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Abstract

We investigate the robustness of multi-agent learning in strongly monotone
games with bandit feedback. While previous research has developed learn-
ing algorithms that achieve last-iterate convergence to the unique Nash
equilibrium (NE) at a polynomial rate, we demonstrate that all such al-
gorithms are vulnerable to adversaries capable of poisoning even a single
agent’s utility observations. Specifically, we propose an attacking strat-
egy such that for any given time horizon T , the adversary can mislead any
multi-agent learning algorithm to converge to a point other than the unique
NE with a corruption budget that grows sublinearly in T . To further un-
derstand the inherent robustness of these algorithms, we characterize the
fundamental trade-off between convergence speed and the maximum tol-
erable total utility corruptions for two example algorithms, including the
state-of-the-art one. Our theoretical and empirical results reveal an intrin-
sic efficiency-robustness trade-off: the faster an algorithm converges, the
more vulnerable it becomes to utility poisoning attacks. To the best of our
knowledge, this is the first work to identify and characterize such a trade-off
in the context of multi-agent learning.

1 Introduction

In recent years, multi-agent learning (MAL) systems have become increasingly prevalent,
finding applications in diverse fields such as autonomous systems, distributed optimization,
and economic markets (Leo et al., 2014; Shalev-Shwartz et al., 2016; Jin et al., 2018; Qiu
et al., 2021; Zhou et al., 2021). These systems, characterized by agents acting independently
to maximize their own utilities in a non-cooperative environment, offer significant potential
but also introduce unique vulnerabilities to potential adversarial attacks. Consider, for ex-
ample, autonomous vehicles that communicate to coordinate traffic flow or financial trading
algorithms that interact to optimize individual profits (Sharif & Marijan, 2022; Ataiefard
& Hemmati, 2023; Shah et al., 2024). In both cases, each agent (vehicle or trader) aims to
maximize its own utility without direct collaboration. However, these systems can be highly
susceptible to manipulation, as a single compromised or malicious agent can significantly
influence the overall outcome. While it may be difficult for an adversary to directly attack
or control multiple agents, targeting a single vulnerable or insider agent can be more feasible
(Lin et al., 2020). This raises an intriguing question of whether an adversary can still create
a disruptive outcome by simply poisoning the utility of one agent.

This scenario—where a single agent in an MAL system is targeted for a utility poisoning
attack—presents a new and critical challenge. Prior research has primarily focused on
two related but distinct areas: adversarial attacks on individual agents in online learning
environments (Bogunovic et al., 2021a; Jun et al., 2018; Garcelon et al., 2020), and many-
agent attacks on MAL systems (McMahan et al., 2024; Guo et al., 2021; Wu et al., 2023;
Ma et al., 2021; Zhang et al., 2023; Liu & Lai, 2023). However, the impact of single-agent
attacks specifically in the multi-agent learning context remains underexplored. In this work,
we address this gap by investigating the robustness of MAL dynamics against single-agent
utility poisoning attacks. We show that even when one agent is compromised, the system
can be disrupted, revealing a stark vulnerability that has been overlooked in prior studies.
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To study the effect of single-agent poisoning in multi-agent systems, we use NE-finding
dynamics in monotone games as our benchmark. Monotone games (Rosen, 1965), which
include well-known models like Cournot competition (Cournot, 1838), Kelly auctions (Kelly
et al., 1998), and Tullock contests (Tullock, 2008), represent a broad class of multi-agent
strategic systems. In these games, agents’ utility functions are concave, and many well-
established MAL dynamics converge to their unique NE (Even-Dar et al., 2009; Farina
et al., 2022; Bravo et al., 2018; Ba et al., 2024; Tatarenko & Kamgarpour, 2020; Cai & Zheng,
2023), making them ideal benchmarks for studying the effects of single-agent poisoning on
system-wide behavior.

Our theoretical results demonstrate that single-agent poisoning attacks can drive the dy-
namics away from the original NE, using an imperceptible, sublinear budget with respect
to the time horizon. This holds for all MAL algorithms in this setting. We also investi-
gate the robustness of two representatives of such MAL algorithms (Ba et al., 2024; Bravo
et al., 2018) and show that by sacrificing convergence speed, one can increase the system’s
tolerance to corruption, revealing a fundamental trade-off between efficiency and robustness.

Our contributions can be summarized as follows: (1) We propose a utility poisoning strategy
that can mislead any MAL dynamics in strongly monotone games to converge to a new
NE with a sublinear corruption budget, even when only targeting a single agent. (2) We
analyze the robustness of MAL algorithms against general utility poisoning attacks, showing
that adjusting the learning rate introduces inherent robustness. (3) Our findings uncover
an efficiency-robustness trade-off in MAL dynamics, where faster-converging dynamics are
more vulnerable to utility poisoning. To the best of our knowledge, this is the first work to
reveal this trade-off in multi-agent learning systems.

2 Related Work

Adversarial attacks on multi-agent learning—often termed “steering” or “policy teach-
ing”—have been extensively studied under various assumptions about the attacker’s knowl-
edge, objectives, and strategies. For instance, Liu & Lai (2023) show that in certain Markov
games, neither action poisoning nor reward poisoning alone can be both efficient and success-
ful, even with complete knowledge of the environment (“white-box” setting), highlighting
challenges in designing effective attacks. Similarly, Wu et al. (2023) investigate reward poi-
soning attacks on offline multi-agent reinforcement learners, demonstrating how adversaries
can manipulate outcomes in offline settings.

Another line of research focuses on designing incentives to guide multi-agent dynamics to-
ward a desirable equilibrium, known as “equilibrium steering” (Zhang et al., 2023; Canyak-
maz et al., 2024; Huang et al., 2024). Ma et al. (2021) consider game redesign where a
designer, operating in a white-box setting, aims to induce players to choose targeted actions
in a normal-form game using a sublinear cost, assuming the players employ no-regret learn-
ing. The most relevant work to ours is Zhang et al. (2023), which shows that a sublinear
total incentive can induce a predetermined equilibrium against no-regret agents. However,
their approach can only steer the game to an existing equilibrium and cannot achieve a
non-equilibrium outcome without incurring a cost of Ω(T ).

