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Abstract
With its inspirational roots in game-theory, path
attribution framework stands out among the post-
hoc model interpretation techniques due to its
axiomatic nature. However, recent developments
show that despite being axiomatic, path attribution
methods can compute counter-intuitive feature at-
tributions. Not only that, for deep visual models,
the methods may also not conform to the origi-
nal game-theoretic intuitions that are the basis of
their axiomatic nature. To address these issues,
we perform a systematic investigation of the path
attribution framework. We first pinpoint the con-
ditions in which the counter-intuitive attributions
of deep visual models can be avoided under this
framework. Then, we identify a mechanism of
integrating the attributions over the paths such
that they computationally conform to the original
insights of game-theory. These insights are even-
tually combined into a method, which provides
intuitive and reliable feature attributions. We also
establish the findings empirically by evaluating
the method on multiple datasets, models and eval-
uation metrics. Extensive experiments show a
consistent quantitative and qualitative gain in the
results over the baselines.

1. Introduction
Deep learning is fast approaching the maturity to be com-
monly deployed in safety-critical domains (Rudin, 2019),
(Nat), (Akhtar et al., 2021). However, its black-box nature
presents a major concern for its use in high-stake applica-
tions (Agarwal et al., 2021), (Blazek & Lin, 2021), and its
ethical use in general (Vinuesa & Sirmacek, 2021), (Vinuesa
et al., 2020). These facts have led to numerous techniques
to explain the deep learning models (Jalwana et al., 2021),
(Sundararajan et al., 2017), (Selvaraju et al., 2017), (Agar-
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Figure 1. Feature absence and its (gradually increasing) presence is
generally easy to model in cooprative game setups, which ensures
the axiomatic properties of path attribution framework. However,
in deep vision modelling, ambiguous notion of feature absence not
only compromises the efficacy of the framework, it also leads to
path features that do not conform to the game-theoretic intuitions
behind the technique. This is in addition to provably counter-
intuitive attributions resulting from the path attribution framework
for deep visual models (Srinivas & Fleuret, 2019).

wal et al., 2021), (Chen et al., 2020), (Simonyan et al., 2014),
(Akhtar & Jalwana, 2023). Whereas rendering the models
intrinsically explainable is an active parallel research direc-
tion (Chen et al., 2020), (Blazek & Lin, 2021), (Agarwal
et al., 2021), (Koh et al., 2020), post-hoc interpretation meth-
ods are currently highly popular, as they do not interfere
with the standard model training or its performance.

Path attribution methods (Sundararajan et al., 2017), (Erion
et al., 2021), (Kapishnikov et al., 2021), (Pan et al., 2021)
hold a special place among the post-hoc interpretation tech-
niques due to their clear theoretical foundations. These
methods compute attribution scores (or simply attributions)
for the input features to quantify their importance for the
model prediction, where the attributions and the methods
follow certain desirable axiomatic properties (Sundarara-
jan et al., 2017). These properties emerge from the game-
theoretic roots of the path attribution framework (Friedman,
2004), (Sundararajan et al., 2017).

To compute the attribution score for an input feature, the
path attribution framework defines a baseline, and a path
between the input and the baseline. Based on the original
game-theoretic view (Aumann & Shapley, 2015), (Fried-
man, 2004), the baseline signifies ‘absence’ of the feature,
and the path flows from this absence to the ‘presence’ of the
feature in the input. This intuition has direct implications
for the desirable axiomatic properties of the path attribu-
tion framework. However, an unambiguous definition of
feature absence eludes visual modelling (Erion et al., 2021),
(Sturmfels et al., 2020), (Pan et al., 2021). This is not only

1



Towards Credible Visual Model Interpretation with Path Attribution

problematic for defining the baseline, but can also cause
misleading features to reside on the path between the base-
line and the input. Moreover, (Srinivas & Fleuret, 2019)
shows that the path attribution methods for deep models
are prone to counter-intuitive results even when they satisfy
the claimed theoretical axioms. This work addresses these
critical issues to enable a reliable interpretation of visual
models using path attribution. The main contributions of
this work are stated below.

• With a systematic formulation, it pinpoints the reasons
behind the problems of (i) counter-intuitive attribu-
tions, (ii) ambiguity in the baseline and (iii) misleading
path features; that collectively compromise the reliabil-
ity of the path attribution framework for interpreting
predictions of deep visual models.

• For each of these problems, it proposes a theory-driven
solution, which conforms to the original intuitions of
the path attribution framework.

• It combines the solutions into a novel well-defined path
attribution method to compute reliable attributions.

• It thoroughly establishes the efficacy of the proposed
method with extensive experiments using multiple
models, datasets and evaluation metrics.

2. Related work
Due to the critical need of interpreting deep learning predic-
tions in high-stake applications, techniques to explain deep
neural models are gaining considerable research attention.
Whereas a stream of works exists that aims at rendering
these models inherently explainable (Chen et al., 2019),
(Brendel & Bethge, 2019), (Bohle et al., 2021), (Böhle et al.,
2022), (Donnelly et al., 2022), (Sarkar et al., 2022), (Parekh
et al., 2021), post-hoc interpretation techniques (Sundarara-
jan et al., 2017), (Slack et al., 2021), (Jalwana et al., 2021),
(Smilkov et al., 2017) currently dominate the existing related
literature. A major advantage of post-hoc methods is that
interpretation process does not interfere with the model de-
sign and training. Our method is also a post-hoc technique,
hence we focus on the literature along this stream.

Based on the underlying mechanism, we can divide the post-
hoc interpretation approaches into three categories. The first
is perturbation-based techniques (Dabkowski & Gal, 2017),
(Fong & Vedaldi, 2017), (Ribeiro et al., 2016), (Petsiuk
et al., 2018), (Zeiler & Fergus, 2014). The central idea of
these methods is to interpret model prediction by perturbing
the input features and analyzing its effects on the output. For
instance, (Petsiuk et al., 2018), (Ribeiro et al., 2016), (Zeiler
& Fergus, 2014) occlude parts of the image to cause the
perturbation, whereas (Dabkowski & Gal, 2017), (Fong &
Vedaldi, 2017) optimize for a perturbation mask, keeping in
sight the confidence score of the prediction. These methods
are particularly relevant in black-box scenarios. However,

since white-box setups are equally practical for the interpre-
tation task, other works also leverage model information to
devise more efficient methods.

Among them, activation-based techniques (Selvaraju et al.,
2017), (Jalwana et al., 2021), (Chattopadhay et al., 2018),
(Ramaswamy et al., 2020), (Jiang et al., 2021), (Wang
et al., 2020) form the second category. These methods
commonly interpret the model predictions by weighting
the activations of the deeper layers of the network with
the model gradients, thereby computing a saliency map for
the input features. Though efficient, these methods suffer
from the resolution mismatch between the deeper layer fea-
tures and the inputs, resulting in low-resolution saliency
maps (Jalwana et al., 2021). The third category is that of
backpropagation-based techniques (Simonyan et al., 2013),
(Shrikumar et al., 2017), (Srinivas & Fleuret, 2019), (Sun-
dararajan et al., 2017), (Zhang et al., 2018), which avoids
this issue by fully backpropagating the model gradients to
the input for feature saliency estimation.

