Diffusion Adaptive Text Embedding for Text-to-Image Diffusion Models

Byeonghu Na¹ Minsang Park¹ Gyuwon Sim¹ Donghyeok Shin¹
HeeSun Bae¹ Mina Kang¹ Se Jung Kwon² Wanmo Kang¹ Il-Chul Moon^{1,3}

¹KAIST, ²NAVER Cloud, ³summary.ai
{byeonghu.na,pagemu,gkwlaks4886,tlsehdgur0,cat2507,kasong13}@kaist.ac.kr, sejung.kwon@navercorp.com, {wanmo.kang,icmoon}@kaist.ac.kr

Abstract

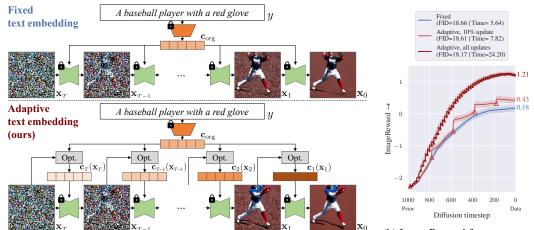
Text-to-image diffusion models rely on text embeddings from a pre-trained text encoder, but these embeddings remain fixed across all diffusion timesteps, limiting their adaptability to the generative process. We propose Diffusion Adaptive Text Embedding (DATE), which dynamically updates text embeddings at each diffusion timestep based on intermediate perturbed data. We formulate an optimization problem and derive an update rule that refines the text embeddings at each sampling step to improve alignment and preference between the mean predicted image and the text. This allows DATE to dynamically adapts the text conditions to the reverse-diffused images throughout diffusion sampling without requiring additional model training. Through theoretical analysis and empirical results, we show that DATE maintains the generative capability of the model while providing superior text-image alignment over fixed text embeddings across various tasks, including multi-concept generation and text-guided image editing. Our code is available at https://github.com/aailab-kaist/DATE.

1 Introduction

Text-to-image generation has recently received significant attention due to its capability to generate realistic and semantically accurate images from textual prompts. This progress has been largely driven by diffusion models [18, 53], particularly with large-scale models such as DALL·E [45] and Stable Diffusion [47]. These models use pre-trained text encoders like CLIP [42] and T5 [43] to encode prompts into embeddings, providing crucial semantic information to diffusion models. Notably, the quality and semantic alignment of the generated images heavily depend on these embeddings [48].

Despite their success, pre-trained diffusion models often struggle with semantic alignment and human preferences. Recent studies have addressed this using external reward functions, either through preference fine-tuning [3, 31, 56] or through applying guidance directly to denoised images during sampling [2]. However, these methods focus on model parameters or intermediate latent variables and overlook text embeddings. Most text-to-image diffusion models use fixed text embeddings throughout the sampling process (upper part of Figure 1a), limiting their adaptability to the evolving generation process. Since different diffusion timesteps influence generation in different ways [6, 59], static embeddings can fail to capture evolving semantics, leading to suboptimal text-image alignment.

To address this limitation, we propose Diffusion Adaptive Text Embedding (DATE), which dynamically updates text embeddings at each diffusion sampling step based on the current denoised image (lower part of Figure 1a). By continuously tuning the embeddings to maximize alignment between the text prompt and the mean predicted image, DATE captures evolving semantics without extra model training or architectural changes. Notably, DATE operates entirely at test time by simply inserting embedding updates into existing sampling procedures. Our theoretical and empirical results demonstrated the sample of the control of the



(a) Comparison of fixed and adaptive text embeddings in diffusion sampling

(b) ImageReward for mean predicted images across timesteps

Figure 1: (a) Overview of the conventional fixed text embedding and the proposed adaptive text embedding during the text-to-image diffusion sampling process. Green shapes represent the diffusion model network, orange shapes represent the text encoder, and gray boxes labeled *Opt*. indicate our text embedding optimization, detailed in Figure 3. (b) ImageReward [57], a text-to-image generation metric, for mean predicted images. Red triangles mark the timesteps where text embedding is updated.

strate that DATE improves text-image alignment while preserving the model's original generative capabilities. When evaluated across various diffusion models and samplers, DATE outperforms fixed text embeddings consistently, indicating its agnostic characteristics to both models and samplers. Furthermore, DATE can be effectively integrated into various downstream tasks, such as multi-concept generation and text-guided image editing, highlighting its broad applicability.

2 Preliminaries

2.1 Diffusion models

Diffusion models consist of two diffusion processes: a forward process and its corresponding reverse process [18]. The forward process is typically defined as a fixed Markov noise process, which perturbs the data instance $\mathbf{x}_0 \sim q(\mathbf{x}_0)$ by adding Gaussian noise:

$$q(\mathbf{x}_{1:T}|\mathbf{x}_0) := \prod_{t=1}^T q(\mathbf{x}_t|\mathbf{x}_{t-1}), \text{ where } q(\mathbf{x}_t|\mathbf{x}_{t-1}) := \mathcal{N}(\mathbf{x}_t; \sqrt{1-\beta_t}\mathbf{x}_{t-1}, \beta_t \mathbf{I}). \tag{1}$$

Here, $\mathbf{x}_{1:T}$ are latent variables for perturbed data, and β_t is the variance schedule parameter. Diffusion models aim to approximate the reverse process via a trainable Markov chain with Gaussian transitions:

$$p_{\theta}(\mathbf{x}_{0:T}) := p_{T}(\mathbf{x}_{T}) \prod_{t=1}^{T} p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t}), \text{ where } p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t}) := \mathcal{N}(\mathbf{x}_{t-1}; \boldsymbol{\mu}_{\theta}(\mathbf{x}_{t}, t), \sigma_{t}^{2}\mathbf{I}), \quad (2)$$

 $\mu_{\theta}(\mathbf{x}_t, t)$ is the parametrized mean, σ_t^2 is the time-dependent variance, and p_T is the prior distribution.

The mean function $\mu_{\theta}(\mathbf{x}_t, t)$ is trained by minimizing the upper bound of the negative log-likelihood [18]. Notably, this mean function can be equivalently expressed, up to a constant, as a score network $\mathbf{s}_{\theta}(\mathbf{x}_t, t)$ that approximates the score function $\nabla_{\mathbf{x}_t} \log q_t(\mathbf{x}_t)$ [53]:

$$\min_{\boldsymbol{\theta}} \mathbb{E}_t \mathbb{E}_{\mathbf{x}_t} [||\mathbf{s}_{\boldsymbol{\theta}}(\mathbf{x}_t, t) - \nabla_{\mathbf{x}_t} \log q_t(\mathbf{x}_t)||_2^2].$$
 (3)

Once the transition kernel p_{θ} is trained, we sample iteratively from T to near-0 using Eq. (2).

2.2 Text-to-image diffusion models

Text-to-image generation aims to produce high-quality images that are semantically aligned with a given textual description. Recent advances in diffusion models have greatly improved this task [39, 44, 47]. Text-to-image diffusion models can be formulated as learning a score network with an additional text-conditional input **c** to approximate a conditional score function:

$$\min_{\boldsymbol{\theta}} \mathbb{E}_t \mathbb{E}_{\mathbf{x}_t} [||\mathbf{s}_{\boldsymbol{\theta}}(\mathbf{x}_t, \mathbf{c}, t) - \nabla_{\mathbf{x}_t} \log q_t(\mathbf{x}_t | y)||_2^2].$$
 (4)

Here, c is the text embedding of the text prompt y, typically obtained from a pre-trained text encoder [11, 33, 48, 61, 62].

Despite their impressive realism, pre-trained diffusion models often struggle to maintain precise semantic alignment or satisfy human preferences. As the formulation of conditional score network suggests, text-conditional diffusion models can be improved by targeting three components: model parameters θ , perturbed data \mathbf{x}_t , and text embedding \mathbf{c} . Improvements in each component offer complementary benefits for overall quality and text-image consistency.

Fine-tuning and data-space guidance Most prior works focus on optimizing the model parameters θ through fine-tuning [3, 12, 24, 31, 56]. These approaches adjust diffusion models using additional curated datasets or reward signals to improve alignment or human preference satisfaction. However, they require extensive retraining and substantial computational cost. Another direction modifies the perturbed data \mathbf{x}_t via external guidance functions. Classifier Guidance [9] steers samples using gradients of time-dependent classifier, while Universal Guidance [2] approximates this approach with a time-independent classifier. While effective, such methods require careful guidance scaling across timesteps, and the guidance component needs to be expressed as a classification probability.

Prompt optimization Another line of work focuses on the text-conditioning component of diffusion models. Prompt-level optimization targets the input text y to produce better conditioning signals [15, 36]. These methods use reinforcement learning with external reward models to train language models that generate refined prompts for diffusion models. However, they are costly to train and lack adaptability when the backbone or reward function changes.

Text embedding update Beyond prompt tuning, the text embedding \mathbf{c} itself plays a central role in aligning images with textual intent. Most diffusion models use frozen text encoders and apply the same fixed embeddings across all timesteps, limiting their ability to capture the evolving semantics [6, 27, 59]. We hypothesize that dynamically adapting text embeddings, by transforming static \mathbf{c} into time-dependent \mathbf{c}_t , can improve semantic alignment.

Recent works have begun to investigate this direction. EBCA [40] updates text embeddings at each cross-attention layer via an energy-based objective but lacks global semantic control. P2L [8] directly optimizes text embeddings for an inverse problem objective. Other works focus on special token tuning, such as Textual Inversion [14] and MinorityPrompt [55], which learn special token embeddings for personalized or minority instance generation, sometimes extended to time-dependent variants [55]. However, these methods are task-specific and limited to special tokens. In contrast, DATE provides a general, training-free framework that dynamically updates the entire text embedding throughout the diffusion sampling process, enabling fine-grained semantic adaptation without retraining.

2.3 Evaluation on text-to-image generation

Given the trained model for text-to-image generation, it is necessary to define an evaluation function that measures how well the generated outputs match the text-conditional inputs. We refer to this as the *text-conditioned evaluation* function, which can also serve as an objective function to guide generation. Common metrics like CLIP score [16] and ImageReward [57] are well-suited for this purpose and are easily applicable in the data space, as illustrated in Figure 2. Formally, this function can be expressed as $h(\mathbf{x}_0; y) \in \mathbb{R}$, and h measures the alignment between the image \mathbf{x}_0 and the corresponding text input y. For simplicity, we assume that higher h values indicate better alignment implying stronger semantic consistency between

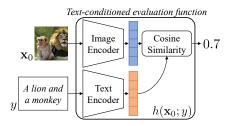


Figure 2: Examples of text-conditioned evaluation function.

alignment, implying stronger semantic consistency between images and texts.

Figure 1b plots the evaluation score changes over time for the mean predicted image, comparing 100 samples generated with fixed text embeddings and proposed dynamic text embeddings using Stable Diffusion. We observe two limitations of the previous approach: 1) the evaluation function h is used only for evaluation without being incorporated into the sampling process, and 2) h is only assessed at the final sample. To address these, we directly leverage h as the learning objective during the intermediate periods of the sampling process. This update to the text embedding improves the evaluation function value, ultimately enhancing the quality of text-to-image generation.

3 Methods

3.1 Diffusion Adaptive Text Embedding (DATE)

In this section, we propose an objective function to optimize text embeddings during the sampling process. The diffusion sampling process can be expressed as follows:

$$\mathbf{x}_T \sim p_T(\mathbf{x}_T), \mathbf{x}_{t-1} \sim p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t, \mathbf{c}_t) \text{ for } t = T, \cdots, 1,$$
 (5)

where $p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t, \mathbf{c}_t)$ is the distribution of the intermediate sample \mathbf{x}_{t-1} at timestep t-1, generated from the sample \mathbf{x}_t at timestep t and the text embedding \mathbf{c}_t . Typically, the text embedding \mathbf{c}_t is obtained from a pre-trained text encoder \mathbf{I}_{ϕ} , i.e., $\mathbf{c}_{\text{org}} := \mathbf{I}_{\phi}(y)$, and remains fixed across all diffusion timesteps, i.e., $\mathbf{c}_t = \mathbf{c}_{\text{org}}$ for all t (upper part of Figure 1a). However, we claim that the text embedding that is capable of producing effective generation output varies depending on the diffusion timestep t and the current perturbed data \mathbf{x}_t (lower part of Figure 1a). We refer to this dynamic text embedding as Diffusion Adaptive Text Embedding (DATE).

Our goal is to find the text embedding $\mathbf{c}_t(\mathbf{x}_t)^1$ that maximizes the evaluation function h for samples generated by the diffusion sampling process p_{θ} . The objective of DATE is expressed as follows:

$$\max_{\mathbf{c}_{1:T}} \mathbb{E}_{\mathbf{x}_T \sim p_T, \mathbf{x}_{0:T-1} \sim \prod_{\tau=1}^T p_{\theta}(\mathbf{x}_{\tau-1} | \mathbf{x}_{\tau}, \mathbf{c}_{\tau})} [h(\mathbf{x}_0; y)]. \tag{6}$$

It should be noted that Eq. (6) optimizes the alignment h only at the final reverse diffusion step, so the other latent variables $\mathbf{x}_{1:T}$ are not directly regularized in any specific direction. However, the below derivation from Eqs. (7) to (10) shows that the optimization direction for each \mathbf{x}_t can be derived from Eq. (6), which optimizes only \mathbf{x}_0 , considering that \mathbf{x}_0 is the sequential sampling result from $\mathbf{x}_{1:T}$.