3 Preliminaries

Our study focuses on strategic games with a finite number of agents [n] = {1, · · · , n} and
continuous action sets {Xi}ni=1 associated with agents i ∈ [n]. During play, each agent i
chooses an action (i.e., a pure strategy) xi ∈ Xi ⊂ Rdi , where di is the dimension of action
space of agent i, and forms the joint action profile x = (xi;x−i) ≡ (x1, · · · ,xn). We
denote d := maxi∈[n] di. Let X =

∏n
i=1 Xi be the game’s strategy space, and each agent’s

reward is determined by a utility function ui : X → R. Without loss of generality we
assume the range of each ui is a bounded region [0, 1]. We do not require agents know their
utility functions and only assumes that they can observe the point-wise feedback ui(x), also
known as bandit feedback in online learning literature. Such a game is denoted by a tuple
G ≡ G(n,X , {ui}ni=1). The commonly adopted solution concept for such strategic games is
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Nash equilibrium (NE), an action profile where no agent can deviate unilaterally to improve
her utility. The formal definition of NE is given by the following:

Definition 1. A joint strategy profile x∗ = (x∗
1, · · · ,x∗

n) forms a Nash equilibrium (NE)
of a game G, if for every agent i, x∗

i is a best response to the opponents’ strategies x∗
−i;

formally,
ui(x

∗
i ,x

∗
−i) ≥ ui(xi,x

∗
−i) for every xi ∈ Xi. (1)

3.1 Monotone Games

Much of this paper’s theoretical development focuses on an important class of games called
strictly monotone games (strictly MG). This focus is due to at least two reasons. First, from
computational perspective, strictly monotone games are one of the most general classes of
continuous games that admit efficient algorithms for NE; it includes most popular continuous
games such as Cournot competition (Cournot, 1838), Tullock contests (Tullock, 2008), all
strictly convex-concave zero-sum games, and any game with a strictly concave potential.
Second, strictly monotone games turn out to admit fast converging (to NE) multi-agent
learning algorithms (Bravo et al., 2018). Both conditions are important for our theoretical
analysis. The concept of “monotonicity”, first introduced by Rosen (1965), refers to games
where each agent has a concave utility function, along with a global condition known as
diagonal strict concavity (DSC). A stronger version of the DSC condition defines a sub-class
known as strongly monotone games. Formal definitions of these are provided below.

Definition 2 (Strictly/strongly monotone games). A continuous multi-agent game
G(n, {Xi}ni=1, {ui}ni=1) is strictly monotone if for any x = (x1, · · · ,xn),x

′ = (x′
1, · · · ,x′

n) ∈
X , it satisfies the diagonal strict concavity (DSC) property:

n∑
i=1

(x′
i − xi)

⊤(vi(x
′
i,x

′
−i)− vi(xi,x−i)) < 0, (2)

where vi(x) = ∇xi
ui(x) is the first-order derivative of ui with respect to xi. In addition, the

game G is β-strongly monotone if
∑n

i=1(x
′
i−xi)

⊤(vi(x
′
i,x

′
−i)−vi(xi,x−i)) ≤ −β∥x′−x∥22.

When discussing strongly monotone game in this paper, we treat β as a small constant
and sometimes omit it in bounds unless there is a need to emphasize the dependence on β.
Notably, the DSC property readily implies the strict concavity of uk with respect to xk for
any fixed x−k. This can be observed by taking x′ = (x1, · · · ,xk−1,x

′
k,xk+1, · · · ,xn) in

Eq. (2). As a result, the following best response mapping for each agent-k is well-defined1:

Best response mapping: BRk(x−k) ≜ arg max
xk∈Xk

uk(xk,x−k). (3)

Moreover, the following notion of game Hessian matrix will be useful throughout the paper:

Game Hessian: HG = [∇j∇iui(x)]i,j . (4)

The following smoothness property of agents’ utility functions will be useful for our analysis.

Definition 3 (Second-order L-smooth utilities). Given any game G, we say an agent k’s
utility function uk is second-order L-smooth if there exists a feasible set F ⊆ Rd such that
for any δ ∈ F , the following function hk(·, δ) : Rnd → Rd defined as

hk(x; δ) ≜
vk(xk + δ,x−k)− vk(xk,x−k)

∥δ∥
, (5)

is L-Lipschitz continuous; that is, for any x,x′ ∈ X , it holds that

∥hk(x; δ)− hk(x
′; δ)∥ ≤ L∥x− x′∥. (6)

Second-order smoothness requires that, for a given agent k, while holding other agents’
strategies fixed, the marginal change in k’s utility with respect to her own strategy xk is
Lipschitz continuous with respect to the joint strategies x of all agents. This is a relatively
mild assumption, as it essentially demands the smoothness of the second-order derivatives of

1Because the maximizer of a strictly concave function always exists and is unique.
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the agent’s utility. To see this connection, by letting δ → 0, we have hk(x; δ)→ ∂2uk

∂x2
k
· δ
∥δ∥ .

Hence, in this case Condition Eq. (6) becomes the Lipschitz continuity on the Hessian matrix
∂2uk

∂x2
k

of hk, which is why it is called second-order smoothness.

A few remarks are worth mentioning. First, our attack poison’s only a single agent and its
success is guaranteed so long as this single agent’s utility is second-order smooth. Second,
the smooth parameter L in Definition 3 turns out to affect how “controllable” the attack
outcome is. Our results will show that clever adversaries would tend to poison an agent
with small L parameter. Third, many well-known strongly monotone games exhibit this
smoothness property. For example, the n-agent Cournot competition is second-order 0-
smooth, where n-agent Tullock contest is second-order O(

√
n)-smooth (see Appendix A for

full descriptions of these games and proofs of these claims in Proposition 2 and 3).

3.2 The (α, p)-Multi-Agent Learning Dynamics under Bandit Feedback

Monotone games are known to have a unique Nash equilibrium, hence a substantial body
of recent work develops equilibrium-converging dynamics, including (Bravo et al., 2018;
Tatarenko & Kamgarpour, 2020; Cai & Zheng, 2023; Ba et al., 2024). These studies demon-
strate that in a strictly monotone game if each agent independently follows such an algo-
rithm, the joint strategies of all agents converge in last iterate to the NE at a polynomial
rate. Among these, we are particularly interested in algorithms that operate in a bandit
feedback environment, where agents do not have access to their utility functions neither
utility gradients, and can only observe the utilities (possibly noisy) resultant from the ac-
tions they take at that round. This feedback setting is challenging yet realistic, as it reflects
un-coupled learning situations where agents are unaware of their opponents’ existence and
simply optimize their own utilities selfishly. The following notion is crucial to our analysis.

Definition 4 ((α, p)-MAL Dynamics). We say a (possibly randomized) multi-agent learning
(MAL) dynamics A = (A1, · · · ,An) for an n-agent game G with bandit feedback is an (α, p)-

MAL dynamics if when each agent i uses algorithm Ai to determine her strategy x
(t)
i at

time t, then their joint strategy sequence {x(t)}∞t=1 converges to a Nash Equilibrium x∗ in
the following sense: there exists positive constants C, T0 such that for any t > T0 we have

E[∥x(t) − x∗∥p2] ≤ Cp · t−pα. (7)

In other words, an (α, p)-MAL dynamics leads to last iterate convergence to some NE of
the game G in the sense that the p-th power of the strategy profile difference, evaluated
under the L2 norm, has a polynomial convergence rate α > 0. In the following section,
we shall see that the α, p parameter in (α, p)-MAL algorithms fundamentally affects the
algorithm’s robustness to adversarial corruptions. In the literature of multi-agent learning
for monotone games, various (α, p)-MAL dynamics have been developed. For instance, the
Multi-Agent Mirror Descent with Bandit Feedback (MAMD) proposed by Bravo et al.
(2018) leads to a ( 16 , 2)-MAL algorithm, while the Multi-Agent Mirror Descent with Self-
Concordant Barrier Bandit Learning (MD-SCB) introduced in Ba et al. (2024) leads to
a ( 14 , 2)-MAL dynamics. Notably, while these designs often let every agent use the same
learning algorithm, neither our definition of the (α, p)-MAL dynamics nor our designed
attack later require this restriction — all we assume is that the learning dynamics converge.