Among the backpropagation-based techniques, a sub-branch
of approaches is known as path attribution methods (Sun-
dararajan et al., 2017), (Erion et al., 2021), (Sturmfels et al.,
2020), (Pan et al., 2021), (Smilkov et al., 2017), (Kapish-
nikov et al., 2021), (Xu et al., 2020). These methods are
particularly attractive because they exhibit certain desirable
axiomatic properties (Sundararajan et al., 2017), (Lund-
strom et al., 2022). Originated in game-theory (Friedman,
2004), the central idea of these techniques is to accumulate
model gradients w.r.t. the input over a single (Sundararajan
et al., 2017) or multiple (Erion et al., 2021), (Lundstrom
et al., 2022) paths formed between the input and a so-called
baseline image. The baseline signifies absence of the input
features. Recording the model gradients from the absence to
the presence of a feature allows a more desirable non-local
estimate of the importance attributed by the model to that
feature. We also contribute to the path methods. In § 3, we
discuss the path attribution framework and relevant concepts
in more detail.

3. Path attribution framework
The path attribution framework builds on the concepts of
baseline attribution and path function. To formalize these
concepts, we follow Lundstrom et al. (2022). Consider two
points a, b ∈ Rn that define a hyper-rectangle [a, b] as its
opposite vertices. For instance, a and b can be (vectorized)
black and white images, respectively; that form the hyper-
rectangle encompassing the pixel values of images in Rn.
A visual classifier F then belongs to a class of single output
functions F : [a, b]→ R. Formally, a baseline attribution
method can be defined as

Definition 3.1 (Baseline attribution). Given F ∈ F(a, b),
x,x′ ∈ [a, b], a baseline attribution method is a function of
the form A : [a, b]× [a, b]×F(a, b)→ Rn.
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In Def. (3.1), x = [x1, x2, ..., xn] ∈ Rn denotes the input
to the classifier F . The vector x′ ∈ Rn is the baseline.
For a visual model, the objective of A is to estimate the
contribution of each pixel xi of x to the model output. The
notion of baseline attribution is fundamental to all path
attribution methods. The other key concept for this paradigm
is path function, which can be concisely stated as

Definition 3.2 (Path function). A function γ(x,x′, α) :
[a, b] × [a, b] × [0, 1] → [a, b] is a path function, if for a
given pair x,x′, γ(α) := γ(x,x′, α) is a continuous piece-
wise smooth curve from x′ to x.

In Def. (3.2), it is assumed that ∂F (γ(α))
∂xi

exists everywhere.
All axiomatic path attribution methods follow this assump-
tion1. We can unify these methods as specifications of the
following broad definition.

Definition 3.3 (Path attribution methods). For a path func-
tion γ(α), its path attribution method solves for

A(x,x′, γ) =

1∫
0

∂F (γ(α))

∂xi
× ∂γi(α)

∂α
dα, (1)

where the subscript ‘i’ indicates the ith entry of the entity.

Among the path attribution methods, Integrated Gradients
(IG) (Sundararajan et al., 2017) is considered canonical,
which uses a linear path in Eq. (1), i.e., γ(α) = x′ +α(x−
x′), solving

Ai(x,x
′) = (xi−x′i)×

1∫
α=0

∂F (x′ + α(x− x′))

∂xi
dα, (2)

where x′i is the ith pixel in the baseline image. In Eq. (2),
the subscript ‘i’ in Ai(.) indicates that the attribution is
estimated for a single feature. For simplicity, in the text
to follow, we often re-purpose A to refer to an attribution
map, s.t. A = {A1,A2, ...,An}. Herein, Ai denotes the
attribution score of the feature xi, e.g., solution to Eq. (2).

Systematic use of the baseline and path function enables
the path attribution methods to demonstrate a range of ax-
iomatic properties (Sundararajan et al., 2017), (Friedman,
2004), (Lundstrom et al., 2022). We discuss these proper-
ties in the context of our contribution in the supplementary
material. Here, we must formally define one of them, called
completeness, as it is critical to understand the remaining
discussion in the main paper.

Definition 3.4 (Completeness). For F ∈ F(a, b) and
x,x′ ∈ [a, b], we have

∑n
i=1Ai(x,x

′) = F (x)− F (x′).

Completeness asserts that a non-zero importance is at-
tributed to a feature only when that feature contributes to

1It is assumed by the methods that the Lebesgue measure for
the set of points where the function is not defined is 0.

the output. From Def. (3.1) - (3.3), it is apparent that the
path attribution methods rely strongly on (i) the baseline
x′ and (ii) the path used to compute the attribution scores.
Hence, these two aspects will remain at the center of our
discussion in the remaining paper.

4. Problems with path attribution
The pioneering path attribution method in the vision domain,
i.e., Integrated Gradients (IG) (Sundararajan et al., 2017)
took inspiration from cooperative game-theory (Friedman,
2004). In fact, IG corresponds to a cost-sharing method
called Aumann-Shapley (Aumann & Shapley, 2015) in Eco-
nomics. However, Lundstrom et al. (2022) recently noted
that the class of functions F - see § 3, cf. Def. (3.1) - im-
plemented by the deep learning models, e.g., visual clas-
sifiers, does not behave similar to its counterpart in the
game-theoretic context. A natural consequence of this fun-
damental observation is that the path attribution framework
requires further investigation for the deep visual models
in regards to its claimed theoretical properties. Advancing
this notion, below we highlight the major challenges en-
countered in interpreting deep visual models with the path
attribution methods.

P1: Counter-intuitive attribution scores: Srinivas &
Fleuret (2019) pointed out a critical flaw of ‘counter-
intuitive’ attribution scores computed by IG (Sundararajan
et al., 2017). We provide an accessible example below to
explain the issue. Note that, the examples and discussion
herein are directly applicable to the modern ReLU deep
visual models as they are represented well as piece-wise
linear functions (Srinivas & Fleuret, 2019).
Example 1 (Counter-intuitive attribution scores). Define a
piece-wise linear function for an input x = [x1, x2] ∈ R2.

F (x)=

x1 + 4x2 + 1, U1 = {x | x1, x2 ≤ 1}
4x1 + x2 + 2, U2 = {x | x1, x2 > 1}

0, otherwise.

Consider two points xa = [1.5, 1.5] and xb = [4, 4] s.t.
xa,xb ∈ U2. For these points, x1 clearly influences
the output more strongly than x2 due to its larger weight.
However, when Eq. (1) is applied using a linear path like
IG (Sundararajan et al., 2017), the resulting attributions
are: A(xa,0) = {3, 4.5} and A(xb,0) = {16, 7}, where
0 ∈ R2 is a zero vector that is used by IG as the baseline.
Clearly, the computed attributions are not only counter-
intuitive, but also inconsistent.

Srinivas & Fleuret (2019) rightly concluded that such a
counter-intuitive behavior of IG (and other path attribution
methods in general) is due to the violation of a property
called weak dependence - cf. Def. (4.1).
Definition 4.1 (Weak dependence). Consider a piecewise-
linear model F (.) encoded by ‘p’ pieces, defined over the
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same number of open connected sets Ui for i ∈ [1, p] s.t.

F (x) =


wT

1 x+ b1, x ∈ U1
...

wT
p x+ bp, x ∈ Up.

