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ABSTRACT

Large language models (LLMs) have emerged as a powerful method for discov-
ery. Instead of utilizing numerical data, LLMs utilize associated variable seman-
tic metadata to predict variable relationships. Simultaneously, LLMs demonstrate
impressive abilities to act as black-box optimizers when given an objective f and
sequence of trials. We study LLMs at the intersection of these two capabilities by
applying LLMs to the task of interactive graph discovery: given a ground truth
graph G∗ capturing variable relationships and a budget of I edge experiments over
R rounds, minimize the distance between the predicted graph ĜR and G∗ at the
end of the R-th round. To solve this task we propose IGDA, a LLM-based pipeline
incorporating two key components: 1) an LLM uncertainty-driven method for
edge experiment selection 2) a local graph update strategy utilizing binary feed-
back from experiments to improve predictions for unselected neighboring edges.
Experiments on eight different real-world graphs show our approach often outper-
forms all baselines including a state-of-the-art numerical method for interactive
graph discovery. Further, we conduct a rigorous series of ablations dissecting the
impact of each pipeline component. Finally, to assess the impact of memorization,
we apply our interactive graph discovery strategy to a complex, new (as of July
2024) causal graph on protein transcription factors, finding strong performance in
a setting where memorization is impossible. Overall, our results show IGDA to
be a powerful method for graph discovery complementary to existing numerically
driven approaches.

1 INTRODUCTION

Given a set of variables X1, ..., Xn, the graph discovery task involves finding a graph G∗ on the
nodes X1, ..., Xn whose edges capture causal relationships between the parent (source) and child
(target). Often, observational data can be collected for the variables X1, ..., Xn. This data can
then be used to predict an initial graph G0 using statistical causal discovery techniques (Spirtes &
Zhang, 2016). Recently, large language models (LLMs) have emerged as a competitive alternative
method for predicting causal graphs (Kıcıman et al., 2024; Abdulaal et al., 2024; Chen et al., 2024).
Unlike pre-existing statistical methods, LLMs require no observational data (Kıcıman et al., 2024),
instead relying purely on semantic metadata such as variable names and descriptions. Another
related line a work (Yang et al., 2024) investigates the abilities of LLMs to act as in-context black-
box optimizers. Given an objective function f and an evaluation budget B, the LLM is tasked
with finding a maximizer x∗ of f by sequentially proposing queries {xi}Bi=1 and observing their
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associated values {f(xi)}Bi=1. Taken together, these directions suggest a powerful new application
of LLMs: interactive graph discovery.

Given an initial predicted graph Ĝ0 and a series of experiment rounds 1, ..., R, the interactive graph
discovery problem involves minimizing some distance d(Ĝk, G

∗) between the predicted graph Ĝk at
round k and the true graph G∗ (unknown to the learner) through a sequence of targeted experiments
on edges e = (X,Y ) testing the effect of the parent variable X on the child variable Y . The edge
experiment operation is kept purposefully abstract, requiring only that binary feedback be given
indicating the presence or absence of an edge. In practice this operation can be implemented via
any number of experimental procedures (e.g. via hard interventions in the formal causal sense
(Pearl, 2009) or empirical methods such as randomized controlled trials (Sibbald & Roland, 1998)).
The IGD problem setup captures the process researchers go through everyday when designing and
prioritizing experiments, guided by their prior experience, to study numerous potential relationships
between any number of variables.

The interactive graph discovery problem requires the agent to solve two key sub-tasks:

1. Experiment selection: Selecting which edges (Xi, Xj) to target for experimentation in the next
round.

2. Graph updates: Updating the predicted graph from Ĝk−1 to Ĝk given binary feedback based
on the outcome of the previous experiments.

