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Abstract

Text-to-image diffusion models rely on text embeddings from a pre-trained text
encoder, but these embeddings remain fixed across all diffusion timesteps, limiting
their adaptability to the generative process. We propose Diffusion Adaptive Text
Embedding (DATE), which dynamically updates text embeddings at each diffusion
timestep based on intermediate perturbed data. We formulate an optimization
problem and derive an update rule that refines the text embeddings at each sampling
step to improve alignment and preference between the mean predicted image and
the text. This allows DATE to dynamically adapts the text conditions to the
reverse-diffused images throughout diffusion sampling without requiring additional
model training. Through theoretical analysis and empirical results, we show that
DATE maintains the generative capability of the model while providing superior
text-image alignment over fixed text embeddings across various tasks, including
multi-concept generation and text-guided image editing. Our code is available at
https://github.com/aailab-kaist/DATE.

1 Introduction

Text-to-image generation has recently received significant attention due to its capability to generate
realistic and semantically accurate images from textual prompts. This progress has been largely driven
by diffusion models [18, 53], particularly with large-scale models such as DALL-E [45] and Stable
Diffusion [47]. These models use pre-trained text encoders like CLIP [42] and T5 [43] to encode
prompts into embeddings, providing crucial semantic information to diffusion models. Notably, the
quality and semantic alignment of the generated images heavily depend on these embeddings [48].

Despite their success, pre-trained diffusion models often struggle with semantic alignment and human
preferences. Recent studies have addressed this using external reward functions, either through
preference fine-tuning [3, 31, 56] or through applying guidance directly to denoised images during
sampling [2]. However, these methods focus on model parameters or intermediate latent variables and
overlook text embeddings. Most text-to-image diffusion models use fixed text embeddings throughout
the sampling process (upper part of Figure 1a), limiting their adaptability to the evolving generation
process. Since different diffusion timesteps influence generation in different ways [6, 59], static
embeddings can fail to capture evolving semantics, leading to suboptimal text-image alignment.

To address this limitation, we propose Diffusion Adaptive Text Embedding (DATE), which dynami-
cally updates text embeddings at each diffusion sampling step based on the current denoised image
(lower part of Figure 1a). By continuously tuning the embeddings to maximize alignment between the
text prompt and the mean predicted image, DATE captures evolving semantics without extra model
training or architectural changes. Notably, DATE operates entirely at test time by simply inserting
embedding updates into existing sampling procedures. Our theoretical and empirical results demon-
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Figure 1: (a) Overview of the conventional fixed text embedding and the proposed adaptive text
embedding during the text-to-image diffusion sampling process. Green shapes represent the diffusion
model network, orange shapes represent the text encoder, and gray boxes labeled Opt. indicate our
text embedding optimization, detailed in Figure 3. (b) ImageReward [57], a text-to-image generation
metric, for mean predicted images. Red triangles mark the timesteps where text embedding is updated.

strate that DATE improves text-image alignment while preserving the model’s original generative
capabilities. When evaluated across various diffusion models and samplers, DATE outperforms fixed
text embeddings consistently, indicating its agnostic characteristics to both models and samplers. Fur-
thermore, DATE can be effectively integrated into various downstream tasks, such as multi-concept
generation and text-guided image editing, highlighting its broad applicability.

2 Preliminaries

2.1 Diffusion models

Diffusion models consist of two diffusion processes: a forward process and its corresponding reverse
process [18]. The forward process is typically defined as a fixed Markov noise process, which
perturbs the data instance x¢ ~ ¢(xo) by adding Gaussian noise:

T

q(x1.7|%0) = [[;=1 ¢(x¢|x¢-1), where q(x¢[x;—1) = N (x¢;v/T = Bex¢—1, Bi1). (D
Here, x;.7 are latent variables for perturbed data, and 3, is the variance schedule parameter. Diffusion
models aim to approximate the reverse process via a trainable Markov chain with Gaussian transitions:

peo(x0.7) = pr(xXT) szl po(x¢t—1|x:), where po(x¢—1|x¢) == N (x¢—1; po(x¢, ), 07I),  (2)
o (X, t) is the parametrized mean, o7 is the time-dependent variance, and pr is the prior distribution.

The mean function pe(x¢,t) is trained by minimizing the upper bound of the negative log-
likelihood [18]. Notably, this mean function can be equivalently expressed, up to a constant, as a
score network sg(x:, t) that approximates the score function Vi, log ¢:(x;) [53]:

min BBy, [[[se(x, ) = Vi, loga:(x1)[[3]- 3)

Once the transition kernel pg is trained, we sample iteratively from 7" to near-0 using Eq. (2).

2.2 Text-to-image diffusion models

Text-to-image generation aims to produce high-quality images that are semantically aligned with a
given textual description. Recent advances in diffusion models have greatly improved this task [39,
44, 47]. Text-to-image diffusion models can be formulated as learning a score network with an
additional text-conditional input c to approximate a conditional score function:

min By By, [[se(x1, ¢, 1) = Vi, log g (x:[y)][3]- @)



Here, c is the text embedding of the text prompt y, typically obtained from a pre-trained text
encoder [11, 33, 48, 61, 62].

Despite their impressive realism, pre-trained diffusion models often struggle to maintain precise
semantic alignment or satisfy human preferences. As the formulation of conditional score network
suggests, text-conditional diffusion models can be improved by targeting three components: model
parameters 6, perturbed data x;, and text embedding c. Improvements in each component offer
complementary benefits for overall quality and text-image consistency.

Fine-tuning and data-space guidance Most prior works focus on optimizing the model parameters
0 through fine-tuning [3, 12, 24, 31, 56]. These approaches adjust diffusion models using additional
curated datasets or reward signals to improve alignment or human preference satisfaction. However,
they require extensive retraining and substantial computational cost. Another direction modifies
the perturbed data x; via external guidance functions. Classifier Guidance [9] steers samples using
gradients of time-dependent classifier, while Universal Guidance [2] approximates this approach with
a time-independent classifier. While effective, such methods require careful guidance scaling across
timesteps, and the guidance component needs to be expressed as a classification probability.

Prompt optimization Another line of work focuses on the text-conditioning component of diffusion
models. Prompt-level optimization targets the input text y to produce better conditioning signals [15,
36]. These methods use reinforcement learning with external reward models to train language models
that generate refined prompts for diffusion models. However, they are costly to train and lack
adaptability when the backbone or reward function changes.

Text embedding update Beyond prompt tuning, the text embedding c itself plays a central
role in aligning images with textual intent. Most diffusion models use frozen text encoders and
apply the same fixed embeddings across all timesteps, limiting their ability to capture the evolving
semantics [6, 27, 59]. We hypothesize that dynamically adapting text embeddings, by transforming
static c into time-dependent c;, can improve semantic alignment.

Recent works have begun to investigate this direction. EBCA [40] updates text embeddings at each
cross-attention layer via an energy-based objective but lacks global semantic control. P2L [8] directly
optimizes text embeddings for an inverse problem objective. Other works focus on special token
tuning, such as Textual Inversion [14] and MinorityPrompt [55], which learn special token embeddings
for personalized or minority instance generation, sometimes extended to time-dependent variants [55].
However, these methods are task-specific and limited to special tokens. In contrast, DATE provides a
general, training-free framework that dynamically updates the entire text embedding throughout the
diffusion sampling process, enabling fine-grained semantic adaptation without retraining.

2.3 Evaluation on text-to-image generation

Given the trained model for text-to-image generation, it is Text-conditioned evaluation function
necessary to define an evaluation function that measures
Cosine
Similarity

how well the generated outputs match the text-conditional
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Figure 1b plots the evaluation score changes over time for the mean predicted image, comparing
100 samples generated with fixed text embeddings and proposed dynamic text embeddings using
Stable Diffusion. We observe two limitations of the previous approach: 1) the evaluation function h
is used only for evaluation without being incorporated into the sampling process, and 2) h is only
assessed at the final sample. To address these, we directly leverage h as the learning objective during
the intermediate periods of the sampling process. This update to the text embedding improves the
evaluation function value, ultimately enhancing the quality of text-to-image generation.



3 Methods

3.1 Diffusion Adaptive Text Embedding (DATE)

In this section, we propose an objective function to optimize text embeddings during the sampling
process. The diffusion sampling process can be expressed as follows:

X7 ~ pT(XT)7xt—1 ~ pe(xt—1|Xt> Ct) fort = Ta B} 1a (5)
where pg (x;_1|X¢, c;) is the distribution of the intermediate sample x;_; at timestep ¢ — 1, generated
from the sample x; at timestep ¢ and the text embedding c;. Typically, the text embedding c;
is obtained from a pre-trained text encoder I, i.e., Corg = Iy (y), and remains fixed across all
diffusion timesteps, i.e., ¢; = Corg for all ¢ (upper part of Figure 1a). However, we claim that the text
embedding that is capable of producing effective generation output varies depending on the diffusion
timestep ¢ and the current perturbed data x; (lower part of Figure 1a). We refer to this dynamic text
embedding as Diffusion Adaptive Text Embedding (DATE).

