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Abstract
Post-training quantization (PTQ) enables efficient
deployment of LLMs by converting weights to
low-bit formats, but often degrades accuracy.
Quantization error reconstruction (QER) miti-
gates this by adding a low-rank correction term.
However, existing QER methods typically quan-
tize weights before identifying low-rank structure,
discarding information they later attempt to re-
cover. We propose Structured Residual Recon-
struction (SRR), a simple yet effective reformula-
tion of QER that first preserves dominant spectral
directions and quantizes only the residual tail. The
final approximation combines the preserved low-
rank structure with a quantized residual, yield-
ing improved fidelity under the same rank con-
straint. SRR generalizes to activation-aware set-
tings by selecting dominant components based on
contributions in both the original and activation-
weighted spaces. We also apply SRR in QPEFT
by freezing the preserved subspace and updating
only the residual component during fine-tuning,
which stabilizes training and leads to better adap-
tation. Across both PTQ and QPEFT, SRR con-
sistently improves performance under fixed rank
constraints, providing an effective framework for
quantization-aware compression.

1. Introduction
Post-Training Quantization (PTQ) reduces the memory and
computational costs of LLMs by converting weights to low-
bit formats (Nagel et al., 2021; Frantar et al., 2023), but
this often leads to a significant drop in accuracy (Yao et al.,
2022; Lin et al., 2024; Tseng et al., 2024). Quantization
Error Reconstruction (QER) addresses this by adding a low-
rank correction term, resulting in an approximation of the
form W ≈ Q+ LR that aims to recover information lost
during quantization (Yao et al., 2024; Zhang et al., 2024a;
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Liu et al., 2024; Zhang et al., 2025).

While most QER methods assume that quantization error
can be effectively captured by a low-rank matrix (Zhang
et al., 2024a; 2025), this assumption does not always hold
in practice. The error spectrum can vary across layers, and
truncated SVD can capture only a portion of its variance. In
addition, QER methods typically apply quantization before
identifying low-rank structure, which might result in the
loss of information that could otherwise be retained.

To address this limitation, we propose Structured Residual
Reconstruction (SRR), a simple yet effective reformulation
of QER that captures dominant components of weight be-
fore quantization. Instead of quantizing the full weight
matrix, SRR separates dominant and tail components, quan-
tizes only the latter, and reconstructs the approximation via
truncated SVD of their combination. This design prevents
early information loss and empirically yields more accurate
low-rank approximations. In activation-aware settings, we
generalize SRR by selecting directions to preserve based
on their contributions in both the original space W and
the scaled space SW, allowing adaptive preservation of
informative subspaces.

We further seamlessly integrate SRR into the QPEFT set-
ting by partially freezing the dominant directions during
fine-tuning and updating only the residual subspace. This
strategy stabilizes learning while preserving the structural
integrity of the approximation, leading to improved perfor-
mance. Through extensive experiments under both PTQ
and QPEFT settings, we demonstrate that SRR outperforms
existing methods in both quantization and fine-tuning tasks.

To summarize, our contributions are as follows:

• We propose Structured Residual Reconstruction (SRR),
a quantization scheme that preserves dominant direc-
tions before quantization to improve approximation.

• We generalize SRR to activation-aware settings and in-
tegrate it into QPEFT by freezing preserved subspaces
during fine-tuning.

• SRR consistently outperforms existing QER methods
under fixed-rank constraints in both PTQ and QPEFT.
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2. Preliminaries
Quantization Error Reconstruction. Post-Training
Quantization (PTQ) compresses model weights into low-bit
representations (Banner et al., 2019; Nagel et al., 2020),
but often leads to accuracy degradation due to quantization-
induced information loss. Quantization Error Reconstruc-
tion (QER) mitigates this issue by introducing a low-rank
correction term that approximates the discrepancy between
the original weights and their quantized counterparts (Yao
et al., 2024; Zhang et al., 2024a; Liu et al., 2024; Zhang
et al., 2025). This approach restores lost expressiveness with
minimal overhead, significantly improving the performance
of quantized models.

Formally, consider a linear transformation y = xW, where
W ∈ Rm×n is a full-precision weight matrix and x ∈ Rm

is the input. Its quantized counterpart is denoted by Q,
representing the low-bit approximation of W. QER restores
the output accuracy by adding a rank-r correction term LR:

yq = x(Q+ LR) ≈ xW,

where L ∈ Rm×r, R ∈ Rr×n, and r ≪ min(m,n).

The correction term is typically computed by applying rank-
r truncated singular value decomposition (SVD) to the resid-
ual:

W −Q ≈ LR, with LR = SVDr(W −Q).

ZeroQuant-V2 (Yao et al., 2024) constructs the low-rank
correction term using truncated SVD of the residual W−Q,
but does not account for input distributions, which may limit
its robustness under varying activation statistics.

To better align reconstruction with input-dependent behav-
ior, LQER (Zhang et al., 2024a), QERA-approx (Zhang
et al., 2025) introduces a heuristic scaling matrix derived
from calibration data. Building on this insight, QERA-
exact (Zhang et al., 2025), EoRA (Liu et al., 2024), and
CALDERA (Saha et al., 2024) derive exact closed-form
solutions to the same problem: minimizing reconstruction
error in the layer output xW. These methods compute a
data-driven scaling matrix S that reweights the reconstruc-
tion objective to emphasize directions with higher output
sensitivity.