We propose to solve this task with the Interactive Graph Discovery Agent (IGDA): a novel LLM
agent uncertainty-driven approach as an alternative to existing statistical methods (Olko et al., 2024;
Scherrer et al., 2022). While statistical models can work well in some settings, they crucially rely
on the abundance of domain specific observational and interventional numerical data. For many
problems, such data might be hard or impossible acquire. LLMs, however, potentially contain rel-
evant latent knowledge derived from vast amounts of variable semantic metadata contained in their
pre-training or internet corpora. Further, we find that, via a combination of broad background knowl-
edge and reasoning abilities, advanced LLMs (Grattafiori et al., 2024) are capable of updating their
predictions and confidences when presented with experimental feedback revealing unexpected rela-
tionships between a subset of edges. This makes LLM based approaches a powerful alternative to
statistical methods when numerical data is not available.

In particular, IGDA predicts and maintains uncertainty estimates for each unknown edge e ∈ Ĝk.
Edges are then selected for experimentation by prioritizing those with the highest uncertainty. When
feedback is received on the selected edges, pairwise-local updates on both edge predictions and
uncertainty estimates are performed for each edge in Ĝ sharing a parent or child variable with an
experimented edge. This process continues for R rounds with I edges selected for experimentation
each round. We benchmark IGDA on eight real world graphs, finding uncertainty driven selection
with local updates outperforms baselines. In summary, we make the following contributions:

• The interactive graph discovery problem as a novel setting for evaluating LLM capabilities.
• LLM-based uncertainty-guided edge experiment selection as a policy for prioritizing edge exper-

imentation.
• A local update strategy for robustly updating the predicted graph Gk with binary experiment

feedback.
• Ablations rigorously evaluating the contribution of each pipeline component and other discovery

strategies.

2 BACKGROUND AND RELATED WORK

Causal Discovery and LLMs. The causal discovery task involves learning causal relationships
from observed empirical data (Peters et al., 2017; Spirtes & Zhang, 2016). Many proposed algo-
rithms exist (Spirtes et al., 1993; Yu et al., 2019; Nauta et al., 2019; Zheng et al., 2018; Chickering,
2002) attempting to solve the causal discovery problem. However, these methods are known to
struggle on real world graphs where observations are noisy or common structural assumptions are
violated (Chevalley et al., 2023; Tu et al., 2019).
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Recently, LLMs have emerged as an alternative approach to causal discovery (Kıcıman et al., 2024;
Abdulaal et al., 2024; Vashishtha et al., 2023; Li et al., 2024; Lampinen et al., 2023). Kıcıman et al.
(2024) first investigated the capability of LLMs to act as zero-shot causal discovery agents using
only semantic information and pairwise prompting on each variable pair. Follow-up work (Abdulaal
et al., 2024) further improves LLM predictions with observational data by selecting for predictions
which maximize data likelihood. Vashishtha et al. (2023) utilize triplet prompting to prevent cycles
when the causal graph is acyclic. They show only a topological ordering on variables is required
for many common causal reasoning tasks (Chu et al., 2023). Other works (Zhou et al., 2024; Chen
et al., 2024) benchmark LLMs across a range of causality related tasks including causal discovery
and causal inference confirming that LLMs struggle with integrating numerical data.

Another line of work more related to our proposed interactive causal discovery problem studies how
to incorporate background knowledge into causal discovery algorithms (Meek, 2013). Define a set of
background knowledge as the tuple K = (F,R), where F specifies a set of “forbidden” graph edges
and R specifies a set of “required” graph edges. Meek (2013) presents an algorithm for constructing
a causal graph consistent with K by leveraging an assumed structural directed acyclic graph (DAG)
property. Building on Meek (2013), Chickering (2002) proposes a greedy search algorithm that
performs well in practice.

Most related are statistical methods from the causal discovery literature which aim to efficiently
choose a sequence of interventions to discover causal structure (Scherrer et al., 2022; Olko et al.,
2024). In particular, Gradient based Interventional Targeting (GIT) (Olko et al., 2024) utilizes
existing neural causal discovery methods (Lippe et al., 2022) to learn a distribution over possible
graph structures and variable assignments. For each round of intervention, GIT prioritizes variables
whose simulated interventional distribution have large gradient with respect to the structural training
loss.