Since the sampling process of diffusion models proceeds iteratively from timestep T to 0, we likewise aim to iteratively update the text embedding \mathbf{c}_t according to this sequential order. Hence, this sequential sampling, which is required for practical implementation, renders Eq. (6) into Eq. (7). Specifically, the sequential nature of diffusion sampling requires two reformulations of Eq. (6).

Motivation 1: The adaptive text embedding \mathbf{c}_t needs to be determined sequentially because the corresponding image is estimated at timestep t. Thus, the sequential decision on \mathbf{c}_t decomposes the joint optimization into the step-wise optimization. Particularly, the diffusion sampling process requires a specific order in sequential decisions, i.e., from T to 0. This motivation of decomposed and ordered optimization is reflected in the separated max operator in Eq. (7).

Motivation 2: The evaluation of h is performed at the final sampling step 0, not at intermediate step t. For simplicity, we need to calculate the text-image alignment h on the final generation result while maintaining \mathbf{c}_t . This motivates maintaining \mathbf{c}_t until timestep 0 of the data distribution, which is reflected in the equality constraints on the feasible set \mathcal{C}_t of each max operator in Eq. (7).

$$\max_{\mathbf{c}_1 \in \mathcal{C}_1} \cdots \max_{\mathbf{c}_t \in \mathcal{C}_t} \cdots \max_{\mathbf{c}_T \in \mathcal{C}_T} \mathbb{E}_{\mathbf{x}_T \sim p_T, \mathbf{x}_{0:T-1} \sim \prod_{\tau=1}^T p_{\theta}(\mathbf{x}_{\tau-1} | \mathbf{x}_{\tau}, \mathbf{c}_{\tau})} [h(\mathbf{x}_0; y)]$$
(7)

Here, $C_t \coloneqq \{\mathbf{c}_t : ||\mathbf{c}_t - \mathbf{c}_{\mathrm{org}}||_2 \le \rho, \mathbf{c}_\tau = \mathbf{c}_t \ \forall \tau < t\}$, $\mathbf{c}_{\mathrm{org}}$ is the original text embedding, and ρ is a scale hyperparameter. The constraint $||\mathbf{c}_t - \mathbf{c}_{\mathrm{org}}||_2 \le \rho$ keeps the optimized text embedding \mathbf{c}_t does not deviate significantly from the original embedding $\mathbf{c}_{\mathrm{org}}$, preserving its original semantic meaning.

Specifically, the optimization problem for c_t in Eq. (7) can be derived as follows:

$$\max_{\mathbf{c}_{t} \in \mathcal{C}_{t}} \mathbb{E}_{\mathbf{x}_{0:t-1} \sim \prod_{\tau=1}^{t} p_{\boldsymbol{\theta}}(\mathbf{x}_{\tau-1} | \mathbf{x}_{\tau}, \mathbf{c}_{\tau})}[h(\mathbf{x}_{0}; y)] \Leftrightarrow \max_{\mathbf{c}_{t}: ||\mathbf{c}_{t} - \mathbf{c}_{\text{org}}||_{2} \leq \rho} \mathbb{E}_{\mathbf{x}_{0} \sim p_{\boldsymbol{\theta}}(\mathbf{x}_{0} | \mathbf{x}_{t}, \mathbf{c}_{t})}[h(\mathbf{x}_{0}; y)]. \quad (8)$$

On the left-hand side of Eq. (8), the terms from timesteps from t+1 to T are eliminated since $\mathbf{c}_{t+1:T}$ are set by the inner optimizations. On the right-hand side, the simplification arises from the constraint that all text embeddings from t to 1 are identical. Therefore, at timestep t, our objective can be expressed as the expectation of the text-conditioned evaluation function with respect to $p_{\theta}(\mathbf{x}_0|\mathbf{x}_t,\mathbf{c}_t)$.

However, solving Eq. (8) is computationally challenging. Evaluating the objective requires Monte Carlo sampling of \mathbf{x}_0 from \mathbf{x}_t , and each sample involves iterative sampling with multiple network evaluations, resulting in high computational cost. To address this, we apply a first-order Taylor approximation of the text-conditioned evaluation function h around $\bar{\mathbf{x}}_0 \coloneqq \bar{\mathbf{x}}_0(\mathbf{x}_t, \mathbf{c}_t; \boldsymbol{\theta}) = \mathbb{E}_{\mathbf{x}_0 \sim p_{\boldsymbol{\theta}}(\mathbf{x}_0 | \mathbf{x}_t, \mathbf{c}_t)}[\mathbf{x}_0]$, a technique commonly used in previous studies [2, 8]:

$$\mathbb{E}_{\mathbf{x}_0}[h(\mathbf{x}_0; y)] \approx h(\bar{\mathbf{x}}_0; y) + \mathbb{E}_{\mathbf{x}_0}[(\mathbf{x}_0 - \bar{\mathbf{x}}_0)^T \nabla_{\mathbf{x}} h(\bar{\mathbf{x}}_0; y)] = h(\bar{\mathbf{x}}_0; y). \tag{9}$$

¹For simplicity, we omit the dependency on \mathbf{x}_t and write $\mathbf{c}_t(\mathbf{x}_t)$ as \mathbf{c}_t whenever no ambiguity arises.

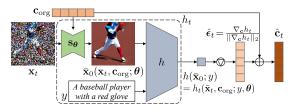


Figure 3: Update step of DATE at timestep t. The symbol with an inverted triangle inside a circle represents the normalized gradient with respect to \mathbf{c} , and \oplus denotes summation.

Algorithm 1 Diffusion Sampling with DATE

The equality in Eq. (9) holds because $\mathbb{E}_{\mathbf{x}_0}[\mathbf{x}_0 - \bar{\mathbf{x}}_0] = 0$. Therefore, through the approximation in Eq. (9), we propose the following alternative objective instead of Eq. (8):

$$\max_{\mathbf{c}_t:||\mathbf{c}_t-\mathbf{c}_{\text{org}}||_2 \le \rho} h(\bar{\mathbf{x}}_0(\mathbf{x}_t, \mathbf{c}_t; \boldsymbol{\theta}); y) =: h_t(\mathbf{x}_t, \mathbf{c}_t; y, \boldsymbol{\theta}).$$
(10)

This objective in Eq. (10) optimizes the text-conditioned evaluation function on the mean predicted image $\bar{\mathbf{x}}_0$ given the current perturbed image \mathbf{x}_t and the text embedding \mathbf{c}_t . Using the Tweedie's formula [10], the mean predicted image $\bar{\mathbf{x}}_0$ can be computed via a single score network evaluation:

$$\bar{\mathbf{x}}_0(\mathbf{x}_t, \mathbf{c}_t; \boldsymbol{\theta}) = (\mathbf{x}_t + (1 - \bar{\alpha}_t)\mathbf{s}_{\boldsymbol{\theta}}(\mathbf{x}_t, \mathbf{c}_t, t)) / \sqrt{\bar{\alpha}_t}, \tag{11}$$

where $\mathbf{s}_{\theta}(\mathbf{x}_t, \mathbf{c}_t, t)$ is a conditional score network, and $\bar{\alpha}_t := \prod_{\tau=1}^t (1 - \beta_{\tau})$ is the constant related to the variance schedule of the diffusion process.

3.2 Update process of DATE

We present an update process of text embeddings at each timestep to optimize the objective in Eq. (10) using the current perturbed data. Since evaluating this objective requires score network propagation (see Eq. 11), computational cost increases with each update. Therefore, inspired by sharpness-aware minimization [13], we estimate the updated text embedding \mathbf{c}_t in a single update.

We decompose the updated embedding \mathbf{c}_t into its original embedding \mathbf{c}_{org} and an update direction ϵ_t :

$$\mathbf{c}_t = \mathbf{c}_{\text{org}} + \boldsymbol{\epsilon}_t. \tag{12}$$

By expressing \mathbf{c}_t in terms of an update direction ϵ_t , we reformulate the optimization problem in Eq. (10) into an equivalent problem over ϵ_t , as shown in Eq. (13). Next, we approximate $h_t(\cdot, \mathbf{c}_{\text{org}} + \epsilon_t; \cdot, \cdot)$ using a first-order Taylor expansion around $\epsilon_t = \mathbf{0}$ (see the appendix for derivation):

$$\boldsymbol{\epsilon}_{t}^{*} := \underset{||\boldsymbol{\epsilon}_{t}||_{2} \leq \rho}{\arg \max h_{t}(\mathbf{x}_{t}, \mathbf{c}_{\text{org}} + \boldsymbol{\epsilon}_{t}; y, \boldsymbol{\theta})} \approx \underset{||\boldsymbol{\epsilon}_{t}||_{2} \leq \rho}{\arg \max \boldsymbol{\epsilon}_{t}^{\mathsf{T}} \nabla_{\boldsymbol{c}} h_{t}(\mathbf{x}_{t}, \mathbf{c}_{\text{org}}; y, \boldsymbol{\theta})} =: \hat{\boldsymbol{\epsilon}}_{t}.$$
(13)

The solution to this optimization problem can be derived using the Cauchy-Schwarz inequality. Consequently, the estimator for the optimal text embedding $\hat{\mathbf{c}}_t$ is given by

$$\hat{\boldsymbol{\epsilon}}_t = \rho \frac{\nabla_{\boldsymbol{c}} h_t(\mathbf{x}_t, \mathbf{c}_{\text{org}}; y, \boldsymbol{\theta})}{||\nabla_{\boldsymbol{c}} h_t(\mathbf{x}_t, \mathbf{c}_{\text{org}}; y, \boldsymbol{\theta})||_2}; \quad \hat{\mathbf{c}}_t = \mathbf{c}_{\text{org}} + \rho \frac{\nabla_{\boldsymbol{c}} h_t(\mathbf{x}_t, \mathbf{c}_{\text{org}}; y, \boldsymbol{\theta})}{||\nabla_{\boldsymbol{c}} h_t(\mathbf{x}_t, \mathbf{c}_{\text{org}}; y, \boldsymbol{\theta})||_2}.$$
(14)

This update step refines \mathbf{c}_t by adjusting it along the normalized gradient direction of h_t , maximizing semantic alignment at the diffusion timestep t under the current perturbed data \mathbf{x}_t . As a result, the updated text embedding $\hat{\mathbf{c}}_t$ dynamically adapts to the specific diffusion timestep and the corresponding perturbed data. Figure 3 visualizes this update step, and Algorithm 1 presents the overall algorithm for the diffusion sampling process with DATE. We introduce text embedding update steps in lines 4-6 of Algorithm 1, and the denoising process (line 7) can be performed using various diffusion samplers.

3.3 Theoretical analysis

We provide theoretical analyses of DATE, including performance guarantees and its influence on the data space. We provide proofs and additional approximation error analyses in Appendix A.

First, we show that both unconstrained and constrained optimizations of the text embedding in Eqs. (6) and (7) produce a better text embedding than the fixed text embedding c_{org} .

Proposition 1. Let $h(\mathbf{c}_1, \dots, \mathbf{c}_T) \coloneqq \mathbb{E}_{\mathbf{x}_{0:T}}[h(\mathbf{x}_0; y)]$ where $\mathbf{x}_{0:T-1} \sim \prod_{\tau=1}^T p_{\boldsymbol{\theta}}(\mathbf{x}_{\tau-1} | \mathbf{x}_{\tau}, \mathbf{c}_{\tau})$, $\mathbf{x}_T \sim p_T$, and $\mathcal{C}_t \coloneqq \{\mathbf{c}_t : ||\mathbf{c}_t - \mathbf{c}_{\text{org}}||_2 \le \rho, \mathbf{c}_\tau = \mathbf{c}_t \ \forall \tau < t\}$. Then,

$$\max_{\mathbf{c}_{1:T}} h(\mathbf{c}_{1}, \dots, \mathbf{c}_{T}) = \max_{\mathbf{c}_{1}} \dots \max_{\mathbf{c}_{t}} \dots \max_{\mathbf{c}_{T}} h(\mathbf{c}_{1}, \dots, \mathbf{c}_{T})
\geq \max_{\mathbf{c}_{1} \in \mathcal{C}_{1}} \dots \max_{\mathbf{c}_{t} \in \mathcal{C}_{t}} \dots \max_{\mathbf{c}_{T} \in \mathcal{C}_{T}} h(\mathbf{c}_{1}, \dots, \mathbf{c}_{T}) \geq h(\mathbf{c}_{\text{org}}, \dots, \mathbf{c}_{\text{org}}).$$
(15)

$$\geq \max_{\mathbf{c}_1 \in \mathcal{C}_1} \cdots \max_{\mathbf{c}_n \in \mathcal{C}_n} \max_{\mathbf{c}_T \in \mathcal{C}_T} h(\mathbf{c}_1, \cdots, \mathbf{c}_T) \geq h(\mathbf{c}_{\text{org}}, \cdots, \mathbf{c}_{\text{org}}). \tag{16}$$

The first equation shows that sequential maximization in Eq. (15) (corresponding to Motivation 1) attains the same optimum as the joint maximization. Introducing the constraints in Eq. (16) (corresponding to Motivation 2) restricts the feasible set and can lower the optimum. Nonetheless, Proposition 1 guarantees that both the unconstrained optimum (Eq. 6) and the constrained optimum (Eq. 7) yield a value at least as high as the fixed embedding. Because DATE is derived by approximating the optimization problem in Eq. (7), it is expected to improve the text-image alignment of the generated images compared to the fixed embedding.

