
Published as a conference paper at ICLR 2023

LIPSFORMER: INTRODUCING LIPSCHITZ CONTINUITY
TO VISION TRANSFORMERS

Xianbiao Qi, Jianan Wang, Yihao Chen, Yukai Shi & Lei Zhang∗
International Digital Economy Academy (IDEA), Shenzhen, Guangdong, China.
{qixianbiao,wangjianan,chenyihao,shiyukai,leizhang}@idea.edu.cn

ABSTRACT

We present a Lipschitz continuous Transformer, called LipsFormer, to pursue
training stability both theoretically and empirically for Transformer-based models.
In contrast to previous practical tricks that address training instability by learning
rate warmup, layer normalization, attention formulation, and weight initialization,
we show that Lipschitz continuity is a more essential property to ensure training
stability. In LipsFormer, we replace unstable Transformer component modules with
Lipschitz continuous counterparts: CenterNorm instead of LayerNorm, spectral
initialization instead of Xavier initialization, scaled cosine similarity attention
instead of dot-product attention, and weighted residual shortcut. We prove that
these introduced modules are Lipschitz continuous and derive an upper bound
on the Lipschitz constant of LipsFormer. Our experiments show that LipsFormer
allows stable training of deep Transformer architectures without the need of careful
learning rate tuning such as warmup, yielding a faster convergence and better
generalization. As a result, on the ImageNet 1K dataset, LipsFormer-Swin-Tiny
based on Swin Transformer training for 300 epochs can obtain 82.7% without
any learning rate warmup. Moreover, LipsFormer-CSwin-Tiny, based on CSwin,
training for 300 epochs achieves a top-1 accuracy of 83.5% with 4.7G FLOPs and
24M parameters.

1 INTRODUCTION

Transformer [49] has been widely adopted in natural language processing (NLP) [6, 27, 40] for
its great capability of capturing long-range dependencies with self-attention. Motivated by its
success in NLP, Dosovitskiy et al. [17] introduced Vision Transformer (ViT) as a general backbone
for computer vision tasks such as image classification [35, 53, 16], object detection [9, 59], and
segmentation [12]. Nowadays, Transformer [49] remains the dominant architecture for NLP [5, 6, 40],
computer vision [58, 35, 53, 16] and many other AI applications [42, 41, 31].

Despite its success, training Transformer remains challenging [33, 14] for practitioners: the training
process can be prohibitively unstable, especially at the beginning of training. To address the root
cause for training instability, we resort to examining Lipschitz continuity of Transformer components.
Intuitively, a Lipschitz continuous network is finite in the rate of change and its Lipschitz constant is
an useful indicator for training stability. As shown in [8, 7, 44], Lipschitz properties reveal intriguing
behaviours of neural networks, such as robustness and generalization. In this work, we focus on the
trainability issue of Transformer architectures by explicitly enforcing Lipschitz continuity at network
initialization.

Previous works for overcoming Transformer training instability usually focus on one or a combination
of its components which can be divided into four categories: (1) improving normalization [54, 33, 51];
Xiong et al. [54] has shown that, for a Transformer architecture, Pre-LayerNorm (Pre-LN) is more
stable than Post-LayerNorm (Post-LN). Liu et al. [33] identified that Post-LN negatively influences
training stability by amplifying parameter perturbations. They introduced adaptive model initialization
(Admin) to mitigate the amplification effect. Likewise, Wang et al. [51] introduced DeepNorm and a
depth-specific initialization to stabilize Post-LN. However, even with normalization improvements

∗Corresponding author.

1

Published as a conference paper at ICLR 2023

such as Admin and DeepNorm, learning rate warmup [20] is still a necessity to stabilize training. (2)
more stable attention [28, 13]; Kim et al. [28] proved that the standard dot-product attention is not
Lipschitz continuous and introduced an alternative L2 attention. (3) re-weighted residual shortcut;
Bachlechner et al. [3] showed that a simple architecture change of gating each residual shortcut
with a learnable zero-initialized parameter substantially stabilizes training. With ReZero, they were
able to train extremely deep Transformers of 120 layers. (4) careful weight initialization; To avoid
gradient exploding or vanishing at the beginning of training, Zhang et al. [60] proposed fixed-update
initialization (Fixup) by rescaling a standard initialization. They also proved that Fixup could enable
stable training of residual networks without normalization.

In this paper, we conduct a thorough analysis of Transformer architectures and propose a Lipschitz
continuous Transformer called LipsFormer. In contrast to previous practical tricks that address
training instability, we show that Lipschitz continuity is a more essential property to ensure training
stability. We focus our investigation on the following Transformer components: LayerNorm, dot-
product self-attention, residual shortcut, and weight initialization. For each analyzed module, we
propose a Lipschitz continuous variant as a new building block for LipsFormer. The final LipsFormer
network has an upper bound Lipschitz constant at initial stages of training. Such a Lipschitz guarantee
has two implications: 1) we can train LipsFormer without using the common trick of learning rate
warmup, yielding a faster convergence and better generalization; 2) Transformer is more unstable
at the beginning of training. By ensuring initial network stability, we drastically increases the
trainability of Transformer. Note that we could also enforce Lipschitz continuity during the whole
training process by simply constraining updates on certain scaling parameters.

Our main contributions can be summarized as follows:

• We give a thorough analysis of key Transformer components: LayerNorm, self-attention, residual
shortcut, and weight initialization. More importantly, we identify potential instability problems
each module brings to the training difficulty and propose their Lipschitz continuous counterparts:
CenterNorm, scaled cosine similarity attention, scaled residual shortcut, and spectral-based ini-
tialization. The proposed Lipschitz continuous modules can serve as drop-in replacements for a
standard Transformer, such as Swin Transformer [35] and CSwin [16].

• We propose a Lipschitz continuous Transformer (LipsFormer) that can be stably trained without
the need of carefully tuning the learning rate schedule. We derive theoretical Lipschitz constant
upper bounds for both scaled cosine similarity attention and LipsFormer. The derivation pro-
vides a principled guidance for designing LipsFormer networks. We build LipsFormer-Swin and
LipsFormer-CSwin based on Swin Transformer and CSwin individually.

• We validate the efficacy of the LipsFormer on ImageNet classification. We show empirically that
LipsFormer can be trained smoothly without learning rate warmup. As a result, on the ImageNet-
1K dataset, LipsFormer-Swin-Tiny training for 300 epochs can obtain a top-1 accuracy of 82.7%
without any learning rate warmup. Moreover, LipsFormer-CSwin-Tiny training for 300 epochs
achieves a top-1 accuracy of 83.5% with 4.7G FLOPs and 24M parameters.

2 PRELIMINARIES

In this section, we first define Lipschitz continuity and Lipschitz constant and then discuss several
Lipschitz properties of a neural network. We use the denominator-layout notation throughout this
paper. A sequence of N elements is denoted as X = [x1; . . . ;xN]⊤ ∈ RN×D, where each vector
xi ∈ RD, i ∈ {1, ..., N}. Function transformation is parameterized by an associated weight matrix
W and an affine transformation is denoted as f(x) = W⊤x, where W ∈ RD×M .

Definition 1. A function f(x,W) : RD → RM is Lipschitz continuous (L-Lipschitz) under a choice
of p-norm ∥ · ∥p in the variable x if there exists a constant L such that for all (x1,W) and (x2,W)
in the domain of f ,

∥f(x1,W)− f(x2,W)∥p ≤ L∥x1 − x2∥p,

where the smallest value of L that satisfies the inequality is called the Lipschitz constant of f . To
emphasize that the Lipschitz constant with respect to x depends on W and the choice of p, we denote
L as Lipp(fx(W)). A function is generally referred to as expansive, non-expansive, and contractive
in the variable x for Lipp(fx(W)) > 1, Lipp(fx(W)) ≤ 1, and Lipp(fx(W)) < 1, respectively,

2

Published as a conference paper at ICLR 2023

exhibiting characteristic differences in the change rate of its output. Contemporary neural networks
are rarely Lipschitz continuous under the influence of any constituent non-Lipschitz module. Even if
a network is Lipschitz continuous, calculating its Lipschitz constant exactly is a challenging task [50].

According to Definition 1, the Lipschitz constant of f(x,W) with respect to x can be expressed as,

Lipp(fx(W)) = sup
x1 ̸=x2∈RD

∥f(x1,W)− f(x2,W)∥p
∥x1 − x2∥p

.

Exact computation of the above equation is an NP-hard problem. For subsequent analyses, We use
p = 2 by default unless specified and suppress p to reduce clutter, but our conclusion can be easily
extended to other choices of p.
Lemma 1. Given W , let f(x,W) : RD → R be a continuously differentiable function and
Lip(fx(W)) be its Lipschitz constant with respect to x. According to the mean value theorem, we
have the following inequality,

∥∇xf(x,W)∥ ≤ Lip(fx(W)),∀x ∈ RD,

where ∥∇xf(x,W)∥ is the gradient norm of f(x,W) with respect to x.

From Lemma 1, we can see that a practical method to compute the Lipschitz constant of a continuously
differentiable function is to compute its maximum gradient norm. To prove a function is not Lipschitz,
it is sufficient to show that its gradient norm is not bounded. For example, f(x) = 1

x and f(x) = x2

are not Lipschitz continuous for x ∈ (0,∞), because their gradient can be arbitrarily large as x
approaches 0 and∞, respectively.
Definition 2. Let F (x, {W l, l = 1, . . . , L}) : RD → R be an L-layer neural network defined as a
composite function with L transformation functions:

F (x, {W l, l = 1, . . . , L}) = fL
(
fL−1

(
. . . f1

(
x,W 1

)
,W 2

)
. . . ,WL

)
,

where {W l, l = 1, . . . , L} is the parameter set, and f l is the transformation function of the l-th layer.