In contrast to these works, our proposed algorithm utilizes LLMs to reason about the seman-
tic/physical, as opposed to formal/structural, relationships between variables and edges in causal
graphs. For this reason we are not required to make any structural assumptions on an underly-
ing DAG, as is common in the causal discovery literature. This is desirable as in practice many
real-world causal graphs are cyclic and poorly structured (Zhu et al., 2024; Huang et al., 2021).
Additionally our method does not rely on observational or interventional data for real world graphs
which may be expensive to acquire but crucial for good performance with statistical methods.

LLMs as Optimizers. Another growing line of work utilizes LLMs as black-box optimizers (Yang
et al., 2024; Roohani et al., 2024). Yang et al. (2024) introduce the notion of an LLM as a generic
optimizer and use it to optimize performance objectives stemming from a range of tasks including
linear regression and mathematical word problems (Cobbe et al., 2021). Other works (Madaan
et al., 2023; Havrilla et al., 2024) examine the self-refinement capabilities of LLMs where the LLM
must reason and self-improve on earlier responses. A growing number of papers apply LLMs to
optimal experiment design and discovery (Roohani et al., 2024; AI4Science & Quantum, 2023; Gao
et al., 2024; Majumder et al., 2024; Jansen et al., 2024). Roohani et al. (2024) apply LLMs to
gene discovery tasks which aim to find highly-influential parent genes affecting the regulation of
a downstream target gene. Majumder et al. (2024); Jansen et al. (2024) both present benchmarks
evaluating the ability of LLMs to perform real-world and synthesized discovery tasks.

3 METHOD

Setup. As input we are given a set of variables X1, ..., Xn with associated metadata including
variable names and variable descriptions. We use the notation Y → X to indicate when variable Y
has a direct effect on variable X and the set of parents of a variable X as Pa(X) = {Xi : Xi → X}.
We can then consider the directed ground truth graph G∗ = {(Xi, Xj) : Xi ∈ Pa(Xj)} with
unlabeled and unweighted edges. The only assumed graph structure is simplicity i.e. no self-edges
or multi-edges. No additional structure on the graph (such as acyclicity) is assumed. We can frame
the prediction of G∗ as an edge-wise binary classification problem over the complete graph Kn,
where an edge (Xi, Xj) has the label lij = 1 if Xi → Xj and lij = 0 otherwise. G∗ can then be
written as a collection of ground truth labelings G∗ = {(Xi, Xj , lij) : 1 ≤ i ̸= j ≤ n}.
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Figure 1: Diagram of the interactive graph discovery process through LLMs. The process begins by
predicting edges and confidences for each edge. Interactive discovery then proceeds by selecting the
most uncertain edges for experimentation. The LLM then updates its predictions and confidences
for edges adjacent to the selected edge. Note: only edges predicted as present are shown.

The interactive graph discovery task then aims to learn G∗ by interacting with the discovery envi-
ronment via experiments on each edge (Xi, Xj). We define an experiment on an edge (Xi, Xj) as
an operation revealing the ground truth label li,j . This experiment operation is purposefully kept
abstract for generality and could correspond to any number of real-world experimental experimen-
tal strategies including formal do operations (Pearl, 2009) or empirical randomized control trials
(Sibbald & Roland, 1998). Interactive graph discovery then proceeds in two phases:

Phase 1 (Zero-shot prediction): Produce an initial graph prediction Ĝ0 using available
variables X1, ..., Xn plus semantic metadata.

Phase 2 (Interactive Discovery): Over a series of R rounds, propose I edge experiments
on (Xi, Xj) each round and receive binary feedback on lij . Use this to produce an updated
prediction Ĝr−1 → Ĝr

We evaluate the accuracy of a prediction Ĝ using the F1 objective, i.e.

F1(G∗, Ĝ) =
2 · PrecisionĜ · RecallĜ

PrecisionĜ + RecallĜ

where PrecisionĜ and RecallĜ are computed with the label predictions (Xi, Xj , l̂ij) ∈ Ĝ and
lij as ground truth. The goal of the interactive discovery process is then to maximize F1(G∗, ĜR).