4 Vulnerability of MAL to Utility Poisoning in MG

In this section, we examine the vulnerability of multi-agent learning (MAL) dynamics.
Our main result is the design of a single-agent utility poisoning attack, which is provably
successful to any (α, p)-MAL algorithm for β-strongly monotone games. Our results also
quantitatively characterize how the attack costs and outcome depend on parameters β, α, p.
The risk of having a poisoned agent within a community is very realistic, hence our attack
raises serious concerns regarding naively applying MAL dynamics to setting with potential
adversaries. We conclude this section by showing how the attack can lead to worse outcomes
when the adversary can poison even more agents.

4
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4.1 Poisoning a Single agent Suffices to Steer the Equilibrium Away

We design an explicit implementation of such a utility poisoning attack, referred to as the
Single-agent Utility Shifting Attack (SUSA). SUSA first selects a victim agent k to poison,
and computes a corrupted utility function ũk for this agent. Then during MAL process,
at each round SUSA simply shift the realized utility of agent k from uk to the ũk with
attacking cost c = |ũk − uk| (hence the name “utility shifting”). The formal definition of
SUSA is provided below.

Definition 5 (Single-agent Utility Shifting Attack). A Single-agent Utility Shifting At-
tack (SUSA) against a strategic game instance G is specified by a tuple (k, δ,∆), which is
implemented by the following two stages:

1. [Preparation Stage] Pre-compute a corrupted utility function for “victim agent” k:

ũk(xk,x−k) = uk(xk + δ,x−k) + ∆(x−k, δ), (8)

where ∆ : X → R is a function depending on the joint strategy x−k and δ ∈ Xk
2.

2. [Attacking Stage] During the execution of an MAL algorithm at round t, add a
corruption

ct = ũk(x
(t)
k ,x

(t)
−k)− uk(x

(t)
k ,x

(t)
−k)

to agent-k’s utility observation.

In addition, we denote the corrupted game instance as G̃(k, δ,∆), in which the k-th agent’s
utility function is replaced with ũk.

A few remarks are worth clarifying. First, ct is introduced after observing the current round
action. This type of corruption is often referred as “strong” corruption in the literature (Liu
& Shroff, 2019; Jun et al., 2018; Bogunovic et al., 2021b). Second, SUSA is applicable to any
MAL learning dynamics in any games with continuous utility functions, though below we
only show that the success of such attacks can be guaranteed for strongly monotone games
under certain conditions. Third, SUSA only poisons agent k’s utility observations and does
not interfere with her actions, though the poisoning amount depends on an action shifting
term δ. Essentially, it makes k believe her utilities are drawn from a modified function ũk.

Notably, SUSA does not attack any other agents, but will nevertheless steer their equilibrium
behaviors through influencing the victim k’s behaviors. Since agents do not know their true
utility functions but only observe the bandit feedback about utilities, this form of corruption
not only disrupts the sequential strategy updates of the victim agent k, but also influences
the dynamical behaviors of all other agents involved.

The following Lemma 1 reveals a nice property of SUSA. That is, if the target game G is
strongly monotone, SUSA preserves the strongly monotone property as long as the l2-norm
of the deviation ∥δ∥2 is upper bounded by a constant depending on the game parameters.

Lemma 1. Consider any β-strongly monotone game G(n, {Xi}ni=1, {ui}ni=1). If uk is second-

order L-smooth, then under SUSA the corrupted game G̃(k, δ,∆) with ∥δ∥2 < β/L remains
strongly monotone.

Lemma 1 indicates that the corrupted game preserves strong monotonicity as long as the
norm of the shifting offset δ is reasonably bounded. This is useful because MAL dynamics
retains convergence in the corrupted game (still strongly monotone). As mentioned in
Section 3.1, Cournot competition is O(1)-strongly monotone and 0-smooth, so a SUSA
using any δ preserves its monotonicity. In contrast, the Tullock contest is O(1)-strongly
monotone but O(

√
n)-smooth, hence the adversary is limited to using ∥δ∥ < O(1/

√
n).

This means that as the number of agents increases, it becomes more difficult for SUSA to
preserve the monotone property. The proof of Lemma 1 can be found in Appendix B.1.

Our following main theorem of this section, which formally characterizes SUSA’s capability.

2Rigorously, we need to extend the domain Xk to ensure uk(xk+δ,x−k) is well-defined. In fact,
any concave extension would suffice, and it does not affect the validity of our theoretical results.

5
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Theorem 1. Let G(n, {Xi}ni=1, {ui}ni=1) be any β-strongly monotone game (with unique NE
x∗) and A be any (α, p)-MAL dynamics. Suppose a victim agent-k’s utility function uk is
second-order L-smooth. Consider SUSA(k, δ,∆) constructed as

∆(x−k, δ) = −uk(BRk(x−k),x−k) + uk(BRk(x−k)− δ,x−k) (9)

where δ is any vector satisfying ∥δ∥2 < β/L and BRk(x−k) ≜ argmaxxk∈Xk
uk(xk,x−k)

is the best response mapping of agent-k. Then the resulting dynamics induced by A and
SUSA(k, δ,∆) converges to some x̃∗, such that

1. [Attack Success] The deviation to the original NE satisfies

∥x̃∗ − x∗∥2 ≥ β∥δ∥2/ sup{ρ(HG(x)) : x ∈ [x∗, x̃∗]}, (10)

where ρ(HG(x)) represents the spectral norm of the game’s Hessian HG at x, and
[x∗, x̃∗] denotes the segment (with a slight abuse of notation) λx̃∗+(1−λ)x∗, λ ∈ [0, 1].

2. [Sublinear Attack Costs] The expected total budget satisfies

E

[
T∑

t=1

|ct|

]
≤ C0 · T 1− pα

p+1 , (11)

where the constant C0 = CL1(4L2+5)+2, L1 is the Lipschitz constant of all ui w.r.t.
xi and L2 is the Lipschitz constant of victim agent k’s best response BRk w.r.t. x−k.

As described in Eq. (10) and Eq. (11), the success of a SUSA relies on achieving two goals
simultaneously: (1) steering the convergence to a joint strategy profile that is at least a
constant distance away from the original NE, and (2) ensuring that the total budget required
is o(T ). Theorem 1 guarantees both even when the adversary only targets a single agent.

