffusion† [77] [CVPR 23] 180 22.65 14.9 27.5 14.9
DetDiffusion‡ [67] [CVPR 24] 60 19.28 29.8 38.6 34.1

GeoDiffusion [6] [ICLR 24] 60 20.16 29.1 38.9 33.6
GeoDiffsion − GDCC 2 18.09 ±0.11 31.2 ±0.1 41.1 ±0.1 36.2 ±0.2

ReCo† [73] [CVPR 23]

5122

100 29.69 18.8 33.5 19.7
L.Diffuse† [9] [ArXiv 23] 60 22.20 11.4 23.1 10.1
GLIGEN [35] [CVPR 23] 86 21.04 22.4 36.5 24.1

ControlNet [75] [ICCV 23] 60 28.14 25.2 46.7 22.7
ControlNet − GDCC 2 26.68 ±0.09 26.9 ±0.2 47.8 ±0.1 24.0 ±0.2

GeoDiffusion [6] [ICLR 24] 60 18.89 30.6 41.7 35.6
GeoDiffsion − GDCC 2 17.36 ±0.09 32.5 ±0.1 43.5 ±0.1 38.0 ±0.2

Training. We con-
duct experiments for
GDCC using two L2I
generators, namely
GeoDiffusion [6] and
ControlNet [75], and
an object detector
Faster R-CNN [50].
For GeoDiffusion, we
conducted fine-tuning
on COCO-Stuff [3]
and NuImages [4], re-
spectively. In this pro-
cess, only the U-Net
denoiser parameters
are updated, while
all other parameters
remain fixed. The text
prompt is replaced
with a null text with
a probability of 0.1 to allow unconditional generation following [6]. We adopt AdamW [26] with
a momentum of 0.9 and a weight decay of 0.01. The learning rate is set to 3×10−5, and adjusted
using a cosine schedule [42] with a 3,000-iteration warm-up. The batch size is 56. GeoDiffusion is
fine-tuned for 2 epochs on COCO-Stuff and 3 epochs on NuImages, which is remarkably efficient.

Table 2: Quantitative results of detection fine-tuning and
generation trainability on COCO 2017. A Faster R-CNN
pre-trained on COCO 2017 is employed as the baseline. De-
tection fine-tuning refers to fine-tuning the detector during the
training of GDCC, while generative trainability denotes the re-
training of the detector on generated and real samples. The
input resolution is set to 800×456 following [6]. See §4.2.

Method mAP ↑ AP50 ↑ AP75 ↑ APm ↑ APl ↑
– Detection Fine-tuning –
Faster R-CNN [50] [NIPS 15] 37.3 58.2 40.8 40.7 48.2

Faster R-CNN – GDCC 38.2 ±0.1 58.5 ±0.1 41.9 ±0.1 41.5 49.0
– Generation Trainability –

L.Diffusion [77] [CVPR 23] 36.5 57.0 39.5 39.7 47.5
L.Diffuse [9] [ArXiv 23] 36.6 57.4 39.5 40.0 47.4

GLIGEN [35] [CVPR 23] 36.8 57.6 39.9 40.3 47.9
ControlNet [75] [ICCV 23] 36.9 57.8 39.6 40.4 49.0

GeoDiffusion [6] [ICLR 24] 38.4 58.5 42.4 42.1 50.3
GeoDiffsion – GDCC 38.9 ±0.1 58.9 ±0.1 43.0 ±0.2 42.6 50.6

For ControlNet, as the official
implementation does not support
bounding boxes as conditional in-
puts, we first convert bounding
boxes into masks for conditional
input and train on COCO-Stuff
accordingly. Then, we finetune
the pretrained ControlNet using
GDCC for 2 epochs by updating
only the ControlNet-specific pa-
rameters and keep all others frozen.

Faster R-CNN [50], pre-trained
separately on the COCO 2017 and
the NuImages training sets, is em-
ployed for the respective datasets.
A score threshold sthre = 0.5 is
used to filter the predicted bound-
ing boxes. Each predicted bound-
ing box is assigned to a ground
truth box with an Intersection over Union (IoU) of at least 0.5, or classified as background.