Our goal is to find the text embedding c;(x;)' that maximizes the evaluation function A for samples
generated by the diffusion sampling process pg. The objective of DATE is expressed as follows:
Igllaf ]EXTNPT;XO:T—INH77:=1 pe(Xr—1]%Xr,c7) [h(xo; y)] : ©)
It should be noted that Eq. (6) optimizes the alignment h only at the final reverse diffusion step, so the
other latent variables x1.7 are not directly regularized in any specific direction. However, the below
derivation from Egs. (7) to (10) shows that the optimization direction for each x; can be derived from
Eq. (6), which optimizes only x, considering that x is the sequential sampling result from x1.7.

Since the sampling process of diffusion models proceeds iteratively from timestep 7 to 0, we likewise
aim to iteratively update the text embedding c; according to this sequential order. Hence, this
sequential sampling, which is required for practical implementation, renders Eq. (6) into Eq. (7).
Specifically, the sequential nature of diffusion sampling requires two reformulations of Eq. (6).

Motivation 1: The adaptive text embedding c; needs to be determined sequentially because the
corresponding image is estimated at timestep ¢. Thus, the sequential decision on c¢; decomposes
the joint optimization into the step-wise optimization. Particularly, the diffusion sampling process
requires a specific order in sequential decisions, i.e., from 7T to 0. This motivation of decomposed
and ordered optimization is reflected in the separated max operator in Eq. (7).

Motivation 2: The evaluation of & is performed at the final sampling step 0, not at intermediate
step t. For simplicity, we need to calculate the text-image alignment A on the final generation result
while maintaining c;. This motivates maintaining c; until timestep O of the data distribution, which is
reflected in the equality constraints on the feasible set C; of each max operator in Eq. (7).

mage e I IO B~ TT7 2t G059 ™

Here, C; == {c; : ||ct — Corg|]2 < p, €7 = ¢ VT < t}, Corg 18 the original text embedding, and p is a
scale hyperparameter. The constraint ||c; — Corg||2 < p keeps the optimized text embedding c; does
not deviate significantly from the original embedding c.,, preserving its original semantic meaning.

Specifically, the optimization problem for c; in Eq. (7) can be derived as follows:

gleaé Exo;t_wl'[i:l pe(xf_l\xf,cf)[h(xm y)] & ct:||ctglcii|\2§p]Ex°~p9(x°|x“°f) [h(x0;¥)].  (8)

On the left-hand side of Eq. (8), the terms from timesteps from ¢ + 1 to 7" are eliminated since ¢y 1.7
are set by the inner optimizations. On the right-hand side, the simplification arises from the constraint
that all text embeddings from ¢ to 1 are identical. Therefore, at timestep ¢, our objective can be
expressed as the expectation of the text-conditioned evaluation function with respect to pg (xg|X¢, C¢ ).

However, solving Eq. (8) is computationally challenging. Evaluating the objective requires Monte
Carlo sampling of x from x;, and each sample involves iterative sampling with multiple network eval-
uations, resulting in high computational cost. To address this, we apply a first-order Taylor approxima-
tion of the text-conditioned evaluation function % around X := Xo(X¢, €t; 0) = Expg (xc0[51,¢0) [X0]s
a technique commonly used in previous studies [2, 8]:

Ex, [h(x0; )] & h(Xo;y) + Ex, [(x0 — %0)" Vxch(%0:y)] = h(Xo0;y). )

'For simplicity, we omit the dependency on x; and write c;(x;) as ¢; whenever no ambiguity arises.




Algorithm 1 Diffusion Sampling with DATE

Ct
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The equality in Eq. (9) holds because Ex,[xo — X¢] = 0. Therefore, through the approximation in
Eq. (9), we propose the following alternative objective instead of Eq. (8):
| max s h(Xo(x¢t,¢t50);y) =: he(Xt, ¢t Y, 0). (10)
Ct:||Ct—Corg|[25pP
This objective in Eq. (10) optimizes the text-conditioned evaluation function on the mean predicted
image X( given the current perturbed image x; and the text embedding c;. Using the Tweedie’s
formula [10], the mean predicted image X can be computed via a single score network evaluation:

XO(Xtact; 0) - (Xt + (1 - &t)se(xt; Ct,t)) / \/O_Tta (11)

where sg(x;, ¢, t) is a conditional score network, and @; := [[._, (1 — ) is the constant related
to the variance schedule of the diffusion process.

3.2 Update process of DATE

We present an update process of text embeddings at each timestep to optimize the objective in Eq. (10)
using the current perturbed data. Since evaluating this objective requires score network propagation
(see Eq. 11), computational cost increases with each update. Therefore, inspired by sharpness-aware
minimization [13], we estimate the updated text embedding c; in a single update.

We decompose the updated embedding c; into its original embedding c,.¢ and an update direction €;:
C¢ :Corg"‘et- (12)

By expressing c; in terms of an update direction €;, we reformulate the optimization problem in
Eq. (10) into an equivalent problem over €, as shown in Eq. (13). Next, we approximate A (-, Corg +
€:; -, -) using a first-order Taylor expansion around €; = O (see the appendix for derivation):

€; = argmax hy(Xy, Corg + €13y, 0) ~ arg max €; Vehi(xt, Corg; Y, 0) =: €. (13)
lletll2<p lletll2<p
The solution to this optimization problem can be derived using the Cauchy-Schwarz inequality.
Consequently, the estimator for the optimal text embedding ¢; is given by

ét =p Vchnt(xt7 Corg; Y, 0) . Vcht (Xt, Corg: Y, 0)
chht(xt; Corg; Y, 0)”2 ' ||Vcht(xt, Corg: ¥, 0)”2 ’

This update step refines c¢; by adjusting it along the normalized gradient direction of h;, maximizing
semantic alignment at the diffusion timestep ¢ under the current perturbed data x;. As a result, the
updated text embedding ¢; dynamically adapts to the specific diffusion timestep and the corresponding
perturbed data. Figure 3 visualizes this update step, and Algorithm 1 presents the overall algorithm
for the diffusion sampling process with DATE. We introduce text embedding update steps in lines 4-6
of Algorithm 1, and the denoising process (line 7) can be performed using various diffusion samplers.

& = Corg + P (14)

3.3 Theoretical analysis

We provide theoretical analyses of DATE, including performance guarantees and its influence on the
data space. We provide proofs and additional approximation error analyses in Appendix A.

First, we show that both unconstrained and constrained optimizations of the text embedding in Eqs. (6)
and (7) produce a better text embedding than the fixed text embedding cg,.



Proposition 1. Ler h(cy, - ,cr) = By, [h(x0;y)] where xo.7—1 ~ Hlepg(xT,l\xT,cT),
xp ~ pr, and Cy = {c; : ||ct — Corgl|2 < p,c7 = ¢4 VT < t}. Then,

max h(cy, - ,cp) = max---max---maxh(cy, - ,cr) (15)
C1:T [} [ cr
> max ---max --- max h(cy, - ,¢r) > h(Corg, " ; Corg)- (16)

c1€Cy c€C creCr

The first equation shows that sequential maximization in Eq. (15) (corresponding to Motivation 1)
attains the same optimum as the joint maximization. Introducing the constraints in Eq. (16) (cor-
responding to Motivation 2) restricts the feasible set and can lower the optimum. Nonetheless,
Proposition 1 guarantees that both the unconstrained optimum (Eq. 6) and the constrained optimum
(Eq. 7) yield a value at least as high as the fixed embedding. Because DATE is derived by approxi-
mating the optimization problem in Eq. (7), it is expected to improve the text-image alignment of the
generated images compared to the fixed embedding.

Next, we present Theorem 2 to illustrate how the DATE update influences the perturbed data.
Theorem 2. The score function for the text embedding c; updated by DATE can be expressed as:

P Vehe(Xt,Corg)” 2
th IngB(Xt|ct) - vXt lnge (Xt|corg) + vat {mvc Inge(Xt|corg)} + O(/) ) (17)
According to Theorem 2, the updated text embedding c; can be interpreted as introducing a guidance
term to the original score function, under a sufficiently small p. This guidance effectively improves
the alignment between the evaluation function h; and the model likelihood from the perspective of
the text embedding. Therefore, embedding-based guidance balances semantic alignment with the
underlying model distribution, enhancing prompt fidelity without reducing generation quality.