Quantized Parameter-Efficient Fine-Tuning. Parameter-
Efficient Fine-Tuning (PEFT) methods such as LoRA (Hu
et al., 2022) adapt large pre-trained models to downstream
tasks by inserting trainable low-rank adapters into frozen
weights. These adapters are typically initialized to produce
zero output and updated during fine-tuning.

Quantized Parameter-Efficient Fine-Tuning (QPEFT) ex-
tends this paradigm to quantized models, where adapter tun-
ing must compensate for quantization-induced distortions.

QLoRA (Dettmers et al., 2023) combines 4-bit quantiza-
tion with LoRA, but the mismatch between dequantized and
original weights makes zero-initialization less effective.

To mitigate this issue, LoftQ (Li et al., 2023) and LQ-
LoRA (Guo et al., 2024) refine adapter initialization through
iterative updates that alternate between quantizing weights
and computing low-rank SVDs, aiming to approximate the
original weights as W ≈ Q+ LR; increasing the number
of iterations generally leads to lower reconstruction error.
LoftQ applies SVD after quantization without considering
activation statistics, while LQ-LoRA performs scaled SVD
beforehand using a Fisher-weighted objective to emphasize
sensitive directions.

In contrast to iterative approaches, QERA (Zhang et al.,
2025) applies an analytical QER formulation to QPEFT un-
der the assumption that embedding dimensions are uncorre-
lated. Originally developed for PTQ, this method initializes
adapters in QPEFT using a closed-form low-rank correction,
without requiring iterative updates.

A Unified View of QER via Scaled Space. Recent QER
methods can be unified under a common framework based
on low-rank approximation in a scaled space, where the
residual is pre-multiplied by a sensitivity-aware matrix S ∈
Rm×m. Instead of directly approximating the quantization
error W−Q, these methods perform rank-r truncated SVD
on the scaled residual:

LR = S−1 SVDr (S(W −Q)) .

The correction is then constructed by applying truncated
SVD to the scaled residual S(W − Q) = UΣV⊤, and
projecting it back to the original space by multiplying S−1:

L := S−1U:,:r, R := Σ:r,:rV
⊤
:,:r.

Each QER variant corresponds to a different choice of the
scaling matrix S. Among existing methods, ZeroQuant-V2
sets S = I and minimizes unweighted reconstruction error.
In contrast, methods such as LQER (Zhang et al., 2024a),
QERA (Zhang et al., 2025), EoRA (Liu et al., 2024), and
CALDERA (Saha et al., 2024) use S ̸= I, incorporating
input-dependent scaling.

This framework highlights a common structure across QER
methods, where S defines the geometry of the reconstruction
objective. The resulting error in scaled space is given by

∥S(W −Q− LR)∥F ,

which measures the residual after projection onto the top-r
directions in the sensitivity-weighted domain. This per-
spective motivates our method, which promotes alignment
between quantization error and dominant directions under
the chosen scaling.
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3. Method
3.1. Motivation

The standard approach to Quantization Error Reconstruction
(QER) (Zhang et al., 2025; Liu et al., 2024) begins by quan-
tizing the full weight matrix W, computing the quantization
error Eq(W) := W−Q(W), and then approximating this
residual using low-rank terms LR, typically obtained via
truncated SVD with fixed rank r.

Figure 1. Singular value spectra of the scaled quantization error
Eq(SW) for various weight matrices in the first layer of LLaMA-2
7B. The top-r components are retained by the low-rank correction;
the pink region shows unrecovered residuals. Query and Key
errors exhibit low-rank structure, while Up and Down projections
show flatter spectra with limited recoverability. This pattern holds
consistently across layers.

This pipeline implicitly assumes that the quantization error
Eq(W), or its activation-scaled variant SEq(W), exhibits
sufficient low-rank structure to be effectively captured via
truncated SVD. However, we observe that this assumption
often fails in practice. As shown in Figure 1, the spectral
characteristics of Eq(W) vary widely across layers and
matrix types. In particular, Up and Down projections of-
ten exhibit flat singular value spectra, indicating a lack of
low-rank structure in the original matrix W. In such cases,
quantization may further degrade structure, making post-hoc
low-rank recovery even less effective. Consequently, apply-
ing SVD to Eq(W) tends to capture only a small fraction
of the error, especially when the spectrum is dispersed.

This reveals a limitation of existing QER approaches: by
applying quantization to the entire matrix W before identi-
fying low-rank structure, they risk discarding compressible
structure that could otherwise be more faithfully recovered.

In this work, we propose a new decomposition framework
that prioritizes the extraction of low-rank structure directly
from W, prior to any quantization. Rather than treating
the low-rank term as a residual patch applied after quan-
tization, we formulate a joint approximation of the form
W ≈ Q+ LR, minimizing the activation-weighted recon-

struction error ∥S(W −Q− LR)∥2F . Our results demon-
strate that allowing the low-rank component account for the
dominant structure of W yields significantly better approx-
imation quality, particularly in layers where quantization
alone disrupts rank structure most severely.