For an affine transformation f (x,W) = W⊤x, its Lipschitz constant is,

Lipp(fx(W)) = sup
∥x∥p=1

∥W⊤x∥p =

{
σmax(W), if p = 2
maxi

∑
j |Wij | if p =∞ (1)

where σmax(W) is the largest eigenvalue of W .

Many common activation functions such as Sigmoid, Tanh, ReLU, and GELU are 1-Lipschitz. See
Appendix A.1 for a simple illustration.
Lemma 2. Given the Lipschitz constant of each transformation function in a network F , the following
inequality holds

Lip(Fx({W l, l = 1, . . . , L})) ≤
L∏

l=1

Lip(f l
x(W

l)).

From Lemma 2, the Lipschitz constant of a network is upper bounded by the product of each
layer’s Lipschitz constant. This multiplicative nature gives us an insight into understanding why
deeper networks usually suffer more severe training instability: if a network’s constituent layers are
expansive, the upper bound of its Lipschitz constant increases monotonically with its network depth.
We refer the interested readers to [18, 30] for estimating tighter bounds of deep neural networks.

3 AN ASSUMPTION FOR TRAINING STABILITY

Our design philosophy for LipsFormer is based on the following assumption.
Assumption 1. A network should satisfy the following Lipschitz conditions for training stability,

1. ∥f(x1,W)− f(x2,W)∥ ≤ Lip(fx(W))∥x1 − x2∥,

2. ∥f(x,W1)− f(x,W2)∥ ≤ Lip(fW (x))∥W1 −W2∥.

3

Published as a conference paper at ICLR 2023

The first inequality focuses on the forward process and assumes that a stable network should satisfy
Lipschitz continuity with respect to its input x: a small perturbation of its input should not lead to a
drastic change of its output. Guaranteeing smoothness is vital for guarding a network’s generalization
ability.

For the second inequality, recall that the forward process of a typical neural network propagates
computation as xl+1 = (W l+1)

⊤
xl, where xl and W l+1 are the input and weight matrix of Layer

l+1. Since common non-linearities are 1-Lipschitz, we drop non-linear activations here for simplicity.
To backpropagate the network loss L, we have

∂L
∂xl

= W l+1 ∂L
∂xl+1

,
∂L

∂W l+1
= xl(

∂L
∂xl+1

)
⊤
.

Gradient descent updates network weights according to W ← W − lr × ∂L
∂W . As demonstrated

above, any value explosion will propagate with the chain derivation: if ∂L
∂xl+1 is unbounded, ∂L

∂xl and
∂L

∂W l+1 will consequently be unbounded. Meanwhile, if ∂L
∂W l+1 is not bound, it will largely influence

the back-propagation chain in the next iteration. This justifies the second inequality for the purpose
of training stability.

Intuitively, guaranteeing that a network’s output does not change too much under small perturbations
of either its input or network weights induces a more stable training process. In this work, we focus
on satisfying the first inequality in Assumption 1 for Transformer architectures.

4 LIPSFORMER

A Lipschitz continuous Transformer (LipsFormer) requires all of its constituent modules to be
Lipschitz continuous according to Lemma 2. In this section, we analyze key Transformer components
and introduce their Lipschitz continuous counterparts when any Lipschitz continuity is violated.

4.1 LIPSCHITZ CONTINUOUS MODULES

4.1.1 CENTERNORM INSTEAD OF LAYERNORM

LayerNorm [2] is the most widely used normalization method in Transformer. It is defined as

LN(x) = γ ⊙ z + β, where z =
y

Std(y)
and y =

(
I − 1

D
11⊤

)
x,

where x,y ∈ RD, Std(y) is the standard deviation of the mean-subtracted input y, and ⊙ is an
element-wise product. γ and β are initialized to 1 and 0 respectively. For simplicity, we drop γ and
β from analysis because they can be explicitly constrained within any pre-defined range.

By taking partial derivatives, the Jacobian matrix of z with respect to x is,

Jz(x) =
∂z

∂x
=

∂z

∂y

∂y

∂x
=

1

Std(y)

(
I − 1

D
11⊤

)(
I − yy⊤

∥y∥22

)
.

The equation above shows that LayerNorm is not Lipschitz continuous because when Std(y) ap-
proaches 0, the values in the Jacobian matrix will approach∞, causing severe training instability.
On the other end, when Std(y) is very large, training will be hindered by LayerNorm as gradients
become extremely small. Also note that backpropagating through LayerNorm is slow due to poor
parallelization when computing the Jacobian matrix, especially for the term I − yy⊤

∥y∥2
2

.

In practice, we notice that a single LayerNorm operation could cause severe training instability
without learning rate warmup. The underlying reason is that LayerNorm is not Lipschitz continuous
and some ill-defined input with zero variance will lead to a Jacobian matrix filled with infinity. To
stabilize training by enforcing Lipschitz continuity, we introduce CenterNorm as,

CN(x) = γ ⊙ D

D − 1

(
I − 1

D
11⊤

)
x+ β, (2)

4

Published as a conference paper at ICLR 2023

where D is the dimension of x. The Jacobian matrix ∂ CN(x)
∂x contains a term D

D−1

(
I − 1

D11⊤)
where D

D−1 is a heuristic to avoid the eigenvalue contraction from
(
I − 1

D11⊤). It is easy to verify
that,

∥CN(x1)− CN(x2)∥ ≤ Lip(CNx)∥x1 − x2∥,
where Lip(CNx) =

D
D−1 for γ = 1 and β = 0. As most deep neural networks are dealing with

high dimensional data with D ≫ 1, we make a simplification that Lip(CNx) is 1-Lipschitz for
later discussions. CenterNorm is by design Lipschitz continuous at initialization. To guarantee its
Lipschitz continuity through training we could simply constraint γ and β to a pre-defined range.

4.1.2 SCALED COSINE SIMILARITY ATTENTION

Self-attention [49] is a key component of Transformer, helping capture long-range relationships
within data. In practice, people use multi-head attention to effectively capture such relationships
under different contexts. Since multi-head attention is a linear combination of multiple single-head
attention outputs, for simplicity, we focus our analysis on single-head attention, which is defined as,

Attn(X,WQ,WK ,W V) = softmax

(
XWQ

(
XWK

)⊤
√
D

)
XW V , (3)

where WQ,WK ,W V are the projection matrices to transform X into query, key, and value matrices,
respectively. Intuitively, every token aggregates information from all the visible tokens by computing
a weighted sum of the values of the visible tokens according to the similarity between its query and
each visible token’s key. The similarity between the i-th query qi and j-th key kj is denoted as
Pij ∝ xi

⊤WQ(WK)⊤xj .

In [28], Kim et al. proved that the standard dot-product self-attention is not Lipschitz continuous and
introduced an alternative L2 self-attention that is Lipschitz continuous. Here we use a scaled cosine
similarity attention, which is defined as,

SCSA(X,WQ,WK ,W V , ν, τ) = νPV ,where P = softmax
(
τQK⊤) ,

Q =

 − q⊤
1 −
...

− q⊤
N −

 K =

 − k⊤
1 −
...

− k⊤
N −

 V =

 − v⊤
1 −
...

− v⊤
N −

 ,

where ν and τ are predefined or learnable scalars; Q,K,V are ℓ2 row-normalized:

qi,ki,vi =
(xi

⊤WQ)
⊤

√
∥xi

⊤WQ∥2+ϵ
, (xi

⊤WK)
⊤

√
∥xi

⊤WK∥2+ϵ
, (xi

⊤W V)
⊤

√
∥xi

⊤W V ∥2+ϵ
;ϵ is a smoothing factor to guarantee

the validity of cosine similarity computation even when ∥xi
⊤WQ∥ = 0. For arbitrary pair of rows of

Q and K denoted as qi and kj , the cosine similarity on their ℓ2-normalized vectors is proportional
to their L2 dot product. The upper bound of SCSA’s Lipschitz constant with respect to ∥ · ∥2 and
∥ · ∥∞ is the following,
Theorem 1. Single-head scaled cosine similarity attention is Lipschitz continuous, its Lip∞ and
Lip2 are upper bounded by the following inequalities,

Lip(SCSA)∞ ≤ N2
√
Dντϵ−

1
2 ∥WK∥∞ +N

√
Dντϵ−

1
2 ∥WQ∥∞ + 2Nνϵ−

1
2 ∥W V ⊤∥∞,

Lip(SCSA)2 ≤ 2N(N − 1)ντϵ−
1
2 ∥WK∥2 + 2(N − 1)ντϵ−

1
2 ∥WQ∥2 + 2Nνϵ−

1
2 ∥W V ⊤∥2.

Proof of Theorem 1 can be found in Appendix H. For multi-head attention, we heuristically scale
head feature concatenation by 1

K where K is the number of heads. Please refer to Appendix A.2 for
more details.

4.1.3 WEIGHTED RESIDUAL SHORTCUT

Residual block [24] is a common component of contemporary neural networks [35, 53, 49]. It has
been proven effective in avoiding gradient vanishing, especially when training deep networks. A
standard residual shortcut block is defined as,

RS(x,W) = x+ f(x,W).

5

Published as a conference paper at ICLR 2023

The Lipschitz constant of a residual shortcut block with respect to x is Lip(RSx(W)) = 1 +
Lip(fx(W)). For any non-degenerate Lipschitz continuous function f(x,W), its Lipschitz constant
is greater than 0, hence a residual block is strictly expansive. According to Lemma 2, stacking
L identical residual blocks alone will grow the upper bound of a network’s Lipschitz constant
exponentially to Lip(RSx(W))L, causing substantial vulnerability to forward value explosion. One
way to mitigate such an instability is to constraint the Lipschitz constant of the residual path to
be much smaller than 1, especially at the beginning of training when the network is undergoing
fast changes via learning. In this paper, we explicitly multiply the residual path with a scale factor
initialized to a small value such as 0.1 and 0.2. We define the weighted residual shortcut as,

WRS(x,W) = x+α⊙ f(x,W), (4)

where α is a learnable parameter vector with the same dimension as the channel size of x.