(3)

For F (x), an attribution method weakly depends on x when
this dependence is only via the neighborhood set Ui of x.

In (Srinivas & Fleuret, 2019), the authors eventually make
the following proposition with reference to the counter-
intuitive results of the path attribution methods.

Proposition 4.2. “For any piece-wise linear function, it is
impossible to obtain a saliency map2 that satisfies both
completeness and weak dependence on inputs, in gen-
eral” (Srinivas & Fleuret, 2019).

P2: The baseline enigma: The baseline in the path attribu-
tion framework plays a key role in estimating the desired
scores. However, since path functions are not originally
rooted in the vision literature (Friedman, 2004), a concrete
definition of the baseline still eludes the path methods in
the vision domain. Gradients of a model’s output w.r.t. the
input are widely considered a natural analogue of the model
coefficients in deep learning (Sundararajan et al., 2017),
(Simonyan et al., 2014), (Baehrens et al., 2010). Hence,
they are effective attribution measures. However, it is well-
known that they saturate for the important features (Sun-
dararajan et al., 2017). By integrating them over a path from
the baseline to the input - cf. Def. (3.3), path-based attribu-
tion methods are able to circumvent this problem. However,
this role of the baseline also imposes a critical requirement
on it. That is, the baseline must encode the ‘absence’ of the
feature in the input to specify a meaningful path that can
lead from the absence to the presence of the feature.

To emulate the feature absence, different path attribution
methods for visual models employ different baselines. For
instance, IG (Sundararajan et al., 2017) proposes a black
image as the baseline, whereas (Pan et al., 2021) uses adver-
sarial examples (Akhtar et al., 2021). A study in (Sturmfels
et al., 2020) clearly shows that inappropriate encoding of the
feature absence in the baseline image has severe undesired
effects on the eventually computed attribution scores.

P3: Ambiguous path features: Still largely unexplored in
the literature is the intrinsic ambiguity of the features resid-
ing on the path specified by the path function - cf. Def. (3.2).
Ideally, the path function should flow from feature absence
to its presence in order to holistically preserve the desir-
able properties of the path attribution framework. However,
owing to the problem P2, it is not known if the paths of
the existing methods in the vision domain are actually com-
posed of the features that follow this intuition.

2Termed ‘attribution map’ in this work.

In above, P1 and P2 are known but still open problems, and
P3 is largely unexplored. Kapishnikov et al. (2021) came
the closest to exploring P3, however they eventually adapted
the path itself instead of addressing the features on the path.
Besides the above issues, it is also known that the gradient
integration for path attribution can suffer from noise due
to the shattered gradient problem (Balduzzi et al., 2017).
However, this is known to be addressed well by computing
Expected attribution scores using multiple baselines (Erion
et al., 2021), (Hooker et al., 2019).

5. Fixes for the problems
We first propose systematic fixes to the problems highlighted
in § 4. These solutions will later be combined to form a
reliable path attribution method in § 6.

F1: Avoiding counter-intuitive scores: Problem P1 di-
rectly challenges the reliability of the path attribution frame-
work for deep learning. Hence, we address it first. Building
on Example (1), we provide Example (2) to highlight the
key intuition behind our proposed resolution of P1.
Example 2 (Correct attributions scores). Consider the same
F (x), xa and xb defined in Example (1). Let us choose
a point x′ = [3, 3], s.t., x′ ∈ U2. When we use x′ as the
baseline instead of 0 ∈ R2 and integrate using a linear path
function, we getA(xa,x′) = {−6,−1.5} andA(xb,x′) =
{4, 1}. In general, we always get abs(A1

A2
) = 4 whenever

x′ ∈ U2, which conforms to the weights of the active piece
of F (x) for xa and xb.

In Example (2), the key idea is to restrict the baseline to
the same open connected set Ui to which the input belongs.
We find that the path attribution framework always satisfies
the weak dependence property along with completeness
under this restriction. We make a formal proposition about
it below. Mathematical proof of the proposition is provided
in the supplementary material of the paper.
Proposition 5.1. For a piece-wise linear functionF , path at-
tribution satisfies both completeness and weak dependence
simultaneously when the baseline x′ and the input x belong
to the same open connected set Ui.

Here, we quickly allude to how weak dependence helps
in computing reliable attributions. Notice, the assertion
that the ‘method depends on the input through its neighbor-
hood’ - cf. Def. (4.1) - implicitly identifies the set wi, bi ∀i
corresponding to the piece of F (.) that is invoked by x.
The attributions computed with the correct set of the active
model parameters for x are naturally more credible.

F2: Well-defined baseline: To address the baseline ambi-
guity, we develop a clear computational definition. Our
treatment of this notion conforms to the original idea that a
baseline signifies the feature ‘absence’ (Sundararajan et al.,
2017). Additionally, we build on our Proposition (5.1) to
constrain the baseline to the open connected set of the neigh-

4



Towards Credible Visual Model Interpretation with Path Attribution

bourhood of x, resulting in the definition below.

Definition 5.2 (Desired baseline). Given a model F and
input x ∈ Rn, a desired baseline x′ ∈ Rn satisfies ||F (x)−
F (x′)||2 ≈ 0, where ∀i∈{1,...,n} |xi − x′i| ≥ δ.

In Def. (5.2), the constraint ||F (x) − F (x′)||2 ≈ 0 en-
courages x′ to use similar weights as x. A deep visual
classifiers can be expressed as F (x) = C(wc,R(wr,x)) :
x → lx ∈ RL, where C(., .) and R(., .) are respectively
the classification and representation stages of the model.
The constraint essentially imposes that the logit scores for
the baseline and the input are similar. Normally, R = ζL,
whereR(., .) : x→ RR and ζ ≈ 1. These conditions natu-
rally promote x′ to use a similar weight set to x in C(., .).
We also provide a formal discussion on this phenomenon in
the supplementary material.

The external constraint |xi − x′i| ≥ δ imposes a minimum
difference restriction over the baseline. We use it to enforce
a computational analogue of feature absence (explained
further in F3) in x′. When IG (Sundararajan et al., 2017)
uses a black image as the baseline, the computed attribution
map assigns a zero score to the black features in the input.
In fact, we observe that in general, whenever xi − x′i → 0
for any feature, Ai(x,x

′
i) → 0 for the attribution method

that uses a linear path function. This is easily verifiable
for IG by considering the term (xi − x′i) in Eq. (2). Our
imposed constraint precludes this singularity.

F3: Valid path features: To explain the valid path features,
we first need to further explain our computational view of
the feature absence. For that, refer to Fig. 2, which plots a
hypothetical smooth loss surface assuming a well-trained
model. As the model is well-trained, the input x (say at
location 2) is close to a local minimum. With respect to the
model, a higher (computational) ‘presence’ of the feature
in the baseline asserts that its location is even closer to the
local minimum than x, e.g., at location 3. Conversely, a
higher feature ‘absence’ will require x′ to reside farther
from x, e.g., at location 1. For a smooth surface, gradients
flatten near the optima and remain relatively steep elsewhere.
Hence, we observe that by comparing the magnitudes of the
gradients for x and x′, we can identify if x′ encodes feature
absence, especially when ||F (x) − F (x′)||2 is small. We
denote the gradient for x by ∇x, and for x′ by ∇γ

x′ in the
figure, where γ restricts x′ to be on the path defined by the
path function γ(α)3.