3.2. A Simplified Case (S = I): Prioritizing Low-Rank
Structure Before Quantization

To illustrate our key idea, we begin with a simplified set-
ting where activation statistics are not considered (i.e., the
scaling matrix is identity, S = I). In this case, our goal
is to decompose the weight matrix W into two parts: 1) a
quantized part Q, which ideally has small norm to minimize
quantization noise, and 2) a low-rank component LR that
captures the dominant structure of W.

Rather than quantizing the entire matrix as in conventional
QER pipelines, we explicitly aim to preserve the high-
energy directions in W through a low-rank representation
and reserve quantization only for the low-energy residual.

Let the singular value decomposition (SVD) of W be:

W = UhΣhV
⊤
h +UℓΣℓV

⊤
ℓ ,

where the first term corresponds to the top-r singular direc-
tions, and the second term represents the low-energy tail.
We apply quantization only to the tail component:

Q := Q
(
UℓΣℓV

⊤
ℓ

)
,

ensuring that the quantized component Q has relatively
small norm and reduced quantization noise.

Next, we compute the structured residual W − Q which
retains both the unquantized top-r directions and the quan-
tization error from the tail. To obtain the final low-rank
approximation, we apply a second truncated SVD:

LR := SVDr (W −Q)

= SVDr

(
UhΣhV

⊤
h + Eq

(
UℓΣℓV

⊤
ℓ

))
.

The final decomposition is therefore W ≈ Q+ LR which
we refer to as Structured Residual Reconstruction (SRR). As
shown in Figure 2, SRR consistently outperforms standard
QER across a range of model scales and layers.

Crucially, SRR is a simple reversal of the conventional QER
strategy. While QER begins by quantizing the entire weight
matrix W and then uses low-rank approximation to recover
from the resulting error, SRR inverts this process: it first
extracts the dominant low-rank structure and then applies
quantization only to the residual. Though seemingly minor,
this reversal offers key advantages by allowing the low-
rank term to capture the structured directions of W directly,
rather than forcing it to compensate for unstructured or
high-magnitude quantization noise.
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Figure 2. Layer-wise decomposition error (clipped for visibility)
using SRR and QER under S = I. SRR consistently achieves
lower error than QER in both Gemma-2 2B (top) and LLaMA-2
7B (bottom). Full results with layer names are in Figure 4.

Importantly, although SRR is introduced in the simplified
setting where S = I, its core intuition readily generalizes.
As we show in the next section, the same principle of prior-
itizing low-rank structure before quantization extends nat-
urally to the general case where activation statistics are
incorporated through a non-identity scaling matrix S.

3.3. Extending SRR to the General Case S ̸= I:
Incorporating Activation Statistics

In the general case where activation statistics are incorpo-
rated through a non-identity scaling matrix S, the low-rank
term LR in SRR is defined as:

LR := S−1 SVDr (S(W −Q))

= S−1 SVDr

(
UhΣhV

⊤
h + SEq

(
S−1UℓΣℓV

⊤
ℓ

))
.

Interestingly, we observe that this naive extension of SRR
does not consistently outperform QER. As shown in Fig-
ure 3, applying SRR in the scaled space can even lead to
larger reconstruction errors than QER in certain layers.

We argue that this unexpected behavior arises from a subtle
mismatch between the scaled space SW and the original
parameter space W. Specifically, the quantization input
in this case is not simply the low-energy tail of SW, but
a rescaled version involving S−1 (see the Eq term above).
This implies that directions which appear low in energy
in the scaled space SW may contribute more significantly
in the original space W after inverse mapping, ultimately
leading to suboptimal decomposition.

To address this, we propose an adaptive strategy that selects
low-rank components based on their significance in both the
scaled space SW and the original space W. This enables
the retention of directions whose importance is preserved
under inverse scaling, thereby mitigating the amplification
of quantization errors in the original parameter space.

Figure 3. Layer-wise decomposition error (clipped) of SRR and
QER under S ̸= I (QERA-exact). Naive application of SRR
does not always outperform QER in either Gemma-2 2B (top) or
LLaMA-2 7B (bottom). Layers where SRR performs worse are
shown in purple. Full results with layer names are in Figure 5.

We begin by expressing the SVD of SW as:

SW =

n∑
i=1

σiuiv
⊤
i ,

where σi are singular values and ui, vi are left and right
singular vectors. When these directions are mapped back to
the original space, each contributes:

Wi := σiS
−1uiv

⊤
i ,

with Frobenius norm ∥Wi∥F := σi∥S−1ui∥2. This quan-
tity reflects how strongly each direction in SW contributes
to W. Accordingly, we define a contribution score:

scorei := σi · ∥S−1ui∥2,

which captures the relative importance of the i-th direction
in the original space.

Using this quantity, we retain directions that are considered
spectrally important in both spaces. Let [r] := {1, 2, . . . , r}
denote the indices of the top-r directions ranked by singular
value in the scaled space SW. Separately, let Top-r(scorei)
denote the indices of the r directions with the highest con-
tribution scores. We define the preserved index set as

H := [r] ∩ Top-r(scorei),

and the tail set as L := [n] \ H.

This leads to the following decomposition of W:

W =
∑
i∈H

σiS
−1uiv

⊤
i︸ ︷︷ ︸

preserved

+
∑
i∈L

σiS
−1uiv

⊤
i︸ ︷︷ ︸

tail

,

or, in matrix form:

W = S−1UHΣHV⊤
H + S−1ULΣLV

⊤
L .
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Note that this formulation reduces to SRR in which the top
r directions are selected, when the scaling matrix is the
identity (S = I). Importantly, it incurs negligible additional
cost, as all quantities are derived from the SVD of SW.