It is easy to verify that

∥WRS(x1,W)−WRS(x2,W)∥ ≤ Lip(WRSx(W))∥x1 − x2∥,

where Lip(WRSx(W)) = 1 +max(α) when Lip(fx(W)) = 1.

As training progresses, α changes as part of the learning process. We could easily constrain α to a
pre-defined range to ensure the Lipschitz continuity of a network during the whole training process.
Note that re-weighting shortcut and residual path has been explored before: in [51, 33], the authors
redefine a residual block as α ⊙ x + f(x,W) to alleviate the LayerNorm instability; ReZero [3]
uses a similar formulation as Equation 4 to speed up convergence, where α is a scalar instead of a
vector. Our formulation is motivated by decreasing the Lipschitz constant of a network, instead of
being a practical trick. It provides a more principled guidance to network design. For example, when
training a very deep network, a smaller α would be justified for the purpose of training stabilization.

4.1.4 SPECTRAL INITIALIZATION FOR CONVOLUTION AND FEED-FORWARD CONNECTION

Both convolution and feed-forward connection are compositions of affine transformations. As shown
in Equation 1, affine transformation is Lipschitz continuous, hence by Lemma 2 both convolution
and feed-forward connection are Lipschitz continuous.

Note that a careful initialization is important for successfully training a neural network. Many
initialization methods have been proposed before such as Xavier [19] and Kaiming [23] initialization.
Inspired by spectral norm regularization [56], we introduce a 1-Lipschitz initialization called spectral
initialization,

Wsi =
W

σmax(W)
, (5)

where W is Xavier-norm initialized and σmax(W) is its largest eigenvalue. For affine transformation
f(x,Wsi) = Wsi

⊤x, its Lipschitz constant satisfies the following inequality,

∥Wsi
⊤x1 −Wsi

⊤x2∥ ≤ Lip(fx(Wsi))∥x1 − x2∥,

where Lip(fx(Wsi)) = 1 at initialization. We use spectral initialization on all convolutions and
feed-forward connections.

4.2 LIPSFORMER

4.2.1 LIPSFORMER BLOCK

We start by introducing the main building block for LipsFormer. As shown in Figure 1, each
LipsFormer block (LipsBlock) is composed of three sub-modules: convolution blocks (lightweight
depth-wise and element-wise convolution), scaled cosine similarity attention, and feed-forward con-
nection. CenterNorm operator is optional after each sub-module. In this work we apply CenterNorm
after scaled cosine similarity attention and feed-forward connection. Within each residual block,
residual path is re-weighted with a learnable α and randomly dropped with probability p during
training as indicated by dashed lines. For the convolution blocks, we use a 7× 7 depth-wise and a
1× 1 element-wise convolution. Ablation study on each component can be found in Sec. 5.3.

6

Published as a conference paper at ICLR 2023

LayerNormSwin-Transformer Self-Attention LayerNorm Feed-Forward

Depth Conv LayerNorm Feed-ForwardConvNeXt

Self-Attention Feed-ForwardLayerNorm LayerNormTransformer

Feed-ForwardCenterNormCosine
Self-AttentionConv Blocks CenterNormLipsFormer α1 α2 α3

р1 р2 р3

FIGURE 1: Comparison of a LipsFormer block with ConvNeXt, Transformer and Swin-Transformer
Blocks. We use different colors to mark our Lipschitz improvements.

Post-Norm xi+1 = LayerNorm(xi + f(xi))
Pre-Norm xi+1 = xi + f(LayerNorm(xi))

LipsFormer xi+1 = CenterNorm(xi + DropPathpi
(αif(xi)))

TABLE 1: Various forms of residual blocks for Transformer architectures. As illustrated in Figure
1, f represents a transformation function ∈ {self-attention, feed-forward}. For LipsFormer, f ∈
{scaled cosine similarity attention, feed-forward, convolution blocks}.

In Table 1 we compare the LipsFormer residual block with commonly used Post-Norm and Pre-Norm
residual blocks. CenterNorm and scaled cosine similarity attention are Lipschitz continuous counter-
parts for LayerNorm and dot-product attention. Weighted residual connection and DropPath [29] are
used to constrain the Lipschitz constant of a deep LipsFormer network.

4.2.2 OVERALL ARCHITECTURE OF LIPSFORMER

In general, LipsFormer follows the architecture of Swin Transformer v1. We start by processing
an input image with non-overlapped convolutional token embedding (4× 4 convolution with stride
4) to obtain a feature representation with resolution H

4 ×
W
4 . Then the main computation passes

four stages where each stage consists of a pre-defined number of LipsFormer blocks as shown in
Figure 1. Between consecutive stages, we reduce the output resolution by 2 and double the size of
output channels by a 2× 2 non-overlapped convolution with stride 2.

We build three variants of LipsFormer in correspondence with CSwin Transformer [16] as detailed
in Appendix Table 4: LipsFormer-CSwin-Tiny (LipsFormer-CSwin-T) , LipsFormer-CSwin-Small
(LipsFormer-CSwin-S), and LipsFormer-CSwin-Base (LipsFormer-CSwin-B). The number of Lips-
Former blocks within the four computation stages are [1, 2, 21, 1] for LipsFormer-CSwin-T, [2, 4, 32,
2] for LipsFormer-CSwin-S and LipsFormer-CSwin-B. The overall architecture of LipsFormer is
illustrated in Figure 3 of Appendix B. We can also build LipsFormer on Swin Transformer, more
experiments about LipsFormer-Swin can be found in Appendix.

4.2.3 LIPSCHITZ CONSTANT OF LIPSFORMER

As illustrated in Figure 3, LipsFormer includes four computation stages, each starting with patch
merging followed by a pre-defined number of LipsFormer blocks. Feed-forward connection, convolu-
tion, and patch merging are Lipschitz continuous operators. With spectral initialization these affine
transformations are 1-Lipschitz at the beginning of training, hence are dropped from analysis. For the
Lipschitz constant of the LipsFormer, we have the following theorem.
Theorem 2. For a LipsFormer with S stages where the s-th stage has Ms residual blocks, when
α is set to 1∑S

s=1 Ms
, the Lipschitz constant of the LipsFormer is upper bounded by exp(κ), where

κ = max({Lip(fi) : i = 1, . . . ,
∑S

s=1 Ms}).

Proof of Theorem 2 is in Appendix I. Theorem 2 suggests that 1) Deeper networks with more residual
blocks should initialize with a smaller α to avoid exponential growth of its Lipschitz constant; 2) To
control the Lipschitz constant of Lipsformer we should focus on constraining the Lipschitz constant
Lip(fi) of each constituent layer, especially the one with the largest Lipschitz constant.

7

Published as a conference paper at ICLR 2023

5 EXPERIMENTS

5.1 DATASET AND TRAINING SETUP

We evaluate LipsFormer-CSwin on the standard ImageNet-1K [15] dataset, which consists of 1.28M
images and 1,000 classes. We adopt a similar training strategy as in CSwin Transformer [16] for a fair
comparison. Specifically, we use the AdamW [38] optimizer with weight decay 0.05 for LipsFormer-
CSwin-T/S and 0.1 for LipsFormer-CSwin-B. By default, all our models are trained for 300 epochs
with an input image size of 224× 224. For LipsFormer-CSwin, the training batch size is 2048 and
the initial learning rate is 0.002 with a standard cosine learning rate decay [37] without learning rate
warmup [37]. We apply stochastic depth [26] for LipsFormer-CSwin-T, LipsFormer-CSwin-S, and
LipsFormer-CSwin-B, with a maximum DropPath rate of 0.2, 0.4, and 0.5, respectively. For ablation
study, we train each model for 100 epochs for efficiency. See Appendix C for more details.

5.2 COMPARISON WITH STATE-OF-THE-ART MODELS

Table 2 reports the LipsFormer-CSwin results compared with state-of-the-art CNN and Transformer
models. We evaluate all three variants of LipsFormer-CSwin against state-of-the-art models of similar
sizes: Tiny (< 32M parameters), Small (31-64M parameters), and Base (56-96M parameters).

Method Param. FLOPs Top-1 Method Param. FLOPs Top-1 Method Param. FLOPs Top-1
RegNetY-4G [39] 21M 4.0G 80.0 RegNetY-8G [39] 39M 8.0G 81.7 RegNetY-16G [39] 84M 16.0G 82.9

EffNet-B4 [45] 19M 4.2G 82.9 EffNet-B5 [45] 30M 9.9G 83.6 EffNet-B7 [45] 66M 37.0G 84.3
ConvNeXt-T [36] 28M 4.5G 82.1 ConvNeXt-S [36] 50M 8.7G 83.1 ConvNeXt-B [36] 89M 15.4G 83.8

SE-CoTNetD-50 [32] 23M 4.1G 81.6 SE-CoTNetD-101 [32] 41M 8.5G 83.2 SE-CoTNetD-152 [32] 56M 17.0G 84.0
DeiT-S [46] 22M 4.6G 79.8 - - - - DeiT-B [46] 87M 17.5G 81.8
T2T-14 [57] 24M 5.2G 81.5 T2T-19 [57] 39M 8.9G 81.9 T2T-24 [57] 64M 14.1G 82.3
TNT-T [21] 24M 5.2G 81.3 - - - - TNT-B [21] 66M 14.1G 82.8

DeepViT [62] 27M 6.2G 82.3 DeepViT [62] 55M 12.5G 83.1 - - - -
Swin-T [35] 29M 4.5G 81.3 Swin-S [35] 50M 8.7G 83.0 Swin-B [35] 88M 15.4G 83.5
CvT-13 [53] 20M 4.5G 81.6 CvT-21 [53] 32M 7.1G 82.5 - - - -
NesT-T [61] 17M 5.8G 81.5 NesT-S [61] 38M 10.4G 83.3 NesT-B [61] 68M 17.9G 83.8