We adopt an alternating fine-tuning strategy for training L2I and OD models. In each epoch, the L2I
model is trained for 1,000 iterations, followed by 1,000 iterations for the OD model. In the paired
data setting, we set λ1=λ2= 0.1, tthre=50 and tmax=1000 for Eqs.(9),(11) and(12), respectively.

Testing. Our GDCC framework preserves the original architectures of all the L2I and OD
models, ensuring that the inference speed of each model remains unchanged. During im-
age sampling, PLMS scheduler [41] is used to sample images from the NuImages dataset lay-
outs for 100 steps with classifier-free guidance (CFG) scale of 5.0, and from the COCO-
Stuff [3] dataset layouts for 50 steps with a CFG scale of 4.5. Following GeoDiffusion [6],
for NuImages dataset [4], fidelity is assessed using a Mask R-CNN [20] object detector pre-
trained on the NuImages training set to achieve a comparable YOLO score in LAMA [36].
For evaluation on COCO-Stuff, we use YOLOv4 [1] per-trained on COCO 2017 training set.
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Table 3: Quantitative results of generation fidelity on NuImages. GDCC is fune-tuned on pre-
trained L2I methods. “pred.” denotes pedestrian. See §4.2 for details.

Average Precision↑
Method Res. Epoch FID ↓

mAP AP50 AP75 APm APl trailer ped. car

Oracle - - - 48.2 75.0 52.0 46.7 60.5 17.8 48.5 64.9
LostGAN [59] [ICCV 19]

2562

256 59.95 4.4 9.8 3.3 2.1 12.3 0.3 2.7 12.2
LAMA [36] [ICCV 21] 256 63.85 3.2 8.3 1.9 2.0 9.4 1.4 1.3 8.8
Taming [27] [ArXiv 21] 256 32.84 7.4 19.0 4.8 2.8 18.8 6.0 3.0 17.3

GeoDiffusion [6] [ICLR 24] 64 14.58 15.6 31.7 13.4 6.3 38.3 13.3 6.5 26.3
GeoDiffsion − GDCC 3 12.76 ±0.13 17.4 ±0.1 33.5 ±0.1 15.5 ±0.2 8.2 40.3 14.8 8.0 28.5

ReCo [73] [CVPR 23]

5122

64 27.10 17.1 41.1 11.8 10.9 36.2 8.0 7.6 31.8
GLIGEN [35] [CVPR 23] 64 16.68 21.3 42.1 19.1 15.9 40.8 8.5 14.7 38.7

ControlNet [75] [ICCV 23] 64 23.26 22.6 43.9 20.7 17.3 41.9 10.5 16.7 40.7
GeoDiffusion [6] [ICLR 24] 64 9.58 31.8 62.9 28.7 27.0 53.8 21.2 18.2 46.0

GeoDiffsion − GDCC 3 8.03 ±0.11 33.4 ±0.2 64.6 ±0.2 30.6 ±0.1 28.6 55.7 29.4 20.2 47.5

Table 4: Quantitative re-
sults of detection fine-tuning
and generation trainability
on NuImages. A pre-trained
Faster R-CNN detector is em-
ployed as baseline. See §4.2.

Method mAP ↑
– Detection Fine-tuning –
Faster R-CNN [50] [NIPS 15] 36.9

Faster R-CNN − GDCC 37.7 ±0.1

– Generation Trainability –
LostGAN [59] [ICCV 19] 35.6
LAMA [36] [ICCV 21] 35.6
Taming [27] [ArXiv 21] 35.8
ReCo [73] [CVPR 23] 36.1
GLIGEN [35] [CVPR 23] 36.3
ControlNet [75] [ICCV 23] 36.4
GeoDiffusion [6] [ICLR 24] 38.3
GeoDiffusion − GDCC 38.7 ±0.1

The pre-trained detector first performs inference on the generated
images, and the resulted predictions are then compared with the
corresponding ground truth annotations. Following [6], Frechet
Inception Distance (FID) [23] is computed by generating five im-
ages for COCO-Stuff and one image for NuImage to calculate the
distance between generated images and authentic images. All im-
ages are resized into 256 × 256 before evaluation. To assess the
trainability, we augment the original training data with generated
images and their corresponding layouts, creating a unified dataset.
We then train Faster R-CNN [50] on this unified dataset using the
standard 1× schedule. The model employs ResNet-50 [19] pre-
trained on ImageNet-1K [12] as its backbone and FPN [39] as the
neck. The trained detection models are evaluated on validation set.