One might wonder, beyond the NE shifting distance guarantee Eq. (10), whether an adver-
sary can have any control over the shifting direction, especially if it aims to influence specific
agents’ strategies. Our answer is affirmative: although rigorously characterizing the direc-
tion x̃∗−x∗ is challenging, we can approximate it as H−1

G [:, k][∇kkuk]δ (see Appendix B.4),

where H−1
G [:, k] is the k-th block column of the inverse of HG , and ∇kkuk is the Hessian of

uk w.r.t. xk. This suggests that if an adversary possesses some additional global knowledge
about the game’s Hessian HG , it can further steer the NE deviation in a desired direction.

To get a better sense of the attack success guarantee, we derive constants in Theorem 1 for
two examples as follows. The proof can be found in Proposition 2 and 3 in Appendix A.

Remark 1. For n-person Cournot competition, the corresponding parameters L0, L1, L2, β
and HG specified in Theorem 1 satisfy

L0 = 0, L1 = O(1), L2 = O(
√
n), β = O(1), sup

x∈X
{ρ(HG(x))} = O(n),

therefore, for an arbitrary δ, SUSA can induce an NE shift ∥x̃∗ − x∗∥2 ≥ O(n−1). For
n-person Tullock contest, we have

L0 = O(
√
n), L1 = O(1), L2 = O(

√
n), β = O(1/

√
n), sup

x∈X
{ρ(HG(x))} = O(n),

and thus for ∥δ∥ < O(n−1), SUSA can induce ∥x̃∗ − x∗∥2 ≥ O(n− 5
2 ). Both results are

obtained within a total budget E
[∑T

t=1 |ct|
]
≤ O(

√
nT 1− pα

p+α ).

We observe that while some of the constants in the bounds are O(1), some of them inevitably
depend on n and the specific guarantees vary across different game structures. In our two
examples, Cournot games are clearly more vulnerable to attacks compared to Tullock games.
One might also wonder the induced deviation from the original NE may be too small when
n gets large. As we will discuss in Section 4.2, the adversary can improve the deviation in
Eq. (10) by removing the factor sup{ρ(HG)} and may even force the NE deviation to an
arbitrary direction if allowed to poison multiple agents.

Next, we discuss the implications of the necessary requirements in Theorem 1, which provide
insight into why SUSA can be successful. The first condition demands that the l2-norm of

6
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the deviation ∥δ∥, must be bounded by a constant. This is to ensure that the corrupted
game remains strongly monotone and thus allows A to converge to x̃∗, the unique NE of
the corrupted game, as indicated by Lemma 1. The second condition provides an explicit
construction of the offset function, which is essential for maintaining a sub-linear total
budget. In fact, the rationale behind the design of ∆ is to satisfy that for the target agent-k
and any x−k ∈ X−k,

max
xk∈Xk

ũk(xk,x−k) = uk(B̃Rk(x−k),x−k), (12)

where B̃Rk(x−k) = argmaxx∈Xk
ũk(x,x−k) = BRk(x−k)− δ is the best response function

for agent-k under the corrupted utility uk. In other words, regardless of the opponents’
strategies, the best response of any agent under their corrupted utility ũk aligns with the
intersection of ũk and the original utility uk. This means that as a agent gradually learns the
best response to their opponents’ strategies–particularly when converging to x̃∗–the adver-
sary’s budget steadily decreases to zero, ultimately resulting in a total budget that is sub-
linear in T . The proof for Eq. (10) requires establishing a connection between the Jacobian
of best response mapping and the game’s Hessian and then applying Lagrange mean-value
theorem for vector-valued functions (Hall & Newell, 1979). The proof for Eq. (11) follows
from a careful analysis of the expected budget E[|ct|] at each round. In fact, we can show

that the same convergence rate applies to the corrupted game G̃ and as the joint strategy

approaches x̃ at rate t−α, E[|ct|] decreases at rate t−
pα
p+1 . The detailed proof can be found

in Appendix B.2.

4.2 Potential Power of Poisoning Many Agents

Theorem 1 demonstrates the significant impact of attacking even a single agent. A natural
follow-up question is whether an adversary can gain additional power by poisoning multiple
agents. While this is not the primary focus of our work—since it is unclear how realistic
or feasible it would be for an adversary to poison many agents—we provide preliminary
evidence that such an adversary would indeed have significantly more influence. We illustrate
this through an example in the Cournot competition, as detailed below.

Proposition 1. Under the same assumptions stated in Theorem 1, consider an adversary
performing SUSA(k, δk,∆k) against all agents k ∈ [n] in an n-person Cournot competition.
Then, the required attacking budget for each agent is still bounded as Eq. (11), and the
shifted NE under attack satisfies x̃∗−x∗ = H−1

G Dδ, where HG is the game Hessian defined
in Eq. (4), and D is a diagonal block matrix with the i-th diagonal block being the Hessian
of ui w.r.t. xi. As a result,

1. picking δ = D−1HGv can induce an arbitrary NE deviation direction v,

2. picking δ aligning with the direction associated with the largest eigenvalue of H−1
G D

induces the largest possible NE deviation distance ∥x̃∗ − x∗∥, which is at least ∥δ∥.

Although limited to Cournot games, Proposition 1 offers a preview of the additional advan-
tages of attacking multiple agents, namely more refined control over both the magnitude
and direction of NE deviation. Compared to Remark 1, attacking multiple agents increases
the magnitude of the NE deviation from O(1/n) to O(1), and allows for arbitrary directional
deviation. We are able to derive a closed-form solution of x̃∗ − x∗ thanks to the quadratic
utility function in Cournot games which yields a constant game Hessian and a linear best
response mapping. For more general game structures, we can show that similar results hold,
albeit in an approximate sense, as a strongly convex function can always be approximated
by a quadratic form, and the best response mapping can be linearized near x∗. However, a
rigorous exploration of this is beyond the scope of our current work.

4.3 Additional Guarantees on Attack Success

In many scenarios, an adversary’s primary objective is not merely to steer agents toward a
new equilibrium x̃∗. Instead, a more robust and practical goal is to reduce a specific target
metric, W (x) (e.g., social welfare), which depends on the PNE action profile x∗ of all agents.
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In this section, we provide an additional guarantee of attack success for adversaries aiming
to manipulate the target metric W (x). Our Theorem 2 demonstrates that, irrespective of
the game structure, for almost any function W (x), the adversary can successfully deploy a
SUSA to decrease the value of W at the newly induced PNE under attack.

