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Abstract

Multilingual pre-trained models are known to001
suffer from the curse of multilinguality, which002
causes per-language performance to drop as003
they cover more languages. We address this is-004
sue by introducing language-specific modules,005
which allows us to grow the total capacity of006
the model, while maintaining the total num-007
ber of trainable parameters per language. In008
contrast to prior work which learns language-009
specific components post-hoc, we pre-train the010
modules of our Cross-lingual Modular (X-011
MOD) models from the start. Our experiments012
on natural language inference, named entity013
recognition and question answering show that014
our approach not only mitigates the negative015
interference between languages, but also en-016
ables positive transfer, resulting in improved017
monolingual and cross-lingual performance.018
Furthermore, our approach enables adding lan-019
guages post-hoc with no measurable drop in020
performance, no longer limiting the model us-021
age to the set of pre-trained languages.022

1 Introduction023

Recent work on multilingual NLP has focused on024

pre-training transformer-based models (Vaswani025

et al., 2017) on concatenated corpora of a large026

number of languages (Devlin et al., 2019; Conneau027

et al., 2020). These multilingual models have been028

shown to work surprisingly well in cross-lingual029

settings, despite the fact that they do not rely on030

direct cross-lingual supervision (e.g., parallel data031

or translation dictionaries; Pires et al., 2019; Wu032

and Dredze, 2019; Artetxe et al., 2020; Hu et al.,033

2020; K et al., 2020; Rust et al., 2021).034

However, recent work has uncovered fundamen-035

tal limitations of multilingual transformers. Con-036

neau et al. (2020) observe that pre-training a model037

with a fixed capacity on an increasing amount of038

languages only improves its cross-lingual perfor-039

mance up to a certain point, after which perfor-040

mance drops can be measured—a phenomenon041
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Figure 1: A transformer layer of our proposed modular
architecture. The dark blue and green components il-
lustrate the modular layers which are language specific.
The Multi-Head Attention and Feed-Forward compo-
nents are shared between all languages.

known as the curse of multilinguality (Figure 2). 042

As such, prior work had to find a trade-off between 043

supporting more languages and obtaining better 044

performance on a smaller set of languages. 045

In this work, we address this problem by in- 046

troducing language-specific, modular components 047

during pre-training (Figure 1). Our Cross-lingual, 048

Modular (X-MOD) language model shares the ma- 049

jority of the transformer parameters between all pre- 050

training languages, while providing each language 051

with individual capacity to learn idiosyncratic in- 052

formation without increasing the total number of 053

trainable parameters per language. While previous 054

adapter-based approaches (Figure 3a) extend pre- 055

trained multilingual language models (LMs) with 056

modular components after pre-training, we add 057

modular components during pre-training, thereby 058

preparing the model to be extended to new lan- 059

guages post-hoc. Our experiments on natural lan- 060
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Figure 2: Average (a) perplexity and (b) transfer performance on XNLI and NER, across pre-trained language
when training on an increasing amount of languages. Each model has seen the same amount of examples in
each language. Lower perplexity and higher mean downstream score indicate better performance. For a per-task
performance please refer to Figure 4. For per-language performance please refer to Appendix Tables 10, and 11.

guage inference (NLI), named entity recognition061

(NER), and question answering (QA) demonstrate062

that our modular architecture not only is effective at063

mitigating interference between languages, but also064

achieves positive transfer, resulting in improved065

monolingual and cross-lingual performance. In ad-066

dition, we show that X-MOD can be extended to067

unseen languages, with no measurable drop in per-068

formance, by learning its corresponding modules069

and leaving the shared parameters frozen. All in070

all, we propose a multilingual architecture that can071

scale to a large number of languages without any072

loss in performance, and can be further extended073

to new languages after pre-training.1074

2 Background and Related Work075

We provide a background on modular and multi-076

lingual language modelling, as well as approaches077

that extend LMs to new languages.078

2.1 Multilingual Transformers079

Recent LMs (Devlin et al., 2019; Conneau et al.,080

2020), based on transformer architectures (Vaswani081

et al., 2017) and pre-trained on massive amounts082

of multilingual data, have surpassed (static) cross-083

lingual word embedding spaces (Ruder et al., 2019;084

Glavas et al., 2019) for cross-lingual transfer in085

NLP (Pires et al., 2019; Wu and Dredze, 2019;086

Wu et al., 2020; Hu et al., 2020; K et al., 2020).087

Transformer-based models are 1) pre-trained on088

textual corpora using Masked Language Modelling089

(MLM). They are then 2) fine-tuned on labelled090

data of a downstream task in a source language and091

3) directly applied to perform inference in a target092

language (Hu et al., 2020).093

1We will release pre-trained weights and code.
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Figure 3: Our proposed architecture in comparison
to adapter-based approaches. (a) Previous approaches
¬ utilize non-modular pre-trained transformer models
and  extend them with modular adapter components.
(b) We ¬ pre-train the transformer with modular units
from the get-go, preparing the model to be  extended
with additional modular units later on. Yellow and
light blue components indicate standard Multi-Head
Attention and Feed-Forward layers. The remaining
(non-gray) components are bottle-neck (modular) units.
Grayed-out components are frozen.

