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Abstract

Advancements in multiagent reinforcement learning have enabled artificial agents
to coordinate effectively in complex domains; however, these agents can struggle
to coordinate with humans, in part due to their implicit but inaccurate assumptions
about optimal decision-making and behavioral homogeneity while interacting with
humans. Although we can train models to learn the best responses to human behav-
ior using a large corpus of human-human interaction, the cost of collecting this data
can be prohibitive. We demonstrate how, even without such data, we can leverage
our knowledge of biases and limitations in human behavior to develop a technique
for effective human-agent coordination. To do this, we present an approach that
trains an RL agent by best responding to a pool of other agents that incorpo-
rate human behavioral biases. We evaluate this method in the fully-cooperative
game Overcooked. Our results show an improvement when incorporating these
biases compared to methods that do not account for these biases within their agent
population.

1 Introduction

We study the problem of human-Al ad hoc teamwork (AHT) where an agent is paired with a human
in a cooperative task without prior access to data on human behavior in the task. We show that
leveraging prior knowledge of human behavior in the form of skill asymmetry and cognitive bias
can help us learn reinforcement learning agents that can coordinate with human-like agents while
reducing training time in the fully-cooperative game Overcooked.

Prior works in AHT propose using reinforcement learning (RL) to train a best-response (BR) agent
to coordinate with a diverse set of other agents, usually also trained with RL. This prevents the BR
agent from learning a single convention to solve the problem since it has to be able to coordinate
with a multitude of other agents. The challenge is to learn agent behavior that is compatible with,
or adaptable to, any agent. If the interacting agent is chosen at random from the set of all possible
agents, all feasible actions become equally likely and adaptation is infeasible. One way to avoid this
issue is by assuming that the interacting agents have the same goals but may deviate from optimal
behavior [24, [11]. [19] use this assumption to train agents that can coordinate with other agents
optimizing for the same rewards, while including partially trained agents to introduce skill diversity,
and others rely on statistical metrics like maximum entropy [24] in the objective to induce diversity
in goal-driven behavior while reducing the number of agents sampled.
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Figure 1: Example cooperative game where the goal is to occupy both yellow squares. Without bias,
the optimal trajectory is to move to the nearest yellow square, but if either agent is biased against
moving vertically, the green trajectory becomes optimal.

In our problem, human-Al AHT, we know that the agents will be interacting with people and so we
want to leverage known properties of human behavior. Although individual humans have different
behaviors, the class of humans has some systematic biases. Inspired by research in cognitive and
social sciences [13} 1], we use cognitive biases to generate a set of agents to help enable the BR agent
to coordinate with humans. We show that our method can achieve similar or better coordination with
humans and human-like agents than methods with other diversity metrics using fewer samples.

Let us take a grid-world coordination scenario in Fig. [T] where two agents have the joint goal of
reaching the yellow squares. If the agents are symmetrical and can move in all four directions, the
blue trajectory represents an optimal solution. However, if one of the agents has a strong bias against
moving vertically, the green trajectory becomes optimal. Due to its suboptimality in the symmetric
case, it is unlikely to emerge by sampling diverse behaviors. Through this simple example we hope
to illustrate how even simple biases can have large coordination effects.

Our observation is that humans and artificial agents are not symmetric and leveraging the behavioral
biases and skill differences in a principled manner can improve human-Al coordination. Our main
contributions are:

1. Present an approach to train RL agents capable of coordinating with humans by incorporating
human cognitive biases into a group of RL agents.

2. Show improved task performance and training efficiency in Overcooked as compared to
other methods that do not utilize these biases.

2 Related Work

There has been growing recent research in ad hoc teamwork [[12] and the related problem of zero-shot
coordination (ZSC) [8]]. We review some prior work from the lens of game theory.

Game Theory. In pure coordination games with multiple equilibria, it is in the agents’ best interests
to coordinate on a single equilibrium, but this coordination is challenging without prior agreement
leading to the equilibrium selection problem [7]]. This is one of the primary challenges in AHT, since
agents are fully cooperative but lack prior interaction or agreement. Solutions to equilibrium selection
can be categorized into two types: (1) solutions relying only on endogenous game information, and
(2) solutions that also incorporate exogenous information about agents.

AHT methods using only endogenous information include: handling game symmetries in Hanabi by
learning permutation-robust policies [8]], learning best-response agents capable of handling multiple
equilibria by pairing them with a population of independently trained SP policies [19], and, increasing
policy diversity in the SP population, e.g., by including a maximum entropy objective [24].