3.4 Practical implementation

Reducing computational cost Updating the text embedding via Eq. (14) requires computing the
gradient of h; through both diffusion and evaluation networks, which increases computational cost,
as discussed in Appendix D.1. To mitigate this overhead, we update embeddings only at a subset
of sampling steps (line 4 in Algorithm 1) and reuse the last update embeddings between updates,
balancing performance and efficiency as shown in Figure 9 of Section 4.2. In addition, general
computationally efficient strategies such as half-precision inference can be applied during sampling.
As shown in Table 4, DATE remains compatible with such efficiency techniques, effectively reducing
runtime and GPU memory consumption while incurring only a slight performance degradation.

Selection of original text embedding We explore two strategies for choosing the original text
embedding c.,, at each update step: (1) always use the pre-trained text encoder output, I(y),
preserving semantic integrity, and (2) use the embedding from the previous step, c;41, allowing
broader exploration of the embedding space. To prevent semantic drift in the second approach, we add
an L2 regularizer ||c; — I4(y)||2 to the objective in Eq. (10). This term ensures update embeddings
remain close to the original. Ablation results comparing these strategies also appear in Figure 9.

4 Experiments

We evaluate DATE for text-to-image generation primarily using U-Net-based Stable Diffusion
(SD) v1.5 [47] with a pre-trained CLIP ViT-L/14 text encoder [42]. Additionally, to demonstrate
broader applicability, we include evaluations on the latest transformer-based model, PixArt-« [5].
Unless stated otherwise, we set the text-conditioned evaluation function A to CLIP score, the scale
hyperparameter p to 0.5, and use the embedding from the previous update as the original text
embedding ¢, for each update step. Additional details are in Appendix C.

4.1 Quantitative results

Following previous evaluation protocols [38, 39, 58], we generate 5,000 images from randomly
sampled captions in the COCO [30] validation set. We use DDIM [51] and DDPM [18] for SD,
and DPM-Solver [32] for PixArt-a. We evaluate the image quality and semantic alignment using
several metrics, including zero-shot FID [17], CLIP score (CS) [16], and ImageReward (IR) [57],
with detailed explanations provided in Appendix C.1.



Table 1: Performance on the COCO validation set. Sampling steps are indicated in parentheses, and
Time is the average sampling time (min.) for 64 samples. Bold values indicate the best performance.

Backbone  Method | Time | FID| CLIP scoret ImageReward?
Fixed text embedding (50 steps) 5.64 | 18.66 0.3204 0.2132
Fixed text embedding (70 steps) 7.87 | 18.27 0.3199 0.2137
EBCA [40] 8.10 | 25.85 0.2877 -0.3128
SD v1.5[47] Universal Guidance [2] 8.25 | 18.56 0.3216 0.2221
W/ DDIM [51] " AT (50 steps)
10% update with CLIP score 7.82 | 17.90 0.3237 0.2364
all updates with CLIP score 24.20 | 17.22 0.3292 0.2277
10% update with ImageReward | 7.82 | 18.61 0.3224 0.4792
all updates with ImageReward | 24.20 | 18.17 0.3224 1.2972
Fixed text embedding (20 steps) 4.35 | 31.07 0.3201 0.8140
PixArt-o [5]  Fixed text embedding (45 steps) 9.03 |30.62 0.3199 0.8174
Svgfvlgf%\g] DATE (20 steps)
) 50% update with CLIP score 8.93 | 30.55 0.3237 0.8287
50% update with ImageReward | 8.95 | 31.07 0.3221 0.9514
Table 2: Results on COCO using SD v1.5 with various evaluation AS €S IR PS 1o
functions. Bold values indicate the best performance, while italic A 0085 0.180 0252
values denote cases that underperform the fixed embedding.
cs 0.085 0502 0.465
Fidelity Semantic Preference 05
Method FID] AStT CSt IRT PSt IR 0.180 [0.502 0.437
Fixed embedding (50 steps) 18.66 538 03204 02132 2151
Fixed embedding (70 steps) 1827 537 03199 02137 21.50 Ps 10252 R
DATE (50 steps , 10% update) 0.0
with Aesthetic Score (AS) 18.82 5.58 0.3169 0.1910 21.46 . L
with CLIP Score (CS) 17.90 535 03237 02364 2153  Figure 4: Pairwise Pearson
with ImageReward (IR) 18.61 5.40 0.3224 0.4792 21.53 correlations between evalua-
with PickScore (PS) 1849 542 03225 02745 2193 ion functions.

Main results Table 1 compares the performance of different text embeddings across various back-
bones and samplers. Tables 8 and 9 in Appendix D.1 further extend this comparison to different
classifier-free guidance scales and sampling methods. Across all settings, DATE consistently outper-
forms the fixed text embedding, even with matched sampling time for a fair comparison. Notably,
DATE improves the metric used for its evaluation function h, as well as other metrics, suggesting that
it enhances the overall text-conditional generation quality beyond optimizing a single objective.

Compared to recent methods, EBCA [40] applies the energy-based optimization to text embeddings
within cross-attention layers but yields suboptimal performance. Universal Guidance [2], which
injects hy-based guidance directly into the data space, yields performance gains but still falls short of
DATE. In contrast, DATE explicitly updates text embeddings to optimize the evaluation objective,
achieving better semantic alignment (CS, IR) while preserving generative quality (FID), as supported
by our theoretical analysis.

Evaluation function To better understand the role of evaluation functions, we analyze DATE under
different functions. Specifically, we examine pairwise correlations among different functions and
evaluate DATE when each metric, individually or in combination, serves as the evaluation function.
We consider Aesthetic Score (AS) [49] for image fidelity, CS for semantic alignment, and two
human-preference-based metrics, IR and PickScore (PS) [26]. Each provides per-instance scores for
generated images, enabling both correlation analysis and direct integration with DATE.”

Figure 4 presents Pearson correlations computed from 1,000 Stable Diffusion samples, and Figure 5a
visualizes instance-level relationships between CS and IR. AS and CS exhibit minimal correlation,

2FID is excluded since it measures distribution-level similarity and lacks instance-level scores.



Table 3: Results on COCO across backbones. ~ Table 4: Results on COCO with half-precision.

Backbone  Methods | FID, CSt IRt Method | Time Memory | FID|]  CSt IRT
: Fixed embedding (50 steps) 5.64 24.0 18.66 0.3204 0.2132
SD3[11]  Fixed 26,00 0.3337 10018 oy O edding (70 steps) 787 240 ‘ 1827 03199 02137
DATE (ours) | 26.00 0.3340 1.0457
- DATE (50 steps , 10% update)
FLUX [28] Fixed 29.59 0.3257 0.9634 with CLIP Score (CS) 7.82 61.5 17.90 03237 0.2364
DATE (ours) | 29.41 0.3283 0.9768 with CLIP Score (CS) (FP16) | 440 329 | 17.99 03229 0.2265
- with ImageReward (IR) 782 615 | 1861 03224 04792
SDXL [41]  Fixed 18.27 03368 0.7284 with ImageReward (IR) (FP16) | 4.02 306 | 18.03 0.3222 0.4773
DATE (ours) | 18.03 0.3382 0.9096
@ Fixed %  DATE with IR Reverse diffusion process _
Pearson correlation coefficient = 0.502 B DATEwithCS  —e— DATE with CS+IR
1 2 Ko—e—
e 1045 .
=) 2 N\
= = 0.40 14
e 3 /
§ 0 Z 03s * 2
5 H l %
é N E025 E 4;_3
020 @ ]
0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.321 0.322 0.323 0.324 li-)
CLIP score (CS) — CLIP score (CS) —
(a) Correlation b/w metrics (b) Results of combined metrics
N

Figure 5: (a) Correlation between CLIP score (CS) and Im-
ageReward (IR). Blue dots represent individual samples, and
the red line indicates their linear regression line. (b) Trade-off
between CS and IR. For DATE with CS+IR, we use a weighted
sum of CS and IR as the evaluation function h, and we plot the
performance changes as the weights are varied.

Figure 6: Mean predicted im-
ages Xo(xy, c;) for each diffusion
timestep and text embedding during
the sampling process with DATE.

suggesting independence between aesthetic quality and semantic alignment. IR and PS correlate
moderately with CS and weakly with AS, indicating that they capture both fidelity and alignment
aspects. IR and PS themselves correlate moderately, reflecting their distinct sensitivities.

With these metrics as the evaluation function, DATE generally improves all metrics over the fixed
embedding, as shown in Table 2. However, when AS is used, other metrics often degrade, consistent
with its low semantic correlation. Moreover, combining multiple evaluation functions, such as a
weighted sum of CS and IR, improves both metrics simultaneously, as shown in Figure 5b and
Table 10. DATE thus remains compatible with multi-metric objectives, where adjusting weights
balances trade-off. Interestingly, the combined objective can yield even higher CS than for CS alone,
demonstrating the synergistic potential among evaluation functions during test-time optimization.