Building on this formulation, we apply the decomposition
strategy to Post-Training Quantization (PTQ) by preserving
the dominant directions H and quantizing the tail L:

Q := Q(S−1ULΣLV
⊤
L ), LR := S−1 SVDr(S(W−Q)).

The final approximation is given by

ŴPTQ := Q+ LR.

This embodies the core idea of SRR: it preserves the essen-
tial structure of W through low-rank modeling, while also
resolving the mismatch between SW and W by explicitly
selecting directions that remain important after inverse scal-
ing. As a result, it yields more accurate approximations
under arbitrary scaling matrices S and across layers.

3.4. Application to QPEFT: Freezing Dominant
Directions for Efficient Fine-Tuning

The decomposition Ŵ := Q+ LR can be directly applied
to Quantized Parameter-Efficient Fine-Tuning (QPEFT). In
this setup, the quantized weights Q are kept fixed, and
only the low-rank term LR is updated during fine-tuning.
This aligns naturally with the LoRA framework, where LR
serves as a trainable residual added to a frozen weight, en-
abling efficient adaptation with minimal cost.

In our approach, the low-rank term LR is initialized to
approximate the dominant subspace of the weight matrix.
While this decomposition proves effective for PTQ, directly
fine-tuning the entire LR can degrade performance. Empir-
ically, we observe that unconstrained updates often distort
critical directions aligned with the top singular directions.

To address this, we propose a partial freezing strategy. We
freeze the preserved top k directions, which correspond
to the dominant subspace UHΣHV⊤

H within the low-rank
term (k ≤ r), and fine-tune only the remaining residual
subspace. This approach preserves the principal structure
encoded during quantization while allowing sufficient flexi-
bility for downstream task adaptation.

Let k denote the number of frozen (preserved) directions.
We decompose the rank-r low-rank component as follows:

Lfrozen := S−1U:,:kΣ:k,:k, Rfrozen := V⊤
:,:k

Ltune := S−1U:,k:rΣk:r,k:r, Rtune := V⊤
:,k:r

Only Ltune and Rtune are trainable; the leading directions
Lfrozen and Rfrozen are kept fixed throughout fine-tuning to
maintain the structural integrity of the original model.

To ensure both stability and adaptability, we choose k ≤
r/2, which reserves sufficient capacity in the residual space
for learning. Setting k too large overly restricts adapta-
tion, whereas setting k = 0 may disregard the structure
preserved during quantization. This hybrid strategy bridges
quantization-aware initialization with parameter-efficient
adaptation, offering a robust solution for QPEFT.

4. Experiments
In this section, we evaluate the effectiveness of SRR across
a broad spectrum of models, bitwidths, and baselines, un-
der both PTQ and QPEFT. Complete experimental details
are provided in Appendix A, with PTQ settings detailed
in Appendix A.1 and QPEFT outlined in Appendix A.2.

4.1. Experiments on PTQ

Table 1 presents the perplexity of quantized LLMs
on WikiText2 under the 3-bit PTQ setting using MX-
INT (Darvish Rouhani et al., 2023), evaluated at two low-
rank configurations: r = 8 and r = 64. Our SRR consis-
tently improves perplexity when applied on top of existing
QER methods, confirming its effectiveness across model
scales. Additional PTQ results and further analyses are
provided in Appendix B.

4.2. Experiments on QPEFT.
Table 2 presents results on the eight GLUE (Wang et al.,
2019) tasks under 4-, 3-, and 2-bit quantization using the
MXINT quantizer setting. We apply SRR within the QPEFT
framework by freezing the dominant subspace and updating
only the residual. This structured adaptation consistently
outperforms existing methods across all bitwidths, with
gains especially pronounced at lower bitwidths such as 2-bit,
where quantization artifacts severely degrade model capac-
ity. By preserving dominant directions and fine-tuning only
the residual subspace, our method maintains stability while
enabling effective adaptation. We also outperform iterative
methods such as LoftQ (Li et al., 2023) and LQ-LoRA (Guo
et al., 2024), despite using a single-pass procedure.

This performance advantage also extends to reasoning tasks.
As shown in Table 3, our method achieves the highest accu-
racy on GSM8K (Cobbe et al., 2021) across all quantization
levels, demonstrating robustness in multi-step reasoning
under strong compression.

Importance of Freezing dominant directions. To further
validate the importance of freezing dominant directions we
conduct an ablation study comparing two variants: 1) fine-
tunes the entire low-rank term LR, and 2) freezes the lead-
ing directions while fine-tuning only the residual subspace.
Since our method explicitly stores important structural in-
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Table 1. Perplexity (↓) on WikiText2 under 3-bit PTQ with MXINT. We apply SRR to various baselines across four models and two LR
ranks (r=8, 64). Lower perplexity scores are highlighted in bold. All evaluations are conducted using lm-eval.