Theorem 2 (Attackable Target Welfare Metrics). Consider any β-strongly monotone game
G(n, {Xi}ni=1, {ui}ni=1) with a (unique) PNE x∗. Assume that for each i, ui is second-order
L-smooth and x∗ /∈ ∂X . Then for any first-order differentiable function W (x) satisfying
that

dW

dx∗ ·H
−1
G (x∗) · [∇iiui(x

∗)]ni=1 ̸= 0, (13)

there exists SUSA(k, δk,∆) such that it strictly decreases W at its induced corrupted PNE,
i.e.,

W (x̃∗) < W (x∗). (14)

Here dW
dx∗ = dW

dx

∣∣∣
x=x∗

∈ R1×nd denotes the derivative of W w.r.t. x at x∗, HG(x
∗) ∈

Rnd×nd is G’s Hessian at x∗, and [∇iiui(x
∗)]ni=1 =

[
∂2ui(x)

∂x2
i

∣∣∣
x=x∗

]⊤
i∈[n]

∈ Rnd×d denotes the

concatenation the Hessians of ui w.r.t. xi at x = x∗.

The proof of Theorem 2 is straightforward, as we can show when x∗ is an interior point of X ,
W is differentiable w.r.t. δk, so that one can always manipulate W as long as its derivative
w.r.t. δk is non-zero at 0. The detailed proof can be found in Appendix B.3. Theorem 2
characterizes all manipulable metrics W—those for which the gradient at the original PNE
x∗ does not lie within the null space of H−1

G (x∗) · [∇iiui(x
∗)]ni=1. This condition imposes at

most d degrees of freedom on dW
dx∗ , leading to the conclusion that almost all target metrics

W are manipulable.

The following corollary illustrates the extent to which the adversary can expect to decrease
the target metric W by selecting an arbitrary (k, δk).

Corollary 1. Under the same assumptions stated in Theorem 2, for any sufficiently small

ϵ > 0 and δ̂ such that dW
dx∗ ·H−1

G (x∗)[:, k] · ∇kkuk(x
∗) · δ̂ > 0, SUSA(k, ϵδ̂,∆) induces

W (x̃∗) ≤W (x∗)− ϵ

2

(
dW

dx∗

)
·H−1

G (x∗)[:, k] · ∇kkuk(x
∗) · δ̂. (15)

Although Corollary 1 only provides a way to secure a small amount of decrease in W ,
an adversary can implement a sequence of SUSA actions to accumulate a more substantial
reduction inW . Such a process still remains nearly imperceptible, as Theorem 1 ensures that
the cost of each attack is negligible. However, a key challenge lies in accurately measuring
the reduction in W , as this requires the knowledge of the inverse of the game’s Hessian.
Nevertheless, identifying an effective attack direction is relatively simple: Eq. (15) implies
that if δ cannot guarantee a decrease in W , then −δ certainly can.

5 Intrinsic Trade-Off Between Efficiency and Robustness

Our main result in previous section (i.e. Theorem 1) reveals an intriguing trade-off between
the efficiency and robustness of MAL dynamics: the faster an algorithm converges (i.e., a
larger α), the smaller corruption needed for inducing an NE shift. For simplicity, we name
such outcome as NE Shifting Attack (NSA). While such a trade-off is well-documented
in single-agent online learning (Cheng et al., 2024), we are the first to identify it in the
multi-agent context. In this section, we explore whether sacrificing the convergence rate of
specific MAL dynamics can improve robustness against utility poisoning attacks. We focus
on two dynamics: MD-SCB (Ba et al., 2024), the fastest-converging state-of-the-art MAL
algorithm, and MAMD (Bravo et al., 2018), the foundational MAL algorithm for strongly
concave games with bandit feedback.

Essentially, our key insight is that the robustness of these dynamics can be improved (i.e.,
become more resilient to NSA) by simply adjusting the learning rate. Theorem 3 shows
how the learning rate of MD-SCB (see Appendix C.1 for details) influences its robustness
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against general utility poisoning attacks. Originally proposed by Ba et al. (2024), MD-SCB

achieves an optimal convergence rate of O(d/
√
T ) without adversarial attacks, if choosing

the learning rate ηt ∝ t−
1
2 At each round t, we consider a general adversary who selects

a set of agents Ĩt to attack: any agent ĩ ∈ Ĩt will receive an altered utility observation

µ̃
(t)

ĩ
← µĩ(xt) + ct,̃i(xt). Theorem 3 highlights how the algorithm’s convergence under such

a generic utility poisoning attack depends on both the learning rate ηt and the total attack
budget ρ.

Theorem 3. Consider an adversary that attacks a set of agents Ĩt at round t with a total
budget satisfying

∑t
j=1

∑
ĩ∈Ĩj
|cj,̃i| ≤ O(tρ) for all t and some ρ ∈ [0, 1]. By choosing

a learning rate sequence ηt = 1
2d t

−ϕ, for sufficiently large T the last-iterate convergence

rate of MD-SCB satisfies E
[
∥x̂T − x∗∥22

]
≤ max

{
O(dTϕ−1),O(dT−ϕ),O(dT ρ− 1

2 (ϕ+1))
}
.

Specifically, E
[
∥x̂T − x∗∥22

]
≤ O

(
dT

2(ρ−1)
3

)
can be achieved by choosing ϕ = 2

3 (ρ+
1
2 ).

Theorem 3 delivers a strong message: for a given sublinear total budget O(T ρ), even as
ρ → 1, we can always adjust the learning rate decay to recover last-iterate convergence,
making MD-SCB absolutely resilient to NSA3, although at the cost of potentially slower
convergence speed. The proof of Theorem 3 quantifies the bias introduced by attacks in the

utility observations of the gradient estimator ṽ
(t)
i , and tracks the propagation of this bias

throughout the convergence analysis (see Appendix C). We will later use a similar approach
to establish an analogous result for Algorithm 3 as well.

Theorem 3 provides a potential defense strategy for an algorithm designer, assuming they can
estimate the upper bound of the total corruption. To clarify the inherent trade-off between
efficiency and robustness in MAL dynamics, we compare this result with our findings in
Section 4 from a unified perspective. For this comparison, let ADV represent all possible
utility poisoning strategies, and define the following quantity:

ρ(C,A) = inf{ρ ∈ [0, 1]|C with budget O(T ρ) always achieve NSA against A.},
= sup{ρ ∈ [0, 1]|C with budget O(T ρ) cannot achieve NSA against A.},

where C ∈ ADV represents a generic utility poisoning adversary. Now, a fundamental
question from both the attacker and defender’s perspectives is to quantify the following two
functions (with p = 2 fixed):

ρ−(α) = inf
C∈ADV

sup
A∈MAL(α,2)

ρ(C,A), ρ+(α) = sup
A∈MAL(α,2)

inf
C∈ADV

ρ(C,A). (16)

Function ρ−(α) represents the optimal strategy of a utility poisoning adversary: for any
MAL dynamics known to enjoy convergence rate α, ρ−(α) denotes the minimum budget level
ρ required for NSA. In contrast, ρ+(α) describes the optimal defense from the perspective
of the algorithm designer: given a required convergence rate α, ρ+(α) identifies the most
robust algorithm that can withstand NSA of level ρ from any utility poisoning adversary.
The well-known max-min inequality also implies the following basic fact.