2.2 Modular Language Models 094

Modular approaches have a long standing history 095

in NLP, preceding pre-trained models (Andreas 096

et al., 2016). They have recently re-gained in- 097

terest for transformer-based models, where mix- 098

ture of experts (MoE; Shazeer et al., 2017) ap- 099

proaches have enabled training trillion parame- 100

ters models in a distributed fashion (Fedus et al., 101

2021). More recently modular MoE approaches 102

have been shown to improve domain-specific pre- 103

training of LMs (Gururangan et al., 2021). In a 104

similar trend, ‘expert’ modules have been added 105

to (non-modular) pre-trained LMs post-hoc, pre- 106

dominantly referred to as adapters (Rebuffi et al., 107
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2017, 2018; Houlsby et al., 2019). Next to being ex-108

tremely parameter (Houlsby et al., 2019; Mahabadi109

et al., 2021a; He et al., 2021) and training efficient110

(Pfeiffer et al., 2020a; Rücklé et al., 2021), these111

modular approaches allow models to be extended112

to new data settings (Chen et al., 2019; Rücklé113

et al., 2020), where newly learned knowledge can114

be combined (Stickland and Murray, 2019; Wang115

et al., 2021a; Pfeiffer et al., 2021a; Lauscher et al.,116

2020a; Mahabadi et al., 2021b; Poth et al., 2021),117

or stacked for combinatory cross-lingual (Pfeiffer118

et al., 2020b, 2021b; Üstün et al., 2020; Vidoni119

et al., 2020; Ansell et al., 2021b,a; Wang et al.,120

2021b) as well as NMT scenarios (Bapna and Fi-121

rat, 2019; Philip et al., 2020; Chronopoulou et al.,122

2020; Le et al., 2021; Üstün et al., 2021; Stickland123

et al., 2021; Garcia et al., 2021).124

2.3 Weaknesses, Improvements, and125

Extensions of Language Models126

Next to the curse of multilinguality, recent works127

have shown substantially reduced cross-lingual and128

monolingual abilities of models for low-resource129

languages with smaller pre-training data (Wu and130

Dredze, 2020; Hu et al., 2020; Lauscher et al.,131

2020b; Artetxe et al., 2020; Pfeiffer et al., 2020b,132

2021b; Chau et al., 2020b; Ponti et al., 2020).133

K et al. (2020); Artetxe et al. (2020) show that a134

shared vocabulary is not necessary for cross-lingual135

transfer. Chung et al. (2021) demonstrate that de-136

coupling the input embeddings from the predic-137

tion head improves the performance on a number138

of downstream tasks. Dufter and Schütze (2020)139

show that the number of parameters and training140

duration is interlinked with the models multilin-141

gual capability. Chung et al. (2020); Rust et al.142

(2021) show that the tokenizer plays an important143

role in the per-language downstream task perfor-144

mance, which Clark et al. (2021); Xue et al. (2021);145

Tay et al. (2021) take to the extreme by proposing146

tokenizer-free approaches.147

To extend a monolingual LM to other languages,148

Artetxe et al. (2020) train a new embedding layer149

with a corresponding target-language tokenizer,150

while freezing the pre-trained transformer weights.151

Tran (2020) extend a monolingual model to new152

languages using bilingual corpora. Wang et al.153

(2020); Chau et al. (2020a) extend the vocabu-154

lary of multilingual models with a small number155

of target-language tokens, to improve the perfor-156

mance in the target language. Muller et al. (2021)157

propose a transliteration based approach Vernikos 158

and Popescu-Belis (2021) propose subword map- 159

pings and Pfeiffer et al. (2020b, 2021b); Vidoni 160

et al. (2020); Ansell et al. (2021b) propose adapter- 161

based approaches to extend multilingual models to 162

unseen languages. 163

While these approaches achieve considerable 164

performance gains over unseen languages, they are 165

outperformed by standard full fine-tuning methods 166

for seen languages. One can further argue, that as 167

the pre-trained models have already been cursed by 168

multilinguality, the adapter-based approaches build 169

upon sub-optimal parameter initializations.2 In our 170

work, we consequently aim to 1) modularize the 171

model from the start to prepare the model to be 2) 172

extendable to new languages post-hoc. 173

3 Proposed approach 174

We propose X-MOD, a modular multilingual archi- 175

tecture that combines shared and language-specific 176

parameters. In contrast to prior work, we pre- 177

train modular models from the get-go. Our mod- 178

els can be extended to new languages after pre- 179

training, and used for cross-lingual transfer learn- 180

ing in downstream tasks. 181

Architecture. As illustrated in Figure 1, we 182

extend the transformer-based architecture from 183

mBERT (Devlin et al., 2019) and XLM-R (Con- 184

neau et al., 2020) by incorporating language- 185

specific modules—bottleneck feed-forward layers— 186

at every transformer layer. We learn a separate 187

module for each language, whereas the attention 188

and feed-forward components are shared. While 189

the capacity of the model grows linearly with the 190

number of languages, the training and inference 191

cost does not increase (as measured in FLOPs), as 192

only the module in the relevant language is used for 193

each input. Inspired by the adapter3 architecture of 194

Pfeiffer et al. (2021a) we place our ‘modules’ af- 195

ter the LayerNorm of the feed-forward transformer 196

block, and the residual connection is placed after 197

the LayerNorm;4 the LayerNorm before and after 198

the modular component is shared.5 199

2We investigate this claim further in § 6.
3The term ‘adapter’ refers to newly introduced layers

within a pre-trained (frozen) model. These layers adapt the
representations of the pre-trained mode; we train these mod-
ular components together with the transformer weights, and
therefore refer to them as modules.

4We find that the residual connection proposed by Pfeiffer
et al. (2021a) results in training instabilities when trained
together with the transformer weights.

