Automatic Skill Generation
for Knowledge Graph Question Answering

Maria Angela Pellegrino! &<, Mario Santoro!-?,
Vittorio Scarano', and Carmine Spagnuolo!

! Dipartimento di Informatica, Universita degli Studi di Salerno, Italy
{mapellegrino,vitsca,cspagnuolo}@unisa.it
2 m.santoro75@studenti.unisa.it

Abstract. Knowledge Graphs are a critical source for Question An-
swering, but their potential may be threatened due to the complexity of
their query languages, such as SPARQL. On the opposite side, Virtual
Assistants have witnessed an extraordinary interest as they enable users
to pose questions in natural language. Many companies and researchers
have combined Knowledge Graphs and Virtual Assistants, but no one
has provided end-users with a generic methodology to generate exten-
sions for automatically querying knowledge graphs. Thus, we propose a
community shared software framework to create custom extensions to
query knowledge graphs by virtual assistants, unlocking the potentiali-
ties of the Semantic Web technologies by bringing knowledge graphs in
the “pocket” of everyone, accessible from smartphones or smart speakers.

Keywords: Question Answering - Knowledge Graphs - Virtual Assis-
tant - Software Framework

1 Introduction and Motivation

Knowledge Graphs (KGs), i.e., graph-structured knowledge bases, are fast be-
coming a key instrument in disseminating and exploiting knowledge, but their
potential might be threatened by the complexity of their query languages, such
as SPARQL, too challenging for lay users [2,16].

Natural Language (NL) interfaces can mitigate these issues, enabling more
intuitive data access and unlocking the potentialities of KGs to the majority of
end-users [10] by losing in expressiveness while gaining in usability. NL interfaces
may provide lay users with question-answering (QA) features where users can
adopt their terminology and receive a concise answer. Researchers argue that
multi-modal communication with virtual characters is a promising direction in
accessing knowledge [4]. Thus, many companies and researchers have combined
KGs and Virtual Assistants (VAs) [1,5,8,9,12], but no one has provided end-users
with a generic methodology to automatically generate extensions to query KGs.

To fill this gap, we propose a community shared software framework (a.k.a.
generator) that enables lay users to create ready-to-use custom extensions for
performing question-answering over knowledge graphs (KGQA) for any cloud

2 Pellegrino, Santoro, Scarano and Spagnuolo

provider. Our proposal may unlock the Semantic Web technologies potentialities
by bringing KGs in the “pocket” of everyone, accessible from smartphones or
smart speakers. It is the first attempt, to the best of our knowledge, to empower
lay users in actively creating VA extensions by requiring little/no technical skills
in query languages and VA extension development.

2 Related work

KGQA is a research field widely explored in the last years [6,7]and DBpedia gains
a particular interest in being accessed by friendly user interfaces [13,14,17].
KGQA requires matching an input question to a subgraph. The simplest
case requires matching a single KG triple, and it is also called simple QA [3]. In
contrast to it, the task of complex QA requires matching more than one triple in
the KG [15]. We present an approach general enough to deal with both simple
and more complex queries. At the moment, we mainly cover patterns related to
single triples enhanced by class refinement, numeric filters, and sorting options.
Focusing on KGQA in VA, it is natively offered in well-established personal
assistants, like Google Assistant and Alexa, which provides users with content
from generic KGs (Google Search and Microsoft Bing, respectively). Moreover,
the Semantic Web community invested in increasing VA capabilities by providing
QA over open KGs (e.g., Haase et al. [8] proposed an Alexa skill to query Wiki-
data by a generic approach) or in domain-specific applications (e.g., Krishnan
et al. [11] explored the NASA System Engineering domain while Machidon et
al. [12] and Anelli et al. [1] focus on the Cultural Heritage (CH) domain). While
these approaches are demonstrated on custom but specific KGs, we propose a
generic approach and we openly publish VA extensions for general-purpose KGs
(e.g., DBpedia and Wikidata) and CH KGs (use cases are available on GitHub?).

3 Virtual Assistant Extensions Generator

The proposed generator automatically creates VA extensions performing KGQA
by requiring little/no technical skills in programming and query languages. It
provides users with the opportunity to customize and generate ready-to-use VA
extensions. The implemented process is graphically represented in Fig. 1.

Vs Va
-~ - = VA Generator interaction
(Generator configuration model ! i
§ interaction
s Y N N ™ s RYa N eneration !
SPARQL!;:, rg\]amttigg [‘%} label H:> label synonym %E syntax validation \g—/ model
endpoint completion cleansing lookup conf|, checker Y
% lookup /A / \ / \- A /
Q back-end @
generation back-end

Fig. 1. Process implemented in the proposed generator to create a Virtual Assistant
extension to perform question-answering over knowledge graphs.