Looking closely, the above observation fails when x′ picks
location 4 instead of 3, which still has a smaller gradient

3We eventually choose a linear path for our method. In that
case, ∇γ

x′ = (xi − x′
i) · ∇x′ , where ∇x′ is the model gradient

w.r.t. x′. Also notice that to keep the discussion flow, we treat x′

in Fig. 2, and the related text to be ‘any’ point on the path between
the baseline and the input - not just as the baseline. This changes
in the formal definition in Def. (5.3).

Figure 2. For a well-trained differentiable model, an input x lies
close to a local minimum. By comparing the directions and magni-
tude of the gradients ∇x and ∇γ

x′ of x and x′, we can estimate if
x′ (on path γ) encodes feature absence w.r.t. x for the model in
a computational sense. It occurs when sgn(∇x) · sgn(∇γ

x′) = 1
and abs(∇x) > abs(∇γ

x′). See text in F3 for explanation.

magnitude than location 2, however it may not represent a
larger feature presence. This is because, for our observation
to hold, the local minimum must be approached from (not
towards) the input x. Luckily, we can identify that 4 is not
on the same side as x by comparing the sign of the gradient,
i.e., sgn(∇γ

x′), at that location with sgn(∇x) at location 2.
From Fig. 2, it is clear that the observation in the preceding
paragraph holds in general when we impose the additional
constraint sgn(∇x) · sgn(∇γ

x′) = 1.

The example in Fig. 2 may at first seem contrived. However,
it is fully generalizes to any F for which ∂F (γ(α))

∂xi
exists

everywhere - cf. Def. (3.2). Hence, we can identify the valid
features on the path defined by our path function γ as

Definition 5.3 (Valid path features). A feature x̃i ∈ R
on the path γ(α) - cf. Def. (3.2) - defined by the input xi
and a baseline x′i is a valid path feature when sgn(∇xi

) ·
sgn(∇γ

x̃i
) = 1 and abs(∇xi

) > abs(∇γ
x̃i
).

6. Realizing the fixes
With Def. (5.2), we specified a baseline that precludes the
counter-intuitive attributions under Prop. (5.1) while also
conforming to a sensible computational analogue of feature
absence for the visual models. Def. (5.3) provides a verifica-
tion check to ensure that the features on our path indeed flow
from their absence to presence4. We now describe our pro-
cedure to combine these insights into a reliable path-based
attribution method.

Baseline computation: The desired baseline in Def. (5.2)
leads to the following optimization problem.

min
x′
||Flogits(x)− Flogits(x

′)||2 s.t. min
i
|xi − x′i| ≥ δ, (4)

where ‘logits’ indicates the model logit scores. To solve this,
we devise Algo. (1). The key idea of Algo. (1) is to first
create an initial estimate xp of x′ under the transformations
ψ(.), such that xp differs from x in both input and output
spaces. We use a Gaussian blur for that purpose. Then, in

4Computationally, a path-constrained feature that overshoots its
presence in the input becomes an invalid feature as per Def. (5.3).
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Algorithm 1 ComputeBaseline
Input: Image x ∈ Rn, model F , Blur kernel size σ, Gradi-

ent step size η, Thresholds ϵ, δ.
Output: Baseline x′ ∈ Rn.

1: xp ← ψ(x, σ) //assert xp ̸= x
2: while ||Flogits(x)− Flogits(x

p)||2 > ϵ do
3: xp ← xp - η · sgn (∇xpF )
4: for i = 1 to n do
5: if |xi − xpi | < δ then
6: xpi ← −sgn(xi − xpi ) · δ + xpi
7: end if
8: end for
9: xp ← Clip(xp)

10: end while
11: x′ ← xp

lines 2 - 7 of Algo. (1), we gradually alter xp to bring it
close to x in the model output space, while maintaining the
constrain mini |xi − xpi | ≥ δ in the input space. Here, logit
scores are used as the output map of F . On line 3, alteration
to xp is guided by Lemma (6.1), which provides us with a
desirable direction of altering xp that can efficiently achieve
our objective. We take small steps in that direction with
a step size η. On lines 4 - 6, we ensure that xp abides by
|xi − xpi | ≥ δ after each alteration. Line 7 brings the image
back to the valid dynamic image range for the model F by
the standard clipping operation.

Lemma 6.1. For F (.) with cross-entropy loss, F (xp) can
approach F (x) by stepping in the direction −sgn(∇xpF ).
Proof: For F (.) with corss-entropy loss J (., .), F (xp)→
F (x) requires maximizing log (p(F (x)|xp), which re-
quires stepping in the direction sgn(∇xp log(p(F (x)|xp)).
This is the same direction as sgn (−∇xpJ (F (x),xp)) or
−sgn(∇xpF ) following our short-hand notation.

Gradients integration: Algorithm (2) summarizes our
overall technique to compute the attribution map with gra-
dient integration. For clarity, the text below describes it in
a non-sequential manner. On line 3 of Algo. (2), we obtain
the desired baseline image by calling Algo. (1). Using this
baseline, line 6 computes the features that reside on the
path between the baseline and the input, employing a step
size sampled from a uniform distribution. We also use a
linear path function similar to IG (Sundararajan et al., 2017)
- cf. § 4. This allows our method to inherit the axiomatic
properties of the canonical path method. We discuss this
aspect in more detail in the supplementary material of the
paper while describing the theoretical properties.

After computing the path features, their gradients on the
path are estimated on line 7, and the checks specified by
Def. (5.3) are performed on line 9. It is straightforward to
show that under the Riemman approximation of the integral,
gradients for a feature xi on a linear path can be integrated

Algorithm 2 Path integration
Input: Image x ∈ Rn, model F , # of baselines B, Total

steps K, param = {η, ϵ, δ}, Blur kernel sizes {σb}Bb=1

Output: Attribution map A
1: Initialize: gradAcc = 0 ∈ Rn, ρ← ∇xF
2: for b = 1 to B do
3: x′ ← ComputeBaseline(x, F, σb, param)
4: count← 0 ∈ Rn, ϱ← 0 ∈ Rn

5: for k = 1 to ⌊KB ⌋ do
6: x̃← x′ + αk(x− x′) s.t. αk ∼ uniform(0, 1)
7: ρ̃← (x− x̃) · ∇x̃F
8: for i = 1 to n do
9: if sgn(ρi) = sgn(ρ̃i) ∧ |ρi| > |ρ̃i| then

10: ϱi ← ϱi +∇x̃i
F , counti ← counti + 1

11: end if
12: end for
13: end for
14: gradAcc← gradAcc + (x− x′)ϱ · /count
15: end for
16: A ← gradAcc /B

as (xi − x′i) × 1
m

∑m
i=1∇x̃i

F , where ∇x̃i
F is the model

gradient w.r.t. the valid path feature x̃i. On line 10, accumu-
lation of the gradients of the valid features, i.e.,

∑
i∇x̃i

F ,
is performed, which is used for the Reimann approximation
of the integration by the algorithm.