Method
TinyLlama 1.1B Gemma-2 2B LLaMA-2 7B LLaMA-3.1 8B
r = 8 r = 64 r = 8 r = 64 r = 8 r = 64 r = 8 r = 64

BF16 13.98 13.08 8.71 7.55
Q

ua
nt

iz
at

io
n

B
its

3.
25

w-only 32.82 41.13 13.33 18.96
ZeroQuant-V2 (Yao et al., 2024) 30.09 25.90 37.74 33.09 12.96 12.99 20.79 19.28

w/ SRR 33.89 25.18 31.93 31.08 13.05 13.30 18.44 18.44
LQER (Zhang et al., 2024a) 24.06 20.63 29.11 21.37 15.59 15.14 13.44 11.90

w/ SRR 23.64 19.86 28.70 21.02 12.49 11.05 13.14 11.76
QERA-approx (Zhang et al., 2025) 23.65 20.52 27.65 21.83 11.55 10.99 13.64 11.72

w/ SRR 22.87 19.54 25.49 19.98 11.32 10.75 12.83 11.45
QERA-exact (Zhang et al., 2025) 21.66 19.23 22.46 19.36 11.15 10.68 12.05 11.00

w/ SRR 21.24 18.70 22.82 18.65 11.05 10.53 11.90 10.74

Table 2. Fine-tuning results on the GLUE benchmark using RoBERTa-base with PEFT under 4-, 3-, and 2-bit quantization (MXINT,
blocksize 16/32). LoftQ and LQ-LoRA are run for 5 iterations. See Appendix A.2 for setup; best results are shown in bold.

Method Rank
MNLI QNLI RTE SST MRPC CoLA QQP STSB

Avg.
Acc. Acc. Acc. Acc. Acc. Matt. Acc. P/S Corr.

16

Full FT – 87.62 93.03 76.53 95.18 89.95 61.79 91.55 90.28/90.05 85.73
LoRA (Hu et al., 2022) 8 87.59 92.68 72.76 95.07 89.76 61.08 90.95 90.09/89.84 84.92

4.
25

QLoRA (Dettmers et al., 2023)

8

86.91 92.29 66.06 94.15 86.76 56.24 90.45 88.95/88.82 82.72
LoftQ (Li et al., 2023) 87.13 91.63 64.26 93.46 87.75 59.07 90.46 88.95/88.84 82.83
QERA (Zhang et al., 2025) 87.07 92.20 64.98 94.15 87.99 58.55 90.45 89.86/89.68 83.14
LQ-LoRA (Guo et al., 2024) 85.89 90.96 54.15 92.32 82.35 42.60 88.67 85.89/85.73 77.84
SRR 87.09 92.64 72.20 94.84 88.48 60.58 90.48 90.06/89.77 84.53

3.
25

QLoRA (Dettmers et al., 2023)

8

86.14 90.76 54.87 90.83 78.92 10.83 89.91 86.77/86.28 73.60
LoftQ (Li et al., 2023) 86.38 90.24 57.04 91.63 81.13 14.52 89.27 86.55/86.24 74.58
QERA (Zhang et al., 2025) 86.49 89.46 57.40 91.74 84.56 28.98 89.26 87.90/87.61 76.95
LQ-LoRA (Guo et al., 2024) 84.70 88.74 54.51 91.63 74.75 24.37 87.61 85.16/85.31 73.95
SRR 86.06 91.87 59.93 93.46 87.50 50.11 90.01 87.97/87.50 80.84

2.
50

QLoRA (Dettmers et al., 2023)

64

78.58 85.34 50.98 89.22 68.63 0 88.08 66.14/66.35 65.88
LoftQ (Li et al., 2023) 81.30 86.63 50.37 91.06 71.08 0 88.48 82.63/82.85 68.96
QERA (Zhang et al., 2025) 84.24 88.61 54.25 90.83 81.37 21.93 89.48 83.61/83.51 74.28
LQ-LoRA (Guo et al., 2024) 83.33 87.26 52.71 89.79 71.83 0 88.32 78.45/79.39 69.02
SRR 85.64 90.96 59.57 92.89 85.78 38.22 90.24 87.43/87.13 78.82

Table 3. GSM8K results for LLaMA-2 7B fine-tuned with PEFT
under 4-/2-bit quantization using MXINT (blocksize 16/32, rank
64), LoftQ and LQ-LoRA is run with 5 iterations. Bold indicates
the highest accuracy, and detailed setup is in Appendix A.2.

Method Rank LLaMA-2 7B (∆acc)

Q
ua

nt
iz

at
io

n
B

its

16 LoRA (Hu et al., 2022) 64 35.41

4.
25

QLoRA (Dettmers et al., 2023)

64

32.21
LoftQ (Li et al., 2023) 28.35
QERA (Zhang et al., 2025) 32.13
LQ-LoRA (Guo et al., 2024) 29.82
SRR 32.87

2.
50

QLoRA (Dettmers et al., 2023)

64

14.03
LoftQ (Li et al., 2023) 15.69
QERA (Zhang et al., 2025) 18.76
LQ-LoRA (Guo et al., 2024) 16.67
SRR 18.95

formation in LR, fine-tuning all directions can degrade
performance by overwriting this initialization. As shown in
Table 4, partial-freezing improves performance across tasks,
confirming the benefit of preserving dominant directions
during adaptation. We also observe that partial-freezing
allows for a larger learning rate without instability, while
non-freezing requires careful tuning and performs poorly at
high learning rates. Even when trained for more epochs, the
non-freeze variant underperforms the partial-freeze setup.