Humans seem to rely on exogenous information, e.g., [15]] showed that humans were able to coordinate
significantly better than chance when playing a coordination game where agents aim to choose the
same side of a coin without prior interaction. Examples of work in human-AI coordination include:
using information about human behavior and social norms to group Nash equilibria and adapt online
to human behavior in a table-top manipulation task [3]], and, leveraging information about human
bias to generate multiple event-based reward functions and learn a BR policy in Overcooked [23]].
Our approach also utilizes exogenous information in the form of systematic biases in human behavior.



However, unlike [23]], which sample reward functions based on pre-defined game events, we sample
policies based on human behavioral traits without introducing a new reward structure.

Cognitive Bias: After scientists began formalizing human behavior as rational actors ([21]]), they
also began describing systematic human deviations from these classic notions of rationality [20, 9].
These systematic deviations, termed cognitive biases, have been identified in myriad environments
and contexts, and have been used to introduce frameworks like bounded rationality [[17} 5], ecological
rationality [2]], and resource-rational analysis [10]. Understanding human cognition as optimal and
general under limitations of time, computation and communication ([6]]), might help us formalize and
introduce these patterns of human behavior as inductive biases in Al systems that need to coordinate
with humans. Towards this goal, we take into account two human limitations: (1) limitation on human
reaction speed to situational changes, and, (2) preference for immediate over future rewards [[1].

Availability of Data. Human behavior data can help train agents that successfully coordinate with
humans, as shown by [4]. However, collecting this task-specific data for every scenario that Al agents
will interact with humans is impractical, and human behavior can evolve over time, or, vary when
interacting with Al versus other humans. We aim to identify task-invariant properties of human
behavior applicable across domains. Even when human data is available, our method can be used as
a prior for agent policies, potentially leading to more robust Al agents as observed by [22].

3 Background

We model interaction as a two-agent common-payoff Markov game, M, defined as a tuple
(N,S, A, r,T,v). Here, N' = {1, 2} is the set of agents, S is the set of joint states, A = {A;, A}
is the set of actions for each agent, r : S x A — R is the common reward function,, 7 : SX Ax S —
[0,1] is the transition function, and y € [0, 1] is the discount factor. At each timestep ¢, agent 4
receives the state s;, and samples an action, a;; ~ 7;(s), according to a policy 7; : S — A;. We

define the expected return for a joint policy as J(my, m2) = Eé‘fw(m 72) [Z;T:O r(st, at)], where a; is
a joint action, and, an episode goes from time 0 to 7.

Ad-hoc teamwork. The goal of ad-hoc teamwork is “to create an autonomous agent that is able to
efficiently and robustly collaborate with previously unknown teammates on tasks to which they are all
capable of contributing as team members” [18]. We can write this as, arg max,, E s yecer J (7, '),
where [1°°? is the set of policies of capable team members.

Self-Play (SP). In self-play, the objective is to maximize the expected return by finding the optimal
joint policy, ¥ € arg max,, r,)J (71, m2). This solution is a Pareto-optimal equilibrium because if
either agent can improve the return by selecting a different policy then it will contradict the arg max.
However, it fails as a solution for ad-hoc teamwork because it assumes both agents follow the same
equilibrium, or compatible policies, which is not guaranteed even if both agents were trained by SP.

Best-Response (BR). In best-response, the objective is to maximize the expected return in response
to a fixed policy of the other agent. We consider a policy 72, to be BR to 7, if J(n?, ) >
J(n',m)¥ ' € I1. We define the BR function, B, such that 72 € B(r). Similarly, we define BR over
apolicy set, [T = {nt,... 7%} as,

B(HK) € arg maXE,rINU(HK) [J(TFBR,W/)] R (1)

TBR

where U is the uniform distribution.

4 Approach

Our goal is to develop a method that helps an agent find policies that effectively coordinate with
human behavior. Human behavior may not align perfectly with optimizing the rational self-play
objectives for several reasons, such as the skill difference between humans and autonomous agents
(e.g. bounded rationality, reaction speed), and, cognitive bias (e.g. hyperbolic time discounting,
preference for specific sub-tasks).