Next, we present Theorem 2 to illustrate how the DATE update influences the perturbed data.

Theorem 2. The score function for the text embedding c_t updated by DATE can be expressed as:

$$\nabla_{\mathbf{x}_{t}} \log p_{\boldsymbol{\theta}}(\mathbf{x}_{t}|\hat{\mathbf{c}}_{t}) = \nabla_{\mathbf{x}_{t}} \log p_{\boldsymbol{\theta}}(\mathbf{x}_{t}|\mathbf{c}_{\mathrm{org}}) + \rho \nabla_{\mathbf{x}_{t}} \left\{ \frac{\nabla_{\mathbf{c}} h_{t}(\mathbf{x}_{t}, \mathbf{c}_{\mathrm{org}})^{T}}{||\nabla_{\mathbf{c}} h_{t}(\mathbf{x}_{t}, \mathbf{c}_{\mathrm{org}})||_{2}} \nabla_{\mathbf{c}} \log p_{\boldsymbol{\theta}}(\mathbf{x}_{t}|\mathbf{c}_{\mathrm{org}}) \right\} + O(\rho^{2}).$$
(17)

According to Theorem 2, the updated text embedding \mathbf{c}_t can be interpreted as introducing a guidance term to the original score function, under a sufficiently small ρ . This guidance effectively improves the alignment between the evaluation function h_t and the model likelihood from the perspective of the text embedding. Therefore, embedding-based guidance balances semantic alignment with the underlying model distribution, enhancing prompt fidelity without reducing generation quality.

3.4 Practical implementation

Reducing computational cost Updating the text embedding via Eq. (14) requires computing the gradient of h_t through both diffusion and evaluation networks, which increases computational cost, as discussed in Appendix D.1. To mitigate this overhead, we update embeddings only at a subset of sampling steps (line 4 in Algorithm 1) and reuse the last update embeddings between updates, balancing performance and efficiency as shown in Figure 9 of Section 4.2. In addition, general computationally efficient strategies such as half-precision inference can be applied during sampling. As shown in Table 4, DATE remains compatible with such efficiency techniques, effectively reducing runtime and GPU memory consumption while incurring only a slight performance degradation.

Selection of original text embedding We explore two strategies for choosing the original text embedding \mathbf{c}_{org} at each update step: (1) always use the pre-trained text encoder output, $\mathbf{I}_{\phi}(y)$, preserving semantic integrity, and (2) use the embedding from the previous step, c_{t+1} , allowing broader exploration of the embedding space. To prevent semantic drift in the second approach, we add an L2 regularizer $||\mathbf{c}_t - \mathbf{I}_{\phi}(y)||_2$ to the objective in Eq. (10). This term ensures update embeddings remain close to the original. Ablation results comparing these strategies also appear in Figure 9.

Experiments

We evaluate DATE for text-to-image generation primarily using U-Net-based Stable Diffusion (SD) v1.5 [47] with a pre-trained CLIP ViT-L/14 text encoder [42]. Additionally, to demonstrate broader applicability, we include evaluations on the latest transformer-based model, PixArt- α [5]. Unless stated otherwise, we set the text-conditioned evaluation function h to CLIP score, the scale hyperparameter ρ to 0.5, and use the embedding from the previous update as the original text embedding $c_{\rm org}$ for each update step. Additional details are in Appendix C.

4.1 Quantitative results

Following previous evaluation protocols [38, 39, 58], we generate 5,000 images from randomly sampled captions in the COCO [30] validation set. We use DDIM [51] and DDPM [18] for SD, and DPM-Solver [32] for PixArt- α . We evaluate the image quality and semantic alignment using several metrics, including zero-shot FID [17], CLIP score (CS) [16], and ImageReward (IR) [57], with detailed explanations provided in Appendix C.1.

Table 1: Performance on the COCO validation set. Sampling steps are indicated in parentheses, and *Time* is the average sampling time (min.) for 64 samples. **Bold** values indicate the best performance.

Backbone	Method	Time	FID↓	CLIP score↑	ImageReward↑
	Fixed text embedding (50 steps)	5.64	18.66	0.3204	0.2132
	Fixed text embedding (70 steps)	7.87	18.27	0.3199	0.2137
	EBCA [40]	8.10	25.85	0.2877	-0.3128
SD v1.5 [47]	Universal Guidance [2]	8.25	18.56	0.3216	0.2221
w/ DDIM [51]	DATE (50 steps)				
	10% update with CLIP score	7.82	17.90	0.3237	0.2364
	all updates with CLIP score	24.20	17.22	0.3292	0.2277
	10% update with ImageReward	7.82	18.61	0.3224	0.4792
	all updates with ImageReward	24.20	18.17	0.3224	1.2972
	Fixed text embedding (20 steps)	4.35	31.07	0.3201	0.8140
PixArt- α [5]	Fixed text embedding (45 steps)	9.03	30.62	0.3199	0.8174
w/ DPM-	DATE (20 steps)				
Solver [32]	50% update with CLIP score	8.93	30.55	0.3237	0.8287
	50% update with ImageReward	8.95	31.07	0.3221	0.9514

Table 2: Results on COCO using SD v1.5 with various evaluation functions. **Bold** values indicate the best performance, while *italic* AS values denote cases that underperform the fixed embedding.

	Fidelity		Semantic	Preference	
Method	FID↓	AS↑	CS↑	IR↑	PS↑
Fixed embedding (50 steps)	18.66	5.38	0.3204	0.2132	21.51
Fixed embedding (70 steps)	18.27	5.37	0.3199	0.2137	21.50
DATE (50 steps , 10% update)					
with Aesthetic Score (AS)	18.82	5.58	0.3169	0.1910	21.46
with CLIP Score (CS)	17.90	5.35	0.3237	0.2364	21.53
with ImageReward (IR)	18.61	5.40	0.3224	0.4792	21.53
with PickScore (PS)	18.49	5.42	0.3225	0.2745	21.93

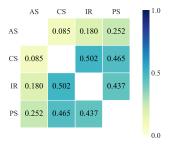


Figure 4: Pairwise Pearson correlations between evaluation functions.

Main results Table 1 compares the performance of different text embeddings across various backbones and samplers. Tables 8 and 9 in Appendix D.1 further extend this comparison to different classifier-free guidance scales and sampling methods. Across all settings, DATE consistently outperforms the fixed text embedding, even with matched sampling time for a fair comparison. Notably, DATE improves the metric used for its evaluation function h, as well as other metrics, suggesting that it enhances the overall text-conditional generation quality beyond optimizing a single objective.

Compared to recent methods, EBCA [40] applies the energy-based optimization to text embeddings within cross-attention layers but yields suboptimal performance. Universal Guidance [2], which injects h_t -based guidance directly into the data space, yields performance gains but still falls short of DATE. In contrast, DATE explicitly updates text embeddings to optimize the evaluation objective, achieving better semantic alignment (CS, IR) while preserving generative quality (FID), as supported by our theoretical analysis.

Evaluation function To better understand the role of evaluation functions, we analyze DATE under different functions. Specifically, we examine pairwise correlations among different functions and evaluate DATE when each metric, individually or in combination, serves as the evaluation function. We consider Aesthetic Score (AS) [49] for image fidelity, CS for semantic alignment, and two human-preference-based metrics, IR and PickScore (PS) [26]. Each provides per-instance scores for generated images, enabling both correlation analysis and direct integration with DATE.²

Figure 4 presents Pearson correlations computed from 1,000 Stable Diffusion samples, and Figure 5a visualizes instance-level relationships between CS and IR. AS and CS exhibit minimal correlation,

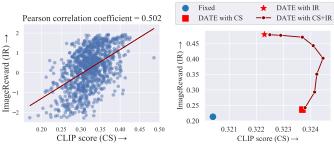
²FID is excluded since it measures distribution-level similarity and lacks instance-level scores.

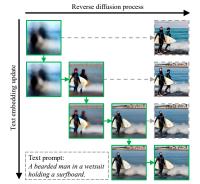
Table 3: Results on COCO across backbones.

Table 4: Results on COCO with half-precision.

Backbone	Methods	FID↓	CS↑	IR↑
SD3 [11]	Fixed DATE (ours)	26.00 26.00	0.3337 0.3340	1.0018 1.0457
FLUX [28]	Fixed DATE (ours)	29.59 29.41	0.3257 0.3283	0.9634 0.9768
SDXL [41]	Fixed DATE (ours)	18.27 18.03	0.3368 0.3382	0.7284 0.9096

Method	Time	Memory	FID↓	CS↑	IR↑
Fixed embedding (50 steps) Fixed embedding (70 steps)	5.64 7.87	24.0 24.0	18.66 18.27	0.3204 0.3199	0.2132 0.2137
DATE (50 steps , 10 % update) with CLIP Score (CS) with CLIP Score (CS) (FP16) with ImageReward (IR) with ImageReward (IR) (FP16)	7.82 4.40 7.82 4.02	61.5 32.9 61.5 30.6	17.90 17.99 18.61 18.03	0.3237 0.3229 0.3224 0.3222	0.2364 0.2265 0.4792 0.4773





(a) Correlation b/w metrics

(b) Results of combined metrics

Figure 5: (a) Correlation between CLIP score (CS) and ImageReward (IR). Blue dots represent individual samples, and the red line indicates their linear regression line. (b) Trade-off between CS and IR. For DATE with CS+IR, we use a weighted sum of CS and IR as the evaluation function h, and we plot the performance changes as the weights are varied.

Figure 6: Mean predicted images $\bar{\mathbf{x}}_0(\mathbf{x}_t, \mathbf{c}_t)$ for each diffusion timestep and text embedding during the sampling process with DATE.

suggesting independence between aesthetic quality and semantic alignment. IR and PS correlate moderately with CS and weakly with AS, indicating that they capture both fidelity and alignment aspects. IR and PS themselves correlate moderately, reflecting their distinct sensitivities.

With these metrics as the evaluation function, DATE generally improves all metrics over the fixed embedding, as shown in Table 2. However, when AS is used, other metrics often degrade, consistent with its low semantic correlation. Moreover, combining multiple evaluation functions, such as a weighted sum of CS and IR, improves both metrics simultaneously, as shown in Figure 5b and Table 10. DATE thus remains compatible with multi-metric objectives, where adjusting weights balances trade-off. Interestingly, the combined objective can yield even higher CS than for CS alone, demonstrating the synergistic potential among evaluation functions during test-time optimization.

Applicability to other backbones DATE can be applied on top of powerful base models. We evaluate it on recent architectures, including SD3 [11], FLUX [28], and SDXL [41], following the default configurations described in Appendix C.1. As shown in Table 3, DATE consistently improves text-image alignment and generation quality across all these models, demonstrating its robustness and broad applicability to modern diffusion architectures.

Computational efficiency To mitigate the increased computational cost introduced by gradient computations, we explore memory-efficient sampling strategies. In particular, we apply half-precision inference during sampling, which substantially reduces runtime and memory consumption while maintaining competitive performance, as shown in Table 4. Notably, casting the CLIP model used in the evaluation function to half-precision led to performance degradation, so we retain it in full precision; however, since the diffusion model dominates computational cost, applying half-precision to remaining components still provides significant savings. These results demonstrate that DATE remains fully compatible with standard memory-efficient strategies.

4.2 Analysis of DATE

Generation process The green boxes in Figure 6 show the generation process of DATE. Fixed text embeddings misinterpret 'a man' as 'two men', but DATE corrects this by dynamic updates.

Table 5: Ablation studies.

Method	FID↓	CS↑	IR↑
Fixed embedding	18.66	0.3204	0.2132
Random update	18.66	0.3204	0.2136
$h(\mathbf{x}_t; y)$	18.80	0.3200	0.2121
Unnormalized gradient	18.46		0.2225
DATE (ours)	17.91	0.3220	0.2229

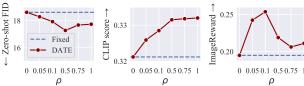
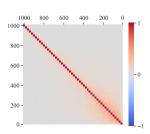
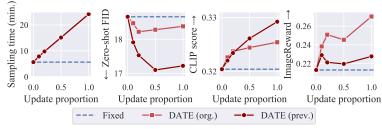


Figure 7: Sensitivity analysis on the scale ρ .





ity of update directions $\hat{\epsilon}_t$ between timesteps.

Figure 8: Cosine similar- Figure 9: Comparison of sampling time and performance based on the proportion of update steps to total sampling steps.

Time- and instance-adaptive text embedding We analyze the time-dependent text embeddings by measuring the cosine similarity between update directions $\hat{\epsilon}_t$ at different timesteps, averaged over 100 samples, in Figure 8. Most timestep pairs show near-zero similarity, with about 85% of pairs below 0.1, indicating that optimal embeddings differ across timesteps. In contrast, adjacent timesteps generally show positive similarity, suggesting that reusing the embedding from the previous step can reduce runtime with a moderate loss in performance.

We also examine instance-specific adaptation by measuring the cosine similarity of update directions across different samples of the same prompt at each timestep. The similarity remains close to zero (below 0.05) across all timesteps, showing that each instance has distinct text embedding updates, reinforcing the need for adaptive embeddings in text-to-image generation.