XCiT-S12 [1] 26M 4.8G 82.0 XCiT-S24 [1] 48M 9.1G 82.6 XCiT-M24 [1] 84M 16.2G 82.7
CrossViT-15 [11] 27M 5.8G 81.5 CrossViT-18 [11] 44M 9.0G 82.8 - - - - -
RegionViT-T [10] 14.3M 2.7G 81.5 RegionViT-S [10] 30.6M 5.3G 82.6 RegionViT-B [10] 72.7M 13.0G 83.2

Focal-T [55] 29M 4.9G 82.2 Focal-S [55] 51M 9.1G 83.5 Focal-B [55] 90M 16.0G 83.8
CSwin-T [16] 23M 4.3G 82.7 CSwin-S [16] 35M 6.9G 83.6 CSwin-B [16] 78M 15.0G 84.2

CrossFormer-S [52] 31M 4.9G 82.5 CrossFormer-B [52] 52M 9.2G 83.4 CrossFormer-L [52] 92M 16.1G 84.0
ViT-S (DeiT III) [47] 22M 4.6G 81.4 - - - - ViT-B (DeiT III) [47] 87M 17.5G 83.8

NAT-T [22] 28M 4.3G 83.2 NAT-S [22] 51M 7.8G 83.7 NAT-B [22] 90M 13.7G 84.3
LipsFormer-CSwin-T (ours) 24M 4.7G 83.5 LipsFormer-CSwin-S (ours) 38M 7.6G 83.8 LipsFormer-CSwin-B 83M 16.3G 84.6

TABLE 2: Comparison of different models with input resolution 2242 on ImageNet-1K classification.
Red indicates the best result and blue indicates the second best result.

Compared with previous state-of-the-art Vision Transformer models, LipsFormer-CSwin attains a
higher classification accuracy on all its model variants. For instance, LipsFormer-CSwin-T obtains
a 83.5% Top-1 accuracy that outperforms CSwin-T by 0.8%, ViT-S by 2.1% and NAT-T by 0.3%.
LipsFormer-CSwin-T also outperforms recently improved CNN architectures, such as ConvNeXt-T
and EffNet-B4 by 1.4% and 0.6%, respectively. LipsFormer-CSwin-T has fewer parameters than
NAT-T and ConvNeXt-T. LipsFormer-CSwin-B also outperforms its counterparts, including Swin-B,
CrossFormer-L, ConvNeXt-B, DeiT-B, ViT-B, and NAT-B with fewer parameters. Also note that all
the other Transformer models use learning rate warmup, but LipsFormer-CSwin does not.

5.3 ABLATION STUDY

We conduct extensive ablation study on each key component of LipsFormer-CSwin as shown in
Table 3. We use LipsFormer-CSwin-T for ablation study and all results in this comparison are trained
for 100 epochs without learning rate warmup, except for ablation on warmup.

Warmup. In previous experiments we do not use learning rate warmup when training LipsFormer-
CSwin. Theoretically, warmup is not needed given LipsFormer’s appealing stabilization guarantee.
According to the results in Table 3, 5 epochs of warmup does not bring in further improvement.

CenterNorm. We compare CenterNorm against no-Norm (as in ReZero [3]) and the standard
LayerNorm. Results show that: 1) Lipsformer-CSwin with LayerNorm becomes unstable and does
not converge, but with CenterNorm and no-Norm, LipsFormer-CSwin can successfully converge; 2)
Using CenterNorm significantly outperforms no-Norm by 1.3%.

8

Published as a conference paper at ICLR 2023

Warmup Tiny
No 81.6
Yes 81.2

Normalization Tiny
LayerNorm Not converge
No Norm 80.3

CenterNorm 81.6

Initialization Tiny
Truncated Normal 81.3

Xavier 81.6
Spectral 81.6

Attention Tiny
Dot Product Diverged

L2 Distance Attn 81.3
SCSA 81.6

Alpha Tiny
α = 0.1 81.4
α = 0.2 81.6
α = 0.3 81.3
α = 0.4 Diverged

Conv Blocks Tiny
no Conv 80.7
Conf. B 81.2
Conf. C 81.6
Conf. D 81.6

Drop Ratio Tiny
p = 0.0 81.3
p = 0.1 81.6
p = 0.2 81.6

TABLE 3: Ablation study on key components of LipsFormer. “Not converge” means training loss
oscillates without converging, and “Diverged” means the loss explodes because of “NaN” or “Inf”.

Spectral Initialization. We compare LipsFormer-CSwin results with spectral initialization against
truncated normal and Xavier initialization. We find that LipsFormer-CSwin with any of the three ini-
tializations converges. Spectral initialization and Xavier initialization slightly outperforms truncated
normal initialization, but spectral initialization has a better Lipschitz interpretability than Xavier
initialization.

Scaled Cosine Similarity Attention. To validate the effectiveness of scaled cosine similarity
attention, we compare it with the standard dot-product attention and the L2 distance attention [28].
We find that the standard dot-product self-attention leads to forward value explosion, but the scaled
cosine similarity attention works well under Lipschitz guarantee. Meanwhile, SCSA works better
than the L2 distance attention.

Impact of the Residual Weight α. As detailed in 4.1.3, the weight of residual path α has a
substantial influence on the upper bound of LipsFormer’s Lipschitz constant. We evaluate different
choices of α, and find that with a large α initialization value, network either does not converge or
diverges quickly. This validates that deeper networks need a smaller α.

Convolution Blocks. In LipsFormer-CSwin, we use two depth-wise convolutions (dwc) and one point-
wise convolution (pwc). We evaluate four different convolution configurations: A) no convolution;
B) one dwc; C) dwc + pwc; and D) dwc + pwc + dwc. Table 3 shows that one dwc increases
LipsFormer’s accuracy by 0.5%, one dwc + one pwc further improves its performance by 0.4%,
adding more convolutions saturates performance gains.

DropPath Ratio. In Appendix J, we show that DropPath effectively decreases the upper bound of a
network’s Lipschitz constant, making training process more stable. The results in Table 3 show that
reasonable DropPath can effectively improve training performance.

To summarize, CenterNorm, scaled cosine similarity attention, and convolution blocks all contribute
positively to LipsFormer-CSwin’s superior performance. Weighted residual shortcut with small α,
reasonable DropPath ratio p and spectral initialization are effective in stabilizing LipsFormer-CSwin
by constraining its Lipschitz constant.

6 CONCLUSION

In this paper, we present a Lipschitz continuous Transformer, called LipsFormer, to pursue a more
stable training process by enforcing the Lipschitz continuity of the whole network. We analyze
key components of Transformer and replace the ones violating Lipschitz continuity by introducing
CenterNorm, scaled cosine similarity attention, and spectral initialization. LipsFormer also uses
weighted residual shortcut and DropPath to further decrease the upper bound of its Lipschitz constant.
Finally, we derive an upper bound of the Lipschitz constant of a LipsFormer network architecture. We
empirically validate the effectiveness of LipsFormer-Swin and LipsFormer-CSwin, based on Swin
Transformer and CSwin individually, on ImageNet 1K classification with state-of-the-art performance
for model variants of different parameter sizes. The analysis of the Lipschitz continuity of a network
is general. We look forward to extending it to a broader class of models and application areas,
including multi-modal model and natural language processing. We also hope future works will
discuss the Lipschitz continuity of LipsFormer in the backward process in depth.

9

Published as a conference paper at ICLR 2023

REFERENCES

[1] Alaaeldin Ali, Hugo Touvron, Mathilde Caron, Piotr Bojanowski, Matthijs Douze, Armand
Joulin, Ivan Laptev, Natalia Neverova, Gabriel Synnaeve, Jakob Verbeek, et al. Xcit: Cross-
covariance image transformers. Advances in neural information processing systems, 34, 2021.

[2] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

[3] Thomas Bachlechner, Bodhisattwa Prasad Majumder, Henry Mao, Gary Cottrell, and Julian
McAuley. Rezero is all you need: Fast convergence at large depth. In Uncertainty in Artificial
Intelligence, pages 1352–1361. PMLR, 2021.

[4] Lucas Beyer, Olivier J Hénaff, Alexander Kolesnikov, Xiaohua Zhai, and Aäron van den Oord.
Are we done with imagenet? arXiv preprint arXiv:2006.07159, 2020.

[5] Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von
Arx, Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the
opportunities and risks of foundation models. arXiv preprint arXiv:2108.07258, 2021.

[6] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

[7] Sébastien Bubeck, Yuanzhi Li, and Dheeraj M Nagaraj. A law of robustness for two-layers
neural networks. In Conference on Learning Theory, pages 804–820. PMLR, 2021.

[8] Sébastien Bubeck and Mark Sellke. A universal law of robustness via isoperimetry. Advances
in Neural Information Processing Systems, 34, 2021.

[9] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and
Sergey Zagoruyko. End-to-end object detection with transformers. In European conference on
computer vision, pages 213–229. Springer, 2020.

[10] Chun-Fu Chen, Rameswar Panda, and Quanfu Fan. Regionvit: Regional-to-local attention for
vision transformers. In International Conference on Learning Representations, 2021.

[11] Chun-Fu Richard Chen, Quanfu Fan, and Rameswar Panda. Crossvit: Cross-attention multi-
scale vision transformer for image classification. In Proceedings of the IEEE/CVF international
conference on computer vision, pages 357–366, 2021.

[12] Bowen Cheng, Anwesa Choudhuri, Ishan Misra, Alexander Kirillov, Rohit Girdhar, and Alexan-
der G Schwing. Mask2former for video instance segmentation. arXiv preprint arXiv:2112.10764,
2021.

[13] George Dasoulas, Kevin Scaman, and Aladin Virmaux. Lipschitz normalization for self-attention
layers with application to graph neural networks. In International Conference on Machine
Learning, pages 2456–2466. PMLR, 2021.