Fact 1. ρ−(α) ≥ ρ+(α) for any α ∈ [0, 1/4].

Note that we restrict α ∈ [0, 1
4 ] because α = 1

4 is proven to be the optimal convergence rate
under p = 2 in the non-corrupted setting (Ba et al., 2024). In general, one should expect
strict inequality in this context (i.e., ρ−(α) > ρ+(α)), unless ρ(C,A) has particular special
properties. For instance, if ρ(C,A) is convex in C and concave in A, the equality must hold,
as seen in the well-known minimax theorem from v. Neumann (1928); Sion (1958). In our
problem, however, both C,A represent algorithms and it is unclear how ρ changes w.r.t.
C and A. Thus, an intriguing open question remains: does the equality hold in Fact 1?
In other words, does the adversary gain a strict advantage (i.e., ρ−(α) > ρ+(α)) by first
observing the dynamics A and then designing the attack C?
To better understand the strength of the adversary, our main results in Theorems 1 and 3
provide insights by establishing upper and lower bounds of ρ−(α), ρ+(α), respectively, as
summarized in Corollary 2.

3As NSA necessarily leads to divergence, last-iterate convergence must imply resilience to NSA.
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Corollary 2. Given the definitions of ρ−(α) and ρ+(α) in Eq. (16), for some particular
MAL algorithm A0 and adversary C0 ∈ ADV , we further define

ρ(A0(α)) = inf
C∈ADV

ρ(C,A = A0(α)), ρ(α, C0) = sup
A∈MAL(α,2)

ρ(C = C0,A),

where A0(α) denotes algorithm A0 with a set of hyper-parameters that guarantees MAL(α, 2)
convergence. Then for any α ∈ [0, 1

4 ], it holds that

1− α ≤ ρ(MD-SCB(α)) ≤ ρ+(α) ≤ ρ−(α) ≤ ρ(α;SUSA) ≤ 1− 2α

3
. (17)

We defer the proof of Corollary 2 to Appendix D.1 as it is straightforward: the three
middle inequalities follow directly from the definitions of ρ−, ρ+ and Fact 1. The two outer
inequalities are derived from a restatement of Theorem 1 and 3. In fact, Theorem 1 quantifies
the capability of a particular adversary (i.e., SUSA) and thus establish the upper bounds
of ρ(α; SUSA). Theorem 3, on the other hand, characterizes the robustness of a particular
algorithm (i.e. MD-SCB), thus gives the lower bounds of ρ(MD-SCB(α)).
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Figure 1: Illustration of the four
quantities in Corollary 2, re-
vealing the intrinsic efficiency-
robustness trade-off under NSA.

Although the bounds in Corollary 2 are not tight, they
highlight an intrinsic trade-off between efficiency and ro-
bustness: MAL dynamics with higher convergence rates
become more vulnerable—they can withstand less cor-
ruption, and adversaries need a smaller budget to at-
tack them. Figure 1 illustrates this trade-off. The yel-
low dashed line represents ρ−(α); above it, a budget of
O(T ρ) suffices for a powerful adversary to induce NSA
in any MAL(α, 2) dynamics. The red region, a subset
of this area, corresponds to the actual budget required
for NSA using our specific attack strategy, SUSA. Con-
versely, the blue dashed line represents ρ+(α); below it,
the most robust MAL(α, 2) dynamics can withstand cor-
ruption of O(T ρ) against any adversary. For a specific
MAL dynamics like MD-SCB, the green region shows the
budget within which it remains resilient to NSA. We only
present ρ ∈ [0.75, 1] because the MAL dynamics with the
best convergence rate in such a setting (α = 0.25)(Ba

et al., 2024) can withstand a corruption level of ρ = 0.75 (see Theorem 3). The three gaps
in Figure 1 correspond to three open problems: OP1. what is the most budget-efficient
adversary for any MAL dynamics; OP2. does an adversary have a strict advantage by ob-
serving the dynamics A first and then design the attack C; and OP3. what is the most
robust MAL dynamics resilient to any adversary? We left these for future research.

Such an efficiency-robustness trade-off extends to more general contexts. For example,
the MAL algorithm MAMD (detailed in Algorithm 3 in Appendix C.4) exhibits a similar
phenomenon. We establish a corresponding result in analogous to Theorem 3 in Proposition
4 in Appendix C.4, showing how to adjust MAMD’s learning rate to enhance its robustness.
Moreover, this trade-off applies to a broader notion of robustness beyond just resilience to
NSA attacks. In Appendix D, we present similar results for a stronger form of robustness
that not only ensures resilience to NE shifting but also prevents any possible dampening of
the convergence speed.

6 Experiments

In this section, we validate our theoretical results from Theorem 1 and Theorem 3 by
implementing SUSA against MD-SCB on n-person Cournot games, whose formal definition
is given in Appendix A. Additional results for Algorithm 3 are provided in Appendix E.

Experimental Setup: For the n-person Cournot game instance, we set a = 10, b = 0.05,
and the cost ci = 1 for all agents i ∈ [n]. The action space is set to Xi = [0, 50] and the
unique NE of such games can be verified as x∗

i = 180
n+1 , i ∈ [n]. We let each agent run MD-

SCB with tha game size n ∈ {10, 50, 100}. The learning rate schedule of MD-SCB is set to
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(ηt ∝ t−ϕ, ϕ = 0.5, 0.7, 0.9), corresponding to convergence rates α = 0.25, 0.15, 0.05, p = 2
when no attack is present. We implement SUSA against agent 1, with a fixed δ = 10.0. For
each game instance specified by n and the attacked algorithm specified by the convergence
rate α, we compare the dynamics’ behavior both without attack and under SUSA, and
report the actual total budget used.

Result: The left panel of Figure 2 plots the convergence curve of the L2 square error for
n = 10, serving as a sanity check to confirm that different learning rate schedules induce
different convergence rates for MD-SCB in absence of an adversary. The middle panel
shows the outcome of SUSA against MD-SCB with α = 0.25, with the y-axis representing
L2 distance between xt and NE. The dashed lines display the convergence curve without the
adversary, while the solid lines represent the dynamics under SUSA, with different colors
indicating results for various game sizes n. As shown, for different values of n, the attacked
dynamics exhibit divergence, as the solid lines saturate and stop decreasing, indicating that
the dynamics are being steered to converge to a new point. Additionally, we observe that
the induced NE deviation decreases with respect to n, which aligns with our theoretical
predictions in Theorem1 and Remark 1. The right panel shows the cumulative attack
budget Ct =

∑t
τ=1 |cτ | at each time step t against MD-SCB with different values of α. As

the results indicate, although all exhibit a sublinear trend, a faster-converging dynamics
(α = 0.25) requires a smaller attack budget, corroborating our findings in Theorem 1 and
3. Results for additional parameter settings are provided in Appendix E.
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Figure 2: Left: square error of MD-SCB with varying convergence rates. Middle: square
error of MD-SCB on different sizes of game instances against SUSA. Right: cumulative
attack budget used by SUSA against MD-SCB with varying convergence rates. Error bars
represent the 1-σ region from 20 independent simulations.