Besides the above, an outer for-loop can be observed in
Algo. (2). This loop allows us to use multiple baselines in
our path-based attribution. Using multiple baselines can be
beneficial in suppressing the noise in accumulated gradi-
ents (Erion et al., 2021). Erion et al. (2021) used a Monte
Carlo approximation of the integral in their technique to
leverage multiple baselines. Inspired, we also use the same
approximation, which requires Algo. (2) to estimate the
eventual integral as E

x′∼B
[(x − x′)∇x̃F ], where B is the

distribution over the proposed baseline. Mathematically,
the noted Expectation value leads us to averaging over the
gradients which are integrated in the inner for-loop. This is
accomplished with the outer loop. It is noteworthy that we
allow multiple baselines in our method mainly to suppress
any potential noise due to the shattered gradients problem.
Otherwise, the inner for-loop along the baseline compu-
tation in Algo. (1) already accounts for the fixes F1 - F3
discussed in § 5.

The proposed attribution estimation may at first seem depen-
dent on multiple hyper-parameters. However, these parame-
ters are handles over intuitive concepts, which makes select-
ing their values straightforward. Moreover, the computed
attribution scores are largely insensitive to a wide range of
sensible values of these parameters. We also provide further
discussion about it in the supplementary material.
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Method ResNet-50 DenseNet-121 VGG-16
IG 0.3711 0.5042 0.2532
IG (G) 0.2997 -19.2 0.4128 -18.1 0.1609 -36.4
IG (A) 0.4653 +25.4 0.5493 +8.9 0.3387 +33.7
AGI 0.3995 +7.6 0.4549 -9.7 0.2419 -4.4
EG 0.4004 +7.90 0.5171 +2.5 0.2727 +7.69
GIG 0.4681 +26.1 0.5436 +7.8 0.3914 +54.5
Our 0.5311 +43.1 0.6228 +23.5 0.4023 +58.8

Table 1. ImageNet (Deng et al., 2009) AUC difference between
Insertion-Deletion scores(Petsiuk et al., 2018). Percentage gain
over Integrated Gradient (IG) (Sundararajan et al., 2017) is also
given. IG (G) and IG (A) respectively use Gaussian noise and
Average pixel value of the input as the baseline.

7. Empirical Evidence
This paper contributes to the path-based model interpreta-
tion paradigm, hence its experiments are specifically de-
signed to show improvements to the path attribution frame-
work with the newly provided insights. Indeed, there are
also other post-hoc interpretation techniques besides path
methods, cf. § 2. However, they are not axiomatic, which
renders their comparison with the path methods injudicious.
This is particularly true for quantitative comparisons be-
cause to-date there is no mutually agreed upon metric that
is known to comprehensively quantify the correctness of
attribution maps. It is emphasized that the intent of our eval-
uation in not to claim new state-of-the-art on performance
metrics, which are disputed in the first place. Rather, we use
empirical results as an evidence that our theoretical insights
positively contribute to the path attribution framework.

Insertion/Deletion evaluation on ImageNet: Among the
most commonly used quantitative evaluation metrics for
the post-hoc interpretation methods, are the insertion and
deletion game scores (Petsiuk et al., 2018). In our evalu-
ation, the insertion game inserts the most important pixel
(as computed by the method) first and records the change in
the model output. The deletion game conversely records the
score by removing the most important pixel first. We con-
duct insertions and deletions for all the pixels and compute
the Area Under the Curve (AUC) of the output change with
the pixel insertion/deletion. For insertion, a larger AUC is
more desirable, which is opposite for the deletion. It is easy
to see that the two metrics do not capture the full picture
of method performance individually. Hence, we combine
them by reporting the AUC of the difference between the
insertion and deletion scores in our results, where the larger
differences become more desirable. This provides a more
comprehensive view of the performance.

In Table 1, we summarize the results on three popular Ima-
geNet models. As the baseline method, we chose the canon-
ical path attribution technique, i.e., Integrated Gradients
(IG) (Sundararajan et al., 2017). We also implement IG,
using different path baselines. IG (G) uses Gaussian noise

Method RN-50 (0.77) RN-34 (0.75) RN-18 (0.64)
IG 0.3711 0.3854 0.2481
Our 0.5311+43.1 0.5185+34.5 0.3675+48.1

Table 2. Performance gain over IG for different ResNet (RN) vari-
ants. Average confidence score of models are noted in parenthesis.

instead of black image as the path baseline, whereas IG (A)
uses the average pixel value of the input as the baseline.
For each model, the results are averaged over 2, 500 images
from the ImageNet validation set. We also include the exist-
ing relevant methods Expected Gradient (EG) (Erion et al.,
2021), Guided IG (GIG) (Kapishnikov et al., 2021) and Ad-
versarial Gradient Integration (AGI) (Pan et al., 2021) for
benchmarking.

In Table 1, we ensure that the methods use the same images
and models, and also take the same number of steps from
the baseline image to the input. This allows for a transparent
comparison. For all the methods, we allow 150 steps. Since
our technique enables the use of multiple baselines, we use
3. The same number of baselines and steps are used for
EG (Erion et al., 2021) and AGI (Pan et al., 2021). The
reported results also include the percentage gains of each
technique over IG. Since IG is the canonical path attribution
method (Sundararajan et al., 2017), it provides the perfect
baseline to establish any positive development for the path
attribution framework. It can be noticed that our method
achieves remarkable gains, with up to 58.8% improvement
for VGG-16.

There are a few reportable interesting observations related
to the results in Table 1. We noticed that the average con-
fidence scores of ResNet-50, DenseNet-121 and VGG-16
in our experiments were 0.77, 0.81 and 0.69, respectively.
The underlying pattern is exactly the opposite to that of
the gains we achieved over IG with our method in Table 1.
Indicating that IG has a tendency to perform sub-optimally
(relatively speaking) for the less confident models - as ad-
judged by the insertion/deletion game scores. To further
verify that, we report the results of an additional experiment
with ResNet (RN) variants in Table 2. Whereas IG gained
some grounds for ResNet-34, it again performed relatively
poorly for ResNet-18.

Another interesting observation we made related to the re-
sults in Table 1, was about the performance of EG (Erion
et al., 2021) and AGI (Pan et al., 2021). Whereas we use
author-provided codes for these methods, we match the
hyper-parameters with IG and our method, and remove any
other pre-/post-processing of the computed maps which is
not used by IG. For instance, we remove thresholding of
AGI, which does not conform to the axioms of path attribu-
tion. As can be seen in Table 1, AGI does not perform too
well on equal grounds with IG. We use the best perform-
ing variant of AGI in our experiments, which was achieved

7
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Method ResNet-50 DenseNet-121 VGG-16
IG 0.5502 0.4693 0.4873
IG (A) 0.5619+2.1 0.5039+7.4 0.4964+1.8
GIG 0.5635+2.4 0.5023+7.0 0.5014+2.8
Our 0.5889+7.1 0.5448+16.1 0.5120+5.0

Table 3. CIFAR-10 (Krizhevsky et al.) AUC difference between
Insertion-Deletion scores (Petsiuk et al., 2018). Average confi-
dence scores of ResNet-50, DenseNet-121 and VGG-16 on the
images are 0.81, 0.74 and 0.79, respectively. IG (A) uses average
pixel value of input as baseline.

with PGD attack (Madry et al., 2018). For EG, we use 3
baselines with 50 steps to match it with our method. This
variant performed almost similar to using 150 baselines with
1 step for each baseline. We also provide further results in
ImageNet dataset using Vision Transformer (ViT) models
in the supplementary material of the paper.