Ablation studies Table 5 presents several ablations for the text embedding update. *Random update*, which replaces the gradient with a random Gaussian vector, performs similarly to the fixed embedding. This indicates that our update is not just a perturbation, but plays a meaningful role in text-image alignment. Alignment with perturbed data, which aligns the text prompt with the perturbed data \mathbf{x}_t using $h(\mathbf{x}_t; y)$, results in degraded performance, likely because the evaluation function h lacks explicit information in the perturbed data space. Unnormalized gradient performs better than fixed embeddings but remains inferior to DATE. This suggests that using the unnormalized gradient still serves as a gradient ascent method to improve h_t , but a single-step update is suboptimal.

Sensitivity analysis of ρ Figure 7 presents a sensitivity analysis of the scale hyperparameter ρ , which controls the magnitude of $\hat{\epsilon}_t$. The performance consistently outperforms the fixed embedding, but higher ρ causes degradation in some regions. This is likely due to errors in the Taylor approximation from an expanded feasible region in Eq. (13). Based on this, we set ρ to 0.5 in our experiments.

Selection of original embedding Figure 9 analyzes the effect of selecting the original embedding at each update step, discussed in Section 3.4. Initializing with the previously updated embedding generally improves the CLIP score, likely due to a broader exploration of the embedding space. Based on this, we adopt this strategy in our experiments.

Embedding update steps Figure 9 also shows the sampling time and performance based on the number of update steps. We observe that even a few updates improve performance. Increasing the update proportion tends to further improve performance, but it also increases the sampling time.

Figure 10 compares different update strategies while keeping the total number of updates the same, using ImageReward as the objective. Here, \mathbf{c}^{org} is the fixed embedding; \mathbf{c}^{u} refers uniform updates; and c^e , c^m , and c^l correspond to updates at early, middle, and late sampling steps, respectively. We find that updating at any sets improves performance over no update, with mid-to-late updates (c^m and c¹) being more effective for text-image alignment. This suggests that adjusting text embeddings during the fine-grained detail refinement phase in the later sampling steps is more effective.

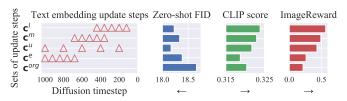


Figure 10: Comparison of update steps. On the left, the red triangles mark update steps, while the bars in the remaining graphs show the performance for each set of update steps.

Figure 11: Average similarity on the AnE dataset [4] for multi-concept generation.

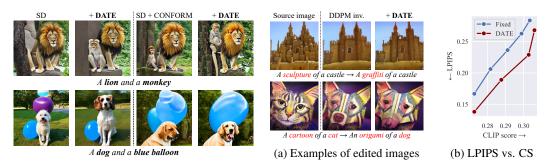


Figure 12: Examples of generated images on the AnE dataset for multi-concept generation.

Figure 13: Fixed embedding versus DATE in DDPM inversion [21] for text-guided image editing.

4.3 Applications

Multi-concept generation Multi-concept generation aims to generate multiple concepts (e.g., objects and attributes) within a single text prompt. We evaluate DATE on the AnE dataset [4] with 1) base SD and 2) SD with CONFORM [35], a method for multi-concept generation. Following previous work [4, 35], we generate 64 images per prompt and evaluate similarity between text and images using various metrics. Additional details are provided in Appendix C.2.

Figure 11 compares performance with and without DATE and shows that applying DATE consistently improves performance across all metrics. CONFORM provides better performance than DATE alone, but it requires explicit annotation of attribute-object pairs, and applying DATE to CONFORM can further improve performance. Figure 12 illustrates that DATE improves object representation under the same prompt and random seed. These results highlight the effectiveness of DATE in refining concept representation and improving text-image alignment. Additional results are in Appendix D.3.

Text-guided image editing Text-guided image editing modifies an input image based on text prompts, allowing natural language adjustments [34, 37]. We apply DATE to DDPM inversion [21], a diffusion-based image editing model; and evaluate it on 30 source images from ImageNet-R-TI2I [54], each modified with five target prompts. Evaluation is based on LPIPS [60] for perceptual similarity with the source image and CLIP score for text-image alignment with the target prompt.

Figure 13b compares LPIPS and CLIP score across different guidance scales. The result shows that DATE achieves a better trade-off between fidelity to the source image and alignment with the target text. Figure 13a presents edited images for each method. These results suggest that DATE improves text-guided image editing by better balancing content preservation and textual modifications.

5 Conclusion

We propose Diffusion Adaptive Text Embedding (DATE), which improves text-to-image diffusion models by dynamically refining text embeddings throughout the diffusion sampling process. Unlike conventional methods with fixed embeddings from a frozen text encoder, DATE adaptively updates text representations at intermediate steps, effectively addressing semantic misinterpretations and improving text-image alignment. Experiments show that DATE consistently outperforms fixed embeddings across various tasks and methods involving text-to-image diffusion models, highlighting the potential of time- and instance-dependent text embeddings to improve text-to-image generation.

Acknowledgments and Disclosure of Funding

This work was supported by the IITP (Institute of Information & Communications Technology Planning & Evaluation)-ITRC (Information Technology Research Center) grant funded by the Korea government (Ministry of Science and ICT) (IITP-2025-RS-2024-00437268).

References

- [1] Brian DO Anderson. Reverse-time diffusion equation models. *Stochastic Processes and their Applications*, 12(3):313–326, 1982.
- [2] Arpit Bansal, Hong-Min Chu, Avi Schwarzschild, Soumyadip Sengupta, Micah Goldblum, Jonas Geiping, and Tom Goldstein. Universal guidance for diffusion models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 843–852, 2023.
- [3] Kevin Black, Michael Janner, Yilun Du, Ilya Kostrikov, and Sergey Levine. Training diffusion models with reinforcement learning. In *The Twelfth International Conference on Learning Representations*, 2024.
- [4] Hila Chefer, Yuval Alaluf, Yael Vinker, Lior Wolf, and Daniel Cohen-Or. Attend-and-excite: Attention-based semantic guidance for text-to-image diffusion models. *ACM Transactions on Graphics (TOG)*, 42(4):1–10, 2023.
- [5] Junsong Chen, Jincheng YU, Chongjian GE, Lewei Yao, Enze Xie, Zhongdao Wang, James Kwok, Ping Luo, Huchuan Lu, and Zhenguo Li. Pixart-\$\alpha\$: Fast training of diffusion transformer for photorealistic text-to-image synthesis. In *The Twelfth International Conference on Learning Representations*, 2024.
- [6] Jooyoung Choi, Jungbeom Lee, Chaehun Shin, Sungwon Kim, Hyunwoo Kim, and Sungroh Yoon. Perception prioritized training of diffusion models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 11472–11481, 2022.
- [7] Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned language models. *Journal of Machine Learning Research*, 25(70):1–53, 2024.
- [8] Hyungjin Chung, Jong Chul Ye, Peyman Milanfar, and Mauricio Delbracio. Prompt-tuning latent diffusion models for inverse problems. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp, editors, *Proceedings of the 41st International Conference on Machine Learning*, volume 235 of *Proceedings of Machine Learning Research*, pages 8941–8967. PMLR, 21–27 Jul 2024.
- [9] Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. *Advances in Neural Information Processing Systems*, 34:8780–8794, 2021.
- [10] Bradley Efron. Tweedie's formula and selection bias. *Journal of the American Statistical Association*, 106(496):1602–1614, 2011.
- [11] Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for high-resolution image synthesis. In *Forty-first International Conference on Machine Learning*, 2024.
- [12] Ying Fan, Olivia Watkins, Yuqing Du, Hao Liu, Moonkyung Ryu, Craig Boutilier, Pieter Abbeel, Mohammad Ghavamzadeh, Kangwook Lee, and Kimin Lee. Dpok: Reinforcement learning for fine-tuning text-to-image diffusion models. *Advances in Neural Information Processing Systems*, 36:79858–79885, 2023.
- [13] Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimization for efficiently improving generalization. In *International Conference on Learning Representations*, 2021.

- [14] Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patashnik, Amit Haim Bermano, Gal Chechik, and Daniel Cohen-or. An image is worth one word: Personalizing text-to-image generation using textual inversion. In *The Eleventh International Conference on Learning Representations*, 2023.
- [15] Yaru Hao, Zewen Chi, Li Dong, and Furu Wei. Optimizing prompts for text-to-image generation. Advances in Neural Information Processing Systems, 36:66923–66939, 2023.
- [16] Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. Clipscore: A reference-free evaluation metric for image captioning. In *Proceedings of the 2021 Conference* on Empirical Methods in Natural Language Processing, pages 7514–7528, 2021.
- [17] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans trained by a two time-scale update rule converge to a local nash equilibrium. *Advances in neural information processing systems*, 30, 2017.
- [18] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in Neural Information Processing Systems*, 33:6840–6851, 2020.
- [19] Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. In *NeurIPS 2021 Workshop on Deep Generative Models and Downstream Applications*, 2021.
- [20] Yushi Hu, Benlin Liu, Jungo Kasai, Yizhong Wang, Mari Ostendorf, Ranjay Krishna, and Noah A Smith. Tifa: Accurate and interpretable text-to-image faithfulness evaluation with question answering. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pages 20406–20417, 2023.
- [21] Inbar Huberman-Spiegelglas, Vladimir Kulikov, and Tomer Michaeli. An edit friendly ddpm noise space: Inversion and manipulations. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 12469–12478, 2024.
- [22] Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-based generative models. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho, editors, *Advances in Neural Information Processing Systems*, 2022.
- [23] Dongjun Kim, Yeongmin Kim, Se Jung Kwon, Wanmo Kang, and Il-Chul Moon. Refining generative process with discriminator guidance in score-based diffusion models. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett, editors, *Proceedings of the 40th International Conference on Machine Learning*, volume 202 of *Proceedings of Machine Learning Research*, pages 16567–16598. PMLR, 23–29 Jul 2023.
- [24] Gwanghyun Kim, Taesung Kwon, and Jong Chul Ye. Diffusionclip: Text-guided diffusion models for robust image manipulation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 2426–2435, June 2022.
- [25] Diederik Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational diffusion models. *Advances in neural information processing systems*, 34:21696–21707, 2021.
- [26] Yuval Kirstain, Adam Polyak, Uriel Singer, Shahbuland Matiana, Joe Penna, and Omer Levy. Pick-a-pic: An open dataset of user preferences for text-to-image generation. *Advances in neural information processing systems*, 36:36652–36663, 2023.
- [27] Mingi Kwon, Jaeseok Jeong, and Youngjung Uh. Diffusion models already have a semantic latent space. In *The Eleventh International Conference on Learning Representations*, 2023.
- [28] Black Forest Labs. Flux. https://github.com/black-forest-labs/flux, 2024.
- [29] Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image pre-training for unified vision-language understanding and generation. In *International conference on machine learning*, pages 12888–12900. PMLR, 2022.
- [30] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In *Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13*, pages 740–755. Springer, 2014.

- [31] Luping Liu, Chao Du, Tianyu Pang, Zehan Wang, Chongxuan Li, and Dong Xu. Improving long-text alignment for text-to-image diffusion models. In *The Thirteenth International Conference on Learning Representations*, 2025.
- [32] Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A fast ode solver for diffusion probabilistic model sampling in around 10 steps. *Advances in Neural Information Processing Systems*, 35:5775–5787, 2022.
- [33] Bingqi Ma, Zhuofan Zong, Guanglu Song, Hongsheng Li, and Yu Liu. Exploring the role of large language models in prompt encoding for diffusion models. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024.
- [34] Chenlin Meng, Yutong He, Yang Song, Jiaming Song, Jiajun Wu, Jun-Yan Zhu, and Stefano Ermon. SDEdit: Guided image synthesis and editing with stochastic differential equations. In *International Conference on Learning Representations*, 2022.
- [35] Tuna Han Salih Meral, Enis Simsar, Federico Tombari, and Pinar Yanardag. Conform: Contrast is all you need for high-fidelity text-to-image diffusion models. In *Proceedings of the IEEE/CVF* Conference on Computer Vision and Pattern Recognition, pages 9005–9014, 2024.
- [36] Wenyi Mo, Tianyu Zhang, Yalong Bai, Bing Su, Ji-Rong Wen, and Qing Yang. Dynamic prompt optimizing for text-to-image generation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 26627–26636, 2024.
- [37] Ron Mokady, Amir Hertz, Kfir Aberman, Yael Pritch, and Daniel Cohen-Or. Null-text inversion for editing real images using guided diffusion models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 6038–6047, 2023.
- [38] Byeonghu Na, Yeongmin Kim, Minsang Park, Donghyeok Shin, Wanmo Kang, and Il-Chul Moon. Diffusion rejection sampling. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp, editors, *Proceedings of the 41st International Conference on Machine Learning*, volume 235 of *Proceedings of Machine Learning Research*, pages 37097–37121. PMLR, 21–27 Jul 2024.
- [39] Alexander Quinn Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob Mcgrew, Ilya Sutskever, and Mark Chen. Glide: Towards photorealistic image generation and editing with text-guided diffusion models. In *International Conference on Machine Learning*, pages 16784–16804. PMLR, 2022.
- [40] Geon Yeong Park, Jeongsol Kim, Beomsu Kim, Sang Wan Lee, and Jong Chul Ye. Energy-based cross attention for bayesian context update in text-to-image diffusion models. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023.
- [41] Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe Penna, and Robin Rombach. SDXL: Improving latent diffusion models for high-resolution image synthesis. In *The Twelfth International Conference on Learning Representations*, 2024.
- [42] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from natural language supervision. In *International conference on machine learning*, pages 8748–8763. PMLR, 2021.
- [43] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text transformer. *Journal of machine learning research*, 21(140):1–67, 2020.
- [44] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-conditional image generation with clip latents. *arXiv preprint arXiv:2204.06125*, 2022.
- [45] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen, and Ilya Sutskever. Zero-shot text-to-image generation. In *International conference on machine learning*, pages 8821–8831. Pmlr, 2021.