[14] Jared Q Davis, Albert Gu, Krzysztof Choromanski, Tri Dao, Christopher Re, Chelsea Finn, and
Percy Liang. Catformer: Designing stable transformers via sensitivity analysis. In International
Conference on Machine Learning, pages 2489–2499. PMLR, 2021.

[15] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern
recognition, pages 248–255. Ieee, 2009.

[16] Xiaoyi Dong, Jianmin Bao, Dongdong Chen, Weiming Zhang, Nenghai Yu, Lu Yuan, Dong
Chen, and Baining Guo. Cswin transformer: A general vision transformer backbone with
cross-shaped windows. arXiv preprint arXiv:2107.00652, 2021.

[17] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al.
An image is worth 16x16 words: Transformers for image recognition at scale. In International
Conference on Learning Representations, 2020.

10

Published as a conference paper at ICLR 2023

[18] Mahyar Fazlyab, Alexander Robey, Hamed Hassani, Manfred Morari, and George Pappas.
Efficient and accurate estimation of lipschitz constants for deep neural networks. Advances in
Neural Information Processing Systems, 32, 2019.

[19] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedfor-
ward neural networks. In Proceedings of the thirteenth international conference on artificial
intelligence and statistics, pages 249–256. JMLR Workshop and Conference Proceedings, 2010.

[20] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola,
Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: Training
imagenet in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

[21] Kai Han, An Xiao, Enhua Wu, Jianyuan Guo, Chunjing Xu, and Yunhe Wang. Transformer in
transformer. Advances in Neural Information Processing Systems, 34, 2021.

[22] Ali Hassani, Steven Walton, Jiachen Li, Shen Li, and Humphrey Shi. Neighborhood attention
transformer. arXiv preprint arXiv:2204.07143, 2022.

[23] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification. In Proceedings of the IEEE
international conference on computer vision, pages 1026–1034, 2015.

[24] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[25] Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

[26] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 4700–4708, 2017.

[27] Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of NAACL-HLT, pages
4171–4186, 2019.

[28] Hyunjik Kim, George Papamakarios, and Andriy Mnih. The lipschitz constant of self-attention.
In International Conference on Machine Learning, pages 5562–5571. PMLR, 2021.

[29] Gustav Larsson, Michael Maire, and Gregory Shakhnarovich. Fractalnet: Ultra-deep neural
networks without residuals. arXiv preprint arXiv:1605.07648, 2016.

[30] Fabian Latorre, Paul Rolland, and Volkan Cevher. Lipschitz constant estimation of neural
networks via sparse polynomial optimization. arXiv preprint arXiv:2004.08688, 2020.

[31] Liunian Harold Li, Pengchuan Zhang, Haotian Zhang, Jianwei Yang, Chunyuan Li, Yiwu
Zhong, Lijuan Wang, Lu Yuan, Lei Zhang, Jenq-Neng Hwang, et al. Grounded language-image
pre-training. arXiv e-prints, pages arXiv–2112, 2021.

[32] Yehao Li, Ting Yao, Yingwei Pan, and Tao Mei. Contextual transformer networks for visual
recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022.

[33] Liyuan Liu, Xiaodong Liu, Jianfeng Gao, Weizhu Chen, and Jiawei Han. Understanding the
difficulty of training transformers. In Proceedings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages 5747–5763, 2020.

[34] Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng
Zhang, Li Dong, et al. Swin transformer v2: Scaling up capacity and resolution. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 12009–12019,
2022.

[35] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining
Guo. Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pages 10012–10022, 2021.

11

Published as a conference paper at ICLR 2023

[36] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining
Xie. A convnet for the 2020s. arXiv preprint arXiv:2201.03545, 2022.

[37] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv
preprint arXiv:1608.03983, 2016.

[38] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

[39] Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, and Piotr Dollár. Design-
ing network design spaces. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 10428–10436, 2020.

[40] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. arXiv preprint arXiv:1910.10683, 2019.

[41] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical
text-conditional image generation with clip latents. arXiv preprint arXiv:2204.06125, 2022.

[42] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark
Chen, and Ilya Sutskever. Zero-shot text-to-image generation. In International Conference on
Machine Learning, pages 8821–8831. PMLR, 2021.

[43] Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do imagenet
classifiers generalize to imagenet? In International Conference on Machine Learning, pages
5389–5400. PMLR, 2019.

[44] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfel-
low, and Rob Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199,
2013.

[45] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural
networks. In International conference on machine learning, pages 6105–6114. PMLR, 2019.

[46] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
Hervé Jégou. Training data-efficient image transformers & distillation through attention. In
International Conference on Machine Learning, pages 10347–10357. PMLR, 2021.

[47] Hugo Touvron, Matthieu Cord, and Hervé Jégou. Deit iii: Revenge of the vit. arXiv preprint
arXiv:2204.07118, 2022.

[48] Hugo Touvron, Andrea Vedaldi, Matthijs Douze, and Hervé Jégou. Fixing the train-test
resolution discrepancy. Advances in neural information processing systems, 32, 2019.

[49] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[50] Aladin Virmaux and Kevin Scaman. Lipschitz regularity of deep neural networks: analysis and
efficient estimation. Advances in Neural Information Processing Systems, 31, 2018.

[51] Hongyu Wang, Shuming Ma, Li Dong, Shaohan Huang, Dongdong Zhang, and Furu Wei.
Deepnet: Scaling transformers to 1,000 layers. arXiv preprint arXiv:2203.00555, 2022.

[52] Wenxiao Wang, Lu Yao, Long Chen, Binbin Lin, Deng Cai, Xiaofei He, and Wei Liu. Cross-
former: A versatile vision transformer hinging on cross-scale attention. arXiv preprint
arXiv:2108.00154, 2021.

[53] Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, and Lei Zhang. Cvt:
Introducing convolutions to vision transformers. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 22–31, 2021.

12

Published as a conference paper at ICLR 2023

[54] Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin Zheng, Chen Xing, Huishuai Zhang,
Yanyan Lan, Liwei Wang, and Tieyan Liu. On layer normalization in the transformer architecture.
In International Conference on Machine Learning, pages 10524–10533. PMLR, 2020.

[55] Jianwei Yang, Chunyuan Li, Pengchuan Zhang, Xiyang Dai, Bin Xiao, Lu Yuan, and Jianfeng
Gao. Focal attention for long-range interactions in vision transformers. Advances in Neural
Information Processing Systems, 34, 2021.

[56] Yuichi Yoshida and Takeru Miyato. Spectral norm regularization for improving the generaliz-
ability of deep learning. arXiv preprint arXiv:1705.10941, 2017.

[57] Li Yuan, Yunpeng Chen, Tao Wang, Weihao Yu, Yujun Shi, Zi-Hang Jiang, Francis EH Tay,
Jiashi Feng, and Shuicheng Yan. Tokens-to-token vit: Training vision transformers from scratch
on imagenet. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pages 558–567, 2021.

[58] Lu Yuan, Dongdong Chen, Yi-Ling Chen, Noel Codella, Xiyang Dai, Jianfeng Gao, Houdong
Hu, Xuedong Huang, Boxin Li, Chunyuan Li, et al. Florence: A new foundation model for
computer vision. arXiv preprint arXiv:2111.11432, 2021.

[59] Hao Zhang, Feng Li, Shilong Liu, Lei Zhang, Hang Su, Jun Zhu, Lionel M Ni, and Heung-
Yeung Shum. Dino: Detr with improved denoising anchor boxes for end-to-end object detection.
arXiv preprint arXiv:2203.03605, 2022.

[60] Hongyi Zhang, Yann N Dauphin, and Tengyu Ma. Fixup initialization: Residual learning
without normalization. arXiv preprint arXiv:1901.09321, 2019.

[61] Zizhao Zhang, Han Zhang, Long Zhao, Ting Chen, Sercan Arik, and Tomas Pfister. Nested
hierarchical transformer: Towards accurate, data-efficient and interpretable visual understanding.
arXiv preprint arXiv:2105.12723, 2022.

[62] Daquan Zhou, Bingyi Kang, Xiaojie Jin, Linjie Yang, Xiaochen Lian, Zihang Jiang, Qibin Hou,
and Jiashi Feng. Deepvit: Towards deeper vision transformer. arXiv preprint arXiv:2103.11886,
2021.

13

Published as a conference paper at ICLR 2023

A APPENDIX

A.1 LIPSCHITZ CONSTANT OF COMMON ACTIVATION FUNCTIONS

In Figure 2 we plot common non-linear activation functions in neural networks: Sigmoid, Tanh,
ReLU and GELU. According to [25], GeLU can be approximated by GeLU(x) ≈ x sigmoid(1.702x).
According to Lemma 1, the Lipschitz constants of Sigmoid, Tanh, ReLU and GELU are 1

4 , 1, 1,
1.0998 respectively.

FIGURE 2: Sigmoid, Tanh, ReLU and GELU activation function.

A.2 MULTI-HEAD ATTENTION

For a K-head attention, we have the i-th attention, i ∈ {1, ...,K} defined as,

hi(x,Wi) = Attni(X,WQ
i ,WK

i ,W V
i),

where Wi is the set of projection weight matrices (WQ
i ,WK

i ,W V
i).

Multi-head attention simply concatenates different attention results,
h(x,W) = [h1(x,W1); h2(x,W2); ...; hK(x,WK)].

According to the Lipschitz definition, we have,
∥h(x1,W)− h(x2,W)∥ ≤ (Lip(h1(W1)) + Lip(h2(W2)) + ...+ Lip(hK(WK)))∥x1 − x2∥.

B NETWORK ARCHITECTURE AND CONFIGURATIONS

The overall architecture of LipsFormer-CSwin is shown in Figure 3. For patch embedding and patch
merging, we use non-overlapped convolution as in Swin Transformer. Following CSwin Transformer,
we use the same cross-shaped window when computing attention results and also the same Locally
enhanced Positional Encoding (LePE).