Reproducibility. GDCC is implemented in PyTorch. We use four
NVIDIA V100 GPUs for training and a single NVIDIA A100 GPU
for testing. Our reported results are averaged over three runs. To
ensure reproducibility, our code will be released.

4.2 QUANTITATIVE RESULTS

Generation Fidelity on COCO 2017 [38]. The quality of generation is predicated on two key
criteria: fidelity and trainability. For generation fidelity, as shown in Table 1, our GDCC learning
framework significantly improves existing L2I generation methods in terms of both image fidelity,
as measured by FID, and control fidelity, as evaluated by YOLO score, by a large degree.

At a 256×256 input resolution, for the GeoDiffusion [6] method, our GDCC framework achieves im-
provements of 2.1%/2.2%/2.6% in mAP, mAP50, and mAP75, reaching 31.2%/41.1%/36.2%, even
surpassing the performance of original GeoDiffusion at a 512 × 512 resolution. Additionally, it
achieves a 2.07% improvement in FID. It is worth noting that, despite DetDiffusion [67] employing
additional and detailed mask annotations for supervision while GDCC only uses bounding box label,
our method still outperforms it. For a 512× 512 input, GDCC also achieves 1.9%/1.8%/2.4% mAP
and 1.53% FID enhancement compared with initial model, demonstrating the state-of-the-art per-
formance in L2I generation realm. Based on the classic control generation method ControlNet [75],
the GDCC learning framework achieves notable enhancements as well.

The enhanced FID and YOLO score achieved with GDCC demonstrate its effectiveness. GDCC not
only enables precise layout control in generation but also enhances quality of the generated images,
improving their resemblance to real-world data. Additionally, the improvements across different
controllable generation methods demonstrate that GDCC is not dependent on any specific approach,
highlighting its robustness and extensibility. Furthermore, GDCC is fine-tuned for only 2 epochs
based on the pre-trained diffusion model, while the original implementation requires 60 epochs to
reach convergence.
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Detection Performance and Generation Trainability on COCO 2017 [38]. A Faster R-CNN
detector [50] trained on the COCO 2017 training set is employed for detection fine-tuning. To begin
with, we set the performance of the detector on COCO 2017 validation set as our baseline.

As can be seen in Table2, fine-tuning the detector at GDCC training process in an end-to-end manner
leads to performance improvements across all metrics on the validation set. For the first time, we
demonstrate that the L2I generation model can be advantageous to the object detector during training
in an end-to-end manner, while previous works [6; 67] only use generated images to re-train the de-
tector after training L2I generation model. In order to make a comparison of generation trainability,
we also train the detector with generated and real images with ImageNet [12] pre-trained weights.
As shown, GeoDiffusion fine-tuned with GDCC achieves 1.6 %/0.7%/1.2% AP improvement over
the baseline, outperforming the original GeoDiffusion performance.

Generation Fidelity on NuImages [4]. To illustrate the generalizability of GDCC with respect to
dataset, more experiments are conducted on NuImages. As presented in Table3, GDCC outperforms
all baselines in FID and YOLO score after three epochs of fine-tuning.

Table 5: Quantitative results in un-
paired setting on COCO 2017. Here,
“syn”, “real”, and “union” denote syn-
thesized, real-world, and combined
layouts, respectively. See §4.2.

Detection Generation FidelityMethods
Score ↑ FID ↓ YOLO score ↑

Baseline 37.3 20.16 29.1
– unpaired layout data –

syn 37.5 19.74 29.5
real 37.5 19.46 29.7

union 37.6 19.28 29.9
– paired layout-image data –

paired 38.2 18.09 31.2

Detection Performance and Generation Trainability on
NuImages [4]. As can be seen in Table4, GDCC achieves
improvement on NuImages validation set after fine-tuning
Faster-RCNN which is pre-trained on training set. In a
data augmentation manner, GDCC demonstrates an accu-
racy improvement of 1.8% compared to the baseline.