Applicability to other backbones DATE can be applied on top of powerful base models. We
evaluate it on recent architectures, including SD3 [11], FLUX [28], and SDXL [41], following the
default configurations described in Appendix C.1. As shown in Table 3, DATE consistently improves
text-image alignment and generation quality across all these models, demonstrating its robustness
and broad applicability to modern diffusion architectures.

Computational efficiency To mitigate the increased computational cost introduced by gradient
computations, we explore memory-efficient sampling strategies. In particular, we apply half-precision
inference during sampling, which substantially reduces runtime and memory consumption while
maintaining competitive performance, as shown in Table 4. Notably, casting the CLIP model used
in the evaluation function to half-precision led to performance degradation, so we retain it in full
precision; however, since the diffusion model dominates computational cost, applying half-precision
to remaining components still provides significant savings. These results demonstrate that DATE
remains fully compatible with standard memory-efficient strategies.

4.2 Analysis of DATE

Generation process The green boxes in Figure 6 show the generation process of DATE. Fixed text
embeddings misinterpret ‘a man’ as ‘two men’, but DATE corrects this by dynamic updates.
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Figure 9: Comparison of sampling time and performance based on the
proportion of update steps to total sampling steps.

Time- and instance-adaptive text embedding We analyze the time-dependent text embeddings by
measuring the cosine similarity between update directions €; at different timesteps, averaged over
100 samples, in Figure 8. Most timestep pairs show near-zero similarity, with about 85% of pairs
below 0.1, indicating that optimal embeddings differ across timesteps. In contrast, adjacent timesteps
generally show positive similarity, suggesting that reusing the embedding from the previous step can
reduce runtime with a moderate loss in performance.

We also examine instance-specific adaptation by measuring the cosine similarity of update directions
across different samples of the same prompt at each timestep. The similarity remains close to zero
(below 0.05) across all timesteps, showing that each instance has distinct text embedding updates,
reinforcing the need for adaptive embeddings in text-to-image generation.

Ablation studies Table 5 presents several ablations for the text embedding update. Random update,
which replaces the gradient with a random Gaussian vector, performs similarly to the fixed embedding.
This indicates that our update is not just a perturbation, but plays a meaningful role in text-image
alignment. Alignment with perturbed data, which aligns the text prompt with the perturbed data
x; using h(x;y), results in degraded performance, likely because the evaluation function A lacks
explicit information in the perturbed data space. Unnormalized gradient performs better than fixed
embeddings but remains inferior to DATE. This suggests that using the unnormalized gradient still
serves as a gradient ascent method to improve h;, but a single-step update is suboptimal.

Sensitivity analysis of p Figure 7 presents a sensitivity analysis of the scale hyperparameter p, which
controls the magnitude of €;. The performance consistently outperforms the fixed embedding, but
higher p causes degradation in some regions. This is likely due to errors in the Taylor approximation
from an expanded feasible region in Eq. (13). Based on this, we set p to 0.5 in our experiments.

Selection of original embedding Figure 9 analyzes the effect of selecting the original embedding
at each update step, discussed in Section 3.4. Initializing with the previously updated embedding
generally improves the CLIP score, likely due to a broader exploration of the embedding space. Based
on this, we adopt this strategy in our experiments.

Embedding update steps Figure 9 also shows the sampling time and performance based on the
number of update steps. We observe that even a few updates improve performance. Increasing the
update proportion tends to further improve performance, but it also increases the sampling time.

Figure 10 compares different update strategies while keeping the total number of updates the same,
using ImageReward as the objective. Here, c°™® is the fixed embedding; c" refers uniform updates;
and c°, ¢™, and c' correspond to updates at early, middle, and late sampling steps, respectively. We
find that updating at any sets improves performance over no update, with mid-to-late updates (c™
and c') being more effective for text-image alignment. This suggests that adjusting text embeddings
during the fine-grained detail refinement phase in the later sampling steps is more effective.
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4.3 Applications

Multi-concept generation Multi-concept generation aims to generate multiple concepts (e.g.,
objects and attributes) within a single text prompt. We evaluate DATE on the AnE dataset [4] with
1) base SD and 2) SD with CONFORM [35], a method for multi-concept generation. Following
previous work [4, 35], we generate 64 images per prompt and evaluate similarity between text and
images using various metrics. Additional details are provided in Appendix C.2.

Figure 11 compares performance with and without DATE and shows that applying DATE consistently
improves performance across all metrics. CONFORM provides better performance than DATE alone,
but it requires explicit annotation of attribute-object pairs, and applying DATE to CONFORM can
further improve performance. Figure 12 illustrates that DATE improves object representation under
the same prompt and random seed. These results highlight the effectiveness of DATE in refining
concept representation and improving text-image alignment. Additional results are in Appendix D.3.

Text-guided image editing Text-guided image editing modifies an input image based on text
prompts, allowing natural language adjustments [34, 37]. We apply DATE to DDPM inversion [21], a
diffusion-based image editing model; and evaluate it on 30 source images from ImageNet-R-TI2I [54],
each modified with five target prompts. Evaluation is based on LPIPS [60] for perceptual similarity
with the source image and CLIP score for text-image alignment with the target prompt.

Figure 13b compares LPIPS and CLIP score across different guidance scales. The result shows that
DATE achieves a better trade-off between fidelity to the source image and alignment with the target
text. Figure 13a presents edited images for each method. These results suggest that DATE improves
text-guided image editing by better balancing content preservation and textual modifications.

5 Conclusion

We propose Diffusion Adaptive Text Embedding (DATE), which improves text-to-image diffusion
models by dynamically refining text embeddings throughout the diffusion sampling process. Unlike
conventional methods with fixed embeddings from a frozen text encoder, DATE adaptively updates
text representations at intermediate steps, effectively addressing semantic misinterpretations and
improving text-image alignment. Experiments show that DATE consistently outperforms fixed
embeddings across various tasks and methods involving text-to-image diffusion models, highlighting
the potential of time- and instance-dependent text embeddings to improve text-to-image generation.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the scope of DATE, which aligns
with the contributions experiments presented throughout the paper.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations are discussed in Appendix E.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: The assumptions and proofs are given in Appendix A.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Please check details in Section 4 and Appendix C.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: The paper indicates that the implementation is publicly available and provides
sufficient experimental details in Appendix C. It relies on publicly available models such as
Stable Diffusion v1.5 and CLIP.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Please check details in Section 4 and Appendix C.
Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Statistical significance of the experimental results for the main claim are
provided in Appendix D.1.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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8.

10.

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Please check Appendix C.1 for details.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The research is consistent with the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Positive societal impacts and negative impacts are discussed in Appendix E.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: We discuss the misuse risk of the generative model and mention the safeguards
used by the base model, in Appendix E.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: The paper cites the original sources of all datasets and pre-trained models used.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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15.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The code and model checkpoints is publicly available at https://github.
com/aailab-kaist/DATE.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not include crowdsourcing.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not include crowdsourcing.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The paper does not involve large language models (LLMs) as part of the
proposed method, experiments, or core contributions.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Proof and additional theoretical analysis

A.1 Proof of Proposition 1

Proposition 1. Let h(cy,--- ,cr) = By, [h(x0;y)] where xo.r—1 ~ [1-—; po(%r_1|%r, Cr),
xp ~ pr, and C; = {c; : ||c; — Corgl|2 < p, ¢ = ¢ V7 < t}. Then,

max h(cy, - ,cr) = max---max---maxh(cy, - ,cr) (15)
C1:T Ci [ cr
> max ---max --- max h(ci, - ,cr) > h(Corg, " » Corg)- (16)

c1€Cy c€Cy creCr

Proof. The first equality of Eq. (15) holds because the order of the maximization problems in the
LHS of Eq. (15) can be interchanged. The second inequality, from the RHS of Eq. (15) to the LHS of
Eq. (16), follows since both problems have the same objective function, but the LHS of Eq. (16) has a

more restrictive feasible set. Finally, the last inequality from Eq. (16) holds because (Corg, - - - , Corg)
belongs to the feasible set of the LHS of Eq. (16), which ensures that the optimal value of the LHS of
Eq. (16) is equal to or greater than h(corg, - - - 7corg). O]

A.2 Proof of Theorem 2

Theorem 2. The score function for the text embedding c, updated by DATE can be expressed as:

AN Vehi (Xt,Corg) ~ 2
Vi, logpe(xt[€:) = Vi, 10g po(Xt|Corg) + PV, { ¥ostxr oz Ve Inge(Xt|Corg)} +0(p?). (17)

Proof. By applying a first-order Taylor expansion, we obtain the following:

Vcht(Xt,Corg) ) (18)

chht(xt7 Corg)”2
)T

log pe (x¢|€:) = log pe (Xt Corg + P

Vcht (Xt ’ Corg
|vcht (Xt7 Corg) | |2

= log pe(x¢|Corg) + f] Velogpe(xi|corg) + O(p?).  (19)

Taking the gradient with respect to x; on both side then confirms the statement:

Vi, logpe(x:[&;) (20)
vcht (Xta corg) )
[V ehi(xt, Corg) |2

Corg + P 2

= Vx, log pg (Xt
Vehy (Xt7 Corg)T
IV ehi (%4, Corg) |2

— Vi, 10g Do (Xt[Cors) + Vi {p Velogpo(xilcors) b + O(p). (22)

O

A.3 Detailed derivation of Eq. (13)

By applying a first-order Taylor approximation of h; around ¢; = 0 in Eq. (23), we derive the
expansion shown in Eq. (24). Since the first term in Eq. (24) is independent of ¢,, it can be omitted
from the optimization objective, as shown in Eq. (25).