Method. Our proposed method IGDA begins by generating a zero-shot graph prediction Ĝ0. A
prediction for each variable pair (Xi, Xj), 1 ≤ i ̸= j ≤ n, is generated by prompting an LLM to
reason about Xi → Xj in a manner similar to the pairwise-prompting strategy utilized in Kıcıman
et al. (2024). In addition, we prompt the LLM to reason about its confidence in the prediction
and output a confidence score from 1 - 100. Section B shows the exact prompt used. To obtain a
reliable confidence estimate we sample the LLM K = 16 times. We denote the initial confidence
for (Xi, Xj) as c0ij and set it to be the (signed) average over K = 16 output confidences. The initial
edge label l0ij is then taken as the boolean l0ij = 1c0ij≥0. This gives us the initial prediction Ĝ0.

Next, in each experimentation round r ≤ R, we sort the confidence scores {crij : 1 ≤ i, j ≤ n}
by absolute value and experiment on the I edges with the lowest absolute confidence (and highest
uncertainty). This reveals the ground truth labels lij for for each experimented edge (Xi, Xj). Using
this feedback, we update the predicted edge labels for experimented edges to lr+1

ij = lij and the
confidences to cr+1

ij = 100. Additionally, we prompt the LLM, conditioned on the ground truth label
lij , to update its prediction and confidence for each edge (Xi, Xk) or (Xl, Xj), 1 ≤ k, l ≤ n which
shares a node with (Xi, Xj) and has absolute confidence less than 100. We call each update to an
edge (Xl, Xk) a local update. It may be that an edge (Xl, Xk) is adjacent to multiple experimented
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Figure 2: Results on real world graphs showing F1 score of the predicted graph against percentage
of edges in the graph selected. IGDA almost always outperforms both the random baseline and static
selection via uncertainty. Note: static confidence selection without local updates is deterministic and
thus has no confidence intervals. Additionally, GIT is not reported on the Arctic graph because the
grpah is cyclic.

edges (Xi1 , Xj1), (Xi2 , Xj2) in a single round and thus receives multiple local updates. To manage
these cases we set the next confidence cr+1

lk to the (signed) average of all individual local updates to
crlk. Then we set lr+1

lk = 1clk≥0 as before. This continues until the final round R is reached.

We call the complete discovery pipeline the Interactive Graph Discovery Agent (IGDA). A diagram
of the full pipeline is shown in Figure 1. We report all prompts in sec:prompts.

4 RESULTS

We evaluate our approach on seven real-world graphs. The graphs range in size from 8 to
30 nodes (variables) and vary widely in structure (some are acyclic while others are cyclic).
Details for each graph can be found in Appendix C. To produce initial zero-shot graph pre-
dictions Ĝ0 for all graphs we utilize pairwise causal prompting as in Kıcıman et al. (2024)
with Meta-Llama-3-70B-Instruct (Grattafiori et al., 2024) as the base LLM. We chose
Meta-Llama-3-70B-Instruct as at the time of our experiments it was the best open-source
model with advanced reasoning and instruction following capabilities For the interactive discovery
phase we then initialize all methods using Ĝ0. We compare our method against several baselines:

Random selection: Starting from Ĝ0 we randomly select edges for experimentation. After
receiving binary feedback we update incorrect predictions on experiment edges for the next
round. We do not allow edges to be selected for experimentation twice.

Static confidence selection: We select edges for experimentation based on the initial con-
fidence scores cij . No updates are performed beyond fixing incorrect predictions in the
experimentation set.

Gradient-based Intervention Targeting (GIT): We adapt the statistical GIT method
(Olko et al., 2024) by selecting the node at each round which has a) not already been se-
lected and b) has the largest loss gradient under a neural causal model (Lippe et al., 2022)
trained with all available observational and interventional training data. We initially train
the model with 5000 observational datapoints sampled from the ground-truth graph. 100
additional interventional datapoints on the experiment node are sampled from the ground-
truth graph and added to the training set after each round of experimentation.