Table 4. Comparison of adapter fine-tuning strategies with and
without partial-freezing on GLUE. “Non-Freeze” updates the full
adapter, while “Partial-Freeze” freezes a subset of dimensions.
Best results are in bold, and per-task results are in Appendix C.

Method Rank LR Epochs Avg.

4.
25

SRR (Non-Freeze)

8

6e-4 5 39.16
SRR (Non-Freeze) 7e-5 5 80.49
SRR (Non-Freeze) 7e-5 20 83.58
SRR (Partial-Freeze) 6e-4 5 84.53

5. Conclusion
We introduced Structured Residual Reconstruction (SRR), a
simple and effective reformulation of QER that preserves
dominant directions before quantization and applies quan-
tization only to the residual. This improves approxima-
tion quality under fixed rank constraints and generalizes to
activation-aware settings and QPEFT by freezing the pre-
served subspace during fine-tuning. Extensive experiments
across PTQ and QPEFT show that SRR consistently out-
performs existing methods, offering a robust framework for
quantization-aware model compression.
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Impact Statement
This work advances the efficiency and reliability of deploy-
ing large language models in resource-constrained environ-
ments. By reformulating quantization error reconstruction
to explicitly preserve dominant structure before quantiza-
tion, our method improves both compression quality and
fine-tuning stability without increasing model size. These
contributions can benefit practitioners seeking to reduce the
memory and compute costs of LLMs while maintaining
high accuracy, thereby broadening access to state-of-the-
art models in practical, real-world settings such as mobile
devices, edge computing, and low-resource platforms.
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A. Experiment Details
A.1. Experiment Details for PTQ

Setup and Quantization Configuration. We evaluate our method under the post-training quantization (PTQ) paradigm
across various scales: TinyLlama-1.1B (Zhang et al., 2024a), Gemma-2 2B (Rivière et al., 2024), LLaMA-2 7B (Touvron
et al., 2023), and LLaMA-3.1 8B (Grattafiori et al., 2024). Weights are quantized to both 4-bit and 3-bit precision using
MXINT (Darvish Rouhani et al., 2023) with block size 32, yielding effective bitwidths of 4.25 and 3.25, respectively.
Low-rank correction terms are computed with rank 32 for 4-bit and rank 64 for 3-bit quantization.

Evaluation Benchmarks. To assess performance comprehensively, we report both language modeling perplexity and
downstream task accuracy. Perplexity is evaluated on WikiText2 (Merity et al., 2017) using lm-evaluation-harness (Gao
et al., 2024).

Baselines. We benchmark our approach against leading PTQ baselines that incorporate low-rank quantization error
reconstruction, including ZeroQuant-V2 (Yao et al., 2024), LQER (Zhang et al., 2024a), and QERA (Zhang et al., 2025) in
both its approximate and exact forms. All baseline implementations are standardized to use the same quantization format,
block size, and calibration data to ensure fair comparison. In addition, we include quantization-only models (w-only) to
isolate the effect of low-rank correction.

A.2. Experiment Details for QPEFT

Configuration Before Finetuning. Baselines include QLoRA (Dettmers et al., 2023), LoftQ (Li et al., 2023),
QERA (Zhang et al., 2025), and LQ-LoRA (Guo et al., 2024). We employ MXINT (Darvish Rouhani et al., 2023),
a block-wise quantization method that leverages shared codebooks to enhance compression efficiency while preserving
model fidelity. GLUE tasks are quantized to 4- and 3-bit precision with block size 32 and PEFT rank 8, while 2-bit quantiza-
tion uses block size 16 with rank 64. For GSM8K, we use both 2-bit (block size 16) and 4-bit (block size 32) configurations,
each with a PEFT rank of 64. Additionally, we adopt five iterations for LoftQ (Li et al., 2023) and LQ-LoRA (Guo et al.,
2024). For QERA (Zhang et al., 2025), we consistently adopt the exact scaling mode, as its second-order activation statistics
can be computed once and reused across PTQ and QPEFT stages, ensuring consistency. While LQ-LoRA originally applies a
Fisher-weighted objective to determine scaling directions, we instead use the same exact scaling for all methods—including
LQ-LoRA—for fair comparison. This choice provides a unified activation-aware basis across baselines and eliminates
confounding factors arising from inconsistent scaling heuristics.

Fine-tuning on Natural Understanding Tasks: GLUE. We evaluate our approach on the GLUE benchmark (Wang et al.,
2019), which comprises eight diverse tasks: MNLI (Williams et al., 2018), QNLI (Rajpurkar et al., 2016), RTE (Dagan et al.,
2006), SST-2 (Socher et al., 2013), MRPC (Dolan & Brockett, 2005), QQP, CoLA (Warstadt et al., 2019), and STSB (Agirre
et al., 2007), and task descriptions are summarized in Table 5. Following prior work (Zhang et al., 2025), we report accuracy
for MNLI, QNLI, RTE, SST-2, MRPC, and QQP; Matthews correlation for CoLA; and Pearson/Spearman correlations for
STSB. All methods are built upon RoBERTa-base (Liu et al., 2019) and fine-tuned using a consistent strategy, where each
model is trained for five epochs. To ensure fair comparisons, task-specific learning rates are selected, with details provided
in Table 6.

Table 5. Descriptions of the eight GLUE tasks used in our evaluation.