5Preliminary results showed that sharing the LayerNorm
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Pre-training procedure. Similar to Conneau et al.200

(2020), we pre-train our model on MLM on com-201

bined monolingual corpora in multiple languages.202

Examples of each language are passed through203

the shared embedding matrix as well as the multi-204

head attention and feed-forward components at205

each layer. As each layer contains a language-206

specific modular component, the examples are207

routed through the respective designated modular208

bottle-neck layer. Each example only requires ac-209

cess to a single module, in distributed training mod-210

ules can therefore be efficiently stored on only a211

subset of GPUs.212

Extending to new languages. The modular de-213

sign of our model allows us to extend it to new214

languages after pre-training. To that end, we learn215

new embeddings and adapter modules for the tar-216

get language through MLM, while the rest of the217

components are frozen.6 Consequently, we are able218

to extend the model to a new language by learning219

a small number of new parameters, without affect-220

ing performance in the set of pre-trained languages.221

Following Pfeiffer et al. (2021b), we learn a new222

subword vocabulary for the added languages, and223

initialize the embeddings of lexically overlapping224

tokens from the original embedding matrix.225

Fine-tuning on downstream tasks. To transfer226

the models to cross-lingual downstream tasks, we227

fine-tune only the shared weights on the data in228

the source language, while keeping the modular229

components, as well as embedding layer frozen.230

We follow the standard fine-tuning procedure of231

adding a prediction head on top of the CLS token.232

We then replace the source language modules (as233

well as embedding layer for added languages) with234

the target language parameters, passing the text of235

the target language through the model.7236

4 Experimental design237

We detail the baseline and models (§4.1), and their238

training (§4.2) and evaluation settings (§4.3).239

4.1 Model variants240

We pre-train separate models for all combinations241

along the following axes:242

results in better cross-lingual transfer performance.
6Following Artetxe et al. (2020) we train pos embeddings.
7We initially also experiment with stacking adapters on

top of the language modules similar to Pfeiffer et al. (2020b,
2021b). While this approach is considerably more parameter
efficient, we find that fine-tuning all shared weights slightly
outperformed the adapter-based approach.

X-MOD vs. SHARED. To evaluate the effective- 243

ness of our X-MOD model, we aim to compare our- 244

selves to a conventional non-modular architectures. 245

However, simply removing the modular component 246

would be unfair, as the total number of trainable 247

parameters per language would not be the same— 248

both in terms of pre-training, as well as fine-tuning 249

on a downstream task. Consequently, for our base- 250

line model—where all parameters should be fully 251

shared between all languages—we include a single 252

bottleneck layer right after the Feed-Forward com- 253

ponent. Effectively, this is the same architecture 254

as our X-MOD model, just with a single (shared) 255

module. We refer to this as the SHARED model 256

throughout this paper.8 To extend the SHARED 257

model to unseen languages, we follow Artetxe et al. 258

(2020) and only learn a new embedding layer, freez- 259

ing the transformer parameters. To fine-tune the 260

SHARED model on a downstream task, we freeze 261

the embedding layer, as well as the (single) module, 262

thereby fine-tuning an equal amount of parameters 263

on the downstream task as the X-MOD model.9 264

13 vs. 30 vs. 60 vs. 75 languages. So as to under- 265

stand how each approach is affected by the curse 266

of multilinguality, we pre-train the X-MOD and 267

SHARED models on 4 increasing sets of languages. 268

We start with an initial set of 13 typologically di- 269

verse languages that we evaluate on, and add addi- 270

tional languages for larger sets of 30, 60, and 75 271

languages. In addition, we keep a set of 7 held-out 272

languages that we extend the pre-trained models 273

to. Table 1 lists the specific languages in each 274

group. The selection and split of initial as well as 275

added languages is motivated by typological and 276

geographical diversity, as well as the availability of 277

downstream task evaluation data. 278

Controlling for total vs. per-language updates. 279

Conneau et al. (2020) have investigated the effect of 280

adding more languages during pre-training, while 281

training on an equal number of update steps. How- 282

ever, when increasing the set of languages, this 283

ultimately has the effect that if trained for the same 284

number of update steps, the model sees less exam- 285

ples in each individual language. Consequently, it 286

remains unclear if the curse of multilinguality hap- 287

8Extending the total number of shared parameters would
be unfair, as X-MOD and SHARED would not have same
number of trainable parameters when fine-tuning on a task.

9Adapter-based approach such as MAD-X (Pfeiffer et al.,
2020b) would be an alternative. However, this would require
training on languages twice—once during pre-training, and
once when adding adapters—which is not directly comparable
to X-MOD. Nonetheless we report results in § 6.
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pre-trained
languages

13-LANGS en, ar, fr, hi, ko, ru, th, vi, ta, id, fi, sw, ka

30-LANGS 13-LANGS + cs, eu, hr, hu, hy, it, lt, ml, mn, ms, pl, ro, si, sk, sq, sv, tl

60-LANGS 30-LANGS + af, am, be, bn, ca, cy, da, eo, et, fa, ga, gl, gu, ha, is, ku, la, lv, mk, ne, nl, no, ps,
pt, sa, sd, sl, so, sr, te