Automatic Skill Generation for Knowledge Graph Question Answering 3

The generator takes as input a configuration file that defines the SPARQL end-
point of interest, the VA extension language (en and it are supported at the mo-
ment), the invocation name (i.e., the skill wake-up word), and the list of desired
intents. The implemented intents are tailored towards SPARQL constructs, and
they cover SELECT and ASK queries, class specification, numeric filters,
order by to get the superlative and path traversal. We model each supported
SPARQL query template as an intent. Each intent is modelled by a set of ut-
terances and can be completed by slot values. A custom slot represents each
slot, and it requires the specification of a (complete or partial) set of values that
it can assume. Therefore, users can specify entity and relation dictionaries to
customize the set of values, and the mapping between entity and relation labels
and their URIs. The generator checks the syntactical correctness of the configu-
ration file during the syntax checker phase; validates the semantic correctness
of the configuration during the validation; during the interaction model
generation, it creates the interaction model.json which contains configured
intents, its utterances and the slot values as defined in the configuration file,
while during the back-end generation phase, it produces the back-end (as a
ZIP file) containing the back-end logic implementation. If any error occurs, the
generator immediately stops and returns a message reporting the occurred error.
If the configuration is properly provided, the generator returns a folder entitled
as the skill wake-up word containing the interaction model as a JSON file
and the back-end Node.js code as a ZIP file. The generated skill is ready to be
used, i.e., it can automatically be uploaded on Amazon developer® and Amazon
AWS3, respectively. It corresponds to manually created skills, but our proposal
may reduce required technical competencies and development time.

According to users’ skills, they can provide the generator with a custom
configuration file. Otherwise, they can exploit the generator configuration
component that takes as input the SPARQL endpoint of interest, automatically
retrieves both classes and relations labels and their URIs, and returns the con-
figuration file that can be directly used to initialize the VA generator.

Each phase is kept separate by satisfying the modularity requirement, and
it is implemented as an abstract module to enable extension opportunities eas-
ily. The actual version (v1.0), freely available on GitHub* is provided with a
command-line interface and supports the Amazon Alexa provider.

As a future direction, we aim to enhance our generator by providing it with a
(simple) graphical user interface and improve the intent identification, by using a
Named Entity Recognition and Relation Extraction mechanism, and performing
a disambiguation approach during the linking phase.

4 Virtual Assistant Extension Usage

In a VA-based process (see Fig. 2), users pose a question in NL by pronouncing
or typing it via a VA app or dedicated device (e.g., Alexa app/device).

3 Links for Alexa skill deployment: developer.amazon.com and aws.amazon.com
4 https://github.com/mariaangelapellegrino/virtual_assistant_generator

developer.amazon.com
aws.amazon.com
https://github.com/mariaangelapellegrino/virtual_assistant_generator

4 Pellegrino, Santoro, Scarano and Spagnuolo

7 WHO TS THE PAINTER OF ™,

\Z Mowalswr
_ ™ B
n Question analysis Query formulation
™ lntent identiication | 0
ntent identification Linkin
Who is the {property} ~hkng | SPARQL query formulation
of fentity}? Mona Lisa—dbr:Mona _Lisa [T
entity: Mona Lisa painter—dbo:author myquery = SELECT ?res WHERE {
property: painter s ’) ?res dbo:author dbr:Mona_Lisa}
- =~ . I A
e N |- v !
Reply formulation SPARQL guery execution
' N
_L _Re ly completion Reply template)| https://dbpedia.ora/sparal
/7 T identification a 2query=myquery
. . A
(THE PATNTER F MONA LI5A The {property} of
\ 15 LEONARDO DA VINCL,)\ fentity}is {result) N y

Fig. 2. Process to use VA extension for KGQA.

VAs are provided with an NL processing component to analyse questions. Thus,
they perform intent identification to recognize the intent that matches the user
query and solve the intent slots. Then, the back-end has to perform the (entity
and relation) linking task, i.e., determine the URIs corresponding to the used
labels. It can be accomplished by consulting a lookup dictionary or by calling
an API service. Once completed the question analysis step, we can move to the
query formulation phase. The back-end has to recognize the SPARQL pattern
that fulfills the user request, formulate SPARQL query, and then run it over the
SPARQL endpoint. Once results are returned, the VA extension can perform
the reply formulation step, i.e., the reply template is identified and completed
by actual results. Finally, the reply is returned to the user.