7 Discussion

In addition to the three open problems regarding the fundamental limits of attack efficiency
and defense robustness raised in Section 5, we discuss more potential limitations and fu-
ture directions here. One limitation of our setting is that SUSA assumes the adversary has
full knowledge of the victim agent’s utility function—a potentially strong assumption in
some cases. An important future direction is to broaden the applicability and practicality
of SUSA from the current white-box setting to a black-box or grey-box setting, where the
adversary has no or limited knowledge of the victim agent’s utility. Another key question
we did not address is the societal impact of utility poisoning attacks, particularly its po-
tential for “steering for social good”: as although SUSA could be used by adversaries to
induce a harmful NE, it also opens up opportunities for a benevolent social planner to guide
the system toward a better social outcome, simply by incentivizing a single agent. These
intriguing open problems offer valuable avenues for future exploration.
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Appendix to Single-Agent Poisoning Attacks Suffice to
Ruin Multi-Agent Learning

A Examples of Second-Order Smooth Monotone Games

In this section, we provide two explicit examples of second-order L-smooth and β-strongly
monotone games introduced in Definition 3. These examples offer a concrete sense of what
we can expect regarding the outcome of a utility poisoning attack in such games. The two
cases we will discuss are the n-person Cournot Competition Cournot (1838) and the Tullock
contest Tullock (2008) (a.k.a. resource allocation auctions with costs).

Cournot competition is an economic model describing a number of firms independently
competing on the amount of output they will produce. Each agent-i’s pure strategy xi is
the quantity of product, and the payoff is determined by the marginal return of a unit of
product which decreases w.r.t. the opponents’ total production (a−b

∑n
i=1), and a marginal

cost ci. The utility of agent-i is given by

ui(xi, x−i) = xi

a− b

n∑
j=1

xj

− cixi. (18)

Tullock contest involves n agents competing for a unit amount of prize in a “winner-takes-
all” framework. Each agent i’s pure strategy is to choose an effort level xi ∈ [0, 1], and
the winning probability is proportional to each agent’s effort level. The prize is awarded to
the contestant with the highest relative effort, and the payoff of each agent is the expected
reward minus a cost given by some function of the invested effort. Specifically, the payoff
functions of agent-i is given by

ui(xi, x−i) =
xi

a+
∑n

j=1 xj
− ci(xi), (19)

where a > 0 models the exogenous factor that affects the outcome of the contest, and
ci : R≥0 → R≥0 is an increasing cost function.

According to Rosen (1965), a sufficient condition to verify whether a game is β-strongly
monotone (a.k.a. β-diagonal strict concavity, i.e., β-DSC) can be summarized in the follow-
ing Lemma 2.

Lemma 2. A sufficient condition for a game G(n, {Xi}, {ui}) to be β-DSC is that

1. Each Xi is compact and convex, and ui(xi,x−i) is concave in xi and convex in x−i.

2. G’s negative symmetric game Hessian defined as −H(x) = − 1
2

(
HG(x) +H⊤

G (x)
)

is negative definite and its smallest eigenvalue is at least β.

And to verify the second-order L-smooth condition, we only need to directly apply Definition
3. The following two propositions formalize our claims.

Proposition 2. An n-person Cournot competition G with payoff functions defined by
Eq. (18) satisfies:

1. each agent’s utility function ui is (a+ b+ ci)-Lipschitz in xi;

2. uk is
√
n−1
2 -Lipschitz in x−k;

3. G is 2b-strongly monotone;

4. the spectral norm of the G’s Hessian (defined in Eq. (4)) satisfies ρ(HG) ≤ (n+1)b;

5. all agents’ utility functions are second-order 0-smooth;

Proof. Because ui is continuous in xi, an Lipschitz constant can be
maxx∈X |∇xi

ui(xi,x−i)| ≤ |a − b
∑n

j=1 xj − bxi − ci|. Since a − b
∑n

j=1 xj ≥ 0 and

bxi ≥ 0, ci ≥ 0, we have |a− b
∑n

j=1 xj − bxi − ci| ≤ a+ b+ ci.

14
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The best response mapping has a closed form BRk(x−k) =
a−b

∑
j ̸=k xj−ck
2b and we can verify

|BRk(x−k)−BRk(x
′
−k)| =

1

2b

∣∣∣∣∣∣b
∑
j ̸=k

(x′
j − xj)

∣∣∣∣∣∣ ≤
√
n− 1

2
∥x−k − x′

−k∥.

Therefore, uk is
√
n−1
2 -Lipschitz in x−k.

For strongly monotonicity, simple calculation shows the Hessian of n-person Cournot game
has the following form

−Hij(x) = b(1 + δij), (20)

where δij = I[i = j]. We can easily verify that H = b(I +11⊤) and the smallest and largest
eigenvalues of H are 2b and (n + 1)b. Therefore, the game is 2b-strongly monotone, and
ρ(HG) = ρ(H) = (n+ 1)b.

To verify second-order smoothness, we directly compute function hi(x; δ) for agent-i from
Eq. (5), which gives

vi(xi,x−i)− vi(xi + δi,x−i)

δ

=
(a− b

∑n
j=1 xj − ci − bxi)− (a− b

∑n
j=1 xj − bδ − ci − bxi − bδ)

δ
= 2b,

which means for any x ∈ X and δ ̸= 0, hi(x; δ) is a constant function. Therefore, the game
is second-order smooth for any L ≥ 0.

Proposition 3. Consider an n-person Tullock contest G with payoff functions defined by
Eq. (19) in which each agent’s cost function ci is βi-strongly convex with its r-th order
derivative bounded in [−Mr,Mr], 1 ≤ r ≤ 3. Then G satisfies:

1. each agent’s utility function ui is
(
1
a +M1

)
-Lipschitz in xi;

2. uk is
√
n− 1

(
2

a3βk
+ 1

a2βk

)
-Lipschitz in x−k;

3. G is
(
mini∈[n]{βi}+ a

(a+n)3

)
-strongly monotone;

4. the spectral norm of the G’s Hessian (defined in Eq. (4)) satisfies ρ(HG) ≤ n+1
a2 +

maxi∈[n]{βi};

5. all agents’ utility functions are second-order
(

4
√
n

a3 + 6
√
n

a4 + 2
a3 +M3

)
-smooth;

Proof. We prove these claims one by one.

1. Because ui is continuous in xi, an Lipschitz constant can be

max
x∈X
|∇xi

ui(xi,x−i)| = max
x∈X

∣∣∣∣∣ a+
∑

j ̸=i xj

(a+
∑n

j=1 xj)2
−∇ci

∣∣∣∣∣
≤ 1

|a+
∑n

j=1 xj |
+ |∇ci| ≤

1

a
+M1.