€; ==arg max h(Xy, Corg + €139y, 0) (23)
lletll2<p

~ arg max {ht (Xt» Corg; Y, 0) + e;&lﬂvcht (Xtv Corg; ¥, 0)} 24
lletll2<p

= arg max ezvcht (X¢; Corg; Y, 0) =: €. (25)
lletll2<p
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A.4 Theoretical analysis of approximation errors

When the text-conditioned evaluation function h is the CLIP score, we analyze the approximation
error for Eq. (9) analogously to the theoretical analysis presented in [8].

Proposition 3. Let h(xo;y) = g(f1(x0); f1(y)) is the CLIP score, where £ and f1 are CLIP image
and text encoder, respectively, and g is the cosine similarity. Assume that there exists a constant
(x0)|| > K forall xg € Xy, where X, is the support of pe(xo|X¢, ¢t). Then, the
approximation error of Eq. (10) is upper bounded by:

1
UEXONPG(XOIxt,Ct)[h(XO;y)] h(Xo0;y | < K max ||v fr(x )H smi, (26)

x0€Xp

where my := [ ||xo — Xol|p(xo|x¢, ¢t)dxo is the mean deviation of the conditional distribution of
X0-

Proof. First, we prove the following lemma for the property of the cosine similarity.

Lemma 4. Assume that there exists a constant K > 0 such that ||x|| > K for all x. Then,
1
l9(y) = 9(xsy)l < 5= lhe = x| 27

Proof of Lemma. The gradient of g with respect to x is:

(y"x)
Vxg(x;y) = ( x) . (28)
1% ||||3/|| [l
Therefore, the norm of gradient can be derived as follows:
Vx| = | | < Il = o < 29)
xg(X;y Y= S Toaman Yy T S e
IIXHHyH IXII2 [Ix ||||y|| x|l — K
Therefore,
1
l9G6y) = 9(x3y)| < (max[[Vxg(x; y)l]) - [Ix = x| = =[x = x| (30)
Note that the first inequality comes from the mean value inequality.
O
From Lemma 4, we can derive the approximation error as follows.
|Exo~P9(xo\xmct) [h(x0;y)] — h(Xo;y)| < / |h(x05y h(%o;y)|pe(xo|xt, ct)dxo (31)

=/|9(fI(X0);fT(y)) 9(f1(%0); f7(y)) [pe (0|, €t )dxo

(32)
1 _
sgﬁmmwhmmmmmmwo @)
1
< i max [|Vfr(x /||x0 — Xol|pe (x0|x¢, ct)dxg
X0 EX|
(34)
= 2 max (Va0 35)
o K Xr(?ea/%(o ! m
O

In the upper bound of the approximation error in Eq. (26), K is the minimum norm of CLIP image
encoder outputs, which is about 25 in our experiments. Also, max ||V« f;(x)|| reflects the sharpness
of CLIP image encoder; since the encoder is composed of neural networks, this value is finite, and
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smoother image encoders result in a lower approximation error. m; decreases as ¢ becomes smaller.
Therefore, as t approaches 0, the approximation error is reduced.

Additionally, by Taylor’s theorem, the approximation error for text embedding updates in Eq. (13) is
1 ~
Ri(er) = 5ei Hi (€)er = O(p?), (36)

where H},, (€) is the Hessian of h, evaluated at some € between Cops and Corg + €;. Since ||| < p,
this error is O(p?). Therefore, tuning p trades off approximation accuracy against optimization
flexibility. We empirically analyze this trade-off in Figure 7.

A.5 Theoretical analysis with convex text-conditioned evaluation function

In Section 3.1 of the main manuscript, we reformulate the optimization problem in Eq. (8) into
Eq. (10) using the linear approximation in Eq. (9). At this point, when the text-conditioned evaluation
function h is convex, the objective functions of the two optimization problems satisfy the following
inequality.

Proposition 5. If h is convex with respect to xq, then,
h’t (Xta Cy Y, 9) = h()_(O (Xt7 C¢; 9)7 y) S ]Exo~pg(x0|xt,ct) [h(XO; y)]a (37)

where Xo(X¢, €13 0) = By pg (x0|xs,00) [X0)-
Proof. This follows directly from Jensen’s inequality for the convex function h. O

Consequently, optimizing the text embedding c; to maximize the proposed objective in Eq. (10)
is expected to increase the target value Ey ;0 (xo|x,,c;) [(X0; ¥)] as well. However, Proposition 5
relies on the assumption of the convexity of h with respect to xy. This assumption may not always
hold in practice, since h often contains a pre-trained neural network that introduces non-convexity.

B Related works

B.1 Diffusion models

We additionally provide an explanation of the stochastic differential equation (SDE) formulation of
diffusion models. In continuous time space, the diffusion process can be generalized by formulating
the forward and reverse processes as SDEs [53]. The forward process is formulated as:

dXt = f(Xt7 t)dt + g(t)dVVt7 (38)

where f and ¢ are the drift and volatility functions, respectively. Here, w; denotes the standard
Wiener process and ¢ € [0, T]. Based on Eq. (38), a data instance xg is gradually perturbed towards

XT.
Once f and g of the forward process are specified, the reverse process is uniquely defined as shown
in Eq. (39), following the previous work [1]:

dx; = [f(xs,t) — g% (t)Vx, log g (x;)]dE + g(t)dw,, (39)

where ¢;(x;) is the marginal probability distribution of x; at timestep ¢, and w; denotes the reverse-
time Wiener process.

To generate samples, the reverse process requires an intermediate score function Vy, log ¢;(x¢),
which is generally intractable. Instead, a neural network sy(x;, t) is used to approximate the score
function via score matching loss [53]. Note that the score matching objective serves as an upper
bound on the negative log-likelihood under certain temporal weighting functions [52]. This score
matching objective is equivalent to the noise prediction [18, 9] or the data reconstruction [25, 22]
objectives.
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Table 6: Comparison of the diffusion guidance methods.

Method Guidance target Guidance module

Classifier-free guidance [19]  Perturbed data x; Unconditional score network sg (x¢, &, t)
Classifier guidance [9] Perturbed data x; Time-dependent classifier i (x¢, c)
Universal guidance [2] Perturbed data x;  Time-independent classifier h(Xo(x¢, c))
DATE (ours) Text embedding c;  Time-independent classifier h(Xo(x¢, ct))

B.2 Guidance methods for diffusion models

Conditional diffusion models have been developed to generate samples that align with a given
condition y. These models approximate the conditional score Vy, log ¢:(x:|y) by incorporating the
condition as an additional input to the score network [9, 22]. In this paper, we represent this input as
the condition embedding c, which encodes the information of y.

To further improve conditional generation, diffusion models often incorporate a guidance term into
the unconditional score function, as summarized in Table 6. Classifier guidance (CG) [9] introduces
the gradient of a time-dependent classifier to encode conditional information.

ScG(Xt, €, t) = sg(Xt, @, t) + wVx, log ht(x¢, €). (40)

In contrast, classifier-free guidance (CFG) [19] eliminates the need for an explicit classifier by
leveraging the difference between conditional and unconditional score estimates.

scrG(X¢, €, 1) = sg(x¢, T, 1) + w(se(xt,c,t) — sg(x¢, @,t)). 41)

Universal guidance (UG) [2] approximate the time-dependent guidance using a time-independent
classifier, thereby avoiding time-dependent training.

suG(x¢, €, t) == sg(x¢, D, 1) + wVy, log h(Xo(xs, €)). (42)

Similar to UG, our method also uses a time-independent classifier to derive guidance. However,
instead of applying this guidance to the perturbed data, we use it to directly adjust the text embeddings,
thus modifying the conditioning information as its source. The theoretical implications of this text
embedding guidance are further analyzed in Theorem 2 from Section 3.3.