Insertion/Deletion evaluation on CIFAR-10: As com-
pared to 224× 224 grid size of ImageNet samples, CIFAR-
10 (Krizhevsky et al.) has 32 × 32 image grid size. Im-
age size has direct implications for the quantitative metrics
of insertion and deletion games. Hence, in Table 3, we
also report performance of our method on 1000 images of
CIFAR-10 validation set. In the table, we only include the
top performing approaches from Table 1. On CIFAR-10
images, IG already performed considerably well under inser-
tion/deletion score metrics. Nevertheless, our method still
provided a considerable relative gain over IG consistently.
It is noteworthy that our observation regarding the relation
between the relative gain of our method over IG and the
model confidence scores also generally holds in the case of
CIFAR-10 experiments.

Sensitivity-N evaluation on ImageNet: Though it is com-
mon to evaluate performance of attribution methods un-
der a single quantitative metric (Kapishnikov et al., 2021),
(Pan et al., 2021), we further evaluate our approach with
Sensitivity-N (Ancona et al., 2017) to conclusively establish
its contribution to the path attribution framework. The com-
putationally intensive Sensitivity-N metric comprehensively
verifies that the model output is sensitive to the pixels con-
sidered important by the attribution method. For any feature
subset of x, i.e., xsub = [x1, x2, ..., xk] ⊆ x, this metric
requires that

∑k
i Ai = f(x)− f(x[xsub=0]) holds. Whereas

no method is expected to achieve this due to practical rea-
sons, the metric is still effective. To put it into practice,
we vary the feature fraction in xsub in the range [0.01, 0.9],
and compute the Pearson Correlation Coefficient between∑m

i Ai values and the output variations.

We plot the results of Sensitivity-N for the ImageNet model
interpretations in Fig. 3. Higher values of the curves are
more desirable. It is observable that as compared to the
canonical method IG, our method generally performs con-
siderably better under this metric as well.

Method ResNet-50 Dense-121 VGG-16
Our + IG Baseline 0.3809 0.5112 0.2552
Our (Single Baseline) 0.5254 0.6192 0.3602
Our (Proposed) 0.5311 0.6228 0.4023

Table 4. Contribution of the proposed baseline and integration pro-
cess to the final results on ImageNet models. AUC differences
reported for insertion/deletion game scores.

Qualitative results: We show multiple representative quali-
tative results for random samples using VGG-16, ResNet-50
and DenseNet-121 models for ImageNet. Results of the
top-performing methods in Table 1 are included. In those re-
sults attribution scores are encoded as gray-scale variations,
where brighter pixels represent larger attribution scores. It
is clear from the qualitative results that our method does
not face the problem of assigning lower scores to the dark
pixels of the object. Our maps are also less noisy and indeed
assign large attribution scores to the foreground object. We
do not observe counter-intuitive behavior of the attributions
for our method.

Further results: The ablation analysis in Table 4 shows
that both the proposed baseline an path feature integration
process contribute positively to our overall performance.
In the supplementary material, we provide further results
demonstrating the effects of hyper-parameter settings on the
performance. The key observation related to those results is
that we can even improve performance further by allowing
more steps on the path, and our results are generally insen-
sitive to the hyper-parameters values in reasonable ranges.
Computational and memory requirements of our method
also remain comparable to those of IG.

8. Conclusion
Using theoretical guidelines, this paper pinpointed the
sources of three shortcomings of the path attribution frame-
work that compromise its reliability as an interpretation tool
for the deep visual models. It proposed fixes to these prob-
lems such that the framework becomes fully conformant to
the original game-theoretic intuitions that govern its much
desired axiomatic properties. We combined these fixes into
a concrete path attribution method that can compute reliable
explanations of deep visual models. The claims are also
established by an extensive empirical evidence to explain a
range of deep visual classifiers.
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Figure 3. Sensitivity-N (Ancona
et al., 2017) analysis on ImageNet
models. Pearson Correlation Coef-
ficient (PCC) between the sum of
the attributions and output variations
under different sampling set size
ratios are plotted. Larger values
are more desirable. A considerable
gain is achieved by our method over
IG (Sundararajan et al., 2017).
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Supplementary material

A. Axiomatic properties and their retention
Below we list the axiomatic properties of the path attribu-
tion framework. These properties are commonly claimed
by multiple existing works, e.g., (Lundstrom et al., 2022),
(Sundararajan et al., 2017), (Xu et al., 2020). Besides list-
ing the properties, we provide their intuitive meanings and
remark on how our method retains each property.

Definition A.1 (Completeness). For F ∈ F(a, b) and
x,x′ ∈ [a, b], we have

∑n
i=1Ai(x,x

′) = F (x)− F (x′).

Completeness ensures that a non-zero importance is at-
tributed to a feature only when that feature actually con-
tributes to the model output. For a linear path func-
tion γ(α) = x′ + α × (x − x′), it is provable under

the fundamental theorem of calculus that
n∑

i=1

(xi − x′i) ×∫ 1

α=1
∂F (γ(α))

∂xi
dα = F (x)− F (x′). Since for any baseline

(considering multiple baselines), our method also follows
a linear path - similar to IG (Sundararajan et al., 2017)
- for differentiable F , the fundamental theorem of calcu-
lus is similarly applicable to our method. We impose
||F (x) − F (x′)||2 → 0. From the implementation view-

point, we have
n∑

i=1

(xi − x′i)×
∫ 1

α=1
∂F (γ(α))

∂xi
dα = ϵ. Our

path integration does not introduce any new out-of-path fea-
tures. It selects all the features from the same linear paths
without violating path integration. Hence, as dα→ 0 in the
above integral, R.H.S.→ 0.

Definition A.2 (Sensitivity-A). Let x and x′ vary in one
component, s.t. xi ̸= x′i,∧ xj = x′j ∀j ̸= i. Moreover, let
F (x) ̸= F (x′). Then Ai(x,x

′) ̸= 0.

Sensitivity-A asserts that when a feature contributes to out-
put, it gets non-zero attribution. Completeness implies sen-
sitivity. Since our method upholds completeness, sensitivity-
A remains satisfied.

Definition A.3 (Implementation invariance). A is not a
function of model implementation. Instead, it is only a
function of the mathematical mapping of the domain to the
range as performed by the model.

Path attribution framework ensures implementation invari-
ance by not relying on the internal signals of the network.
For instance, GradCAM (Selvaraju et al., 2017) needs ac-
tivations of a certain layer to compute attributions. When
two models map a domain to the same range, but using
different network architectures, GradCAM’s map can get
affected by the network architecture itself. This violates im-
plementation invariance. Path based methods solely rely on
the input-output mapping by backpropagating the gradients
right until the input. Our method also does the same, and

does not contradict the fundamental principles of gradient
integration. Hence, it retains the implementation invariance
property just like other path-based methods. Notice that,
even for computing the baseline(s), we backpropagate the
gradients until the input, which is inline with the implemen-
tation invariance requirements.