- [46] Royi Rassin, Eran Hirsch, Daniel Glickman, Shauli Ravfogel, Yoav Goldberg, and Gal Chechik. Linguistic binding in diffusion models: Enhancing attribute correspondence through attention map alignment. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023.
- [47] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. Highresolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 10684–10695, 2022.
- [48] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, Jonathan Ho, David J Fleet, and Mohammad Norouzi. Photorealistic text-to-image diffusion models with deep language understanding. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors, *Advances in Neural Information Processing Systems*, volume 35, pages 36479–36494. Curran Associates, Inc., 2022.
- [49] Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al. Laion-5b: An open large-scale dataset for training next generation image-text models. *Advances in Neural Information Processing Systems*, 35:25278–25294, 2022.
- [50] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition. In *International Conference on Learning Representations*, 2015.
- [51] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In *International Conference on Learning Representations*, 2021.
- [52] Yang Song, Conor Durkan, Iain Murray, and Stefano Ermon. Maximum likelihood training of score-based diffusion models. Advances in Neural Information Processing Systems, 34:1415– 1428, 2021.
- [53] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole. Score-based generative modeling through stochastic differential equations. In *International Conference on Learning Representations*, 2021.
- [54] Narek Tumanyan, Michal Geyer, Shai Bagon, and Tali Dekel. Plug-and-play diffusion features for text-driven image-to-image translation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 1921–1930, 2023.
- [55] Soobin Um and Jong Chul Ye. Minority-focused text-to-image generation via prompt optimization. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pages 20926–20936, 2025.
- [56] Xiaoshi Wu, Yiming Hao, Manyuan Zhang, Keqiang Sun, Zhaoyang Huang, Guanglu Song, Yu Liu, and Hongsheng Li. Deep reward supervisions for tuning text-to-image diffusion models. In *European Conference on Computer Vision*, pages 108–124. Springer, 2024.
- [57] Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai Li, Ming Ding, Jie Tang, and Yuxiao Dong. Imagereward: Learning and evaluating human preferences for text-to-image generation. In Thirty-seventh Conference on Neural Information Processing Systems, 2023.
- [58] Yilun Xu, Mingyang Deng, Xiang Cheng, Yonglong Tian, Ziming Liu, and Tommi S. Jaakkola. Restart sampling for improving generative processes. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023.
- [59] Zhongqi Yue, Jiankun Wang, Qianru Sun, Lei Ji, Eric I-Chao Chang, and Hanwang Zhang. Exploring diffusion time-steps for unsupervised representation learning. In *The Twelfth International Conference on Learning Representations*, 2024.
- [60] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable effectiveness of deep features as a perceptual metric. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 586–595, 2018.

- [61] Shihao Zhao, Shaozhe Hao, Bojia Zi, Huaizhe Xu, and Kwan-Yee K. Wong. Bridging different language models and generative vision models for text-to-image generation. In Aleš Leonardis, Elisa Ricci, Stefan Roth, Olga Russakovsky, Torsten Sattler, and Gül Varol, editors, *Computer Vision ECCV 2024*, pages 70–86, Cham, 2024. Springer Nature Switzerland.
- [62] Le Zhuo, Ruoyi Du, Han Xiao, Yangguang Li, Dongyang Liu, Rongjie Huang, Wenze Liu, Xiangyang Zhu, Fu-Yun Wang, Zhanyu Ma, Xu Luo, Zehan Wang, Kaipeng Zhang, Lirui Zhao, Si Liu, Xiangyu Yue, Wanli Ouyang, Yu Qiao, Hongsheng Li, and Peng Gao. Lumina-next: Making lumina-t2x stronger and faster with next-dit. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the scope of DATE, which aligns with the contributions experiments presented throughout the paper.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Limitations are discussed in Appendix E.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [Yes]

Justification: The assumptions and proofs are given in Appendix A.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Please check details in Section 4 and Appendix C.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
- (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
- (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
- (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
- (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: The paper indicates that the implementation is publicly available and provides sufficient experimental details in Appendix C. It relies on publicly available models such as Stable Diffusion v1.5 and CLIP.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: Please check details in Section 4 and Appendix C.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Statistical significance of the experimental results for the main claim are provided in Appendix D.1.

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)

- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error
 of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: Please check Appendix C.1 for details.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research is consistent with the NeurIPS Code of Ethics.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a
 deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [Yes]

Justification: Positive societal impacts and negative impacts are discussed in Appendix E. Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.

- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [Yes]

Justification: We discuss the misuse risk of the generative model and mention the safeguards used by the base model, in Appendix E.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do not require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: The paper cites the original sources of all datasets and pre-trained models used.

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [Yes]

Justification: The code and model checkpoints is publicly available at https://github.com/aailab-kaist/DATE.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not include crowdsourcing.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: This paper does not include crowdsourcing.

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The paper does not involve large language models (LLMs) as part of the proposed method, experiments, or core contributions.

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.

Proof and additional theoretical analysis

Proof of Proposition 1

Proposition 1. Let $h(\mathbf{c}_1, \dots, \mathbf{c}_T) \coloneqq \mathbb{E}_{\mathbf{x}_{0:T}}[h(\mathbf{x}_0; y)]$ where $\mathbf{x}_{0:T-1} \sim \prod_{\tau=1}^T p_{\boldsymbol{\theta}}(\mathbf{x}_{\tau-1} | \mathbf{x}_{\tau}, \mathbf{c}_{\tau})$, $\mathbf{x}_T \sim p_T$, and $\mathcal{C}_t \coloneqq \{\mathbf{c}_t : ||\mathbf{c}_t - \mathbf{c}_{\text{org}}||_2 \le \rho, \mathbf{c}_\tau = \mathbf{c}_t \ \forall \tau < t\}$. Then,

$$\max_{\mathbf{c}_{1:T}} h(\mathbf{c}_{1}, \dots, \mathbf{c}_{T}) = \max_{\mathbf{c}_{1}} \dots \max_{\mathbf{c}_{t}} \dots \max_{\mathbf{c}_{T}} h(\mathbf{c}_{1}, \dots, \mathbf{c}_{T})
\geq \max_{\mathbf{c}_{1} \in \mathcal{C}_{1}} \dots \max_{\mathbf{c}_{t} \in \mathcal{C}_{t}} h(\mathbf{c}_{1}, \dots, \mathbf{c}_{T}) \geq h(\mathbf{c}_{\text{org}}, \dots, \mathbf{c}_{\text{org}}).$$
(15)

$$\geq \max_{\mathbf{c}_1 \in \mathcal{C}_1} \cdots \max_{\mathbf{c}_t \in \mathcal{C}_t} \cdots \max_{\mathbf{c}_T \in \mathcal{C}_T} h(\mathbf{c}_1, \cdots, \mathbf{c}_T) \geq h(\mathbf{c}_{\mathrm{org}}, \cdots, \mathbf{c}_{\mathrm{org}}). \tag{16}$$

Proof. The first equality of Eq. (15) holds because the order of the maximization problems in the LHS of Eq. (15) can be interchanged. The second inequality, from the RHS of Eq. (15) to the LHS of Eq. (16), follows since both problems have the same objective function, but the LHS of Eq. (16) has a more restrictive feasible set. Finally, the last inequality from Eq. (16) holds because $(\mathbf{c}_{\text{org}}, \cdots, \mathbf{c}_{\text{org}})$ belongs to the feasible set of the LHS of Eq. (16), which ensures that the optimal value of the LHS of Eq. (16) is equal to or greater than $h(\mathbf{c}_{\text{org}}, \dots, \mathbf{c}_{\text{org}})$.

A.2 Proof of Theorem 2

Theorem 2. The score function for the text embedding c_t updated by DATE can be expressed as:

$$\nabla_{\mathbf{x}_{t}} \log p_{\boldsymbol{\theta}}(\mathbf{x}_{t}|\hat{\mathbf{c}}_{t}) = \nabla_{\mathbf{x}_{t}} \log p_{\boldsymbol{\theta}}(\mathbf{x}_{t}|\mathbf{c}_{\mathrm{org}}) + \rho \nabla_{\mathbf{x}_{t}} \left\{ \frac{\nabla_{\mathbf{c}} h_{t}(\mathbf{x}_{t}, \mathbf{c}_{\mathrm{org}})^{T}}{||\nabla_{\mathbf{c}} h_{t}(\mathbf{x}_{t}, \mathbf{c}_{\mathrm{org}})||_{2}} \nabla_{\mathbf{c}} \log p_{\boldsymbol{\theta}}(\mathbf{x}_{t}|\mathbf{c}_{\mathrm{org}}) \right\} + O(\rho^{2}).$$
(17)

Proof. By applying a first-order Taylor expansion, we obtain the following:

$$\log p_{\theta}(\mathbf{x}_t | \hat{\mathbf{c}}_t) = \log p_{\theta} \left(\mathbf{x}_t | \mathbf{c}_{\text{org}} + \rho \frac{\nabla_{\mathbf{c}} h_t(\mathbf{x}_t, \mathbf{c}_{\text{org}})}{||\nabla_{\mathbf{c}} h_t(\mathbf{x}_t, \mathbf{c}_{\text{org}})||_2} \right)$$
(18)

$$= \log p_{\theta}(\mathbf{x}_t | \mathbf{c}_{\text{org}}) + \rho \frac{\nabla_{\mathbf{c}} h_t(\mathbf{x}_t, \mathbf{c}_{\text{org}})^T}{||\nabla_{\mathbf{c}} h_t(\mathbf{x}_t, \mathbf{c}_{\text{org}})||_2} \nabla_{\mathbf{c}} \log p_{\theta}(\mathbf{x}_t | \mathbf{c}_{\text{org}}) + O(\rho^2).$$
(19)

Taking the gradient with respect to x_t on both side then confirms the statement:

$$\nabla_{\mathbf{x}_t} \log p_{\boldsymbol{\theta}}(\mathbf{x}_t | \hat{\mathbf{c}}_t) \tag{20}$$

$$= \nabla_{\mathbf{x}_t} \log p_{\theta} \left(\mathbf{x}_t \middle| \mathbf{c}_{\text{org}} + \rho \frac{\nabla_{\mathbf{c}} h_t(\mathbf{x}_t, \mathbf{c}_{\text{org}})}{||\nabla_{\mathbf{c}} h_t(\mathbf{x}_t, \mathbf{c}_{\text{org}})||_2} \right)$$
(21)

$$= \nabla_{\mathbf{x}_t} \log p_{\boldsymbol{\theta}}(\mathbf{x}_t | \mathbf{c}_{\text{org}}) + \nabla_{\mathbf{x}_t} \left\{ \rho \frac{\nabla_{\boldsymbol{c}} h_t(\mathbf{x}_t, \mathbf{c}_{\text{org}})^T}{||\nabla_{\boldsymbol{c}} h_t(\mathbf{x}_t, \mathbf{c}_{\text{org}})||_2} \nabla_{\mathbf{c}} \log p_{\boldsymbol{\theta}}(\mathbf{x}_t | \mathbf{c}_{\text{org}}) \right\} + O(\rho^2). \quad (22)$$

A.3 Detailed derivation of Eq. (13)

By applying a first-order Taylor approximation of h_t around $\epsilon_t = 0$ in Eq. (23), we derive the expansion shown in Eq. (24). Since the first term in Eq. (24) is independent of ϵ_t , it can be omitted from the optimization objective, as shown in Eq. (25).

$$\epsilon_t^* := \arg\max_{\|\epsilon_t\|_2 \le \rho} h_t(\mathbf{x}_t, \mathbf{c}_{\text{org}} + \epsilon_t; y, \boldsymbol{\theta})$$
(23)

$$\approx \arg\max_{\|\boldsymbol{\epsilon}_t\|_2 \le \rho} \left\{ h_t(\mathbf{x}_t, \mathbf{c}_{\text{org}}; y, \boldsymbol{\theta}) + \boldsymbol{\epsilon}_t^{\text{T}} \nabla_{\boldsymbol{c}} h_t(\mathbf{x}_t, \mathbf{c}_{\text{org}}; y, \boldsymbol{\theta}) \right\}$$
(24)

$$= \underset{||\boldsymbol{\epsilon}_t||_2 \le \rho}{\arg \max } \boldsymbol{\epsilon}_t^{\mathsf{T}} \nabla_{\boldsymbol{c}} h_t(\mathbf{x}_t, \mathbf{c}_{\mathrm{org}}; y, \boldsymbol{\theta}) =: \hat{\boldsymbol{\epsilon}}_t.$$
(25)

A.4 Theoretical analysis of approximation errors

When the text-conditioned evaluation function h is the CLIP score, we analyze the approximation error for Eq. (9) analogously to the theoretical analysis presented in [8].