B.3 Improving sampling process in fixed diffusion models

Recent studies have explored refining the sampling process in fixed diffusion models [23, 58, 38].
DG [23] adjusts the score network by incorporating an auxiliary term from a discriminator that
differentiates real and generated samples, reducing network estimation errors during sampling
process. Restart [58] alternates between reverse and forward steps at fixed time intervals. It first
denoises samples with a deterministic sampler up to a predefined timestep, then injects noise to
introduce stochasticity, and repeats this process to mitigate accumulated errors. DiffRS [38] evaluates
sample quality at intermediate sampling steps using a discriminator, applies a rejection sampling
scheme, and refines rejected samples by injecting instance-dependent stochastic noise.

Several studies have explored improving the sampling process in fixed diffusion models, specifically
tailored for text-to-image diffusion models [4, 46, 35]. AnE [4] improves subject representation by up-
dating the intermediate perturbed latent to maximize attention scores for subject tokens. SynGen [46]
adjusts the intermediate perturbed latent to enforce linguistic binding between entities and their visual
attributes by aligning the attention maps of paired tokens while differentiating the attention maps of
unrelated word tokens. CONFORM [35] similarly updates the intermediate perturbed latent using
contrastive loss on attention maps.

Unlike these methods, our approach does not require additional training of auxiliary components
(e.g., a discriminator), updates the text embedding, and does not require additional information about
the structure of the text prompt (e.g., binding token pairs). Moreover, our method can be integrated
with existing approaches, as demonstrated in Section 4.3 with experiments using CONFORM.
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C Additional experimental settings

C.1 Experiments on COCO dataset

This subsection provides the experimental settings for Sections 4.1 and 4.2, where DATE is evaluated
on the COCO validation set [30]. We use Stable Diffusion v1.5, pre-trained on LAION-5B [49], with
a fixed CLIP ViT-L/14 text encoder [42] at a 512 X 512 resolution. We implement DATE on the
Stable Diffusion pipeline with the Restart codebase,” built on Diffusers.* For EBCA [40], we use the
official EBCA codebase,’ which is also built on Diffusers, and its provided hyperparameters. We
conducted most experiments on a single NVIDIA A100 GPU with CUDA 11.4, and some ablation
studies were performed on a single Intel Gaudi v2 using SynapseAl 1.18.0. Our implementation is
publicly available at https://github.com/aailab-kaist/DATE.

We use DDIM [51] with 50 sampling steps as the default sampler using classifier-free guidance [19],
and experiments with the DDPM [ 18] sampler are provided in Appendix D.1. We set the guidance
scale to 8 by default and provide results for various guidance scales in Appendix D.1. For DATE
settings, unless otherwise specified, we set the text-conditioned evaluation function h to CLIP score,
computed using CLIP ViT-L/14 from the Hugging Face library. If we set h to ImageReward, we
compute ImageReward using the BLIP-based checkpoint from the official ImageReward codebase.®
We set the scale hyperparameter p to 0.5 and use the embedding from the previous update as the
original text embedding c,. For the ablation studies in Table 5, the text embedding is updated every
10% of the total sampling steps; and for the sensitivity analysis on p in Figure 7, the text embedding
is updated at every step.

We perform experiments across multiple backbones and samplers. For each backbone, we adopt
the default sampler and configuration provided by the diffusers library. For PixArt-« [7] as the text
encoder is used. Sampling follows the default setup, employing DPM-Solver [32] with 20 steps
and a classifier-free guidance scale of 4.5. SD3 [11] incorporates CLIP-L/14, CLIP-bigG/14, and
T5-XXL encoders, utilizing a flow-matching Euler sampler (28 steps) with a guidance scale of 7.0.
FLUX [28] adopts a rectified flow transformer paired with CLIP-L/14 and T5-XXL text encoders,
using a flow-matching Euler sampler (28 steps) and a guidance scale of 3.5. SDXL [41] relies on
CLIP-L/14 and CLIP-bigG/14 as text encoders with a DDIM sampler, 50 steps, and a guidance scale
of 5.0.

Implementations for PixArt-o,, SD3, FLUX, and SDXL are based respectively on the PixArtAl-
phaPipeline,’ StableDiffusion3Pipeline,® FluxPipeline,” and StableDiffusionXLPipeline,' available
in the Diffusers library.

Following the evaluation protocol of previous studies [39, 58, 38], we generate 5,000 images from
randomly sampled captions in the COCO validation set. We fix the captions and random seed in all
experiments. We evaluate text-to-image generation performance using zero-shot FID, CLIP score,
and ImageReward. Zero-shot FID (Fréchet Inception Distance) [17, 45] measures the distributional
similarity between real and generated images with the same text prompt in a feature space. Lower
zero-shot FID values indicate that the generated images are more realistic and closer to the real image
distribution. CLIP score [16] quantifies semantic alignment between a generated image and its text
prompt by computing the cosine similarity between their embeddings in CLIP space [42]. A higher
CLIP score suggests better text-image alignment. ImageReward [57] is a learned reward model
trained on human preference data. Using a BLIP-based vision-language model [29], it evaluates
text-image alignment and fidelity based on human judgment. A higher ImageReward score indicates
that the generated image is more likely to be well aligned with human preferences.

Shttps://github.com/Newbeeer/diffusion_restart_sampling
“https://github.com/huggingface/diffusers
Shttps://github.com/EnergyAttention/Energy-Based-CrossAttention
*https://github.com/THUDM/ImageReward
"https://huggingface.co/docs/diffusers/main/en/api/pipelines/pixart
$https://huggingface.co/docs/diffusers/main/en/api/pipelines/stable_diffusion/
stable_diffusion_3
*https://huggingface.co/docs/diffusers/main/en/api/pipelines/flux
Yhttps://huggingface.co/docs/diffusers/main/en/api/pipelines/stable_diffusion/
stable_diffusion_x1
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Table 7: Prompt categories and examples on AnE dataset [4].

Prompt Category Template Example # of prompts
Animal-Animal a [animalA] and a [animalB] a monkey and a frog 66
Animal-Object a [animal] and a [color][object] a monkey and a red car 144
Object-Object a [colorA][objectA] and a [colorB][objectB]  a pink crown and a purple bow 66

C.2 Multi-concept generation

We conduct our experiments on the Attend-and-Excite (AnE) dataset proposed by [4]. There are
three types of prompts: 1) Animal-Animal: “a [animalA] and a [animalB]”, 2) Animal-Object: “a
[animal] and a [color][object]”, and 3) Object—Object: “a [colorA][objectA] and a [colorB][objectB]”.
Detailed examples are provided in Table 7.

For baseline comparison, we evaluate our approach against base Stable Diffusion and CON-
FORM [35]. We implement the CONFORM-based methods using its official codebase,'! which is
built on Diffusers. We use DDIM with 50 sampling steps using classifier-free guidance scale of 8. We
set h as CLIP score, the scale hyperparameter p to 0.5, use the embedding from the previous update
as the original text embedding ¢, and text embedding is updated at every step.

We follow the quantitative evaluation protocol from previous studies [4, 35]. For each prompt, we
generate images using 64 random seeds and evaluate performance based on text-image similarity and
text-text similarity in CLIP space. Full prompt similarity measures the CLIP-based similarity between
the entire prompt and the generated image. This metric measures the overall alignment, but it may
not fully capture whether all concepts are represented. Minimum object similarity is computed by
splitting the prompt into two sub-prompts and taking the lower CLIP similarity score between them,
ensuring that even the least-represented concept is considered. For these similarities, we employ
the CLIP ViT-B/16 model. The text embedding for each prompt is obtained by averaging the CLIP
embeddings of 80 predefined prompt templates (e.g., “a good photo of a {prompt}.”, “a photo of a
clean {prompt}.”). These similarities are then computed as the average similarity between this text
embedding and the CLIP embeddings of the 64 generated images. For text-caption similarity, we
generate captions for the 64 generated images using a pre-trained BLIP image-captioning model [29].
Then, we compute the CLIP similarity between the prompt’s text embedding (obtained as described
above) and the embeddings of the generated captions. The resulting similarity score is averaged
across all generated images. To compute these metrics, we use the official implementation of AnE.'?

C.3 Text-guided image editing

We integrate DATE with DDPM inversion [21] on the ImageNet-R-TI2I dataset introduced in
PnP [54]. DDPM inversion is a recent method that memorizes all latent vectors while tracing the
inverse trajectory of a diffusion process. It generalizes DDIM inversion in the perspective of DDPM
sampling framework. Our implementation is based on the official DDPM inversion codebase.'?

For evaluation, we follow the parameter setting of DDPM inversion and vary the classifier-free
guidance scale. Specifically, we use Stable Diffusion v1.4 with 100 sampling steps. DDPM inversion
is evaluated with a guidance scale of {9, 12,15, 18, 21}, while DATE is tested with a guidance scale
of {6,9,12,15}. We set h as CLIP score, set p to 0.5, initialize each step with the embedding from
the previous one, and update the text embedding at every step. We report LPIPS [60] for perceptual
similarity with the source image and CLIP score for alignment with the target prompt. LPIPS
quantifies perceptual similarity using feature representations from a pre-trained VGG network [50],
and CLIP score evaluates the cosine similarity between the target prompt embedding and the modified
image embedding from a pre-trained CLIP model.