Definition A.4 (Linearity). For α ∈ R and β ∈ R,
Ai(x,x

′
i, αF1+βF2) = αAi(x,x

′, F1)+βAi(x,x
′, F2).

Linear path integration axiomatically satisfies linearity.
When using multiple baselines, our method uses linear path
integration for each baseline. The eventual averaging under
the Monte Carlo integration is also a linear operation. By
definition, applying it to linear path integration still pre-
serves linearity. Hence, this property is also retained by our
method.

Definition A.5 (Sensitivity-B). For any F ∈ F , when
∂F
∂xi

= 0 if Ai(x,x
′
i) = 0.

This property asserts that if the function does not depend on
a variable, then the attribution score of that variable is zero.
As a natural complement of Sensitivity-A - cf. Def. (A.2)
- linear path integration methods satisfy this property ax-
iomatically. As noted above, each path integration used in
our method satisfies linearity - cf. Def. (A.4), and the final
averaging in the case of multiple baselines is also a linear
operation. Hence, Sensitivity-B is also retained.

Definition A.6 (Symmetry Preserving). For a give index
pair (i, j), x† is formed by swapping the value of xi and xj .
If ∀x ∈ [a, b], F (x) = F (x†), then whenever xi = xj and
x′i = x′j , the Ai(x,x

′) = Aj(x,x
′).

This property asserts that ‘‘if two variables play the exact
same role in the network then they ought to receive the
same attribution” (Sundararajan et al., 2017). Sundrarajan
et al. (Sundararajan et al., 2017) prove the path integration
with linear paths preserves this property. Since the linear
path integration also exhibits linearity, averaging (a linear
combination) over multiple linear path integrations retains
this property.

It is noted that Lundstrom et al. (2022) recently qualified
the axiomatic property claims of (Sundararajan et al., 2017)
by imposing a non-decreasing positivity (NDP) constraint
over the methods. Nevertheless, they verified that linear
path integration satisfies NDP. Hence, the linear path used
in our method still satisfies the axiomatic properties under
the new insights from (Lundstrom et al., 2022). In addi-
tion to the above properties, the main paper also shows that
our method also satisfies the ‘weak dependence’ property,
which is not satisfied by other path attribution methods, e.g.,
IG (Sundararajan et al., 2017). This gives our method an ad-
ditional theoretical advantage, besides practically improving
the results.
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B. Proof of Proposition 5.1
In Prop. 5.1 of the main paper, we state that “For a piece-
wise linear function F , path attribution satisfies both com-
pleteness and weak dependence simultaneously when the
baseline x′ and the input x belong to the same open con-
nected set Ui.” Below we prove this statement. In the proof,
we follow (Srinivas & Fleuret, 2019) at first, and then di-
verge to prove our proposition.

Proof: Attribution computation implies ∃Ψ : (F,x)→ A,
where Ψ denotes a mapping. Following the convention from
the main paper, let Ui∈{1,...,n} be the open-connected set for
a family of piece-wise linear functions, whose members get
specified by the parameter set Θ = {wi, bi|i ∈ [1, n]} ∈
Rn×(D+1), where wi ∈ RD. Let F and F be two members
of this family, specified by Θ and Θ.

The weak dependence property enforces that the mapping Ψ
depends on the input through the parameters of the function,
i.e., Ψ|Ui

: (wi, bi) → A. Since (wi, bi) ∈ RD+1 and
A ∈ RD, this asserts that Ψ|Ui

is a many-to-one mapping.
Implying, ∃ F, F with corresponding θi = (wi, bi) and
θi = (wi, bi) such that θi ̸= θi, yet they map to the same
A. For the same F, F , completeness requires ∆ = F (x)−
F (x′) = w⊺

i x+bi−w⊺
jx

′−bj and similarly ∆ = F (x)−
F (x′) = w⊺

i x+bi−w
⊺
jx

′−bj such that ∆ = ∆. Implying,
to hold completeness when weak dependence is satisfied,
we need to satisfy C : (wi −wi)

⊺x+ (bi − bi) = (wj −
wj)

⊺x′ + (bj − bj). Since we compute attributions w.r.t. a
single model, F is an identity mapping of F . In that case,
the condition C is automatically satisfied when wi = wj

and bi = bj even when x ̸= x′. Hence, both properties are
simultaneously achieved.

C. Further discussion on the baseline
While explaining Def. 5.2 in the main paper, we note that
the constraint ||F (x)− F (x′)||2 ≈ 0 encourages x′ to use
similar weights as x. We explain this phenomenon further
here. A typical deep visual classifiers can be expressed as
F (x) = C(wc,R(wr,x)) : x → lx ∈ RL, where C(., .)
andR(., .) are respectively the classification and representa-
tion stages of the model. The constraint essentially imposes
that the logit scores for the baseline and the input are similar.
Normally, R = ζL, where R(., .) : x → RR and ζ ≥ 1.
That is, in a typical classifier, the classification stage C(.)
receives an input (normally termed feature vector) that has
comparable dimensions with the prediction vector lx. For
clarity, let us call that feature vector fr ∈ RR. In that case,
the mapping by the classification stage can be summarized
as lx = σ(W cfr+bc), where σ(.) is an activation function
(typically ReLU) and W c and bc are the weights and biases
of the classification stage. We are already imposing that
lx = lx′ (under ||F (x) − F (x′)||2 = 0). For this condi-

tion to hold, we need W cfr + bc = W cf
′
r + bc, where

f ′r denotes the baseline image feature. Since the bias term
is not influenced by the feature vector, we can ignore that.
When ζ ≥ 1, the condition W cfr = W cf

′
r implies that the

same coefficients of W c will get invoked to satisfy lx = lx′

whenever fr = δf ′r, where δ is a real scalar value exclud-
ing 0. Indeed, this is a hard condition to satisfy. However,
our x′ is only a perturbed blurred version of the x, where
|xi − x′i| ≥ δ s.t. δ is a small real value. In that case, we
can expect ||fr − f ′r||2 to be a small value. This similarity
in the feature vectors encourages the use of similar classifier
weights to ensure ||F (x)− F (x′)||2 → 0.

D. Discussion on hyper-parameters
In the main paper, we mention that the hyper-parameters
used by our method are handles over intuitive concepts,
which makes selecting their values quite easy. Moreover, our
method’s performance remains largely insensitive to a wide
range of hyper-parameter values. First, to justify the latter
claim, we present further results in Fig. 4-6 in this document.
There are three hyper-parameters in our technique that are of
critical nature in the context of path attribution framework.
(i) Number of steps taken from the baseline to the input,
(ii) number of baselines used, and (iii) the threshold δ. The
reported results in the main paper, and qualitative results
shown in § E of this document use 150 steps, 3 baselines
and δ = 5. It is clear from Fig. 4-6 that the performance
of our method is largely insensitive to these values in their
neighborhood. We observed in our experiments that for all
the used path attribution methods, more than 50 steps often
resulted in incremental performance gains. Hence, 150 steps
were finally chosen for all the methods to be on the safer
side. Figure 5 also shows that the number of baselines in
not a major influencer in our performance. We still prefer
more than 1 baseline to reduce the effect of noise due to the
shattered gradient problem.