Proposition 3. Let $h(\mathbf{x}_0; y) = g(\mathbf{f}_I(\mathbf{x}_0); \mathbf{f}_T(y))$ is the CLIP score, where \mathbf{f}_I and \mathbf{f}_T are CLIP image and text encoder, respectively, and g is the cosine similarity. Assume that there exists a constant K > 0 such that $||\mathbf{f}_I(\mathbf{x}_0)|| \ge K$ for all $\mathbf{x}_0 \in \mathcal{X}_0$, where \mathcal{X}_0 is the support of $p_{\theta}(\mathbf{x}_0|\mathbf{x}_t, \mathbf{c}_t)$. Then, the approximation error of Eq. (10) is upper bounded by:

$$\left| \mathbb{E}_{\mathbf{x}_0 \sim p_{\boldsymbol{\theta}}(\mathbf{x}_0 | \mathbf{x}_t, \mathbf{c}_t)} [h(\mathbf{x}_0; y)] - h(\bar{\mathbf{x}}_0; y) \right| \le \frac{1}{K} \cdot \max_{\mathbf{x}_0 \in \mathcal{X}_0} ||\nabla_{\mathbf{x}} \mathbf{f}_I(\mathbf{x})|| \cdot m_1, \tag{26}$$

where $m_1 := \int ||\mathbf{x}_0 - \bar{\mathbf{x}}_0|| p(\mathbf{x}_0|\mathbf{x}_t, \mathbf{c}_t) d\mathbf{x}_0$ is the mean deviation of the conditional distribution of \mathbf{x}_0 .

Proof. First, we prove the following lemma for the property of the cosine similarity.

Lemma 4. Assume that there exists a constant K > 0 such that $||\mathbf{x}|| \ge K$ for all \mathbf{x} . Then,

$$|g(\mathbf{x}; \mathbf{y}) - g(\mathbf{x}'; \mathbf{y})| \le \frac{1}{K} ||\mathbf{x} - \mathbf{x}'||.$$
(27)

Proof of Lemma. The gradient of g with respect to x is:

$$\nabla_{\mathbf{x}} g(\mathbf{x}; \mathbf{y}) = \frac{1}{||\mathbf{x}|| ||\mathbf{y}||} \left(\mathbf{y} - \frac{(\mathbf{y}^T \mathbf{x})}{||\mathbf{x}||^2} \mathbf{x} \right).$$
(28)

Therefore, the norm of gradient can be derived as follows:

$$||\nabla_{\mathbf{x}}g(\mathbf{x};\mathbf{y})|| = \frac{1}{||\mathbf{x}||||\mathbf{y}||} \left| \left| \mathbf{y} - \frac{(\mathbf{y}^T \mathbf{x})}{||\mathbf{x}||^2} \mathbf{x} \right| \right| \le \frac{1}{||\mathbf{x}||||\mathbf{y}||} ||\mathbf{y}|| = \frac{1}{||\mathbf{x}||} \le \frac{1}{K}.$$
 (29)

Therefore,

$$|g(\mathbf{x}; \mathbf{y}) - g(\mathbf{x}'; \mathbf{y})| \le (\max_{\mathbf{x}} ||\nabla_{\mathbf{x}} g(\mathbf{x}; \mathbf{y})||) \cdot ||\mathbf{x} - \mathbf{x}'|| = \frac{1}{K} ||\mathbf{x} - \mathbf{x}'||$$
(30)

Note that the first inequality comes from the mean value inequality.

From Lemma 4, we can derive the approximation error as follows.

$$|\mathbb{E}_{\mathbf{x}_{0} \sim p_{\boldsymbol{\theta}}(\mathbf{x}_{0}|\mathbf{x}_{t}, \mathbf{c}_{t})}[h(\mathbf{x}_{0}; y)] - h(\bar{\mathbf{x}}_{0}; y)| \leq \int |h(\mathbf{x}_{0}; y) - h(\bar{\mathbf{x}}_{0}; y)| p_{\boldsymbol{\theta}}(\mathbf{x}_{0}|\mathbf{x}_{t}, \mathbf{c}_{t}) d\mathbf{x}_{0}$$

$$= \int |g(\mathbf{f}_{I}(\mathbf{x}_{0}); \mathbf{f}_{T}(y)) - g(\mathbf{f}_{I}(\bar{\mathbf{x}}_{0}); \mathbf{f}_{T}(y))| p_{\boldsymbol{\theta}}(\mathbf{x}_{0}|\mathbf{x}_{t}, \mathbf{c}_{t}) d\mathbf{x}_{0}$$

$$(32)$$

$$\leq \frac{1}{K} \int ||\mathbf{f}_{I}(\mathbf{x}_{0}) - \mathbf{f}_{I}(\bar{\mathbf{x}}_{0})|| p_{\boldsymbol{\theta}}(\mathbf{x}_{0}|\mathbf{x}_{t}, \mathbf{c}_{t}) d\mathbf{x}_{0}$$
(33)

$$\leq \frac{1}{K} \cdot \max_{\mathbf{x}_0 \in \mathcal{X}_0} ||\nabla_{\mathbf{x}} \mathbf{f}_I(\mathbf{x})|| \cdot \int ||\mathbf{x}_0 - \bar{\mathbf{x}}_0|| p_{\boldsymbol{\theta}}(\mathbf{x}_0 | \mathbf{x}_t, \mathbf{c}_t) d\mathbf{x}_0$$
(34)

 $= \frac{1}{K} \cdot \max_{\mathbf{x}_0 \in \mathcal{X}_0} ||\nabla_{\mathbf{x}} \mathbf{f}_I(\mathbf{x})|| \cdot m_1$ (35)

In the upper bound of the approximation error in Eq. (26), K is the minimum norm of CLIP image encoder outputs, which is about 25 in our experiments. Also, $\max ||\nabla_{\mathbf{x}} \mathbf{f}_I(\mathbf{x})||$ reflects the sharpness of CLIP image encoder; since the encoder is composed of neural networks, this value is finite, and

smoother image encoders result in a lower approximation error. m_1 decreases as t becomes smaller. Therefore, as t approaches 0, the approximation error is reduced.

Additionally, by Taylor's theorem, the approximation error for text embedding updates in Eq. (13) is

$$R_1(\boldsymbol{\epsilon}_t) := \frac{1}{2} \boldsymbol{\epsilon}_t^T H_{h_t}(\tilde{\mathbf{c}}) \boldsymbol{\epsilon}_t = O(\rho^2), \tag{36}$$

where $H_{h_t}(\tilde{\mathbf{c}})$ is the Hessian of h_t evaluated at some $\tilde{\mathbf{c}}$ between \mathbf{c}_{org} and $\mathbf{c}_{\text{org}} + \boldsymbol{\epsilon}_t$. Since $||\boldsymbol{\epsilon}_t|| \leq \rho$, this error is $O(\rho^2)$. Therefore, tuning ρ trades off approximation accuracy against optimization flexibility. We empirically analyze this trade-off in Figure 7.

A.5 Theoretical analysis with convex text-conditioned evaluation function

In Section 3.1 of the main manuscript, we reformulate the optimization problem in Eq. (8) into Eq. (10) using the linear approximation in Eq. (9). At this point, when the text-conditioned evaluation function h is convex, the objective functions of the two optimization problems satisfy the following inequality.

Proposition 5. If h is convex with respect to x_0 , then,

$$h_t(\mathbf{x}_t, \mathbf{c}_t; y, \theta) := h(\bar{\mathbf{x}}_0(\mathbf{x}_t, \mathbf{c}_t; \theta); y) \le \mathbb{E}_{\mathbf{x}_0 \sim p_{\theta}(\mathbf{x}_0 | \mathbf{x}_t, \mathbf{c}_t)}[h(\mathbf{x}_0; y)], \tag{37}$$

where $\bar{\mathbf{x}}_0(\mathbf{x}_t, \mathbf{c}_t; \boldsymbol{\theta}) := \mathbb{E}_{\mathbf{x}_0 \sim p_{\boldsymbol{\theta}}(\mathbf{x}_0 | \mathbf{x}_t, \mathbf{c}_t)}[\mathbf{x}_0].$

Proof. This follows directly from Jensen's inequality for the convex function h.

Consequently, optimizing the text embedding \mathbf{c}_t to maximize the proposed objective in Eq. (10) is expected to increase the target value $\mathbb{E}_{\mathbf{x}_0 \sim p_{\boldsymbol{\theta}}(\mathbf{x}_0|\mathbf{x}_t,\mathbf{c}_t)}[h(\mathbf{x}_0;y)]$ as well. However, Proposition 5 relies on the assumption of the convexity of h with respect to \mathbf{x}_0 . This assumption may not always hold in practice, since h often contains a pre-trained neural network that introduces non-convexity.

B Related works

B.1 Diffusion models

We additionally provide an explanation of the stochastic differential equation (SDE) formulation of diffusion models. In continuous time space, the diffusion process can be generalized by formulating the forward and reverse processes as SDEs [53]. The forward process is formulated as:

$$d\mathbf{x}_t = \mathbf{f}(\mathbf{x}_t, t)dt + q(t)d\mathbf{w}_t, \tag{38}$$

where f and g are the drift and volatility functions, respectively. Here, \mathbf{w}_t denotes the standard Wiener process and $t \in [0, T]$. Based on Eq. (38), a data instance \mathbf{x}_0 is gradually perturbed towards \mathbf{x}_T .

Once f and g of the forward process are specified, the reverse process is uniquely defined as shown in Eq. (39), following the previous work [1]:

$$d\mathbf{x}_t = [\mathbf{f}(\mathbf{x}_t, t) - g^2(t)\nabla_{\mathbf{x}_t}\log q_t(\mathbf{x}_t)]d\bar{t} + g(t)d\bar{\mathbf{w}}_t,$$
(39)

where $q_t(\mathbf{x}_t)$ is the marginal probability distribution of \mathbf{x}_t at timestep t, and $\bar{\mathbf{w}}_t$ denotes the reverse-time Wiener process.

To generate samples, the reverse process requires an intermediate score function $\nabla_{\mathbf{x}_t} \log q_t(\mathbf{x}_t)$, which is generally intractable. Instead, a neural network $\mathbf{s}_{\theta}(\mathbf{x}_t,t)$ is used to approximate the score function via score matching loss [53]. Note that the score matching objective serves as an upper bound on the negative log-likelihood under certain temporal weighting functions [52]. This score matching objective is equivalent to the noise prediction [18, 9] or the data reconstruction [25, 22] objectives.

Table 6: Comparison of the diffusion guidance methods.

Method	Guidance target	Guidance module
Classifier-free guidance [19] Classifier guidance [9] Universal guidance [2]	Perturbed data \mathbf{x}_t Perturbed data \mathbf{x}_t Perturbed data \mathbf{x}_t	Unconditional score network $\mathbf{s}_{\theta}(\mathbf{x}_{t}, \varnothing, t)$ Time-dependent classifier $h_{t}(\mathbf{x}_{t}, \mathbf{c})$ Time-independent classifier $h(\bar{\mathbf{x}}_{0}(\mathbf{x}_{t}, \mathbf{c}))$
DATE (ours)	Text embedding \mathbf{c}_t	Time-independent classifier $h(\bar{\mathbf{x}}_0(\mathbf{x}_t, \mathbf{c}_t))$

B.2 Guidance methods for diffusion models

Conditional diffusion models have been developed to generate samples that align with a given condition y. These models approximate the conditional score $\nabla_{\mathbf{x}_t} \log q_t(\mathbf{x}_t|y)$ by incorporating the condition as an additional input to the score network [9, 22]. In this paper, we represent this input as the condition embedding \mathbf{c} , which encodes the information of y.

To further improve conditional generation, diffusion models often incorporate a *guidance* term into the unconditional score function, as summarized in Table 6. Classifier guidance (CG) [9] introduces the gradient of a time-dependent classifier to encode conditional information.

$$\mathbf{s}_{\mathrm{CG}}(\mathbf{x}_{t}, \mathbf{c}, t) \coloneqq \mathbf{s}_{\theta}(\mathbf{x}_{t}, \emptyset, t) + w \nabla_{\mathbf{x}_{t}} \log h_{t}(\mathbf{x}_{t}, \mathbf{c}). \tag{40}$$

In contrast, classifier-free guidance (CFG) [19] eliminates the need for an explicit classifier by leveraging the difference between conditional and unconditional score estimates.

$$\mathbf{s}_{\mathrm{CFG}}(\mathbf{x}_t, \mathbf{c}, t) := \mathbf{s}_{\theta}(\mathbf{x}_t, \emptyset, t) + w(\mathbf{s}_{\theta}(\mathbf{x}_t, \mathbf{c}, t) - \mathbf{s}_{\theta}(\mathbf{x}_t, \emptyset, t)). \tag{41}$$

Universal guidance (UG) [2] approximate the time-dependent guidance using a time-independent classifier, thereby avoiding time-dependent training.

$$\mathbf{s}_{\mathrm{UG}}(\mathbf{x}_{t}, \mathbf{c}, t) := \mathbf{s}_{\theta}(\mathbf{x}_{t}, \emptyset, t) + w \nabla_{\mathbf{x}_{t}} \log h(\bar{\mathbf{x}}_{0}(\mathbf{x}_{t}, \mathbf{c})). \tag{42}$$

Similar to UG, our method also uses a time-independent classifier to derive guidance. However, instead of applying this guidance to the perturbed data, we use it to directly adjust the text embeddings, thus modifying the conditioning information as its source. The theoretical implications of this text embedding guidance are further analyzed in Theorem 2 from Section 3.3.