The configurations of Lipsformer-CSwin are based on CSwin Transformer and Table 4 summarizes
three variants of Lipsformer-CSwin. LipsFormer-CSwin-T and LipsFormer-CSwin-S only varies in
the number of LipsFormer-CSwin blocks. LipsFormer-CSwin-S/B share the same depth configuration
but varies in hidden layer channel size.

Similar to LipsFormer-CSwin, we also build LipsFormer based on Swin Transformer [35]. Here,
we term it as LipsFormer-Swin. We create five versions of LipsFormer-Swin, and the detailed
configurations are shown in Table 5.

14

Published as a conference paper at ICLR 2023

4
×
	 4
Patch

M
erging

LipsForm
er

Block

2
×
	2
Patch

M
erging

LipsForm
er

Block

2
×
	2
Patch

M
erging

LipsForm
er

Block

2
×
	2
Patch

M
erging

LipsForm
er

Block

Pooling
&
FC

×𝑁1 ×𝑁2 ×𝑁3 ×𝑁4

𝐻
4
×
𝑊
4

𝐻
8
×
𝑊
8

𝐻
16
×
𝑊
16

𝐻
32
×
𝑊
32

Stage 1 Stage 2 Stage 3 Stage 4

H×𝑊

Ice
bear

FIGURE 3: Illustration of the overall LipsFormer architecture.

TABLE 4: Details of LipsFormer-CSwin model variants.

Model Channel Number of Blocks Num. of Params.
LipsFormer-CSwin-T 64 [1, 2, 21, 1] 24M
LipsFormer-CSwin-S 64 [2, 4, 32, 2] 38M
LipsFormer-CSwin-B 96 [2, 4, 32, 2] 83M

C TRAINING DETAILS

In Table 6 we provide the ImageNet 1K training details used for producing the main results in Table 2.
All LipsFormer variants use the same training hyperparameters, except for DropPath ratio, weight
decay, learning rate and EMA. All the models are implemented with PyTorch, and trained on NVIDIA
Tesla A100 GPUs. We do not use learning rate warmup in all experiments.

D EXPERIMENTS OF LIPSFORMER-SWIN

We evaluate the Tiny, Small, Base and Large versions of LipsFormer-Swin on the ImageNet-1K, and
compare our results with their corresponding counterpart Swin Transformer. The results are shown in
Table 7.

We have the following two findings from Table 7,

• the proposed LipsFormer-Swin consistently outperforms its counterpart Swin Transformer. Specifi-
cally, LipsFormer-Swin-T improves Swin-T by 1.5%.

• LipsFormer-Swin-L shows obvious overfitting on ImageNet-1K, and performs worst than
LipsFormer-Swin-B. According to our observation in the training process, the training loss (around
2.2) of LipsFormer-Swin-L is much smaller than that (around 2.5) of LipsFormer-Swin-B, but the
test accuracy is lower.) We also observe that in some github discussion issues, some people1 also
find that the original Swin-L cannot outperform Swin-B if only training on ImageNet-1K.

Since LipsFormer-Swin-L has shown overfitting on ImageNet-1K, we do not report the performance
of LipsFormer-Swin-L++ on the table. In the future, we will train it on a larger scale of data to test its
fitting ability. On a single A100-40GB GPU, with a batch size fixed to 256 and a mixed precision,

1https://github.com/microsoft/Swin-Transformer/issues/261

TABLE 5: Details of LipsFormer-Swin model variants.

Model Channel Num. of Blocks Num. of Params.
LipsFormer-Swin-T 96 [2, 2, 6, 2] 31
LipsFormer-Swin-S 96 [2, 2, 18, 2] 54
LipsFormer-Swin-B 128 [2, 2, 18, 2] 96
LipsFormer-Swin-L 192 [2, 2, 18, 2] 214
LipsFormer-Swin-L++ 288 [2, 2, 18, 2] 526

15

Published as a conference paper at ICLR 2023

TABLE 6: Hyperparameters for the models. Lt, Ls, Lb, Lℓ are the number of residual blocks in tiny,
small, base and large.

Hyperparameters Tiny Small Base Large
Warmup steps 0 0 0 0
Optimizer AdamW AdamW AdamW AdamW
DropPath ratio 0.2 0.4 0.5 0.5
α in residual as in Eq. 4 1

Lt

1
Ls

1
Lb

1
Lℓ

τ in cosine attention as in Eq. 4.1.2 12 12 12 12
Learning rate 2e-3 2e-3 1e-3 1e-3
Learning rate scheduler cosine cosine cosine cosine
Adam ϵ 1e-8 1e-8 1e-8 1e-8
Adam β (0.9, 0.999) (0.9, 0.999) (0.9, 0.999) (0.9, 0.99)
Label smoothing 0.1 0.1 0.1 0.1
RandAugment (9, 0.5) (9, 0.5) (9, 0.5) (9, 0.5)
Mixup 0.8 0.8 0.8 0.8
Cutmix 1.0 1.0 1.0 1.0
Training epochs 300 300 300 300
Gradient clipping 0.0 0.0 0.0 0.0
Weight decay 0.05 0.05 0.1 0.1
EMA 0.99984 0.99984 0.99992 0.99992

TABLE 7: Comparison of our LipsFormer-Swin with its corresponding counterpart Swin Transformer
with input resolution 2242 on ImageNet-1K classification.

Method Param. (M) FLOPs (G) Acc. Method Param. (M) FLOPs (G) Acc.

Swin-T 29 4.5 81.3 LipsFormer-Swin-T 31 5.0 82.7
Swin-S 50 8.7 83.0 LipsFormer-Swin-S 54 9.7 83.5
Swin-B 88 15.4 83.5 LipsFormer-Swin-B 96 17.0 84.0
Swin-L 190.7 34.5 N/A LipsFormer-Swin-L 214 37.7 83.5

the throughput and peak memory are 963 im/s and 5483 MB for LipsFormer-Swin-T, and 433 im/s
and 7415 MB for LipsFormer-Swin-B.

E OVERFITTING EVALUATION

Following DeiT III [47], we also evaluate our method on ImageNet-v2 [43] and ImageNet-real [4]
data sets. As pointed out by [48], to test how the method performs in a nearby setting without any
finetuning is a good way to assess overfitting. We directly apply the obtained models trained on the
original ImageNet data set onto these two data sets. The results are shown in Table 8.

We can see that from Table 8, our method that works well on the original ImageNet data set
consistently performs well on the ImageNet-v2 and ImageNet-real data sets. This observation fully
validates the generalization ability of the proposed method.

F TRAINING CURVES

In Figure 4, we show the training curves of the training losses and the classification accuracies of
LipsFormer-Swin-T and LipsFormer-Swin-B. We can find LipsFormer-Swin-B can fit the training
data better than LipsFormer-Swin-T because the loss of LipsFormer-Swin-B is much lower than that
of LipsFormer-Swin-T.

16

Published as a conference paper at ICLR 2023

TABLE 8: Details of LipsFormer-CSwin model variants. All results except our LipsFormer-CSwin
are taken from DeiT III [47]

.

Model Params (M) Flops (G) val real v2
ViT-S 22.0 4.6 80.4 86.1 69.7
PiT-S 23.5 2.9 80.4 86.1 69.2
TNT-S 23.8 5.2 81.4 87.2 70.6
ConViT-S 27.8 5.8 81.3 87.0 70.3
Swin-S 49.6 8.7 82.1 86.9 70.7
LipsFormer-CSwin-T 24 4.7 83.5 88.0 73.2
ViT-B 86.6 17.6 83.1 87.7 72.6
PiT-B 73.8 12.5 82.4 86.8 72.0
TNT-B 65.6 14.1 82.9 87.6 72.2
ConViT-B 86.5 17.5 82.0 86.7 71.3
Swin-B 87.8 15.4 82.2 86.7 70.7
CaiT-B12 100.0 18.2 83.3 87.7 73.3
LipsFormer-CSwin-B 83 16.3 84.6 88.6 74.5

0K 25K 50K 75K 100K 125K 150K 175K
Step

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

Lo
ss

Training Loss Curve
LipsFormer-Swin-T
LipsFormer-Swin-B

0 50 100 150 200 250 300
Epoch

10

20

30

40

50

60

70

80

To
p1

 A
cc

ur
ac

y
(%

)

ImageNet Accuracy by Epoch

LipsFormer-Swin-T
LipsFormer-Swin-B

FIGURE 4: Training curves of LipsFormer-Swin-T and LipsFormer-Swin-B. Left: training loss along
with epochs. Right: classification accuracy along with epochs.

G PARAMETER VARIATIONS ALONG WITH TRAINING EPOCHS

In Figure 5, we show the variations of the α along with the training epochs. Our statistic is based
on LipsFormer-Swin-T model. We statistic the mean and standard variance of the absolute value of
the α. We select one set of α from each stage. We find that from Figure 5, the mean value of the
absolute value of the α first grows and then tend to stabilize at a value.

17

Published as a conference paper at ICLR 2023

0 50 100 150 200 250 300
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Va
lu

e

Alpha
Stage0
Stage1
Stage2
Stage3

FIGURE 5: Variation curve of α along with training epochs. Each line denotes one set of α in one
stage. We show the mean and standard variance of the absolute value of the α.

H PROOF OF THEOREM 1

In this subsection, we derive the Lipschitz constant upper bound for the scaled cosine similarity
attention (SCSA).

First, we list some useful notations and identities for deriving the Jacobians of attention computation.

X =

 − x⊤
1 −
...

− x⊤
N −

 ∈ RN×D.

For column vectors u, z ∈ RN the chain rule has:
∂

∂x

[
u⊤z

]
= u⊤ ∂z

∂x
+ z⊤

∂u

∂x
.

The standard dot-product attention is defined as,

DP(X,WQ,WK ,W V) := softmax

(
XWQ

(
XWK

)⊤√
D/H

)
XW V

= PXW V .

In [28], Kim et al.proved that the standard dot-product attention is not Lipschitz continuous, and
proposed L2-distance attention which is Lipschitz continuous conditioning on WQ = WK . But
enforcing the equality of WQ and WK limits the expressiveness of the Transformer and degrades
training performance empirically.