In our method, threshold δ is an important hyper-parameter
because it is responsible for maintaining a minimum dif-
ference between the input pixels and the baseline pixels.
Figure 6 show that for the tested range of [1,11], the per-
formance response is almost flat. Hence, we simply chose
δ = 5 in our experiments. Choosing a very large δ, e.g.,
> 15 can cause convergence problem because the optimiza-
tion objective gets considerably hard. Among the remaining
hyper-parameters, are the blur kernel sizes {σb}Bb=1, η and
ϵ. Notice that, we use blurring only as a method to take the
baseline away from the input. The blurred image is used
to only initialize the baseline. It is latter processed under
Algo. 1 of the main paper to create a baseline that satisfies
Eq. (4) of the main paper. To perform the initialization,
we simply use fixed blur kernels of size 51 for ImageNet
images and 7 for CIFAR-10 images. Where multiple kernels
are required, we reduce these sizes by 1 for a new size. This
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Figure 4. AUC difference between insertion and deletion game scores with varying number of steps for gradient integration. Results are
averaged over 50 ImageNet images. ResNet-50 is used in the experiment. Higher values are more desirable.

Figure 5. AUC difference between insertion and deletion game scores with varying number of baseline images used for the proposed
method. Results are averaged over 50 ImageNet images. ResNet-50 is used in the experiment.

Figure 6. AUC difference between insertion and deletion game scores with varying threshold value of δ. Results are averaged over 50
ImageNet images. ResNet-50 is used in the experiment.
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Figure 7. Representative visualizations of ImageNet image attributions with VGG-16 predictions. Best viewed enlarged on screen.

Figure 8. Representative visualizations of ImageNet image attributions with ResNet-50 predictions. Best viewed enlarged on screen.
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is to introduce some variation in the initialization.

Regarding the parameters η and ϵ, the former signifies how
strongly we would like to match the logit scores of the base-
line and the input. The latter is determines how aggressively
we want to alter the baseline to match the logits. We em-
pirically noticed that with η = 1/255, the logits almost
always matched reasonably well after 15 iterations. Hence,
from the implementation viewpoint, we replaced ϵ with 15
iterations. This also allows a more uniform computational
time across the samples for our method.

E. Qualitative results
In Fig. 8-12 of this document, we provide qualitative results.
In Fig. 7, 8 and Fig. 9, the results are reported for VGG-16,
ResNet-50 and DenseNet-121, respectively. In Fig. 10-
12, we show further results on other random samples for
all three models. In the shown figures, a few observation
can be easily made. First, it is noticeable that IG keeps
struggling to explain the images where the object of interest
is relatively darker than the background. The reason for this
phenomenon is that IG uses a zero image as the baseline.
Hence, the (xi − x′i) factor in Eq. 2 of the main paper
becomes dominant for IG whenever any pixel in the input
image is too bright. This inadvertently results in assigning
higher attribution to that pixel, even if its in the background.
On the other hand, a dark pixel in the input leads to (xi −
x′i) → 0, even when it is on the object of interest. This
results in lower attributions of object pixels when they are
dark. IG(A) is able to generally resolve this problem and
results in better attribution maps. However, it can be noticed
that IG(A) often still assigns high attributions to irrelevant
objects in the background. These assignments can come
in clusters. E.g., observe the top-left corner of the second
image (from left) for IG(A) in Fig. 8 and 9. These are
counter-intuitive attributions that do not get resolved with
uniform baselines, and are inherited from the IG scheme.

We can observe that the qualitative results of our method
are generally less noisy, and high attribution scores are
generally focused on the objects. In many cases, immediate
background and related objects in the background also get
relatively high scores for our method. We conjecture that
this is because the models do not only recognize the objects
but also their silhouettes and consistent background object
(e.g., trees/leafs for birds) to predict the label.

F. Computation time
Attribution mapping in general is an off-line process, hence
reliability out-weights timing requirements heavily. Nev-
ertheless, it is noteworthy that our method computes the
attribution maps in a time that is comparable to IG. Our
overall technique has two major components. (a) Baseline
computation, and (b) path integration. Being a path attri-
bution method, the path integration process is very similar
to IG, with the exception of extra computations to check
for the valid path features. The baseline computation incurs
extra cost over IG. However, this process is also not com-
putationally prohibitive. In Table 5, we report the average
computational time (in seconds) required by our method
and IG for both ImageNet and CIFAR-10 models, computed
for NVIDIA RTX 3090 with 24GB RAM using a Pytorch
implementation. It can be observed that whereas our method
is computationally slightly expensive than IG, the compu-
tational time remains comparable to IG. Our method does
not incur any significant extra memory cost as well, like
EG (Erion et al., 2021) that requires the training data of
the model to be available during inference to be used as
baselines. We compute the baseline from the input itself.

G. Baseline examples
In Fig. 13, we present examples of the baseline images
created y our technique for two random input images. We
use δ = 5 and use the blur kernel size 51 for initialization.
We ran five iterations of the optimization algorithm. The
baseline has some similarity with the simple blurred version
of the input. However, the optimization results in spatially
correlated noise patterns, which are unique to our technique.

H. Further results
We also tested the methods with (a) ViT-B/32, (b) ViT-L/32
and (c) ViT-L/16 using the public Pytorch models. We
used 2500 ImagNet images. For the Integrated Gradients
(IG) and our method, we achieved the following results
(a) IG: 0.406, Our: 0.473, Gain: 16.5%, (b) IG: 0.461,
Our: 0.525, Gain: 13.9%; and (c) IG: 0.511, Our: 0.641,
Gain: 25.4%. An interesting observation in our experiments
was that IG maps generally contained blocky patterns of
(incorrect) attributions due to the patches employed by ViT.
Our method naturally addressed the issue very well. Except
for a few images, the (incorrect) blocky patterns disappeared
for our results. There was no change required to apply our
method to ViT.
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Figure 9. Representative visualizations of ImageNet image attributions with DenseNet-121 predictions. Best viewed enlarged on screen.

Table 5. Average computation time (in seconds) per image for ImageNet and CIFAR-10 models. Our method can be considered to have
two phases (a) baseline computation, (b) path integration. The results reported for our method adopt the convention ‘Total time (time for
(a) + time for (b))’. The timings are for Pytorch implementation, using NVIDIA RTX 3090 with 24GB RAM.

Integrated Gradient (IG) Our
ImageNet ImageNet

VGG-16 ResNet-50 DenseNet-121 VGG-16 ResNet-50 DenseNet-121
1.1 0.82 0.9 1.56 (0.36 + 1.2) 1.16 (0.33 + 0.83) 1.43 (0.41 + 1.02)

CIFAR-10 CIFAR-10
VGG-16 ResNet-50 DenseNet-121 VGG-16 ResNet-50 DenseNet-121

0.44 0.46 0.4 0.80 (0.32 +0.48) 0.98 (0.49+0.49) 0.89 (0.42 + 0.47)
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Figure 10. Further representative results of ImageNet image attributions with VGG-16 predictions.

Figure 11. Further representative results of ImageNet image attributions with ResNet-50 predictions.
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Figure 12. Further representative results of ImageNet image attributions with DenseNet-121 predictions.

Figure 13. Examples of baseline images generated with the input images
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