Performance in unpaired data setting on COCO
2017 [38]. Under the condition where only layouts are
available, as demonstrated in Table 5, our GDCC still ex-
hibits a performance enhancement. With the synthesized
layouts sampled from generative pre-training models [70],
GDCC outperforms the baseline, demonstrating its data ef-
ficiency. By incorporating real-world layouts from COCO
annotations, performance can be further enhanced. Re-
lated details are shown in Appendix §D.

4.3 QUALITATIVE RESULTS

Fig. 3 shows representative generation visual results on COCO 2017, with the same random seed
used during sampling to ensure fair comparison. L2I model [6] demonstrates stronger layout con-
trollability (1st and 2nd columns) and superior image fidelity (2nd column) after fine-tuning with
GDCC. Fig. 4 presents the detection results. As seen, after fine-tuning with GDCC , Faster R-
CNN [50] demonstrates advanced detection performance as well.

4.4 DIAGNOSTIC EXPERIMENTS

To gain more insights into GDCC, we conduct a set of ablative studies on COCO 2017 [38] using
GeoDiffusion [6] with a resolution of 256×256 as the baseline.

Essential Components. As shown in Table6a, the diffusion training loss Ldm (cf. Eq. (2)) and the
prediction loss Lpred lead to a slight improvement in generation fidelity and detection score, respec-
tively, due to more iterations on training samples. When fine-tuning the generator with Lgen (cf.
Eq. (9)) which contains both Ldm and layout translation cycle loss LlayoutTC (cf. Eq. (7)), there is a
significant improvement in generation fidelity. Similarity, Ldet (cf. Eq.(11)) with image translation
cycle loss LimageTC (cf. Eq.(10)) further improve the detector performance. Full GDCC, fine-tuning
both the generator and detector in an end-to-end manner, achieves superior performance on both
generation and detection metrics compared with each individual component. This clearly demon-
strates the duality of two tasks, and GDCC facilitates mutual enhancement between them.

Cycle Consistency. As shown in Table 6b, setting tthre = 0 indicates that no cycle-consistent
loss is applied, and only Lldm and Lpred are active. For tthre = 50 without priority timestep re-
sampling, generation fidelity improves thanks to the layout translation cycle. A notable perfor-
mance boost is observed with w = 6, showing the effectiveness of priority timestep re-sampling
strategy. However, further increasing tthre or w results in a decline in performance, indicating that
excessive noise disturbance or imbalanced sampling strategy can cause instability during training.
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Figure 3: Generation visual results of GeoDiffusion – GDCC on COCO 2017. For fair compar-
isons, same seed is employed for sampling. See §4.3 for details.

person

train

person
stop sign

cake

Faster R-CNN Faster R-CNN - GDCC Faster R-CNN Faster R-CNN - GDCC

cat cat

car

Figure 4: Detection visual results of Faster R-CNN – GDCC on COCO 2017. See §4.3 for details.

Table 6: A set of ablative experiments on COCO 2017. GeoDif-
fusion [6] with 256×256 resolution pre-trained on COCO-Stuff [3]
is employed as L2I baseline. See §4.4 for details.

Detection Generation FidelityComponents
Score ↑ FID ↓ YOLO score ↑

Baseline 37.3 20.16 29.1
+ Lldm 37.3 20.01 29.3
+ Lgen 37.3 18.94 30.4
+ Lpred 37.4 20.16 29.1
+ Ldet 37.7 20.16 29.1
GDCC 38.2 18.09 31.2

(a) essential components

tthre w FID ↓ YOLO score↑
0 0 19.96 29.5

50 0 19.57 30.1
50 3 18.98 30.7
50 6 18.09 31.2
100 3 18.25 30.6
100 6 19.28 30.5
200 2 19.46 30.3

(b) reward strategy

Detection Score ↑ Generation FidelityDetectors
original fine-tuning FID ↓ YOLO score ↑