Our scaled cosine similarity attention is defined as,

SCSA(X,WQ,WK ,W V , ν, τ) = νPV ,

where P = softmax
(
τQK⊤) , (6)

ν and τ are predefined or learnable scalars.

The definitions of Q,K,V are as follows,

Q =

 − q⊤
1 −
...

− q⊤
N −

 ∈ RN×D, K =

 − k⊤
1 −
...

− k⊤
N −

 ∈ RN×D, V =

 − v⊤
1 −
...

− v⊤
N −

 ∈ RN×D.

18

Published as a conference paper at ICLR 2023

For each input xi, the projected qi, ki, vi are defined as,

qi =
(xi

⊤WQ)
⊤√

∥xi
⊤WQ∥2 + ϵ

, kj =
(xj

⊤WK)
⊤√

∥xj
⊤WK∥2 + ϵ

, vj =
(xj

⊤W V)
⊤√

∥xj
⊤W V ∥2 + ϵ

.

where ϵ is a small smoothing factor to guarantee that the definition of cosine similarity is valid
everywhere.

By taking partial derivatives, we have the following Jacobian matrices,

Q̃i =
∂qi

∂xi
=

1√
∥xi

⊤WQ∥2 + ϵ
(I − WQ⊤

xixi
⊤WQ

∥xi
⊤WQ∥2 + ϵ

)WQ⊤
, (7)

K̃j =
∂kj

∂xj
=

1√
∥xj

⊤WK∥2 + ϵ
(I − WK⊤

xjxj
⊤WK

∥xj
⊤WK∥2 + ϵ

)WK⊤
, (8)

Ṽj =
∂vj

∂xj
=

1√
∥xj

⊤W V ∥2 + ϵ
(I − W V ⊤

xjxj
⊤W V

∥xj
⊤W V ∥2 + ϵ

)W V ⊤
. (9)

The attention matrix P is defined as,

P := softmax

τq1

⊤k1 τq1
⊤k2 . . . τq1

⊤kn

τq2
⊤k1 τq2

⊤k2 . . . τq2
⊤kn

...
...

. . .
...

τqn
⊤k1 τqn

⊤k2 . . . τqn
⊤kn

 .

We can rewrite our SCSA attention in Eq. 6 as,

f(X) = νPV = ν softmax
(
τQK⊤)V =

 f1(X)⊤

...
fN (X)⊤

 ∈ RN×D. (10)

For simplification we focus on derivations for single-head attention, mutli-head attention requires
only minor modifications for concatenating attention results for each head as discussed in A.2 . The
Jacobian matrix for SCSA can be written as,

Jf =

 J11 · · · J1N

...
. . .

...
JN1 · · · JNN

 ∈ RND×ND,

where Jij =
∂fi(X)

∂xj
∈ RD×D.

By taking partial derivatives we can show that,

Jij = ντV ⊤P (i)
[
EjiQK̃j

⊤
+ δijKQ̃j

⊤]
+ νPijṼj , (11)

where Eij ∈ RN×N is a binary matrix with zeros everywhere except the (i, j)-th entry, δij is the
Kronecker delta, and the Jacobian of the softmax is well-known as below,

19

Published as a conference paper at ICLR 2023

P (i) := diag (Pi:)− P⊤
i: Pi: =

Pi1 (1− Pi1) −Pi1Pi2 . . . −Pi1PiN

−Pi2Pi1 Pi2 (1− Pi2) · · · −Pi2PiN

...
...

. . .
...

−PiNPi1 −PiNPi2 · · · PiN (1− PiN)

 . (12)

When i = j, we have,

Jii = ντV ⊤P (i)
[
EiiQK̃i

⊤
+KQ̃i

⊤]
+ νPiiṼi. (13)

When i ̸= j, we have,

Jij = ντV ⊤P (i)EjiQK̃j

⊤
+ νPijṼj . (14)

Lemma 3. The scaled cosine similarity attention (SCSA) is Lipschitz continuous if and only if
WQ,WK ,W V have bounded norm.

Sketch Proof. Our key observation is that most of the terms in Jii and Jij have bounded norm: ν
and τ are scalars; Q,K,V are normalized so all elements are less than or equal to 1; Eij has zeros
everywhere except the (i,j)-th entry; P is an attention matrix with all elements within [0, 1] so all
elements in P (i) are bounded by [-0.25, 0.25]. Taking a closer look at Q̃i, K̃i, Ṽi as shown in Eq. 7,
Eq. 8 and Eq. 9, they are bounded as long as WQ,WK ,W V are bounded. Consequently the final
product of Jii and Jij have bounded norm if WQ,WK ,W V have bounded norm.

H.1 UPPER BOUND ON LIP∞ FOR SCSA

Let us review some basic definitions for matrix norm. Suppose we have matrices A ∈ RN×D, and
B ∈ RN×D. Then, we have:

∥A∥∞ = max
1≤i≤N

D∑
j=1

|Aij | ,

∥A∥2 =
√
λmax (A∗A) = σmax(A).

We also have the following inequalities,

∥AB⊤∥ ≤ ∥A∥∥B⊤∥, ∥A+B∥ ≤ ∥A∥+ ∥B∥ and ∥[A1, . . . ,AN]∥ ≤
∑
i

∥Ai∥ .

∥A∥2 = σmax(A) ≤ ∥A∥F =

 N∑
i=1

D∑
j=1

|Aij |2
 1

2

=

min(N,D)∑
k=1

σ2
k

 1
2

, (15)

where ∥ · ∥F is the Frobenius norm. Equality holds if and only if matrix A is a rank-one matrix or a
zero matrix.

According to the above inequalities, we have

∥[Ji1, . . . ,JiN]∥∞

≤ ∥Jii∥∞ +
∑

j ̸=i ∥Jij∥∞

≤ ντ∥V ⊤∥∞∥P (i)∥∞
[
∥Eii∥∞∥Q∥∞∥K̃i

⊤
∥∞ + ∥K∥∞∥Q̃i

⊤
∥∞
]
+ ν∥Pii∥∞∥Ṽi∥∞+∑

j ̸=i ντ∥V ⊤∥∞∥P (i)∥∞∥Eji∥∞∥Q∥∞∥K̃j

⊤
∥∞ + ν∥Pij∥∞∥Ṽj∥∞

(16)

20

Published as a conference paper at ICLR 2023

We can compute the L2 norm Lipschitz constant by replacing the L∞ norm in the above equation
with L2 norm.

With simple derivations we list ∥ · ∥∞ for each term in 16:

∥V ⊤∥∞ = max1≤i≤D

∑N
j=1 ∥V ⊤

ij∥ ≤ N

∥P (i)∥∞ = max1≤i≤N

∑N
j=1 ∥P (i)

ij∥ = max1≤i≤N 2(Pii − P 2
ii) ≤ 1

2

∥Eii∥∞ = 1

∥Q∥∞ = max1≤i≤N

∑D
j=1 ∥Qij∥ ≤

√
D

∥K̃j

⊤
∥∞ ≤ ϵ−

1
2 × ∥WK∥∞ × 2 (17)

Proof. for Equation 17

∥K̃j

⊤
∥∞ = ∥

 1√
∥xj

⊤WK∥2 + ϵ
(I − WK⊤

xjxj
⊤WK

∥xj
⊤WK∥2 + ϵ

)WK⊤

⊤

∥

∞

≤ ϵ−
1
2 × ∥WK∥∞ × ∥(I −

WK⊤
xjxj

⊤WK

∥xj
⊤WK∥2 + ϵ

)∥
∞

≤ 2× ϵ−
1
2 × ∥WK∥∞

∥K̃i

⊤
∥∞ = ∥K̃j

⊤
∥∞ < ϵ−

1
2 × ∥WK∥∞ × 2

∥K∥∞ =
√
D

∥Q̃i

⊤
∥∞ ≤ 2× ϵ−

1
2 × ∥WQ∥∞, similar to Equation 17

∥Pii∥∞ = ∥Pij∥∞ = 1

∥Eji∥∞ = 1

∥Ṽj∥∞ ≤ 2× ϵ−
1
2 × ∥W V ⊤∥∞, similar to Equation 17,

According to 16, the Lip∞ constant of the scaled cosine similarity attention (SCSA) is:

Lip(SCSA)∞ ≤ ν × τ ×N × 1
2 ×

[
1×
√
D × ϵ−

1
2 × 2× ∥WK∥∞ +

√
D × ϵ−

1
2 × 2× ∥WQ∥∞

]
+

ν × 1× ϵ−
1
2 × 2× ∥W V ⊤∥∞+

(N − 1)
[
ν × τ ×N × 1

2 × 1×
√
D × ϵ−

1
2 × 2× ∥WK∥∞ + ν × 1× ϵ−

1
2 × 2× ∥W V ⊤∥∞

]
.

After merging and rearranging the terms,

Lip(SCSA)∞ = ντN
√
Dϵ−

1
2

[
∥WK∥∞ + ∥WQ∥∞

]
+ 2νϵ−

1
2 ∥W V ⊤∥∞+

(N − 1)
[
ντN

√
Dϵ−

1
2 ∥WK∥∞ + 2νϵ−

1
2 ∥W V ⊤∥∞

]
= N2

√
Dντϵ−

1
2 ∥WK∥∞ +N

√
Dντϵ−

1
2 ∥WQ∥∞ + 2Nνϵ−

1
2 ∥W V ⊤∥∞

21

Published as a conference paper at ICLR 2023

H.2 UPPER BOUND ON LIP2 FOR SCSA

Correspondingly, we list ∥ · ∥2 for each term in 16:

∥V ⊤∥2 ≤
(∑N

i=1

∑D
j=1 |Vij |2

) 1
2

=
(∑N

j=1 1
) 1

2

=
√
N

∥P (i)∥2 ≤
N − 1

N
(18)

Proof of Equation 18

According to Eq 12, P (i) is a semi-definite matrix, thus its ordered eigenvalues λ1 ≥ λ2 ≥, . . . ,≥
λN ≥ 0, and

∑N
i=1 λi = tr(P (i)) =

∑N
j P

(i)
jj ≤ (

∑N
j=1

1
N

N−1
N) = N−1

N .