Meta-Llama-3-70B-Instruct is used as the base LLM when applicable. To assess perfor-
mance, we plot the mean F1 score, averaged over five independent runs, against the percentage of
edges selected in each graph. Results are shown in Figure 2.
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Figure 3: Average rank of each method when numbered from 0 to 2 across each timestep on each
graph. The full LLM driven update agent consistently achieves rank 0 across all timesteps. Note:
lower is better.

Uncertainty driven experiment selection with local updates performs best. Uncertainty driven
experiment selection with the LLM utilizing experimental feedback for local updates performs best
on nearly all graphs. Further, it outperforms the random selection baselines at nearly every round on
every graph, at times by up to 0.5 absolute F1 score. The only exception to this is the Arctic sea ice
graph where local updates initially perform poorly. We attribute this to the highly cyclic and thus
harder-to-predict graph structure. Additionally, the method significantly outperforms the statistical
GIT baseline on both Az and Covid graphs and remains competitive on the rest. Figure 3 plots the
average rank of all methods over all timesteps, confirming IGDA’s strong performance. Notably,
even on graphs where the LLM proposes a poor zero-shot initial prediction, the LLM is able to
recover quickly, converging to the correct structure with local updates. This suggests the LLM is
able to effectively utilize experiment feedback even when lacking detailed domain knowledge.

Local updates can outperform random selection even with few experiments. Allowing the
LLM to make local edge updates using experiment feedback quickly improves the predicted graph
even when relatively few edges are selected. This behavior is particularly desirable, as in practice
it may be expensive to experiment on even a small fraction of all edges. On some graphs, where
the initial LLM confidence estimates are good, the static confidence selection baseline without local
updates is also able to quickly outperform random selection. Yet, even when the initial confidence
estimates are subpar, local updates compensate and allow for the prediction to quickly improve with
just a few edge experiments. This again demonstrates the broad effectiveness of local updates even
when initial predictions are poor.

Static uncertainty driven selection performs better than random selection. Despite not fully
utilizing experimental feedback, static uncertainty driven selection still outperforms the random
selection baseline on five out of seven graphs. This method performs particularly well on AZ and
Covid graphs where the initial LLM predictions are already reasonably good. On these graphs static
uncertainty selection quickly outperforms randomly selection and is competitive even with local
updates. This shows that, on a subset of the graphs, the LLM’s confidence in its predictions are
well-calibrated, allowing our selection policy to prevent wasting experiments on edges which are
most likely already correct. However, we also see the LLM’s confidence estimates can be poorly
calibrated on graphs for which the initial predictions are inaccurate. See for example the Asphyxia
and Neuropathic pain graphs, which start with initial F1 score less than 0.2. On these graphs the
static confidence selection component struggles to outperform the random baseline.

GIT performance heavily depends on availability of both observational and interventional data
With ample data (5000 observational samples and 100 interventional samples per node) the statis-
tical GIT methods performs well on most graphs where it is applicable (i.e. the graph is acyclic).
However, we find this good performance heavily depends on the availability of such data, with
decreases in both observational and interventional sample sizes significantly impacting results. In
Figure 18 we plot the performance of GIT on the Asphyxia graph with varying amounts of data
demonstrating this effect. Results on more graphs are presented in the appendix. In contrast, IGDA
does not depend at all on the availability of numerical observational or interventional data. Instead,
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Figure 4: % Improvement from experiments vs. LLM prediction updates across timesteps. Improve-
ment directly from LLM updates peaks early but then falls off. Improvement from experiments stays
constant or improves with more experiments as confidence scores become better calibrated.

IGDA relies on the complementary availability of semantic metadata of graph variables within either
its pretraining dataset or on the internet.

In an effort to better understand the factors behind IGDA’s success we conduct a number of ablations
in the following section.