75-LANGS 60-LANGS + as, br, bs, fy, gd, jv, kn, mg, mr, om, or, pa, su, xh, yi,

Added languages bg, de, el, es, tr, ur, zh,

Table 1: Selection of languages. We pre-train different models on 4 sets of languages, and further extend them to
a set of held-out languages post-hoc. We evaluate on XNLI (languages in bold), NER (underlined languages) and
XQuAD/MLQA (languages in italic). For more details about the language selection, see Table 9 in the Appendix.

pens because of negative interference, or simply288

because the number of updates for each specific lan-289

guage is smaller. We aim to disentangle the effect290

of (1) training on an equal number of update steps291

from (2) training on an equal number of seen exam-292

ples per language, as both factors can potentially293

play an important role on the cross-lingual trans-294

fer performance. We therefore start with the set295

of 13 languages (Table 1) and train the respective296

models for 125k update steps. When adding more297

languages we follow the two axes of (1) training298

models on each set of languages for 125k update299

steps, and (2) increasing the number of update steps300

such that the models are trained on the same num-301

ber of examples in each of the initial 13 languages.302

For the latter this amounts to training for 195k,303

265k and 269k update steps respectively.304

4.2 Training details305

Data and hyperparameters. We sample lan-306

guages with an α = 0.7 and train our models with307

a batch size of 2048 across 64 V100 GPUs on the308

CC100 (Conneau et al., 2020) dataset using fairseq309

(Ott et al., 2019). We only distribute examples of310

a single language to each GPU. All our models311

extend the base transformer architecture, with 12312

layers and a hidden size of 768. Modules are imple-313

mented with a bottle-neck size of 384. The shared314

transformer weights account for 270M parameters,315

whereas each individual module accounts for 7M316

parameters. We train our models with a linear learn-317

ing rate decay peaking at 7e−4 during pre-training318

and 1e−4 when adding languages.319

Vocabulary. As we aim to identify the impact320

of modularity on the curse of multilinguality, we321

control for consistent tokenization across the differ-322

ent axes. We therefore tokenize using the XLM-R323

vocabulary for all our pre-training experiments.10324

10Rust et al. (2021) have previously demonstrated the im-
pact of the multilingual tokenizer on the downstream task
performance: languages underrepresented in the sub-word

However, for languages added post-hoc, we learn a 325

new SentencePiece tokenizer for each of the target 326

language,11 as the languages potentially use scripts 327

unseen by the original tokenizer. 328

4.3 Evaluation 329

We conduct experiments on three tasks: NLI, NER, 330

and QA. In all cases, we fine-tune the model in 331

English and measure the zero-shot transfer perfor- 332

mance in other languages. For NLI we train on 333

MultiNLI (Williams et al., 2018) and evaluate on 334

XNLI (Conneau et al., 2018). For QA, we train on 335

SQuAD (Rajpurkar et al., 2016) and evaluate on 336

XQuAD (Artetxe et al., 2020) and MLQA (Lewis 337

et al., 2020). For NER, we use the WikiANN (Pan 338

et al., 2017) dataset following the partitions of 339

Rahimi et al. (2019). We perform a grid search 340

for all datasets, experimenting with learning rates 341

1e−4, 3e−4, and 5e−4 and 3 or 5 epochs for QA 342

and 5 or 10 epochs for NER and NLI. For NER and 343

NLI we take the hyperparameter setting performing 344

best on the development sets, averaged across the 345

pre-trained languages (Table 1). For SQuAD we 346

take the best performing checkpoint evaluated on 347

the English development set, and report the cross- 348

lingual test set results.12 We report the average test 349

performance across 5 random seed runs. 350

5 Results and Discussion 351

We present results for pre-trained languages in §5.1 352

and added languages in §5.2. 353

5.1 Pre-trained languages 354

In Figure 4 we plot downstream task results of 355

models pre-trained on different amounts of lan- 356

vocabulary exhibit considerable performance drops when com-
pared to vocabularies dedicated to the respective language.

11We train the new tokenizers for a vocabulary size of 30k.
12In contrast to NER and NLI, the cross-lingual evaluation

benchmarks of SQuAD do not provide a development set for
each target language on the basis of which the best checkpoint
can be selected. Consequently, we select the checkpoint based
on the best performance on the English development set.
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(a) All models are trained for 125k update steps. Models trained on more languages have seen less examples in each language.
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(b) Models trained on more languages are trained longer. All models have seen the same amount of examples in each language.

Figure 4: Test set results on XNLI (top) and NER (bottom) for models trained on different numbers of languages.
Source Language (English) only includes scores of the source language. Average Pre-Trained Languages includes
all evaluation languages that the model was pre-trained on. Average Added Languages includes all languages that
were added to the model after pre-training. Scores are averaged across all languages and random seeds.

en ar fr hi ko ru th vi ta id fi sw ka avg

NER X-MOD 81.4 78.9 77.2 70.1 53.0 59.1 2.8 66.2 51.1 50.5 78.6 73.4 67.3 62.8
SHARED 81.5 74.1 74.7 64.4 46.0 58.3 4.0 63.7 52.5 51.5 74.4 57.2 61.5 58.8

XNLI X-MOD 84.4 71.2 77.6 68.3 - 74.1 71.7 73.4 - - - 66.9 - 73.5
SHARED 82.8 69.2 75.6 66.6 - 73.2 68.5 72.5 - - - 62.1 - 72.5