Uhttps://github.com/gemlab-vt/CONFORM
Phttps://github.com/yuval-alaluf/Attend-and-Excite/tree/main/metrics
Bhttps://github. com/inbarhub/DDPM_inversion
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Table 8: Performance on the COCO validation set with Stable Diffusion v1.5 using the DDPM
sampler with a classifier-free guidance scale of 8. Sampling steps are 50 unless otherwise specified.
Time is the average sampling time (min.) for 64 samples, and NFE is the number of score network
evaluations. Bold values indicate the best performance.

Method \ Time NFE \ Zero-shot FID|  CLIP scoref ImageRewardf
Fixed text embedding 5.76 100 21.94 0.3223 0.2567
Fixed text embedding (steps=70) 7.91 140 21.11 0.3212 0.2589
EBCA [40] 8.13 100 30.95 0.2851 -0.2843
DATE (ours)

10% update with CLIP score 7.90 105 20.78 0.3239 0.2630

all updates with CLIP score 2421 150 20.68 0.3312 0.2712

10% update with ImageReward | 7.90 105 21.14 0.3246 0.4913

all updates with ImageReward | 24.21 150 21.33 0.3240 1.3262

Table 11: Computation time per sampling step for a batch size of 4. Table 12: GPU memory
usage for a batch size of

Operation Time (sec.) 4.

Uncond. and cond. score network evaluation (base sampling) 0.33

Text embedding update (including gradient computation) 1.07 Method  Memory (GB)

Updated score network evaluation 0.28 Fixed 24.0
DATE 61.5

D Additional experimental results

D.1 Additional experimental results on COCO dataset

Other sampler and guidance scale Table 8 shows the experimental results of the baseline and
DATE using the DDPM sampler, and Table 9 and Figure 15 show the results over different classifier-
free guidance scales. Note that changing the classifier-free guidance scale does not affect the sampling
time and NFE. We observe that DATE achieves performance improvements over the baseline in most
metrics. These results demonstrate that our method consistently improves text-image alignment for
generated images across various samplers and guidance scales.

Additional experiment results on multi-objective optimization Table 10 reports results when
using each metric, or their weighted combinations, is used as DATE’s evaluation function. In most
cases, DATE improves performance over the fixed embedding, regardless of whether a given metric is
used as the evaluation function. One exception is when AS is included, where performance on other
metrics often decreases, likely because AS, being independent of the text input, offers little synergy
with semantic alignment metrics, as shown in Figure 4. Consistent with Figure 5b in the main text,
the combined objective can yield higher values than using a single metric alone as indicated by the
bold numbers in Table 10, demonstrating the synergistic potential of combining metrics during text
embedding optimization.

Computational costs Updating embeddings at each timestep increases the computational costs. As
shown in the leftmost graph in Figure 9 of the main text, sampling time increases with update propor-
tion. The overhead stems from extra score network evaluations for x, and gradient computations
through h and diffusion model, as mentioned in Section 3.4. A breakdown of the time required for
each of these operations is provided in Table 11, and GPU memory usage is reported in Table 12.

Despite the added computational cost, Figure 14 shows that DATE consistently achieves better
performance than fixed embeddings at comparable sampling times. We generate samples using text
prompts of the COCO validation set with Stable Diffusion v1.5 using the DDIM sampler. Fixed
embedding adjusts the number of sampling steps, and DATE adjusts both the number of sampling
steps and embedding updates. DATE outperforms the fixed embedding on all evaluation metrics and
sampling times. Notably, simply increasing the number of sampling steps in the fixed embedding
setup yields only marginal improvements.
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Table 9: Performance on the COCO validation set with Stable Diffusion v1.5, varying classifier-free
guidance (CFG) scales. Sampling steps are 50 unless otherwise specified. For DATE, we apply a 10%
update with CLIP score. Bold values indicate the best performance for each sampler and guidance
scale.

Sampler CFG scale Method | Zero-shot FID| CLIP scoret ImageReward?
DDIM 2 Fixed text embedding 15.90 0.2915 -0.3616
Fixed text embedding (steps=70) 16.49 0.2905 -0.3664
EBCA [40] 28.41 0.2492 -0.9913
DATE (ours) 15.00 0.2959 -0.2838
3 Fixed text embedding 14.04 0.3065 -0.0947
Fixed text embedding (steps=70) 14.14 0.3056 -0.0981
EBCA [40] 20.67 0.2710 -0.6798
DATE (ours) 13.70 0.3089 -0.0451
5 Fixed text embedding 16.14 0.3163 0.1165
Fixed text embedding (steps=70) 15.70 0.3155 0.1072
EBCA [40] 20.98 0.2842 -0.4133
DATE (ours) 15.24 0.3182 0.1296
8 Fixed text embedding 18.66 0.3204 0.2132
Fixed text embedding (steps=70) 18.27 0.3199 0.2137
EBCA [40] 25.85 0.2877 -0.3128
DATE (ours) 17.90 0.3237 0.2364
DDPM 2 Fixed text embedding 14.07 0.3008 -0.2173
Fixed text embedding (steps=70) 13.58 0.2999 -0.2125
EBCA [40] 22.97 0.2629 -0.8076
DATE (ours) 13.77 0.3033 -0.1864
3 Fixed text embedding 15.17 0.3129 0.0315
Fixed text embedding (steps=70) 14.85 0.3120 0.0482
EBCA [40] 21.51 0.2779 -0.5186
DATE (ours) 15.04 0.3158 0.0717
5 Fixed text embedding 18.72 0.3199 0.1941
Fixed text embedding (steps=70) 18.27 0.3190 0.1974
EBCA [40] 25.07 0.2862 -0.3178
DATE (ours) 18.32 0.3225 0.2051
8 Fixed text embedding 21.94 0.3223 0.2567
Fixed text embedding (steps=70) 21.11 0.3212 0.2589
EBCA [40] 30.95 0.2851 -0.2843
DATE (ours) 20.78 0.3239 0.2630
a 1 0.75
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Figure 14: Performance comparison between fixed text embedding and DATE with ImageReward
over different sampling times (minutes per 64 samples). FID values are computed using 1,000
samples, unlike the 5,000 samples used in the main text, which causes a scale discrepancy.
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Table 10: Results on COCO with SD v1.5 (extension of Table 1 in the main text), including various
combined evaluation functions. Columns 2-5 indicate which metrics are used in h. Higher and lower
weights in columns 2—35 are denoted by © and o;, respectively; a blank indicates the metric is not
used. Bold numbers mark cases where combined metrics outperform the target single metric alone.

Evaluation function used in 1 Metrics
Method AS CS IR PS FID] ASt CSt IRT PSt
Fixed (50 steps) 18.66 5.38 0.3204 02132 21.51
Fixed (70 steps) 1827 537 0.3199 0.2137 21.50

DATE (50 steps, 10% update)
with a single evaluation function

AS © 18.82 558 0.3169 0.1910 21.46
CS © 17.90 535 0.3237 0.2364 21.53
IR © 18.61 540 0.3224 04792 21.53
PS © 1849 542 0.3225 02745 2193
with two combined evaluation functions

AS+CS © o 18.77 558 0.3171 0.1911 21.46
o © 18.15 538 0.3219 0.2179 2143
AS+IR © o 18.90 5.57 0.3176 0.2428 21.48
o © 18.15 543 0.3216 04575 21.53
AS+PS © o 18.81 5.58 0.3175 0.2091 21.54
o © 18.67 5.44 0.3219 0.2705 21091
CS+IR © o 17.94 539 0.3241 04430 21.52
o © 18.04 540 0.3225 04756 21.53
CS+PS © o 18.33 540 0.3241 0.2839 21.87
o © 18.61 542 0.3224 0.2753 2193
IR+PS © o 18.15 541 0.3226 04774 21.63
o © 18.54 542 0.3227 03126 2193

with three combined evaluation functions
AS+CS+IR © o o 18.87 5.57 0.3179 0.2487 21.48
o © o 18.50 5.46 0.3208 0.3332 21.50
o o © 18.07 543 0.3219 04557 21.53
AS+CS+PS © o o 18.96 5.57 0.3179 0.2092 21.55
o © o 18.62 547 0.3211 0.2450 21.69
o o © 18.69 544 0.3221 0.2705 2191
AS+IR+PS © o o 18.93 557 0.3186 0.2602 21.56
o © o 1833 544 03222 0.4599 21.61
o o © 18.72 544 0.3224 03071 21091
CS+IR+PS © o o 1832 541 0.3244 04192 21.81
o © o 18.16 5.41 0.3229 04812 21.63
o o © 18.68 542 0.3228 0.3138 21.92

Statistical significance To assess the statistical significance of the CLIP score improvements
introduced by using ImageReward as h, we conduct a paired t-test. Comparing samples generated
with fixed embeddings (sampling time = 6.34 minutes) and DATE (sampling time = 6.03 minutes),
we obtain a p-value of 0.00056, indicating a statistically significant improvement at comparable
sampling costs.