Faster R-CNN [50] [NIPS 15] 37.3 38.2 18.09 31.2
Mask R-CNN [20] [ICCV 17] 38.2 40.0 18.07 31.5

Cascade R-CNN [5] [CVPR 18] 40.3 41.2 18.04 31.7
(c) different detectors

Different Detectors. In our
main experiments, we deploy
Faster R-CNN [50] as the de-
tector. To investigate the ro-
bustness of GDCC across dif-
ferent detectors, experiments
on Mask R-CNN [20] and
Cascade R-CNN [5] are con-
ducted. As illustrated in
Table 6c, GDCC improves
both the detection and gen-
eration score with different
detectors. Furthermore, the
stronger the performance of
the detector, the more sub-
stantial the improvement in
generation fidelity, reflecting
the task duality between de-
tection and generation again.

5 CONCLUSION

In this paper, we propose GDCC, an end-to-end framework that jointly optimizes L2I generation
and OD tasks. By exploring the inherent duality between these two tasks, GDCC facilitates mutual
enhancement of L2I and OD models through the layout and image translation cycle losses. Addi-
tionally, GDCC allows for more efficient use of unpaired layout data, thereby further enhancing data
efficiency. Notably, our GDCC is computationally efficient thanks to the perturbative single-step
sampling and priority timestep re-sampling strategies during training, while maintaining the same
inference cost as the original L2I and OD models. Extensive experiments confirm that GDCC signif-
icantly improves the controllability of diffusion-based L2I models and the accuracy of OD models.
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SUMMARY OF THE APPENDIX

This appendix contains additional details for ICLR 2025 submission, titled Cycle-Consistent Learn-
ing for Joint Layout-to-Image Generation and Object Detection, which is organized as follows:

• §A discusses our limitations, directions of our future work, and societal impact.
• §B introduces the datasets and evaluation metrics used in our experiments.
• §C provides the pseudo code of GDCC.
• §D presents more detailed discussions of GDCC under the unpaired setting.
• §E offers more detailed discussions regarding the fine-tuning performance and training cost.
• §F depicts more qualitative results of generation.
• §G provides more qualitative results of detection.

A LIMITATION, FUTURE WORK, AND SOCIAL IMPACT

Limitation and Future Work. In this work, we explore the inherent duality between layout-to-
image (L2I) generation and object detection (OD). However, due to restrictions in computational
resources, this duality is not extended to a broader range of controllable T2I generation and discrim-
inative models, such as segmentation mask controllable models paired with segmentation models,
and depth map controllable models paired with depth models, etc.. In future work, we aspire to
expand the end-to-end joint learning framework for broader controllable T2I generation and dis-
criminative models. In addition, our experiments in Table2 and Table8 also suggest that our highly
realistic generated images aligned with synthesized layouts can benefit the training of object de-
tectors. Therefore, another essential future direction deserving of further investigation is the con-
struction of a large-scale synthetic dataset comprising synthesized layouts and their corresponding
images generated by advanced L2I generation models. Overall, we believe the results presented in
this paper warrant further exploration.

Social Impact. This work investigates the inherent duality between the L2I generation and OD
and introduces GDCC learning framework that jointly optimizes both two tasks in an end-to-end
manner. On positive side, the approach advances both L2I generation and OD model accuracy,
leading to more precise scene synthesis and object localization. Improved L2I generation model
can generate realistic images consistent with layouts, benefiting fields such as content creation and
synthesized dataset construction. Meanwhile, the enhanced OD model offers advantages in areas
like autonomous driving and surveillance systems. For potential negative social impact, the ability
to generate highly realistic images could be misused to produce misleading or fake content, raising
significant ethical concerns around surveillance, privacy, and the potential for digital manipulation.

B DATASETS AND EVALUATION METRICS

Datasets. Our experiments are conducted on two widely used datasets. COCO-Stuff [3] consists
of bounding box annotations covering 80 object classes and 91 stuff classes. Following [28; 36; 6],
objects occupying less than 2% of the total image area are ignored, and only images with 3 to 8
objects are used, resulting in a dataset of 74,777 training images and 3,097 validation images. We
train on the COCO-Stuff training split and test on COCO 2017 following [6]. NuImages [4] offers
bounding box annotations across 10 categories and 6 camera views. We exclude images with more
than 22 objects following [6], yielding 60,209 images for training and 14,772 images for validation.