XQuAD X-MOD 85.1 68.1 - 67.5 - 75.0 66.3 74.9 - - - - - 72.8
SHARED 83.8 64.6 - 65.8 - 72.7 63.0 72.6 - - - - - 70.4

MLQA X-MOD 80.1 58.6 - 60.7 - - - 67.5 - - - - - 66.7
SHARED 79.6 53.6 - 58.7 - - - 64.9 - - - - - 64.2

Table 2: Pre-trained language results for the modular and shared model variants, pre-trained on the set of 60
languages. For NER and MLQA we report F1, for XNLI accuracy scores. Scores are averaged across all 5 random
seeds of the best hyperparameter setting, evaluated on the development set.

guages. Table 2 reports the individual language per-357

formance for the models trained on 60 languages.358

The Curse of Multilinguality. Conneau et al.359

(2020) showed that multilingual LMs trained on in-360

creasing amounts of languages, while maintaining361

the number of update steps, exhibit drops in down-362

stream task XNLI performance. We reproduce363

these results, both in terms of language modelling364

perplexity (Figure 2a),13 as well as downstream365

13For per-language perplexity see Appendix Figure 9.

task performance on XNLI and NER (Figure 4a). 366

We further find that the curse of multilinguality 367

does not only happen because the total number of 368

update steps per language decreases, but also when 369

all SHARED models are trained on the same num- 370

ber of examples per language (Figure 4b). This 371

confirms that fully shared architectures suffer from 372

negative interference. 373

Lifting the Curse. While for the SHARED model 374

we witness negative interference between lan- 375

guages in terms of perplexity, the X-MOD model is 376

6



bg de el es tr ur zh avg

NER X-MOD 77.6 75.1 75.2 71.9 72.6 54.7 21.6 64.1
SHARED 74.9 66.3 69.6 49.1 64.8 50.4 9.2 54.9

XNLI X-MOD 77.4 75.4 76.2 78.5 72.4 64.9 73.8 74.1
SHARED 76.3 74.1 74.9 77.3 71.0 64.3 71.4 72.8

MLQA X-MOD - 63.8 - 68.6 - - 61.7 64.8
SHARED - 58.9 - 66.7 - - 56.5 60.7

Table 3: Results for added language, pre-trained on the
set of 60 languages. We report F1 and accuracy scores
which are averaged across all 5 random seeds of the
best hyperparameter setting on the development set.

able to maintain performance, and even improves377

for a subset of languages. We observe similar378

patterns in the downstream task performance: In379

both our experimental setups—(1) we control for380

the number of update steps (Figure 4a); (2) we381

control for the number of per-language seen ex-382

amples (Figure 4b)—our X-MOD model—in con-383

trast to the SHARED model—is able to maintain, or384

even outperform model variants trained on less lan-385

guages. These results demonstrate that the added386

per-language capacity is sufficient for the model to387

adequately represent all languages.388

Surprisingly, X-MOD not only maintains per-389

formance, but actually slightly improves while we390

increase the number of languages we pre-train on.391

This is even the case for settings where the model392

sees less examples in the target language. This393

indicates that instead of negative interference be-394

tween languages, increasing the language diversity395

actually has a positive influence on the model’s396

cross-lingual representation capability.397

X-MOD vs SHARED. Overall, the X-MOD model398

pre-trained on 60 languages achieves the best cross-399

lingual performance.14 Our results on XNLI, NER,400

MLQA, and XQuAD in Table 2 demonstrate con-401

sistent performance gains over the SHARED model402

for every task and across (almost) all high- as well403

as low-resource language.404

5.2 Extending to unseen languages.405

We further evaluate the cross-lingual performance406

of languages added in the second step; (1) on the407

architectural side—comparing the SHARED with408

the X-MOD modelling variant—and (2) by com-409

paring the performance when pre-training on the410

language, vs. when adding the language post-hoc.411

14We find that the X-MOD model trained on 75 languages
is less stable than the versions trained on less languages. We
think that this can be attributed to the 15 added languages
being extremely low resource—we only train for an additional
4k update steps—resulting in the respective randomly initial-
ized modules being updated very infrequently. This variance
could potentially be mitigated by training for longer.

Model 1 pre-trained Model 2 pre-trained

Figure 5: XNLI test set accuracy of X-MOD mod-
els pre-trained on different languages in comparison to
those added post-hoc (Table 4).

Language iso Family Script Model 1 Model 2

English en IE: Germanic Latin pre-train add
German de IE: Germanic Latin add pre-train
French fr IE: Romance Latin pre-train add
Spanish es IE: Romance Latin add pre-train
Russian ru IE: Slavic Cyrillic pre-train add
Ukranian uk IE: Slavic Cyrillic add pre-train
Hindi hi IE: Iranian Devanagari pre-train add
Urdu ur IE: Iranian Arabic add pre-train
Arabic ar Afro-Asiatic Arabic pre-train add
Hebrew he Afro-Asiatic Hebrew add pre-train

Vietnamese vi Austro-Asiatic Latin pre-train add
Thai th Kra-Dai Thai pre-train add
Korean ko Koreanic Korean pre-train add
Japanese ja Japonic Japanese add pre-train
Greek el IE: Hellenic Greek add pre-train
Turkish tr Turkic Latin add pre-train

Table 4: Selection of 2 sets of languages that we either
pre-train on, or add post-hoc. The last 6 languages in
the list are part of language families which are unique
in the total list of languages we pre-train on (Table 1),
i.e. none of our models was pre-trained on a language
of the same family.