B.3 Improving sampling process in fixed diffusion models

Recent studies have explored refining the sampling process in fixed diffusion models [23, 58, 38]. DG [23] adjusts the score network by incorporating an auxiliary term from a discriminator that differentiates real and generated samples, reducing network estimation errors during sampling process. Restart [58] alternates between reverse and forward steps at fixed time intervals. It first denoises samples with a deterministic sampler up to a predefined timestep, then injects noise to introduce stochasticity, and repeats this process to mitigate accumulated errors. DiffRS [38] evaluates sample quality at intermediate sampling steps using a discriminator, applies a rejection sampling scheme, and refines rejected samples by injecting instance-dependent stochastic noise.

Several studies have explored improving the sampling process in fixed diffusion models, specifically tailored for text-to-image diffusion models [4, 46, 35]. AnE [4] improves subject representation by updating the intermediate perturbed latent to maximize attention scores for subject tokens. SynGen [46] adjusts the intermediate perturbed latent to enforce linguistic binding between entities and their visual attributes by aligning the attention maps of paired tokens while differentiating the attention maps of unrelated word tokens. CONFORM [35] similarly updates the intermediate perturbed latent using contrastive loss on attention maps.

Unlike these methods, our approach does not require additional training of auxiliary components (e.g., a discriminator), updates the text embedding, and does not require additional information about the structure of the text prompt (e.g., binding token pairs). Moreover, our method can be integrated with existing approaches, as demonstrated in Section 4.3 with experiments using CONFORM.

C Additional experimental settings

C.1 Experiments on COCO dataset

This subsection provides the experimental settings for Sections 4.1 and 4.2, where DATE is evaluated on the COCO validation set [30]. We use Stable Diffusion v1.5, pre-trained on LAION-5B [49], with a fixed CLIP ViT-L/14 text encoder [42] at a 512×512 resolution. We implement DATE on the Stable Diffusion pipeline with the Restart codebase, built on Diffusers. For EBCA [40], we use the official EBCA codebase, which is also built on Diffusers, and its provided hyperparameters. We conducted most experiments on a single NVIDIA A100 GPU with CUDA 11.4, and some ablation studies were performed on a single Intel Gaudi v2 using SynapseAI 1.18.0. Our implementation is publicly available at https://github.com/aailab-kaist/DATE.

We use DDIM [51] with 50 sampling steps as the default sampler using classifier-free guidance [19], and experiments with the DDPM [18] sampler are provided in Appendix D.1. We set the guidance scale to 8 by default and provide results for various guidance scales in Appendix D.1. For DATE settings, unless otherwise specified, we set the text-conditioned evaluation function h to CLIP score, computed using CLIP ViT-L/14 from the Hugging Face library. If we set h to ImageReward, we compute ImageReward using the BLIP-based checkpoint from the official ImageReward codebase. We set the scale hyperparameter ρ to 0.5 and use the embedding from the previous update as the original text embedding $c_{\rm org}$. For the ablation studies in Table 5, the text embedding is updated every 10% of the total sampling steps; and for the sensitivity analysis on ρ in Figure 7, the text embedding is updated at every step.

We perform experiments across multiple backbones and samplers. For each backbone, we adopt the default sampler and configuration provided by the *diffusers* library. For PixArt- α [7] as the text encoder is used. Sampling follows the default setup, employing DPM-Solver [32] with 20 steps and a classifier-free guidance scale of 4.5. SD3 [11] incorporates CLIP-L/14, CLIP-bigG/14, and T5-XXL encoders, utilizing a flow-matching Euler sampler (28 steps) with a guidance scale of 7.0. FLUX [28] adopts a rectified flow transformer paired with CLIP-L/14 and T5-XXL text encoders, using a flow-matching Euler sampler (28 steps) and a guidance scale of 3.5. SDXL [41] relies on CLIP-L/14 and CLIP-bigG/14 as text encoders with a DDIM sampler, 50 steps, and a guidance scale of 5.0.

Implementations for PixArt-α, SD3, FLUX, and SDXL are based respectively on the *PixArtAl-phaPipeline*, StableDiffusion3Pipeline, In the Diffusion3Pipeline, available in the Diffusers library.

Following the evaluation protocol of previous studies [39, 58, 38], we generate 5,000 images from randomly sampled captions in the COCO validation set. We fix the captions and random seed in all experiments. We evaluate text-to-image generation performance using zero-shot FID, CLIP score, and ImageReward. Zero-shot FID (Fréchet Inception Distance) [17, 45] measures the distributional similarity between real and generated images with the same text prompt in a feature space. Lower zero-shot FID values indicate that the generated images are more realistic and closer to the real image distribution. CLIP score [16] quantifies semantic alignment between a generated image and its text prompt by computing the cosine similarity between their embeddings in CLIP space [42]. A higher CLIP score suggests better text-image alignment. ImageReward [57] is a learned reward model trained on human preference data. Using a BLIP-based vision-language model [29], it evaluates text-image alignment and fidelity based on human judgment. A higher ImageReward score indicates that the generated image is more likely to be well aligned with human preferences.

```
<sup>3</sup>https://github.com/Newbeeer/diffusion_restart_sampling
<sup>4</sup>https://github.com/huggingface/diffusers
```

⁵https://github.com/EnergyAttention/Energy-Based-CrossAttention

⁶https://github.com/THUDM/ImageReward

⁷https://huggingface.co/docs/diffusers/main/en/api/pipelines/pixart

[%]https://huggingface.co/docs/diffusers/main/en/api/pipelines/stable_diffusion/ stable_diffusion_3

⁹https://huggingface.co/docs/diffusers/main/en/api/pipelines/flux

¹⁰ https://huggingface.co/docs/diffusers/main/en/api/pipelines/stable_diffusion/ stable_diffusion_xl

Table 7: Prompt categories and examples on AnE dataset [4].

Prompt Category	Template	Example	# of prompts
Animal-Animal	a [animalA] and a [animalB]	a monkey and a frog	66
Animal-Object	a [animal] and a [color][object]	a monkey and a red car	144
Object-Object	a [colorA][objectA] and a [colorB][objectB]	a pink crown and a purple bow	66

C.2 Multi-concept generation

We conduct our experiments on the Attend-and-Excite (AnE) dataset proposed by [4]. There are three types of prompts: 1) Animal-Animal: "a [animalA] and a [animalB]", 2) Animal-Object: "a [animal] and a [color][object]", and 3) Object-Object: "a [colorA][objectA] and a [colorB][objectB]". Detailed examples are provided in Table 7.

For baseline comparison, we evaluate our approach against base Stable Diffusion and CONFORM [35]. We implement the CONFORM-based methods using its official codebase, ¹¹ which is built on Diffusers. We use DDIM with 50 sampling steps using classifier-free guidance scale of 8. We set h as CLIP score, the scale hyperparameter ρ to 0.5, use the embedding from the previous update as the original text embedding $c_{\rm org}$, and text embedding is updated at every step.

We follow the quantitative evaluation protocol from previous studies [4, 35]. For each prompt, we generate images using 64 random seeds and evaluate performance based on text-image similarity and text-text similarity in CLIP space. *Full prompt similarity* measures the CLIP-based similarity between the entire prompt and the generated image. This metric measures the overall alignment, but it may not fully capture whether all concepts are represented. *Minimum object similarity* is computed by splitting the prompt into two sub-prompts and taking the lower CLIP similarity score between them, ensuring that even the least-represented concept is considered. For these similarities, we employ the CLIP ViT-B/16 model. The text embedding for each prompt is obtained by averaging the CLIP embeddings of 80 predefined prompt templates (e.g., "a good photo of a {*prompt*}.", "a photo of a clean {*prompt*}."). These similarities are then computed as the average similarity between this text embedding and the CLIP embeddings of the 64 generated images. For *text-caption similarity*, we generate captions for the 64 generated images using a pre-trained BLIP image-captioning model [29]. Then, we compute the CLIP similarity between the prompt's text embedding (obtained as described above) and the embeddings of the generated captions. The resulting similarity score is averaged across all generated images. To compute these metrics, we use the official implementation of AnE.¹²

C.3 Text-guided image editing

We integrate DATE with DDPM inversion [21] on the ImageNet-R-TI2I dataset introduced in PnP [54]. DDPM inversion is a recent method that memorizes all latent vectors while tracing the inverse trajectory of a diffusion process. It generalizes DDIM inversion in the perspective of DDPM sampling framework. Our implementation is based on the official DDPM inversion codebase. ¹³

For evaluation, we follow the parameter setting of DDPM inversion and vary the classifier-free guidance scale. Specifically, we use Stable Diffusion v1.4 with 100 sampling steps. DDPM inversion is evaluated with a guidance scale of $\{9,12,15,18,21\}$, while DATE is tested with a guidance scale of $\{6,9,12,15\}$. We set h as CLIP score, set ρ to 0.5, initialize each step with the embedding from the previous one, and update the text embedding at every step. We report LPIPS [60] for perceptual similarity with the source image and CLIP score for alignment with the target prompt. LPIPS quantifies perceptual similarity using feature representations from a pre-trained VGG network [50], and CLIP score evaluates the cosine similarity between the target prompt embedding and the modified image embedding from a pre-trained CLIP model.

¹¹https://github.com/gemlab-vt/CONFORM

 $^{^{12} \}mathtt{https://github.com/yuval-alaluf/Attend-and-Excite/tree/main/metrics}$

¹³https://github.com/inbarhub/DDPM_inversion

Table 8: Performance on the COCO validation set with Stable Diffusion v1.5 using the DDPM sampler with a classifier-free guidance scale of 8. Sampling steps are 50 unless otherwise specified. *Time* is the average sampling time (min.) for 64 samples, and *NFE* is the number of score network evaluations. **Bold** values indicate the best performance.

Method	Time	NFE	Zero-shot FID↓	CLIP score↑	ImageReward↑
Fixed text embedding	5.76	100	21.94	0.3223	0.2567
Fixed text embedding (steps=70)	7.91	140	21.11	0.3212	0.2589
EBCA [40]	8.13	100	30.95	0.2851	-0.2843
DATE (ours)					
10% update with CLIP score	7.90	105	20.78	0.3239	0.2630
all updates with CLIP score	24.21	150	20.68	0.3312	0.2712
10% update with ImageReward	7.90	105	21.14	0.3246	0.4913
all updates with ImageReward	24.21	150	21.33	0.3240	1.3262

Table 11: Computation time per sampling step for a batch size of 4. Table 12: GPU memory

Table 12: GPU memory usage for a batch size of

Operation	Time (sec.)
Uncond. and cond. score network evaluation (base sampling)	0.33
Text embedding update (including gradient computation)	1.07
Updated score network evaluation	0.28

Method	Memory (GB)
Fixed	24.0
DATE	61.5

D Additional experimental results

D.1 Additional experimental results on COCO dataset

Other sampler and guidance scale Table 8 shows the experimental results of the baseline and DATE using the DDPM sampler, and Table 9 and Figure 15 show the results over different classifier-free guidance scales. Note that changing the classifier-free guidance scale does not affect the sampling time and NFE. We observe that DATE achieves performance improvements over the baseline in most metrics. These results demonstrate that our method consistently improves text-image alignment for generated images across various samplers and guidance scales.

Additional experiment results on multi-objective optimization Table 10 reports results when using each metric, or their weighted combinations, is used as DATE's evaluation function. In most cases, DATE improves performance over the fixed embedding, regardless of whether a given metric is used as the evaluation function. One exception is when AS is included, where performance on other metrics often decreases, likely because AS, being independent of the text input, offers little synergy with semantic alignment metrics, as shown in Figure 4. Consistent with Figure 5b in the main text, the combined objective can yield higher values than using a single metric alone as indicated by the bold numbers in Table 10, demonstrating the synergistic potential of combining metrics during text embedding optimization.

Computational costs Updating embeddings at each timestep increases the computational costs. As shown in the leftmost graph in Figure 9 of the main text, sampling time increases with update proportion. The overhead stems from extra score network evaluations for x_0 , and gradient computations through h and diffusion model, as mentioned in Section 3.4. A breakdown of the time required for each of these operations is provided in Table 11, and GPU memory usage is reported in Table 12.

Despite the added computational cost, Figure 14 shows that DATE consistently achieves better performance than fixed embeddings at comparable sampling times. We generate samples using text prompts of the COCO validation set with Stable Diffusion v1.5 using the DDIM sampler. Fixed embedding adjusts the number of sampling steps, and DATE adjusts both the number of sampling steps and embedding updates. DATE outperforms the fixed embedding on all evaluation metrics and sampling times. Notably, simply increasing the number of sampling steps in the fixed embedding setup yields only marginal improvements.

Table 9: Performance on the COCO validation set with Stable Diffusion v1.5, varying classifier-free guidance (CFG) scales. Sampling steps are 50 unless otherwise specified. For DATE, we apply a 10% update with CLIP score. **Bold** values indicate the best performance for each sampler and guidance scale.