We want our agent to collaborate effectively with humans, so we train our agent to respond optimally
to the behaviors that humans are likely to adopt, 78R € B(TI#*). Here, I1** is the unknown set



of all human policies. To derive this method we make the assumption that human behavior can be
described by a set of policies, and each policy is an equilibrium for some Markov game. Our goal,
then, is to learn an agent that can adapt to this human behavior, instead of trying to influence it.

For this, we use reinforcement learning (RL) in two stages. First, we find human-like self-play
policies by placing constraints on the policy-space based on a subset of known human skill factors
and modifying the Markov game M to account for cognitive biases, I | see Algorithm Second,
we train a policy as best-response to the human self-play policy set, B(II) in Algorithm

We use the following biases in our experiments to sample from ITHvis

1. Speed Asymmetry. Humans and agents do not have the same speed of action and decision-
making, and this speed varies between humans. We model this by taking an action from a
trained SP model with probability p and taking no action otherwise. This improves training
efficiency producing a population of agents with different behavior with a single SP model.

2. Time discounting. Humans often value immediate rewards over future rewards. We model
this by varying the discount factor y when training the SP modelE]

Algorithm 1 Learn SP human behavior prior

Input: Set P with Markov games representing different behavior priors.
Initialize IT"bs to ().
for m € P do
Train self-play policy, 7°, for Markov game m.
Add 7 to [T,
end for
Output: 1T,

Algorithm 2 Best-response to human prior policies

Input: ITHves,
Initialize BR agent, 7
while 7BR® not converged do
Form minibatch from 78R paired with elements of ITbis,
Use minibatch to update 78R,
end while
Output: 7

BR(H)

BR(H)

5 Experiments

Overcooked. We utilize the Overcooked environment introduced by [4] due to its combination of
strategy and motion coordination challenges. In this setting, two agents collaborate to cook and serve
soup, aiming to deliver as many soups as possible. While the original study outlines five MDPs, our
preliminary experiments focus on only the Cramped Room layout. The primary challenge lies in the
agents’ ability to navigate the environment, interact with objects, and coordinate their strategies. The
agent can take six actions: up, down, right, left, noop, and interact. For training RL agents,
we use proximal policy optimization [16] implemented in the JaxMARL library [14] using the same
state encoding and network architecture.

Results. Our results in Table|l|compare the average return per episode for three types of agents over
an episode length of 400 timesteps. The Self-Play agent is a single SP agent trained for this game.
The BR(k) agent is trained as best response to a set of k SP agents, similar to [19]. Our method, BR
(Hspeea), 1s a best-response to SP(p = 1) and SP (p = 0), where p is the probability of the agent
taking a noop action. The results show us that the SP model has the lowest return, and increasing
the number of SP agents in the BR increase the return. This is expected as the BR agent with more

2This experiment is not included in this preliminary work but will be included in the future.



Method | Self-Play |  BR(®)| BR(16) |  BR(32) | BR (Hspeed)
Avg. Episodic Returns | 91.2+ 3.1 | 95.6 £2.2 | 100.8+ 2.5 | 105.0+ 2.0 | 152

Table 1: Performance with proxy human. The average accumulated reward when the agents are
paired with the proxy human model. Our method (in bold) was trained with two self-play models
with different speed of action p = 1, 0.

SP agents is able to adapt to more partner behaviors. We also see that our approach, using only two
SP agents for the BR, is able to significantly outperform even BR(k = 32), validating the increased
efficiency due to the included bias of variable agent reaction speed.

6 Conclusion and Future Work

This research explores an approach of incorporating well-studied systematic biases in human behavior
to enhance reinforcement learning (RL) systems for fully cooperative games. By modifying the
Markov game framework to create biased RL agents and subsequently training a best-response agent
to interact with humans, we aim to develop solutions that can adapt well to human behavior without
the need for task-specific human data.

Our preliminary results indicate that even simple behavioral biases can lead to significant improve-
ments in learning efficiency. However, this work is still in progress and requires further experimenta-
tion to validate these findings comprehensively. Future work will focus on implementing a broader
array of cognitive biases and conducting user experiments to evaluate their effectiveness.

Our approach exemplifies how human biases can be integrated into reinforcement learning systems
within a cooperative framework. An important avenue for future research is to determine which
biases are beneficial in different domains and how these biases can be systematically translated into
objectives for learning agents. We hope our work contributes to a deeper understanding of how
human behavioral biases can be harnessed to improve Al systems across diverse applications.
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