Modular vs Shared. We evaluate if the additional 412

per-language capacity improves the extendability 413

of the X-MOD model. On the right in Figure 4a we 414

plot the results for added languages on XNLI (top) 415

and NER (bottom). Similarly we plot the results 416

for the models where we control for the number 417

of seen examples per target language in Figure 4b. 418

We find that the X-MOD model consistently outper- 419

forms the SHARED model, demonstrating that the 420

language specific capacity is beneficial for adding 421

new languages post-hoc. 422

We find (again) that the X-MOD model consis- 423

tently outperforms the SHARED model, with a peak 424

performance when pre-training on 60 languages. 425

We report results for these versions on XNLI and 426

NER in Table 3, demonstrating the consistent ad- 427

vantage of the X-MOD over the SHARED model. 428

Pre-training vs Adding Languages. As data for 429

pre-training is (currently) not available for all lan- 430

guages, our aim was to design an architecture 431
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which can easily be extended to unseen languages.432

To evaluate if there is a measurable downstream433

task performance difference for languages that we434

pre-train on vs. those we add post-hoc, we train 2435

models on different initial sets of languages, adding436

the respectively missing ones in the second step.437

In order to identify if the typological similarity438

of languages has impact on the downstream task439

performance, we split the initial and added lan-440

guages (Table 1) of our previous experiments into441

two parts. The first split consists of languages442

where the model was pre-trained on at least one lan-443

guage of the same language family (e.g. English vs.444

German). The second split consists of languages445

that are part of a unique language family, i.e. the446

model was not pre-trained on a language of the447

same family (Table 4). Consequently, we pre-train448

two models on two sets of languages, adding the449

respective other set post-hoc.15450

Our XNLI results (Figure 5) demonstrate that451

the per-language performance is on par when pre-452

training vs. when adding the language post-hoc.16453

We also find that the family does not have a mea-454

surable effect on the performance of the language.455

6 X-MOD vs. Adapters456

As illustrated in Figure 3, from an architecture457

perspective X-MOD is similar to previously pro-458

posed multilingual Adapter-based methods (MAD-459

X; Pfeiffer et al., 2020b). MAD-X utilizes a pre-460

trained massively multilingual transformer-based461

model and fine-tunes newly introduced adapter462

weights on languages the model has seen during463

pre-training, and ones the model has not been464

trained on. For a fair comparison in terms of seen465

examples and number of update steps we train a466

transformer model without module components467

(shared_nm) for 100k update steps on the respec-468

tive languages (Table 1). We subsequently train469

adapters on each of the target languages for an-470

other 25k update steps.17 We report results in com-471

15In previous experiments the modular model trained on
60 languages achieved the best performance, therefore the
models in these experiments are also trained on 60 languages.
Both models are trained on the same additional languages, i.e.
the 60-LANGS of Table 1, where only the 13-LANGS differ.

16The models have seen an equal amount of examples in
the respective languages in each case.

17We follow Pfeiffer et al. (2020b) and train adapter weights
with a learning rate of 0.0001. While they have found that
cross-lingual transfer performance of adapters converges at
∼20k update-steps, we would like to stress that our experi-
mental setup is only one of multiple different valid versions.
A more thorough investigation to find the optimal number of
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Figure 6: Comparison to an Adapter baseline on XNLI
when pre-training for 125k update steps.

parison to X-MOD in Figure 6, here results for 472

shared_nm are for a model that was trained for 473

125k update steps to instantiate a fair comparison. 474

Our results demonstrate that the additional capac- 475

ity of adapters added after pre-training is not able 476

to mitigate the curse of multilinguality which has al- 477

ready had a catastrophic impact on the shared trans- 478

former weights; the performance of the adapters 479

strongly correlates with the performance of the cor- 480

responding fully shared model shared_nm. Conse- 481

quently, adding language-specific capacity during 482

pre-training is important, as the curse of multilin- 483

guality cannot be lifted post-hoc. 484

7 Conclusions 485

In this paper we have evaluated the effectiveness 486

of modular multilingual language modelling across 487

multiple axes. We have demonstrated that by 488

providing additional per-language capacity, while 489

maintaining the total number of trainable parame- 490

ters per language, we are not only able to mitigate 491

negative interference between languages, but ad- 492

ditionally achieve positive transfer. Our results 493

suggest that it is sufficient to train our proposed 494

X-MOD model only on a subset of languages for 495

which sufficient amounts of textual data is avail- 496

able. Unseen languages can be added post-hoc, 497

with no measurable drop in performance on XNLI. 498

By pre-training the model in a modular fashion, we 499

thus mitigate negative interference of idiosyncratic 500

information, while simultaneously preparing the 501

model to be extendable to unseen languages. 502

While in this work we have simulated language 503

adding scenarios with a held out set of languages, in 504

future work we aim to evaluate the performance on 505

truly low-resource languages such as MasakhaNER 506

(Adelani et al., 2021) and AmericasNLI (Ebrahimi 507

et al., 2021). We further aim to evaluate the cross- 508

lingual transfer performance from typologically 509

more diverse source languages, besides English. 510

update steps for pre-training and subsequent adapter training
is necessary, which was out of scope for this work.
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A Appendix1007

A.1 Ethics Statement1008

The methodology introduced in this work poten-1009

tially inherits standard undesirable biases stemming1010

en ar hi vi avg
F1 / EM F1 / EM F1 / EM F1 / EM F1 / EM

X-MOD 80.1 / 66.9 58.6 / 38.9 60.7 / 42.4 67.5 / 46.1 66.7 / 48.6
SHARED 79.6 / 66.5 53.6 / 33.9 58.7 / 40.4 64.9 / 43.8 64.2 / 46.2