Evaluation Metric. L2I generation models are evaluated using two main criteria: fidelity and train-
ability. Fidelity assesses the consistency between the generated object representations and the au-
thentic distribution of images. Specifically, fidelity quality is measured using the Frechet Inception
Distance (FID) [23] from the perceptual perspective, while YOLO score proposed by [36] is used to
evaluate the alignment between the generated images and conditional layouts.
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C PSEUDO CODE OF GDCC AND CODE RELEASE

The pseudo-code of GDCC is given in Algorithm 1. To guarantee reproducibility, our full imple-
mentation shall be publicly released upon acceptance.

Algorithm 1 Pseudo-code of GDCC in a PyTorch-like style.

"""
vae: mapping to latent space
scheduler: adding noise to an image or for updating a sample
unet: predicting the noise
detector: object detector
x: input image (B x 3 x H x W)
l: input layout (B x 5)
t: input text description (B x L)
encoder_hidden_states: output of text encoder(t)
noise: random sampled Gaussian noise
max_ts: max timestep for reward
resample_ts: re-weighting factor for timestep reward
reward_scale: balance reward loss and original loss
"""

# fine-tune generation model
if train_unet:

unet.train()
unet.requires_grad_(True)
detector.eval()
detector.requires_grad_(False)

# Convert images to latent space
latents = vae.encode(x)

# Sample timesteps for each image
timesteps = sample timesteps(num_train_timesteps, max_ts, resample_ts)
# Determine which samples need to calculate reward loss
timestep_mask = (timesteps <= max_ts)

# Add noise to the latents according to the noise at each timestep
noisy_latents = scheduler.add noise(latents, noise, timesteps)

# Predict the noise residual and compute loss
noise_pred = unet(noisy_latents, timesteps, encoder_hidden_states, l).sample

# Predict the single-step denoised latents
sample_latents = scheduler.step(noise_pred, timesteps, noisy_latents).

pred original sample

# Reconstruct images according to the predicted noise (Eq. 8)
reconstructed_images = vae.decode(sample_latents).sample

# Detect the reconstructed images and get dual layouts with logits
# A threshold is adopted to filter bboxes (Eq. 6)
dual_l, logits = detector(reconstructed_images)

# Compute the layout translation loss (Eq. 9)
box_loss, cls_loss = calculate box loss(dual_l, logits, l)
l_cycle_loss = box_loss + cls_loss

# Original Latent Diffusion Loss (Eq. 2)
ldm_loss = ((noise_pred - noise) ** 2).mean()

# total training loss for the generatino model (Eq. 10)
l_cycle_loss = l_cycle_loss * timestep_mask.sum() / timestep_mask.sum()
gen_loss = ldm_loss + l_cycle_loss * reward_scale

# Optimize the generation model
gen_loss.backward()
optimizer.step()
optimizer.zero grad()
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# fine-tune detection model
else:

unet.eval()
unet.requires_grad_(False)
detector.train()
detector.requires_grad_(Ture)

# Convert images to latent space
latents = vae.encode(x)

# Sample timesteps for each image
timesteps = sample timesteps(num_train_timesteps, max_ts, resample_ts)
# Determine which samples need to calculate reward loss
timestep_mask = (timesteps <= max_ts)

# Add noise to the latents according to the noise at each timestep
noisy_latents = scheduler.add noise(latents, noise, timesteps)

# Predict the noise residual and compute loss
noise_pred = unet(noisy_latents, timesteps, encoder_hidden_states, l).sample

# Predict the single-step denoised latents
sample_latents = scheduler.step(noise_pred, timesteps, noisy_latents).

pred original sample

# Reconstruct images according to the predicted noise (Eq. 8)
reconstructed_images = vae.decode(sample_latents).sample

# Detect the reconstructed images and get dual layouts with logits
# A threshold is adopted to filter bboxes (Eq. 6)
dual_l, logits = detector(reconstructed_images)