According to 15, ∥P (i)∥2 = (
∑N

i=1 λ
2
i)

1
2 ≤ (

∑N
i=1 λi)

2× 1
2 ≤ N−1

N

∥Eii∥2 = 1

∥Q∥2 ≤
√
N

∥K̃j

⊤
∥2 ≤ 2× ϵ−

1
2 × ∥WK∥2,

∥K∥2 ≤
√
N

∥Q̃i

⊤
∥2 ≤ 2× ϵ−

1
2 × ∥WQ∥2

∥Pii∥2 = 1

∥Eji∥2 = 1

∥Ṽj∥2 ≤ 2× ϵ−
1
2 × ∥W V ⊤∥2

Substituting the above results into Eq. 16 and changing L∞ norm to L2 norm, we have

Lip(SCSA)2 = ντ
√
N
√
N N−1

N 2ϵ−
1
2

[
∥WK∥2 + ∥WQ∥2

]
+ 2νϵ−

1
2 ∥W V ⊤∥2+

(N − 1)
[
N−1
N ντ

√
N
√
N2ϵ−

1
2 ∥WK∥2 + 2νϵ−

1
2 ∥W V ⊤∥2

]
= 2N(N − 1)ντϵ−

1
2 ∥WK∥2 + 2(N − 1)ντϵ−

1
2 ∥WQ∥2 + 2Nνϵ−

1
2 ∥W V ⊤∥2.

From the upper bound above, we highlight the following observations: 1) ϵ is to guarantee validity
of cosine similarity computation when any participating vector is equal to zero; 2) In Lip(SCSA)2,
the scale factor for the first term is 2N(N − 1)ντϵ−

1
2 , which multiplies with an extra ∼ N when

compared to the other terms, meaning that ∥WK∥2 plays a more significant role in the Lipschitz
constant of Lip(SCSA)2.

Different from the L2 distance attention [28], to promise the module is Lipschitz continuous, the
scaled cosine similarity attention has no requirement for the weight matrices, but the L2 distance
attention detailed in [28] requires that WQ and WK should be the same.

H.3 COMPARISON WITH DOT-PRODUCT ATTENTION [49] AND L2-ATTENTION [28]

As proved in [28], the standard dot-product attention is not Lipschitz continuous. The proposed
L2-attention is also not Lipschitz continuous for general WQ and WK , but only Lipschitz continuous
when WQ = WK . However, enforcing WQ = WK degrades model performance as shown in [28].
As proved above, the scaled cosine similarity attention (SCSA) is in general Lipschitz continuous,
only requiring that WQ,WK ,W V have bounded norm and that the computation of cosine similarity
is valid. We can easily guarantee that our computation of similarity is valid by introducing a small
smoothing factor ϵ.

22

Published as a conference paper at ICLR 2023

I PROOF OF THEOREM 2

In this section, we give the upper bound on LipsFormer’s Lipschitz constant.

For a LipsFormer with S stages where the s-th stage has Ms residual blocks, its Lipschitz constant is
upper bounded by the inequality below,

Lip(F) ≤
S∏

s=1

Ms∏
m=1

(1 + αs,m Lip(fs,m)). (19)

Here, we define κ = max({Lips(fi) : i = 1, . . . ,
∑S

s=1 Ms}). When α is set to 1∑S
s=1 Ms

, the above
inequality can be rewritten as,

Lip(F) ≤
S∏

s=1

Ms∏
m=1

(1 +
1∑S

s=1 Ms

Lip(fs,m)) ≤
S∏

s=1

Ms∏
m=1

(1 +
1∑S

s=1 Ms

κ)

= (1 +
κ∑S

s=1 Ms

)

∑S
s=1 Ms

≤ exp(κ).

(20)

J DROPPATH IS AN EFFICIENT WAY TO CONSTRAINT THE LIPSCHITZ
CONSTANT

DropPath [29] is another effective technique for training deep transformers, where

y =

{
x, if residual path is dropped
x+ α · f(x) otherwise

When using DropPath with drop probability p within each residual block, the Lipschitz constant of
LipsFormer is refined as,

Lip(F) ≤
S∏

s=1

Ms∏
m=1

(1 + droppath(αs,m Lip(fs,m)), p)), (21)

where droppath(αs,m, p) =

{
0, with probability p
αs,m Lip(fs,m)) with probability 1− p

.

We can see that DropPath effectively decreases the upper bound of a network’s Lipschitz constant by
randomly dropping the contributions of residual paths.

K COMPARISON WITH EXISTING WORKS

In this section, to clarify our contribution more clearly, we provide a detailed comparison of our
method with existing works, including Admin [33], ReZero [3], Swin-V2 [34], DeepNorm [51], L2
self-attention [28] and Spectral Normalization [56].

Admin [33] identifies that within a residual block, the residual branch amplifies network output and
the amplification effect makes training unstable. They propose to initialize the weight contributions
of a residual branch according to the variance of its previous layer.

ReZero [3] introduces an effective strategy to improve training stability. They notice that initializing
the residual branch with 0 satisfies initial dynamical isometry, thus stabilizes model training. ReZero
demonstrates that they can train very deep transformer without warmup but it requires removing
Layer Normalization. According to Equation 19, initializing the residual contribution to 0 trivially
constraints network Lipschitz constant. However, with Layer Normalization back into the network,
ReZero is likely to encounter training instability again.

23

Published as a conference paper at ICLR 2023

DeepNorm [51] shares similar motivation with Admin [33] and analyzes the influence of the residual
block and initialization. They introduce a new normalization function to modify the residual connec-
tion in Transformer and propose a new initialization method. However, we observe that learning rate
warmup is still necessary in DeepNorm [51].

Training of Admin [33] and DeepNorm [51] requires learning rate warmup, ReZero [3] could train
without learning rate warmup but requires that LayerNorm is not present in the network. The analyses
of Admin, ReZero, and DeepNorm are not from the perspective of Lipschitz continuity.

In [56], Yuichi et al.introduce a simple and effective spectral norm regularization, which penalizes
high spectral norm of weight matrices in neural networks. This work focuses on regularization
without considering residual block and self-attention block.

In [28], Kim et al.prove that the standard dot-product self-attention is not Lipschitz continuous.
They introduce an alternative L2 self-attention that is Lipschitz continuous under the constraint that
WQ = WK . Such constraint limits expressiveness of the attention block and empirically degrades
training performance. Also, L2 self-attention focuses only on the Lipschitz continuity of self-attention
block.

Swin-V2 [34] introduces two strategies to improve training stability of transformer model, including
replacing post-norm with pre-norm and a scaled cosine attention replacing the original dot product
attention. The introduced scale cosine attention is defined as,

Sim (qi,kj) = cos (qi,kj) /τ +Bij .

It should be noted that there’s a difference between cos (qi,kj) /τ and τ cos (qi,kj), the former is
not a Lipschitz continuous function with respect to variable τ but the latter is. According to our
derivation, self-attention based on the scaled cosine attention defined as in Swin-V2 is not Lipschitz
continuous if V is not normalized.

The above-mentioned works only deal with one or several standard neural computation modules.
Our LipsFormer gives a holistic Lipschitz analysis of a typical transformer network instead of
focusing exclusively on a single or few constituent modules. To derive the Lipschitz constant of
LipsFormer, we analyze each constituent module of a standard transformer, including convolutions,
fully-connected layer, self-attention, normalization and residual block. In this work we propose a
Lipschitz continuous self-attention and construct a Lipschitz continuous transformer network by
bounding each constituent computation layer. The resultant LipsFormer induces stable training and
does not require learning rate warmup.

We summarize our contributions from both theoretical and empirical perspectives as follows,
Theoretically,

• We derive a theoretical Lipschitz constant upper bound for scaled cosine similarity attention.
Meanwhile, we give a thorough analysis of key Transformer components: LayerNorm, self-
attention, residual shortcut, and weight initialization.

• We propose a Lipschitz continuous Transformer (LipsFormer), and derive a theoretical Lipschitz
constant upper bound for LipsFormer. The derivation provides a principled guidance for designing
LipsFormer networks.

Empirically,

• We make an assumption about the Lipschitz continuity of the network, and experimentally validate
this assumption.

• We build LipsFormer on CSwin and Swin-Transformer. We validate the efficacy of the different
versions (Tiny, Small, Base, Large and Large++) of LipsFormer on ImageNet, ImageNet-v2 and
ImageNet-Real data sets.

24

	Introduction
	Preliminaries
	An Assumption for Training Stability
	LipsFormer
	Lipschitz Continuous Modules
	CenterNorm Instead of LayerNorm
	Scaled Cosine Similarity Attention
	Weighted Residual Shortcut
	Spectral Initialization for Convolution and Feed-forward Connection

	LipsFormer
	LipsFormer Block
	Overall Architecture of LipsFormer
	Lipschitz Constant of LipsFormer

	Experiments
	Dataset and Training Setup
	Comparison with State-of-the-Art Models
	Ablation Study

	Conclusion
	Appendix
	Lipschitz Constant of Common Activation Functions
	Multi-head Attention

	Network Architecture and Configurations
	Training Details
	Experiments of LipsFormer-Swin
	Overfitting Evaluation
	Training Curves
	Parameter Variations along with Training Epochs
	Proof of Theorem 1
	Upper Bound on Lip For SCSA
	Upper Bound on Lip2 For SCSA
	Comparison with Dot-Product Attention vaswani2017attention and L2-Attention kim2021lipschitz

	Proof of Theorem 2
	Droppath is an efficient way to constraint the Lipschitz constant
	Comparison with Existing Works