Table 5: Average F1 and Exact Match results for pre-
trained languages, on the test set of MLQA for the
X-MOD and SHARED model variants, pre-trained on
the set of 60 languages. Bold numbers indicate better
performance for the respective language.

from pretraining the models on large (and unveri- 1011

fied) multilingual text collections. For productive 1012

applications of our pre-trained models, appropri- 1013

ate data filtering and debiasing techniques should 1014

be applied before deploying any text encoders and 1015

relevant methodology to real-world language tech- 1016

nology applications. 1017

A.2 Additional Evaluations 1018

We present F1 and Exact Match (EM) scores for 1019

MLQA and XQuAD on pre-trained languages in 1020

Tables 5 and 6 respectively. 1021

We present F1 and Exact Match (EM) scores for 1022

MLQA on added languages in Tables 7. 1023

We present results for more languages on NER 1024

in Table 8. 1025

A.3 Language Level Evaluation 1026

We plot the per-language language modelling per- 1027

plexity of pre-trained languages in Figure 9. 1028

We plot results on XNLI in Figure 10 and for 1029

NER in Figure 11 on a more granular, language 1030

level for models pre-trained on increasing amounts 1031

of languages, while controlling for seen examples 1032

per language. 1033

A.4 Modularity "kicking-in" 1034

In Figure 4 we have witnessed a slight edge of 1035

the SHARED model over the X-MOD model, when 1036

training on only 13 languages and only training 1037

for 125k update steps. Dufter and Schütze (2020) 1038

have identified that it requires a large number of 1039

update steps for a model pre-trained on multiple 1040

languages to become multilingual; with the added 1041

per-language capacity we hypothesize that update 1042

steps also play an important role for modular mod- 1043

els. We compare the downstream task performance 1044

of models pre-trained on 13 languages, when train- 1045

ing for 125k with 250k update steps in Figure 7. 1046

When training for longer we find that the X-MOD 1047

model begins to outperforms the SHARED model 1048

in the source language, while almost closing the 1049

gap in the cross-lingual setting. This supports the 1050

en ar hi ru th vi avg
F1 / EM F1 / EM F1 / EM F1 / EM F1 / EM F1 / EM F1 / EM

X-MOD 85.1 / 73.4 68.1 / 52.4 67.5 / 50.3 75.0 / 57.8 66.3 / 52.6 74.9 / 54.6 72.8 / 56.9
SHARED 83.8 / 72.1 64.6 / 48.5 65.8 / 48.3 72.7 / 54.5 63.0 / 48.0 72.6 / 52.1 70.4 / 53.9

Table 6: Average F1 and Exact Match results for pre-
trained languages, on the test set of XQuAD for the
X-MOD and SHARED model variants, pre-trained on
the set of 60 languages. Bold numbers indicate better
performance for the respective language.
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de es zh avg
F1 / EM F1 / EM F1 / EM F1 / EM

X-MOD 63.8 / 48.9 68.8 / 50.3 61.7 / 36.4 64.8 / 45.2
SHARED 58.9 / 44.1 66.7 / 48.3 56.5 / 32.2 60.7 / 41.5

Table 7: Average F1 and Exact Match results for added
languages, on the test set of MLQA for the X-MOD
and SHARED model variants, pre-trained on the set of
60 languages. Bold numbers indicate better perfor-
mance for the respective language.
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Figure 7: Results on XNLI when when pre-training on
13 languages for 125k and 250k update steps.
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Figure 8: Results on XNLI using intermediate check-
points of the models trained on 60 languages.

hypothesis that the X-MOD model requires more1051

update steps when training only on a small number1052

of languages, in order for modularity to “kick-in”.1053

A.5 Intermediate Pre-Training Checkpoints1054

We evaluate if modularity "kicking-in" can be mea-1055

sured for models trained on more languages. We1056

evaluate checkpoints of the models pre-trained on1057

60 languages, on XNLI as a downstream task (Fig-1058

ure 8). Here we find that the X-MOD model con-1059

tinuously outperforms the SHARED model. This1060

suggests that the SHARED model immediately suf-1061

fers from negative interference between languages,1062

while the added, language specific components of1063

the X-MOD model are able to mitigate the curse1064

of multilinguality, resulting in considerable perfor-1065

mance gains at all evaluated checkpoints.1066

A.6 Language Selection1067

We provide more details about our selection of1068

languages in Table 9.1069
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en af ar bn et eu fa fi fr hi hu id it ka ko ru sw ta th vi avg

X-MOD 81.4 78.9 43.5 63.2 76.2 62.2 44.3 78.6 77.2 70.1 78.3 50.5 78.7 67.3 53.0 59.1 73.4 51.1 2.8 66.2 62.8
SHARED 81.5 74.1 44.2 62.4 70.7 58.1 40.3 74.4 74.7 64.4 74.2 51.5 75.5 61.5 46.0 58.3 57.2 52.5 4.0 63.7 59.5

Table 8: Average F1 results for pre-trained languages, on the test set of NER for the X-MOD and SHARED model
variants, pre-trained on the set of 60 languages. Bold numbers indicate better performance for the respective
language.
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Figure 9: Perplexity when training on more languages. Each model has seen the same amount of examples in
each language. Lower perplexity indicates better performance.
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Figure 10: Testset results on XNLI of pre-trained (top) and added (bottom) languages trained on different numbers
of languages. Models trained on more languages are trained for longer→ all models have seen the same amount
of examples in each individual language. Scores are averaged across all random seeds.
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Figure 11: Testset results on NER of pre-trained (top) and added (bottom) languages trained on different numbers
of languages. Models trained on more languages are trained for longer→ all models have seen the same amount
of examples in each individual language. Scores are averaged across all random seeds.
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Language iso Family Script 13 30 60 75