4.1 ABLATIONS

Impact of experiment improvements versus update improvements As a starting point we de-
fine the net graph improvement in a round r as the difference between the number of edges correctly
classified in in Ĝr versus in Ĝr−1. If an edge (Xi, Xj) is correctly classified in Ĝr but not in
Ĝr−1 we say it has been improved. Recall there are two potential mechanisms of improvement for
(Xi, Xj): 1) (Xi, Xj) was selected for experimentation in the previous round r − 1 and feedback
on the experiment was received at the start of round r 2) The prediction for (Xi, Xj) was updated
by the LLM after receiving experiment feedback for an adjacent edge (Xk, Xl). We call the former
improvements experiment improvements and the latter update improvements. In a given round r we
are interested in how much of the net improvement for a graph is due to experiment improvements
versus update improvements. To examine this, we plot both quantities in Figure 4 for the discovery
processes discussed in the previous section. In addition, we plot the net graph improvement and
total number of edges changed from each round.

In all seven graphs we see both the total number of changed edges and the net improved edges peak
at the first round and then decay towards zero. Notably, on some graphs there is a significant gap
between net improvement and total change, indicating many edges changed during dynamic updates
are misclassified after previously being correctly classified. This decline in total and net change
is reflected in the number of update improvements which peak early and sharply decline to zero.
This observation supports our intuition above that allowing the LLM to dynamically update edge
predictions without direct experimental feedback on the edge can dramatically improve performance
at small percentages of experiments. In contrast, experiment improvement accounts for a smaller
percentage (less than 40%) of edge improvements early on. However, in most graphs the number
of experiment improvements stays nearly constant until at least 50% of edges are already selected.
As a result, improvement from experiments grows to account for 90% of all edge improvements
for rounds performed during this period. This demonstrates improvements from experiment and
updates complement each other, with update improvement driving net improvement early and
experiment improvement driving net improvement later on.

Our analysis here also confirms the effectiveness of allowing the LLM agent to update both the pre-
diction and confidence for an edge. Even when only considering improvements from experiments
when doing local updates, we see a major improvement over the static confidence baseline. This
suggests the updates made to edge confidence scores are equally important in achieving good
performance, allowing for sustained experiment improvement throughout the discovery process.
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Figure 5: Ablating confidence based edge selection and local update prompting.

Figure 6: Performance of LLM driven interactive discovery on different sized models. Small LLMs
(8B params) underperform the random baseline.

Impact of Confidence Based Selection and Local Prompting We now ablate the impact of two
key components of our discovery strategy: 1) confidence based edge selection and 2) local update
prompting. To ablate 1) we directly prompt the LLM to generate a list of edges to experiment
on instead of selecting via confidence. This requires us to put the entire current predicted graph
Ĝr in-context. When dynamically updating Ĝr after receiving experimental feedback we remove
all confidence estimates but retain the local prompting strategy. To ablate 2) we retain the same
confidence edge selection proposed but replace local update prompts after with a single global update
prompt containing the current prediction Ĝr and all recently received experiment feedback. We
report the results of running the interactive discovery process with these methods in Figure 5.

We find both ablations struggle to perform better than the random baseline. Local updates without
confidence selection perform well early on but fall off quickly. F1 score on the Covid graph even
regresses after the initial improvements, likely due to incorrect local updates and a poor experiment
selection policy. This suggests in addition to providing a strong experiment selection procedure,
maintaining running confidence estimates for each edge reduces the variance of local updates from
experiment feedback. Turning to the ablation for local prompting, we again find performance not
much better than the random baseline. Surprisingly, even on Covid where the static confidence
selection performs well, confidence based selection + global updates still struggles. This indicates
the base LLM is not able to correctly update the predicted graph when giving everything in context
at once. This further motivate the practical importance of the local prompting procedure, which
greatly simplifies the context the LLM must consider in each model call. Additionally, we note
that for large enough graphs, putting everything in context is simply not feasible. By contrast, local
prompting is easily scalable to larger graphs, albeit at a quadratic cost.

Impact of the LLM Model Size The above experiments exclusively use a single base LLM (
Meta-Llama-3-70B-Instruct) to perform both the initial round of zero-shot edge predic-
tions and dynamically update edge predictions/confidences using experiment feedback. Now, we
examine the impact of changing both the base model size and type. In Figure 6 we initialize the dis-
covery process with zero-shot predictions made by Meta-Llama-3-70B-Instruct and run
local updates using the smaller Meta-Llama-3-8B-Instruct as well as two models from
the Qwen2 series.