# Compute the image translation loss (Eq. 11)
noise_pred_2 = unet(noisy_latents, timesteps, encoder_hidden_states, dual_l).sample
i_cycle_loss = ((noise_pred - noise_pred_2) ** 2).mean()

# Compute the prediction loss (Eq. 12)
pred_l, logits = detector(x)
pred_box_loss, pred_cls_loss = calculate box loss(pred_l, logits, l)
pred_loss = pred_box_loss + pred_cls_loss

det_loss = pred_loss + i_cycle_loss * reward_scale

# Optimize the generation model
det_loss.backward()
optimizer.step()
optimizer.zero grad()

def sample timesteps(num_train_timesteps, max_ts, resample_ts):
# Initialize timestep
timesteps = torch.arange(0, num_train_timesteps)
probs = torch.ones(total_timesteps, device=’cuda’)

# Reward re-weighting (Eq. 13)
reward_indices = (timesteps <= max_ts)
probs[reward_indices] *= resample_ts

# Normalize probability distribution
probs = probs / probs.sum()

# Sample according to the weights
sampled_timesteps = torch.multinomial(probs, bsz, replacement=True)

return sampled_timesteps
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D DISCUSSIONS REGARDING THE UNPAIRED SETTING OF GDCC

Our GDCC demonstrates efficiency in both paired layout-image and unpaired layout settings. In this
section, we focus on the unpaired setting and provide detailed discussions.

Experimental Setup. As mentioned in §3.2.3, we adopt VisorGPT [70], a recent generative pre-
training model to automatically sample layouts based on its learned visual priors. More specifically,
VisorGPT requires users to input the object names and the number of instances for each image to
generate layouts. we first sample synthesized layouts by inputting the class names and the number of
instances from each image in the COCO 2017 [38] training set into VisorGPT. This process allows
us to obtain corresponding ground truth layouts and synthesized layouts with the same number.
To investigate the impact of varying the number of synthesized layouts on performance, we also
experiment by randomly increasing or decreasing the number of instances in the COCO annotations,
as well as altering the random seed to generate new synthesized layouts. In the end, we obtained
three different ratios of synthesized layouts to ground truth layouts: 1/2, 1, and 2.

In the following sections, we present two main experiments. The first involves fine-tuning both the
generation model and detection model using the end-to-end GDCC learning framework on the syn-
thesized and ground truth layouts, similar to Table5. The second experiment focuses on re-training
the detection model using the synthesized data, akin to the generation trainability experiment in
Table 2, to evaluate whether these synthesized layouts can further enhance the performance of the
detection model.

Additional Results of Fine-tuning in Unpaired Setting on COCO [3]. As shown in Table7, rely-
ing solely on synthesized layouts yields a modest performance improvement, albeit not as substantial
as when using real-world layouts alone. The utilization of combined layouts results in performance
improvements, with the optimal outcome observed when the ratio of synthesized to real-world lay-
outs is balanced at 1:1. This suggests that increasing the proportion of synthesized layouts beyond
this ratio does not lead to further performance improvements. Additionally, performance in the
unpaired setting consistently lags behind that of the paired setting.

Table 7: More quantitative results of fine-tuning in unpaired setting on 2017.“syn”, “real”,
and “union” denote synthesized layout, real-world layouts, and union layouts that encompass both,
respectively. “Synthesized Ratio” represents the ratio of synthesized layouts to ground truth layouts.
See §D for details.

Synthesized Detection Generation FidelitySetting
Ratio Score ↑ FID ↓ YOLO score ↑