Afrikaans af IE:Germanic Latin X X
Albanian sq IE:Albanian Latin X X X
Amharic am Afro-Asiatic Amharic X X
Arabic ar Afro-Asiatic Arabic X,(+) X,(+) X,(+) X,(+)
Armenian hy IE:Armenian Armenian X X X
Assamese as IE:Iranian Assamese X
Basque eu Isolate Latin X X X
Belarusian be IE:Slavic Cyrillic X X
Bengali bn IE:Iranian Bengali X X
Bosnian bs IE:Slavic Latin X
Breton br IE:Celtic Latin X
Bulgarian bg IE:Slavic Cyrillic + + + +
Catalan ca IE:Romance Latin X X
Chinese zh Sino-Tibetan Chinese + + + +
Croatian hr IE:Slavic Latin X X X
Czech cs IE:Slavic Latin X X X
Danish da IE:Germanic Latin X X
Dutch nl IE:Germanic Latin X X
English en IE:Germanic Latin X,(+) X,(+) X,(+) X,(+)
Estonian et Uralic Latin X X
Esperanto eo Constructed Latin X X
Finnish fi Uralic Latin X X X X
French fr IE:Romance Latin X,(+) X,(+) X,(+) X,(+)
Frisian fy IE:Germanic Latin X
Galician gl IE:Romance Latin X X
Georgian ka Kartvelian Georgian X X X X
German de IE:Germanic Latin +,(X) +,(X) +,(X) +,(X)
Greek el IE:Hellenic Greek +,(X) +,(X) +,(X) +,(X)
Gujarati gu IE:Iranian Gujarati X X
Hausa ha Afro-Asiatic Latin X X
Hebrew he Afro-Asiatic Hebrew +,(X) +,(X) +,(X) +,(X)
Hindi hi IE:Iranian Devanagari X,(+) X,(+) X,(+) X,(+)
Hungarian hu Uralic Latin X X X
Icelandic is IE:Germanic Latin X X
Indonesian id Austronesian Latin X X X X
Irish ga IE:Celtic Latin X X
Italian it IE:Romance Latin X X X
Japanese ja Japonic Japanese +,(X) +,(X) +,(X) +,(X)
Javanese jv Austronesian Latin X
Kannada kn Dravidian Kannada X
Korean ko Koreanic Korean X,(+) X,(+) X,(+) X,(+)
Kurdish ku IE:Iranian Latin X X
Latin la IE:Romance Latin X X

Language iso Family Script 13 30 60 75

Latvian lv IE:Slavic Latin X X
Lithuanian lt IE:Slavic Latin X X X
Macedonian mk IE:Slavic Cyrillic X X
Malagasy mg Austronesian Latin X
Malay ms Austronesian Latin X X X
Malayalam ml Dravidian Malayalam X X X
Marathi mr IE:Iranian Devanagari X
Mongolian mn Mongolian Cyrillic X X X
Nepali ne IE:Iranian Devanagari X X
Norwegian no IE:Germanic Latin X X
Oriya or IE:Iranian Odia X
Oromo om Afro-Asiatic Ge’ez X
Pashto ps IE:Iranian Arabic X X
Persian fa IE:Iranian Arabic X X
Polish pl IE:Slavic Latin X X X
Portuguese pt IE:Romance Latin X X
Punjabi pa IE:Iranian Gurmukhi X
Romanian ro IE:Romance Latin X X X
Russian ru IE:Slavic Cyrillic X,(+) X,(+) X,(+) X,(+)
Sanskrit sa IE:Iranian Devanagari X X
Scottish Gaelic gd IE:Germanic Latin X
Serbian sr IE:Slavic Cyrillic X X
Sindhi sd IE:Iranian Arabic X X
Sinhala si IE:Iranian Sinhala X X X
Slovak sk IE:Slavic Latin X X X
Slovenian sl IE:Slavic Latin X X
Somali so Afro-Asiatic Latin X X
Spanish es IE:Romance Latin +,(X) +,(X) +,(X) +,(X)
Sundanese su Austronesian Latin X
Swahili sw Niger-Congo Latin X X X X
Swedish sv IE:Germanic Latin X X X
Tagalog tl Austronesian Latin X X X
Tamil ta Dravidian Tamil X X X X
Telugu te Dravidian Telugu X X
Thai th Kra-Dai Thai X,(+) X,(+) X,(+) X,(+)
Turkish tr Turkic Latin +,(X) +,(X) +,(X) +,(X)
Ukrainian uk IE:Slavic Cyrillic +,(X) +,(X) +,(X) +,(X)
Urdu ur IE:Iranian Arabic +,(X) +,(X) +,(X) +,(X)
Vietnamese vi Austroasiatic Latin X,(+) X,(+) X,(+) X,(+)
Welsh cy IE:Celtic Latin X X
Xhosa xh Niger-Congo Latin X
Yiddish yi IE:Germanic Hebrew X

Table 9: List of languages we pre-train Xon or add + in the different sets (13, 30, 60, 75). (·) indicates the
respectively different pre-training/added languages of models 1 and 2 as described in § 5.2 and Table 4. IE stands
for Indo-European.
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