We find the original Meta-Llama-3-70B-Instruct consistently performs best on all graphs
at every time step. The other 70B model, Qwen2-72B-Instruct, performs similarly but con-
sistently worse. In contrast, on the Asia and Covid graphs, both 8B models perform worse than even
the random baseline. Surprisingly Meta-Llama-3-8B-Instruct performs reasonably well
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Figure 7: Performance curves of uncertainty driven selection + local prompting vs. baselines on the
Brain graph (Zhu et al., 2024) recently published in July 2024. Both LLM-driven methods perform
well despite the graph not possibly being in the LLM’s training data. Note: GIT is not reported
because the graph is cyclic.

on the Sangiovese graph, performing similarly even to the 9x larger Qwen2 70B model. Overall
however these results indicate performance on the interactive graph discovery task can be substan-
tially improved with model scale.

We next investigate the performance of different models on the initial zero-shot edge prediction
task. Using the pairwise confidence estimation prompt in Section B we prompt each of four models
to produce a zero-shot prediction Ĝ0 with edge confidence values. Using the predicted confidence
estimates we run greedy static confidence selection procedure as in 4. Ranks for each selection
procedure averaged over all graphs are plotted in Figure 9. F1 scores in each graph are reported in
Figure 8 in the Appendix.

Impact of Memorization The success of LLMs in discovery stems from their immense back-
ground knowledge acquired during pre-training. This background knowledge informs the model
during edge prediction and confidence calibration, allowing for strong performance even zero-
shot. However, if benchmark graphs are contained verbatim in pre-training data, memoriza-
tion becomes a significant confounding factor. To investigate to what extent memorization im-
pacts performance we find a recently published graph (published in July 2024) from Zhu et al.
(2024) modeling the gene regulatory network underlying 29 protein transcription factors. Because
Meta-Llama-3-70B-Instruct finished training in 2023 this graph is guaranteed to be mem-
orization free. Figure 7 plots the performance of uncertainty driven edge selection + local updates
compared to the static selection and random baseline.

Figure 7 shows our confidence driven selection + local update approach performs very well even on
graphs with minimal memorization contamination. As previously observed, local prediction updates
allow for fast improvement over the random baseline even with a small number of experiments. Sur-
prisingly, the static confidence selection approach also works well here. This indicates zero-shot
edge confidence scores can be well calibrated on graphs with no contamination from memoriza-
tion. We additionally note this graph has a complex structure with many cycles of varying lengths.
This shows our method performs well even on graphs which strongly violate often assumed DAG
conditions.

5 CONCLUSIONS AND FUTURE WORK

In this work we proposed IGDA as a novel application of LLMs to interactive graph discovery. Our
experiments confirm the proposed IGDA method significantly outperforms baselines. Our ablations
confirm both uncertainty driven edge selection and local updates using experiment feedback as im-
portantly contributing to the method’s good performance. Further, this method is complementary to
existing statisical methods for experiment design or causal discovery (e.g. GIT (Olko et al., 2024)).
Statistical methods utilize available observational/interventional numerical data to make predictions
and confidence estimates whereas IGDA utilizes available variable semantic metadata to make pre-
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dictions and confidence estimates. Designing a method leveraging both numerical and semantic
variable data is promising future work.

Ethics Statement As with any work studying generative models, we note generative modeling
can suffer from pre-existing biases in the training data. This behavior may help propagate existing
societal biases present today.

Reproducibility Statement This work utilizes only open-source models and datasets making it
100% reproducible. All benchmark graphs are documented in Appendix Section C. We additionally
plan to release code in the case of an acceptance.
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A STATIC CONFIDENCE SELECTION OVER MULTIPLE MODELS

Figure 8 reports the results of applying static confidence experiment selection using various models.

Figure 8: Static confidence selection over multiple models.
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Figure 9: Static confidence based selection ranks for different models averaged across graphs.
Meta-Llama-3-70B-Instruct is the only model to consistently outperform random guess-
ing. Note: lower is better.