Task Description
MNLI Infer relation: entailment / neutral / contradiction
QNLI Does the context sentence answer the question?
RTE Does the premise entail the hypothesis?
SST-2 Sentiment classification (positive/negative)
MRPC Are the two sentences paraphrases?
CoLA Grammatical acceptability
QQP Are the two questions semantically equivalent?
STSB Predict semantic similarity score (0–5) between sentences
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Table 6. Learning rates of RoBERTa-base experiments on GLUE.
Bits Rank Method Learning Rates
16 – Full FT 7e-5, 5e-5, 3e-5, 2e-5
16 8 LoRA 3e-4, 5e-4, 6e-4, 7e-4

4.25 8 QLoRA / LoftQ / QERA / SRR 3e-4, 5e-4, 6e-4, 7e-4
4.25 8 LQ-LoRA 5e-5, 7e-5, 1e-4, 6e-4
3.25 8 QLoRA / LoftQ / QERA / SRR 1e-4, 3e-4, 5e-4, 6e-4
3.25 8 LQ-LoRA 3e-5, 5e-5, 7e-5, 5e-4
2.50 64 QLoRA / LoftQ / QERA / SRR 5e-5, 7e-5, 9e-5, 1e-4, 2e-4
2.50 64 LQ-LoRA 1e-5, 3e-5, 5e-5, 7e-5, 9e-5

Fine-tuning on Reasoning and Language Modeling Tasks: GSM8K. To assess generative capabilities, we evaluate on
GSM8K (Cobbe et al., 2021) for arithmetic reasoning, which is framed as causal language modeling (CLM), with evaluation
based on exact-match accuracy. We fine-tune LLaMA-2 7B (Touvron et al., 2023) using PEFT adapters under 4- and 2-bit
quantization regimes. Models are trained for 10 epochs with a total batch size of 32, and learning rates are swept over
7e−5, 1e−4, 3e−4, 5e−4, excluding LQ-LoRA, for which learning rates are swept over 3e−5, 5e−5, 7e−5, 1e−4. The
best-performing configuration for each method is reported.

A.3. Other Settings

Here, we list the models used in our experiments, along with their sources and licensing information, respectively in Table 7.
Besides, experiments were executed using both eight NVIDIA A100 and eight NVIDIA L40S GPUs, distributed across
separate machines. GPU usage was adjusted based on the task: GLUE experiments were performed on a single GPU per
run, whereas GSM8K experiments utilized 4 GPUs concurrently. All reported results are averaged over three runs with
different random seeds to ensure robustness.

Table 7. Summary of models used in this paper, including source, access method, and license.

Model Source Accessed via License
RoBERTa-Base (Liu et al., 2019) Link MIT License
TinyLlama-1.1B (Zhang et al., 2024b) Link Apache License 2.0

Gemma-2-2B (Rivière et al., 2024) Link Gemma License
LLaMA-2-7B-hf (Touvron et al., 2023) Link LLaMA 2 Community License
LLaMA-2-13B (Touvron et al., 2023) Link LLaMA 2 Community License
LLaMA-3.1-8B (Grattafiori et al., 2024) Link LLaMA 3.1 Community License

B. Additional PTQ Experiments and Analysis
Performance under 4-bit Quantization. Table 8 demonstrates that applying SRR (w/ SRR) reliably reduces perplexity
across all models and base quantization methods under 4-bit PTQ. Improvements are stable across both rank settings,
indicating that SRR effectively decomposes and preserves activation-sensitive structure during quantization. This supports
our central claim that preserving dominant directions before quantization leads to more robust and accurate low-rank
recovery.

Performance on ZeroQuant-V2. SRR does not always outperform ZeroQuant-V2 in perplexity, even though it consistently
reduces the weight reconstruction error. As shown in Figure 4, SRR achieves lower ∥W −Q− LR∥F across all layers
compared to existing QER frameworks, confirming its effectiveness in approximating the original weights. However, in cases
where SRR underperforms, the root cause lies in the limitations of ZeroQuant-V2, which does not account for activation
statistics during quantization. As a result, minimizing the weight error does not necessarily lead to reduced output error
when passing through the quantized layer. Therefore, the observed performance gap is not a failure of SRR, but rather a
consequence of applying accurate weight reconstruction within a pipeline that lacks activation-aware calibration.

SRR in Iterative Quantization. To evaluate our method in iterative quantization settings, we apply SRR in an alternating
update scheme, similar to LoftQ (Li et al., 2023), LQ-LoRA (Zhang et al., 2024a), and CALDERA (Liu et al., 2024). These
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Table 8. Perplexity (↓) of quantized LLMs on WikiText2 under 4-bit PTQ using MXINT. We apply our method to various existing
baselines across four models and two low-rank settings (LR rank r = 8 and r = 32). Lower perplexity scores are highlighted in bold.