Baseline - 37.3 20.16 29.1
– unpaired layout data –

syn 0.5 37.3 20.11 29.2
syn 1 37.5 19.74 29.5
syn 2 37.4 20.02 29.4
real - 37.5 19.46 29.7

union 0.5 37.5 19.37 29.6
union 1 37.6 19.28 29.9
union 2 37.5 19.31 29.7

– paired layout-image data –
paired - 38.2 18.09 31.2

Additional Results of Generation Trainability in Unpaired Setting on COCO [38]. As illus-
trated in Table8, we observe that when the quality of generated images is sufficiently high, increas-
ing the number of synthesized layouts and re-training the object detector on a dataset that combines
both real-world and synthesized data can further improve detection performance. This prompts us to
construct a larger synthetic dataset, incorporating more data sampled from powerful L2I generation
models to further enhance the performance of the detector. We leave it for future work.
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Table 8: More quantitative results of generation trainability on COCO 2017. “Syn. Ratio”
represents the ratio of synthesized layouts to ground truth layouts. A Faster R-CNN detector [50]
pre-trained on COCO is employed as the baseline. The input resolution of generation model is set
as 800×456 following [6]. See §D for details.

Method Syn. Ratio mAP ↑ AP50 ↑ AP75 ↑ APm ↑ APl ↑
Baseline - 37.3 58.2 40.8 40.7 48.2

L.Diffusion [77] [CVPR 23] 0 36.5 57.0 39.5 39.7 47.5
L.Diffuse [9] [ArXiv 23] 0 36.6 57.4 39.5 40.0 47.4

GLIGEN [35] [CVPR 23] 0 36.8 57.6 39.9 40.3 47.9
ControlNet [75] [ICCV 23] 0 36.9 57.8 39.6 40.4 49.0

GeoDiffusion [6] [ICLR 24] 0 38.4 58.5 42.4 42.1 50.3
GeoDiffusion [6] [ICLR 24] 1 38.7 58.7 42.7 42.3 50.7

GeoDiffsion – GDCC 0 38.9 58.9 43.0 42.6 50.6
GeoDiffsion – GDCC 1 39.4 59.3 43.6 43.0 51.1
GeoDiffsion – GDCC 2 39.7 59.5 44.0 43.2 51.3

E DISCUSSIONS REGARDING THE FINE-TUNING PERFORMANCE AND
TRAINING COST

As illustrated in Table9, we compare the fine-tuning performance and training cost with and without
GDCC. Although GDCC increases training time by 0.7 hours and GPU memory usage by 11 GB
with 2 epochs of fine-tuning, it achieves remarkable performance improvements of 2.07% in FID,
2.1% in YOLO score, and an additional 0.9% in detection score. However, the performance after
fine-tuning remains nearly unchanged without GDCC. This clearly demonstrates the effectiveness of
our method, as significant performance improvements are not achieved through additional training
epochs.

Table 9: Fine-tuning performance and training cost on COCO 2017. All models are tested on
two Nvidia A100 GPUs with batch size 32 for each GPU. See §E for details.

Training Cost ↓ Generation FidelityMethods Epoch
training hours GPU memory FID ↓ YOLO score ↑

– original –
GeoDiffusion 60 54.0 27G 20.16 29.1
– fine-tune –
GeoDiffusion 2 1.9 27G 20.13 29.3

GeoDiffusion - GDCC 2 2.6 38G 18.09 31.2
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F MORE QUALITATIVE RESULTS OF GENERATION WITH GDCC

Layout Ground Truth GeoDiffusion GeoDiffusion - GDCC

Figure 5: More generation visual results of GeoDiffusion – GDCC on COCO 2017. To guarantee
fair comparisons, same random sampling seed is employed.
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Layout Ground Truth GeoDiffusion GeoDiffusion - GDCC

Figure 6: More generation visual results of GeoDiffusion – GDCC on COCO 2017. To guarantee
fair comparisons, same random sampling seed is employed.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Layout Ground Truth ControlNet ControlNet - GDCC

Figure 7: More generation visual results of ControlNet – GDCC on COCO 2017. To guarantee
fair comparisons, same random sampling seed is employed.
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Layout GeoDiffusion - GDCC Layout GeoDiffusion - GDCC

Figure 8: More generation visual results of GeoDiffusion – GDCC on NuImages. To guarantee
fair comparisons, same random sampling seed is employed.
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G MORE QUALITATIVE RESULTS OF DETECTION WITH GDCC

Image Ground Truth Faster R-CNN Faster R-CNN - GDCC

Figure 9: More detection visual results of Faster R-CNN – GDCC on COCO 2017.
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