D.2 Additional analysis of DATE

Multiple text embedding updates We hypothesize that performing multiple text embedding
updates per sampling step can expand the search space beyond the initial p-ball, potentially leading to
improved performance. Figure 16 indicates that the CLIP score generally increases with more update
iterations. However, each additional iteration incurs extra forward and backward passes, resulting in
a linear increase in sampling time.

31



3 Y [}
h o 0.324 —
- 18 s - 18 4 g 15 '/ ) /.
a =] an L
2 17 2 17 £ o/ § /‘\.
R £ . 210 ./ @ 0.322 o
S 16 o $16 o £ v o
5} 5] < @’ =]
N . N o wn / —
l 15 o / l 15 e / l pe (_) o
1 \3 14 \3 0 2 4 0 2 4
030 031 o 02 00 o2 Update iter. per step Update iter. per step
CLIP score (CS) — ImageReward (IR) — N . .
Figure 16: Sensitivity analysis on the number of up-
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Figure 15: Performance between FID sampler and a classifier-free guidance scale of 8. For
and text-image alignment metrics vary- DATE, we apply a 10% update with CLIP score. When
ing the classifier-free guidance scale the number of iterations is 0, it is identical to fixed em-

with the DDIM sampler. bedding.

Text prompt A bearded man in a wetsuit holding a surfboard.

Ip(y) > c5> > ! Cq
(ours)

Figure 17: Generated images of DATE and various fixed text embeddings. The bottom image in each
column is the generated image, while the two images above it are zoomed-in views of the boxed
regions in the generated image. I(y) represents the text embedding from the original text encoder,
while c5, ¢y, . . ., c1 represent the text embeddings updated during the intermediate sampling steps of
DATE, with larger indices indicating earlier stages of sampling. The leftmost image is generated using
DATE with dynamic updates, while the remaining images are generated with fixed text embeddings.

Time-adaptive text embedding To analyze the updated text embeddings of DATE, we inject the
each updated embedding into the entire sampling process. Figure 17 shows the generated images
from DATE and several fixed text embeddings. With the embedding obtained after the middle
sampling step (c4), we observe that the information ‘two men’ is transformed into ‘a man’ in the text
embedding. Furthermore, when using the updated text embeddings at later sampling steps (cz, 1),
we observe that the face region of the generated image appears distorted. This suggests that the final
updated text embedding is not necessarily globally optimal, and that an appropriate text embedding
may exist at each diffusion timestep.

D.3 Additional results for applications

Multi-concept generation In addition to the main evaluation metrics, we also assess model perfor-
mance using the TIFA score [20], a recently proposed metric designed to measure the faithfulness
of generated images to their textual prompts. TIFA leverages a Visual Question Answering (VQA)
model to quantify alignment between image content and prompt, providing an evaluation that is
independent of CLIP.

Table 13 presents the full evaluation results across all prompt types in the multi-concept generation
setting. We also include results for DATE with ImageReward as h. DATE consistently improves the
TIFA score across all tested cases. Furthermore, when using ImageReward as i, DATE continues to
outperform the baseline across all evaluation metrics, highlighting its robustness and effectiveness
regardless of the chosen evaluation function. In addition, Figure 18 shows more generated images for
various prompts from the AnE dataset. These results demonstrate that DATE effectively applies to
multi-concept generation methods, enabling the generation of images that accurately reflect the given
concepts.
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Table 13: Performance comparison for multi-concept generation on the AnE dataset, compared across
Stable Diffusion, DATE with ImageReward, and DATE with CLIP score.

Prompt type Method | Full prompt Min. object ~Text-caption TIFA score
Stable Diffusion 0.3123 0.2174 0.7677 0.6847
Animal-Animal + DATE (ImageReward) 0.3219 0.2371 0.7858 0.7948
+ DATE (CLIP score) 0.3282 0.2398 0.7888 0.8159
Stable Diffusion 0.3443 0.2480 0.7925 0.8223
Animal-Object + DATE (ImageReward) 0.3454 0.2512 0.8009 0.8486
+ DATE (CLIP score) 0.3530 0.2568 0.8009 0.8420
Stable Diffusion 0.3377 0.2404 0.7684 0.6402
Object-Object + DATE (ImageReward) 0.3391 0.2454 0.7706 0.6910
+ DATE (CLIP score) 0.3503 0.2544 0.7728 0.6643

SD + CONFORM + DATE SD + CONFORM + DATE
SR L5

L7

/ﬂwm I

A frog with a crown A yellow bow and a pink bowl

Figure 18: Additional generated images on the AnE dataset for multi-concept generation.

Source image DDPM inv. + DATE Source image DDPM inv. +DATE
8 A A ,
e S S

A sketch of a penguin — A video-game of a penguin A toy of a husky — A painting of a husky

Go R

eep — A cartoon of a jeep A sculpture of a cat — An embroidery of a bear

. EE ggﬁi ' ' i F

A sketch of a panda — A \Lu/ptun of a dog An embroidery of a castle — A sculpture of a pagoda

Figure 19: Additional examples of edited images on the ImageNet-R-TI2I dataset for text-guided
image editing.
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Text-guided image editing Figure 19 shows several examples of text-guided image editing using
DDPM inversion with and without DATE applied to the source images. For each method, we present
the processed image obtained with the hyperparameter that makes LPIPS less than 0.25. These
examples demonstrate that applying DATE to DDPM inversion improves text-guided image editing
by better preserving the structure of the source image while improving alignment with the target
prompt.

E Limitation and broader impact

Limitation One primary limitation of our approach is the additional computational overhead
introduced by updating text embeddings during the sampling process. These updates require gradient
computations, resulting in increased sampling time and memory usage. However, our experiments
demonstrate that DATE outperforms fixed embeddings under equivalent sampling-time budgets,
suggesting a favorable trade-off between efficiency and effectiveness. Nevertheless, repeated gradient
computations present challenges in terms of memory and computing efficiency, especially in resource-
constrained settings. Developing memory-efficient techniques for gradient updates is an important
direction for future work.

Another potential limitation is the dependence on the evaluation function. While we explore the use
of multi-objective evaluation functions and provide empirical evidence that DATE does not overfit
the evaluation function itself, the overall generation quality can still be influenced by the design and
reliability of the evaluation function. This highlights a broader challenge in text-to-image generation:
the field continues to lack fully reliable, general-purpose evaluation metrics. Continued research on
evaluation protocols and their integration with guidance mechanisms is crucial for advancing robust
and generalizable generation frameworks.

Broader impact Improving conditional embeddings in diffusion-based generative models remains
an underexplored area, despite being a key component of conditional generation. Our work addresses
this gap by proposing a general and effective method to refine text embeddings during sampling,
thereby enhancing alignment between the prompt and the generated image. A significant advantage
of our approach is that it operates without requiring any additional model training and is agnostic to
the backbone model and sampler. This makes it readily applicable to a wide range of text-to-image
generation systems.

However, using external modules introduces potential vectors for misuse. For example, adversarial
manipulation of these components could compromise model safety and lead to unintended or harmful
outputs. To mitigate these risks, appropriate safeguards could be incorporated into the evaluation
functions and sampling process. Responsible deployment of such systems should account for these
concerns.

F License information

Our implementation will be publicly released under standard community licenses. In addition, we
provide the license information for the datasets and models used in this paper:

SD vl.5: https://huggingface.co/spaces/CompVis/stable-diffusion-license
PixArt-a: https://github.com/PixArt-alpha/PixArt-alpha/blob/master/LICENSE
CLIP: https://github.com/openai/CLIP/blob/main/LICENSE

ImageReward:
https://github.com/THUDM/ImageReward/blob/main/LICENSE

TIFA: https://github.com/Yushi-Hu/tifa/blob/main/LICENSE
COCO: https://cocodataset.org/#termsofuse

AnE: https://github.com/yuval-alaluf/Attend-and-Excite/blob/main/
LICENSE

ImageNet-R-TI2I:
https://github.com/MichalGeyer/plug-and-play

Restart: https://github.com/Newbeeer/diffusion_restart_sampling
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EBCA: https

CONFORM:
https

DDPM Inversion:
https

://github.com/EnergyAttention/Energy-Based-CrossAttention
://github.com/gemlab-vt/CONFORM/blob/main/LICENSE

://github.com/inbarhub/DDPM_inversion/blob/main/LICENSE
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