Sampler	CFG scale	Method	Zero-shot FID↓	CLIP score↑	ImageReward↑
DDIM	2	Fixed text embedding	15.90	0.2915	-0.3616
		Fixed text embedding (steps=70)	16.49	0.2905	-0.3664
		EBCA [40]	28.41	0.2492	-0.9913
		DATE (ours)	15.00	0.2959	-0.2838
	3	Fixed text embedding	14.04	0.3065	-0.0947
		Fixed text embedding (steps=70)	14.14	0.3056	-0.0981
		EBCA [40]	20.67	0.2710	-0.6798
		DATE (ours)	13.70	0.3089	-0.0451
	5	Fixed text embedding	16.14	0.3163	0.1165
		Fixed text embedding (steps=70)	15.70	0.3155	0.1072
		EBCA [40]	20.98	0.2842	-0.4133
		DATE (ours)	15.24	0.3182	0.1296
	8	Fixed text embedding	18.66	0.3204	0.2132
		Fixed text embedding (steps=70)	18.27	0.3199	0.2137
		EBCA [40]	25.85	0.2877	-0.3128
		DATE (ours)	17.90	0.3237	0.2364
DDPM	2	Fixed text embedding	14.07	0.3008	-0.2173
		Fixed text embedding (steps=70)	13.58	0.2999	-0.2125
		EBCA [40]	22.97	0.2629	-0.8076
		DATE (ours)	13.77	0.3033	-0.1864
	3	Fixed text embedding	15.17	0.3129	0.0315
		Fixed text embedding (steps=70)	14.85	0.3120	0.0482
		EBCA [40]	21.51	0.2779	-0.5186
		DATE (ours)	15.04	0.3158	0.0717
	5	Fixed text embedding	18.72	0.3199	0.1941
		Fixed text embedding (steps=70)	18.27	0.3190	0.1974
		EBCA [40]	25.07	0.2862	-0.3178
		DATE (ours)	18.32	0.3225	0.2051
	8	Fixed text embedding	21.94	0.3223	0.2567
		Fixed text embedding (steps=70)	21.11	0.3212	0.2589
		EBCA [40]	30.95	0.2851	-0.2843
		DATE (ours)	20.78	0.3239	0.2630

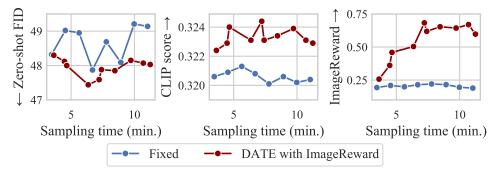


Figure 14: Performance comparison between fixed text embedding and DATE with ImageReward over different sampling times (minutes per 64 samples). FID values are computed using 1,000 samples, unlike the 5,000 samples used in the main text, which causes a scale discrepancy.

Table 10: Results on COCO with SD v1.5 (extension of Table 1 in the main text), including various combined evaluation functions. Columns 2–5 indicate which metrics are used in h. Higher and lower weights in columns 2—5 are denoted by \odot and \circ ;, respectively; a blank indicates the metric is not used. Bold numbers mark cases where combined metrics outperform the target single metric alone.

	Evalu	ation fun	ction use	ed in h			Metrics	S	
Method	AS	CS	IR	PS	FID↓	AS↑	CS↑	IR↑	PS↑
Fixed (50 steps)					18.66	5.38	0.3204	0.2132	21.51
Fixed (70 steps)					18.27	5.37	0.3199	0.2137	21.50
DATE (50 steps,	10% upo	late)							
with a single eval	uation fu	nction							
AS	0				18.82	5.58	0.3169	0.1910	21.46
CS		0			17.90	5.35	0.3237	0.2364	21.53
IR			0		18.61	5.40	0.3224	0.4792	21.53
PS				•	18.49	5.42	0.3225	0.2745	21.93
with two combine	d evaluat	ion functi	ions						
AS+CS	0	0			18.77	5.58	0.3171	0.1911	21.46
	0	0			18.15	5.38	0.3219	0.2179	21.43
AS+IR	0		0		18.90	5.57	0.3176	0.2428	21.48
	0		0		18.15	5.43	0.3216	0.4575	21.53
AS+PS	0			0	18.81	5.58	0.3175	0.2091	21.54
	0			0	18.67	5.44	0.3219	0.2705	21.91
CS+IR		0	0		17.94	5.39	0.3241	0.4430	21.52
		0	0		18.04	5.40	0.3225	0.4756	21.53
CS+PS		0		0	18.33	5.40	0.3241	0.2839	21.87
		0		0	18.61	5.42	0.3224	0.2753	21.93
IR+PS			0	0	18.15	5.41	0.3226	0.4774	21.63
			0	0	18.54	5.42	0.3227	0.3126	21.93
with three combin	ed evalu	ation func	ctions						
AS+CS+IR	0	Ó	0		18.87	5.57	0.3179	0.2487	21.48
	0	0	0		18.50	5.46	0.3208	0.3332	21.50
	0	0	0		18.07	5.43	0.3219	0.4557	21.53
AS+CS+PS	0	0		0	18.96	5.57	0.3179	0.2092	21.55
	0	0		0	18.62	5.47	0.3211	0.2450	21.69
	0	0		0	18.69	5.44	0.3221	0.2705	21.91
AS+IR+PS	0		0	0	18.93	5.57	0.3186	0.2602	21.56
	0		0	0	18.33	5.44	0.3222	0.4599	21.61
	0		0	o	18.72	5.44	0.3224	0.3071	21.91
CS+IR+PS		0	0	0	18.32	5.41	0.3244	0.4192	21.81
		0	0	0	18.16	5.41	0.3229	0.4812	21.63
		0	0	(a)	18.68	5.42	0.3228	0.3138	21.92

Statistical significance To assess the statistical significance of the CLIP score improvements introduced by using ImageReward as h, we conduct a paired t-test. Comparing samples generated with fixed embeddings (sampling time = 6.34 minutes) and DATE (sampling time = 6.03 minutes), we obtain a p-value of 0.00056, indicating a statistically significant improvement at comparable sampling costs.

D.2 Additional analysis of DATE

Multiple text embedding updates We hypothesize that performing multiple text embedding updates per sampling step can expand the search space beyond the initial ρ -ball, potentially leading to improved performance. Figure 16 indicates that the CLIP score generally increases with more update iterations. However, each additional iteration incurs extra forward and backward passes, resulting in a linear increase in sampling time.

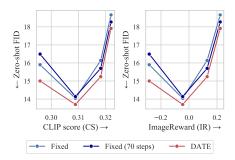


Figure 15: Performance between FID and text-image alignment metrics varying the classifier-free guidance scale with the DDIM sampler.

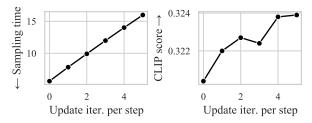


Figure 16: Sensitivity analysis on the number of update iterations per sampling step with a 50-step DDIM sampler and a classifier-free guidance scale of 8. For DATE, we apply a 10% update with CLIP score. When the number of iterations is 0, it is identical to fixed embedding.

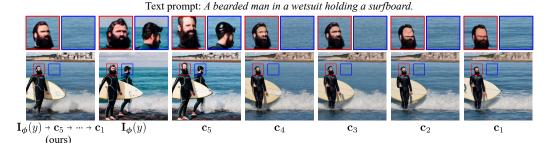


Figure 17: Generated images of DATE and various fixed text embeddings. The bottom image in each column is the generated image, while the two images above it are zoomed-in views of the boxed regions in the generated image. $\mathbf{I}_{\phi}(y)$ represents the text embedding from the original text encoder, while $\mathbf{c}_5, \mathbf{c}_4, \ldots, \mathbf{c}_1$ represent the text embeddings updated during the intermediate sampling steps of DATE, with larger indices indicating earlier stages of sampling. The leftmost image is generated using DATE with dynamic updates, while the remaining images are generated with fixed text embeddings.

Time-adaptive text embedding To analyze the updated text embeddings of DATE, we inject the each updated embedding into the entire sampling process. Figure 17 shows the generated images from DATE and several fixed text embeddings. With the embedding obtained after the middle sampling step (\mathbf{c}_4) , we observe that the information 'two men' is transformed into 'a man' in the text embedding. Furthermore, when using the updated text embeddings at later sampling steps $(\mathbf{c}_2, \mathbf{c}_1)$, we observe that the face region of the generated image appears distorted. This suggests that the final updated text embedding is not necessarily globally optimal, and that an appropriate text embedding may exist at each diffusion timestep.

D.3 Additional results for applications

Multi-concept generation In addition to the main evaluation metrics, we also assess model performance using the TIFA score [20], a recently proposed metric designed to measure the faithfulness of generated images to their textual prompts. TIFA leverages a Visual Question Answering (VQA) model to quantify alignment between image content and prompt, providing an evaluation that is independent of CLIP.

Table 13 presents the full evaluation results across all prompt types in the multi-concept generation setting. We also include results for DATE with ImageReward as h. DATE consistently improves the TIFA score across all tested cases. Furthermore, when using ImageReward as h, DATE continues to outperform the baseline across all evaluation metrics, highlighting its robustness and effectiveness regardless of the chosen evaluation function. In addition, Figure 18 shows more generated images for various prompts from the AnE dataset. These results demonstrate that DATE effectively applies to multi-concept generation methods, enabling the generation of images that accurately reflect the given concepts.

Table 13: Performance comparison for multi-concept generation on the AnE dataset, compared across Stable Diffusion, DATE with ImageReward, and DATE with CLIP score.

Prompt type	Method	Full prompt	Min. object	Text-caption	TIFA score
Animal-Animal	Stable Diffusion + DATE (ImageReward) + DATE (CLIP score)	0.3123 0.3219 0.3282	0.2174 0.2371 0.2398	0.7677 0.7858 0.7888	0.6847 0.7948 0.8159
Animal-Object	Stable Diffusion + DATE (ImageReward) + DATE (CLIP score)	0.3443 0.3454 0.3530	0.2480 0.2512 0.2568	0.7925 0.8009 0.8009	0.8223 0.8486 0.8420
Object-Object	Stable Diffusion + DATE (ImageReward) + DATE (CLIP score)	0.3377 0.3391 0.3503	0.2404 0.2454 0.2544	0.7684 0.7706 0.7728	0.6402 0.6910 0.6643

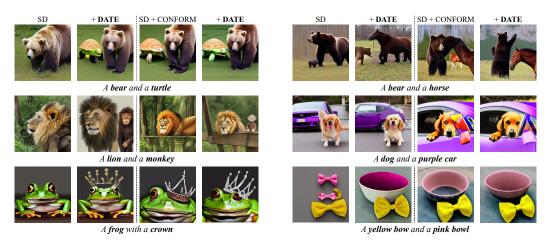


Figure 18: Additional generated images on the AnE dataset for multi-concept generation.

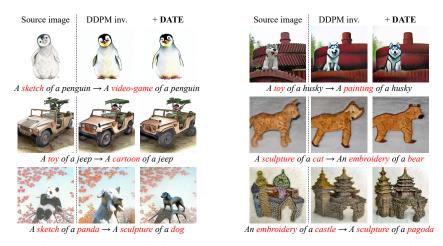


Figure 19: Additional examples of edited images on the ImageNet-R-TI2I dataset for text-guided image editing.

Text-guided image editing Figure 19 shows several examples of text-guided image editing using DDPM inversion with and without DATE applied to the source images. For each method, we present the processed image obtained with the hyperparameter that makes LPIPS less than 0.25. These examples demonstrate that applying DATE to DDPM inversion improves text-guided image editing by better preserving the structure of the source image while improving alignment with the target prompt.

E Limitation and broader impact

Limitation One primary limitation of our approach is the additional computational overhead introduced by updating text embeddings during the sampling process. These updates require gradient computations, resulting in increased sampling time and memory usage. However, our experiments demonstrate that DATE outperforms fixed embeddings under equivalent sampling-time budgets, suggesting a favorable trade-off between efficiency and effectiveness. Nevertheless, repeated gradient computations present challenges in terms of memory and computing efficiency, especially in resource-constrained settings. Developing memory-efficient techniques for gradient updates is an important direction for future work.

Another potential limitation is the dependence on the evaluation function. While we explore the use of multi-objective evaluation functions and provide empirical evidence that DATE does not overfit the evaluation function itself, the overall generation quality can still be influenced by the design and reliability of the evaluation function. This highlights a broader challenge in text-to-image generation: the field continues to lack fully reliable, general-purpose evaluation metrics. Continued research on evaluation protocols and their integration with guidance mechanisms is crucial for advancing robust and generalizable generation frameworks.

Broader impact Improving conditional embeddings in diffusion-based generative models remains an underexplored area, despite being a key component of conditional generation. Our work addresses this gap by proposing a general and effective method to refine text embeddings during sampling, thereby enhancing alignment between the prompt and the generated image. A significant advantage of our approach is that it operates without requiring any additional model training and is agnostic to the backbone model and sampler. This makes it readily applicable to a wide range of text-to-image generation systems.

However, using external modules introduces potential vectors for misuse. For example, adversarial manipulation of these components could compromise model safety and lead to unintended or harmful outputs. To mitigate these risks, appropriate safeguards could be incorporated into the evaluation functions and sampling process. Responsible deployment of such systems should account for these concerns.

F License information

Our implementation will be publicly released under standard community licenses. In addition, we provide the license information for the datasets and models used in this paper:

https://github.com/MichalGeyer/plug-and-play

Restart: https://github.com/Newbeeer/diffusion_restart_sampling

EBCA: https://github.com/EnergyAttention/Energy-Based-CrossAttention

CONFORM:

https://github.com/gemlab-vt/CONFORM/blob/main/LICENSE

DDPM Inversion:

https://github.com/inbarhub/DDPM_inversion/blob/main/LICENSE