5 Demonstration

As a demonstration example®, we show that users can automatically create an
Alexa skill for querying well-known KGs, such as DBpedia. Thus, we see how
to exploit the generator configuration and the VA generator components,
we discuss the required steps to upload the skill on Alexa service providers, and
we demonstrate the skill in practice by posing questions on Alexa Developer
Console. The demo can reply to questions like Who is the creator of goofy?
How tall is Michael Jordan? Can you define Madama Butterfly? to retrieve
the object value of a KG triple; How many programming languages are there?
as a special case of class refinement; Which movie has producer equals to Hal

® Demo link: http://automatic_skill _generation_for KGQA-DEMO-ESWC2021.mpd

https://drive.google.com/file/d/1zvWgcO2FeHTNgnFVPWN2pra221oTKYKH/view?usp=sharing

Automatic Skill Generation for Knowledge Graph Question Answering 5

Roach? to retrieve the subject of KG triples; Which library has established before
14007 representing of a numeric filter; Which is the river with maximum length?
modeling superlatives; Can you check if Goofy has Walt Disney as creator?
representing an ask query.

References

10.

11.

12.

13.

14.

15.

16.

17.

Anelli, V.W., Noia, T.D., Sciascio, E.D., Ragone, A.: Anna: A virtual assistant
to interact with puglia digital library. In: Proc. of the 27th Italian Symposium on
Advanced Database Systems (2019)

Bellini, P., Nesi, P., Venturi, A.: Linked open graph: Browsing multiple sparql entry
points to build your own lod views. J. of Visual Languages & Computing 25(6),
pp. 703 — 716 (2014)

Bordes, A., Usunier, N., Chopra, S., Weston, J.: Large-scale simple question an-
swering with memory networks. CoRR abs/1506.02075 (2015)

Cimiano, P., Kopp, S.: Accessing the web of data through embodied virtual char-
acters. Semantic Web 1, 83-88 (2010)

Cuomo, S., Colecchia, G., Cola, V., Chirico, U.: A virtual assistant in cultural
heritage scenarios. Concurrency and Computation: Practice and Experience (2019)
De Donato, R., Garofalo, M., Malandrino, D., Pellegrino, M.A., Petta, A., Scarano,
V.: Quedi: From knowledge graph querying to data visualization. Semantic Systems
p- 70 (2020)

Diefenbach, D., Giménez-Garcia, J., Both, A., Singh, K., Maret, P.: Qanswer kg:
Designing a portable question answering system over rdf data. In: The Semantic
Web. pp. 429-445 (2020)

Haase, P., Nikolov, A., Trame, J., Kozlov, A., Herzig, D.M.: Alexa, ask wikidata!
voice interaction with knowledge graphs using amazon alexa. In: ISWC (2017)
Jalaliniya, S., Pederson, T.: Designing wearable personal assistants for surgeons:
An egocentric approach. IEEE Pervasive Computing 14(3), 22-31 (2015)
Kaufmann, E., Bernstein, A.: How useful are natural language interfaces to the
semantic web for casual end-users? In: The Semantic Web, pp. 281-294 (2007)
Krishnan, J., Coronado, P., Reed, T.: Seva: A systems engineer’s virtual assis-
tant. In: AAAI Spring Symposium: Combining Machine Learning with Knowledge
Engineering (2019)

Machidon, O.M., Tavéar, A., Gams, M., Duguleana, M.: Culturalerica: A conver-
sational agent improving the exploration of european cultural heritage. Journal of
Cultural Heritage 41, 152 — 165 (2020)

Mynarz, J., Zeman, V.: Db-quiz: a dbpedia-backed knowledge game. In: Proceed-
ings of the 12th International Conference on Semantic Systems. pp. 121-124 (2016)
Singh, K., Lytra, I., Radhakrishna, A.S., Shekarpour, S., Vidal, M.E., Lehmann,
J.: No one is perfect: Analysing the performance of question answering components
over the dbpedia knowledge graph. Journal of Web Semantics 65, 100594 (2020)
Trivedi, P., Maheshwari, G., Dubey, M., Lehmann, J.: Le-quad: A corpus for com-
plex question answering over knowledge graphs. In: ISWC. pp. 210-218 (2017)
Vargas, H., Aranda, C.B., Hogan, A., Lépez, C.: RDF explorer: A visual SPARQL
query builder. In: Proc. of ISWC. vol. 11778, pp. 647-663. Springer (2019)
Vega-Gorgojo, G.: Clover quiz: a trivia game powered by dbpedia. Semantic Web
10(4), 779-793 (2019)

	Automatic Skill Generation for Knowledge Graph Question Answering