B PROMPTS

Zero-shot Confidence Estimation Prompt

[ht] {task description} Your goal is to understand the direct causal parents of {target}. An-
other variable is a direct causal parent of {target} if an experiment on the variable affects
{target} and there are no other causal parents between the variable and {target}. Now, you
must determine whether {parent} is a causal parent of {target}. Here is a list of all other
variables to consider:
{variables info}
Do some brainstorming, comparing relevant characteristics of both variables and then print
your judgment at the end of your response enclosed in the tags decision YES/NO/decision .
Print YES if {parent} is causal. Otherwise print NO. You should also print your confi-
dence from a scale from 1 - 100 (with 100 being most confident) in the tags confidence ...
/confidence .
Information about {target}: {target info}
Information about {parent}: {parent info}
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Parent Update Prompt

You are a causal discovery expert. You have been given the following list of variables and
tasked with predicting the true causal graph through a sequence of experiments on edges.
{variables info}
Note: each edge has an associated confidence value from 1 - 100. The presence of an edge
is represented as (A− >B,CONFIDENCE) where A is the parent and B is the child. The
absence of an edge is represented as (NOT A− >B, CONFIDENCE)
From one experiment you have discovered {experiment feedback} Previously you predicted
{experiment prediction}
Now you should update your belief about the other edges of {parent} based on the results
of the experiment. Consider the predicted edge
{other edge prediction}
Now you should reason about how to update your belief about the above edge based on
the experiment. This means you can either keep your confidence the same, update your
confidence, or change your prediction entirely. At the end of your response give your
updated prediction at the end of your response in the format decision PARENT/NOT
CAUSAL/decision¿ confidence CONFIDENCE/confidence . Print ’PARENT’ if the edge
should be present and ’NOT CAUSAL’ if the edge should be absent.
You should do this in three steps.
Step 1: Brainstorm what physical causal connection there may be, if any.
Step 2: Reason about what the experiment feedback tells you. Think carefully about how
similar the new child is to the experimental child.
Step 3: Give your final decision.

Child Update Prompt

You are a causal discovery expert. You have been given the following list of variables and
tasked with predicting the true causal graph through a sequence of experiments on edges.
{variables info}
Note: each edge has an associated confidence value from 1 - 100. The presence of an edge
is represented as (A− > B,CONFIDENCE) where A is the parent and B is the child. The
absence of an edge is represented as (NOT A− >B, CONFIDENCE)
From one experiment you have discovered {experiment feedback} Previously you predicted
{experiment prediction}
Now you should update your belief about the other edges of {child} based on the results of
the experiment. Consider the predicted edge
{other edge prediction}
Now you should reason about how to update your belief about the above edge based on
the experiment. This means you can either keep your confidence the same, update your
confidence, or change your prediction entirely. At the end of your response give your
updated prediction at the end of your response in the format decision PARENT/NOT
CAUSAL/decision confidence CONFIDENCE/confidence . Print ’PARENT’ if the edge
should be present and ’NOT CAUSAL’ if the edge should be absent.
You should do this in three steps.
Step 1: Brainstorm what physical causal connection there may be, if any.
Step 2: Reason about what the experiment feedback tells you. Think carefully about how
similar the new parent is to the experiment parent.
Step 3: Give your final decision.
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C CAUSAL GRAPHS

Figure 10: Arctic sea ice causal graph.
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Figure 11: Asia causal graph.

Figure 12: Asphyxia causal graph.
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Figure 13: Alzheimers causal graph.

Figure 14: Covid causal graph.
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Figure 15: Neuropathic pain causal graph.

Figure 16: Sangiovese causal graph.
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Figure 17: Brain causal graph.

D GIT ABLATIONS

Figure 19 plot GIT performance (Olko et al., 2024) over six causal graphs with varying amounts of
observational and interventional data.

Figure 18: GIT with varying amounts of observational and interventional data. Decreasing either
observational or interventional sample sizes can decrease performance by over 0.2 F1 score.
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Figure 19: GIT ablations with varying amounts of observational and interventional data.
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