Method
TinyLlama 1.1B Gemma-2 2B LLaMA-2 7B LLaMA-3.1 8B
r = 8 r = 32 r = 8 r = 32 r = 8 r = 32 r = 8 r = 32

BF16 13.98 13.08 8.71 7.55
Q

ua
nt

iz
at

io
n

B
its

4.
25

w-only 19.40 16.23 9.45 8.78
ZeroQuant-V2 16.98 16.60 16.01 15.60 9.42 9.42 8.87 8.83

w/ SRR 15.80 16.51 15.82 15.48 9.50 9.45 8.92 8.92
LQER 16.31 15.83 15.30 14.46 9.27 9.22 8.55 8.46

w/ SRR 15.46 15.24 15.11 14.10 9.27 9.22 8.55 8.47
QERA-approx 16.01 15.39 15.12 14.49 9.23 9.17 8.53 8.45

w/ SRR 15.45 15.28 15.12 14.28 9.19 9.13 8.52 8.43
QERA-exact 15.27 15.63 14.50 14.26 9.17 9.12 8.42 8.33

w/ SRR 15.16 15.01 14.66 14.20 9.16 9.09 8.41 8.32

approaches perform iterative updates that alternate between quantizing weights and computing low-rank SVDs, enabling
mutual refinement of quantized and reconstructed components. To remain faithful to the design of SRR—which aims to
preserve dominant directions in the final model—we ensure that the last step always applies low-rank reconstruction rather
than quantization.

Table 9 and Table 10 compare three SRR configurations:

• None: No dominant direction is preserved. This reduces SRR to a plain QER setup, where low-rank parameters are
trained after quantization without any structural guidance.

• Full: Low-rank reconstruction is performed before quantization, using the full set of r directions. Since no selection is
applied, this configuration attempts to reshape the entire weight matrix in advance.

• Top-k (Ours): Only the most impactful k directions, ranked by score, are retained. By focusing reconstruction on this
compact subspace, our method preserves essential information while minimizing interference with quantization.

Across both 3-bit and 4-bit settings, the Top-k configuration consistently achieves the best or near-best perplexity, outper-
forming both the unstructured (Full) and naive (None) alternatives. These results highlight the effectiveness of our rank
selection strategy and further suggest that SRR provides a strong initialization for iterative quantization, helping guide the
optimization toward better local minima from the outset.

Table 9. Perplexity (↓) on WikiText2 under 3-bit PTQ using MXINT, measured after 5 iterative reconstruction steps. We compare three
SRR configurations: None (no preservation), Full (all directions preserved before quantization), and Top-k (ours), which retains only the
top-ranked directions. Lower scores are highlighted in bold.

SRR Rank Selection
TinyLlama 1.1B Gemma-2 2B LLaMA-2 7B LLaMA-3.1 8B
r = 8 r = 64 r = 8 r = 64 r = 8 r = 64 r = 8 r = 64

3.
25

None 21.10 18.22 21.70 17.96 11.05 10.48 12.24 10.60
Full 21.00 17.82 21.91 17.48 10.95 10.41 11.80 10.40
Top-k (Ours) 20.87 17.77 21.90 17.33 11.02 10.37 11.75 10.39

Table 10. Perplexity (↓) on WikiText2 under 4-bit PTQ using MXINT, measured after 5 iterative reconstruction steps. We compare three
SRR configurations: None (no preservation), Full (all directions preserved before quantization), and Top-k (ours), which retains only the
top-ranked directions. Lower scores are highlighted in bold.

SRR Rank Selection
TinyLlama 1.1B Gemma-2 2B LLaMA-2 7B LLaMA-3.1 8B
r = 8 r = 32 r = 8 r = 32 r = 8 r = 32 r = 8 r = 32

4.
25

None 15.19 14.97 14.47 14.07 9.20 9.10 8.42 8.28
Full 15.14 14.93 14.49 14.08 9.17 9.07 8.38 8.26
Top-k (Ours) 15.12 14.85 14.53 14.07 9.15 9.07 8.39 8.25
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C. Discussion on QPEFT
Full results on importance of freezing dominant directions. As shown in Table 11, partial freezing consistently
outperforms full updates under the same rank. This confirms that preserving dominant directions leads to better fine-tuning
stability and accuracy.

Table 11. Comparison of adapter fine-tuning strategies with and without partial-freezing on the GLUE benchmark (RoBERTa-base).
“Non-Freeze” updates the entire adapter, while “Partial-Freeze” selectively freezes a subset of adapter dimensions. Best results are in bold.

Method Rank LR Epochs MNLI QNLI RTE SST MRPC CoLA QQP STSB Avg.
Acc. Acc. Acc. Acc. Acc. Matt. Acc. P/S Corr.

4.
25

SRR (Non-Freeze)

8

6e-4 5 32.95 50.54 47.29 50.92 68.38 0 63.18 NaN/NaN 39.16
SRR (Non-Freeze) 7e-5 5 86.13 90.99 63.90 90.58 87.75 48.75 88.82 87.00/87.07 80.49
SRR (Non-Freeze) 7e-5 20 86.81 92.28 69.68 93.23 88.73 57.83 90.48 89.72/89.50 83.58
SRR (Partial-Freeze) 6e-4 5 87.09 92.64 72.20 94.84 88.48 60.58 90.48 90.06/89.77 84.53
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D. Additional Results on SRR error distribution

Figure 4. Layer-wise decomposition error (full) using SRR and QER under S = I (identity). SRR consistently achieves lower error than
QER in both Gemma-2 (top) and LLaMA-2 (bottom).

Figure 5. Layer-wise decomposition error (Full) of SRR and QER under S ̸= I (QERA-exact). SRR does not always outperform QER in
either Gemma-2 (top) or LLaMA-2 (bottom). Layers where SRR performs worse are shown in purple.
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