2. From the implicit function theorem,

∇x−k
BRk(x−k) =

∂ argmaxt uk(t,x−k)

∂x−k
= −

(
∂2uk(xk,x−k)

∂x2
k

)−1

· ∂
2uk(xk,x−k)

∂xk∂x−k
.

(21)
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From Lagrange mean value theorem for multi-variable functions, there exists some y−k ∈
X−k such that

BRk(x−k)−BRk(x
′
−k) = ∇⊤

x−k
BRk(y−k)(x−k − x′

−k).

As a result, a Lipschitz constant for function BRk(x−k) can be
maxy−k∈X−k

|∇x−k
BRk(y−k)|. Direct calculation shows that for any i, j,

∇iiui(x) = −2

a+
∑
j ̸=i

xj

(a+

n∑
i=1

xi

)−3

−∇2ci(xi), (22)

∇j∇iui(x) =

 n∑
i=1

xi − 2

n∑
j ̸=i

xj − a

(a+

n∑
i=1

xi

)−3

. (23)

Since uk is βk-strongly concave, we have |∇iiui(xi,x−i)| ≥ βi, and |∇j∇iui(x)| ≤
2
a3 + 1

a2 . Substitute them into Eq. (21) we obtain

|∇x−k
BRk(x−k)| ≤

√
n− 1

(
2

a3βk
+

1

a2βk

)
.

3. To see why G is
(
mini∈[n]{βi}+ a

(a+n)3

)
-strongly monotone, we need to show −HG is

positive definite and then pin down its smallest eigenvalue. From Eq. (22) and Eq. (23)
we can derive

−HG =

(
a+

n∑
i=1

xi

)−3

·

2(a+
∑

i ̸=1 xi) a+
∑

i/∈{1,2} xi . . .
a+

∑
i/∈{1,2} xi 2(a+

∑
i ̸=2 xi) . . .

...
...

. . .

+

∇
2c1(x1) 0 . . .
0 ∇2c2(x2) . . .
...

...
. . .


≜

(
a+

n∑
i=1

xi

)−3

·M(a,x) + diag(∇2c1(x1), · · · ,∇2cn(xn)). (24)

For any y = (y1, · · · , yn) ∈ Rn, we have

−y⊤M(a,x)y = 2

n∑
i=1

y2i

a+
∑
j ̸=i

xj

+ 2
∑
i<j

yiyj

a+
∑

k/∈{i,j}

xk


=

n∑
i=1

y2i
∑
j ̸=i

xj +

n∑
i=1

xi

∑
j ̸=i

yj

2

+ a

 n∑
i=1

y2i +

(
n∑

i=1

yi

)2
 (25)

≥ a∥y∥22.
Therefore, λmin(−M(a,x)) ≥ a and

λmin(−HG) ≥
a

(a+
∑n

i=1 xi)3
+ β0 ≥

a

(a+ n)3
+ β0, (26)

where β0 = mini∈[n]{βi}.

4. G is second-order
(

4
√
n

a3 + 3
√
n

a4

)
-smooth:

Direct calculation shows that

hi(x; δ) =
vi(xi,x−i)− vi(xi + δ,x−i)

δ

=
1

(A+ δ)2
+

1

A(A+ δ)
− xi

A(A+ δ)2
− xi

A2(A+ δ)
+
∇ci(xi + δ)−∇ci(xi)

δ
,
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where A = a+
∑n

i=1 xi. From the mean value theorem for vector-valued functions Hall
& Newell (1979), there exists y = x′ + λ(x− x′) such that

∥hi(x; δ)− hi(x
′; δ)∥2 ≤ ∥J(y)∥ · ∥x− x′∥2,

where J(y) is the Jacobian matrix of hi at y, and ∥ · ∥ denotes the spectral norm of a
matrix, defined as

∥M∥ = sup
∥x∥2=1

∥Mx∥2 =
√
σmax(MTM). (27)

Therefore, the smallest constant L such that G is second-order smooth is

∥J(y)∥ ≤ ∥J0∥+ ∥J1∥+ ∥J2∥+ ∥J3∥+ ∥J4∥, (28)

where J0, J1, J2, J3, J4 are the Jacobian matrices of functions f(x) = 1
(A+δ)2 , f(x) =

1
A(A+δ) , f(x) =

xi

A(A+δ)2 , f(x) =
xi

A2(A+δ) , f(x) =
∇ci(xi+δ)−∇ci(xi)

δ . For a single-valued

functions f , J(f) = ∇f and thus ∥J(f)∥ = ∥∇f⊤∇f∥. From straightforward calculation
we obtain

∥J0∥ =
2

(A+ δ)3
∥x∥ ≤ 2

√
n

a3
,

∥J1∥ =
2A+ δ

A2(A+ δ)2
∥x∥ ≤ 2

√
n

a3
,

∥J2∥ =
∥∥∥∥−xi

3A2 + 4Aδ + 2δ2

A2(A+ δ)4
x+

1

A(A+ δ)2
ei

∥∥∥∥ ≤ 3
√
n

a4
+

1

a3
,

∥J3∥ =
∥∥∥∥−xi

3A2 + 2Aδ

A4(A+ δ)2
x+

1

A2(A+ δ)
ei

∥∥∥∥ ≤ 3
√
n

a4
+

1

a3
,

∥J4∥ ≤ ∥∇3ci∥ ≤M3.

Hence, the game is second order
(

4
√
n

a3 + 6
√
n

a4 + 2
a3 +M3

)
-smooth.

5. Upperbound of ρ(HG).

From Eq. (25) it holds that

−y⊤M(a,x)y =

n∑
i=1

y2i
∑
j ̸=i

xj +
n∑

i=1

xi

∑
j ̸=i

yj

2

+ a

 n∑
i=1

y2i +

(
n∑

i=1

yi

)2


≤

[
(n+ 1)

n∑
i=1

xi

]
∥y∥22 + a(n+ 1)∥y∥22

=

[
(n+ 1)

(
a+

n∑
i=1

xi

)]
∥y∥22,

therefore, by Eq. (24) we have

∥y⊤HGy∥ ≤
n+ 1

(a+
∑n

i=1 xi)2
∥y∥22 +max

i∈[n]
{βi}∥y∥22

≤
(
n+ 1

a2
+max

i∈[n]
{βi}

)
∥y∥22.

Hence, an upperbound of ρ(HG) is
n+1
a2 +maxi∈[n]{βi}.
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B Proofs in Section 4

In this section, we present the missing proofs from Section 4, including the proofs of Lemma
1 and Theorem 1 which fully characterize the theoretical guarantees of SUSA, and the proof
of Proposition 1 along with an extended argument regarding an additional attack success
guarantee of SUSA.

Notably, we establish these results under a broader setting where the adversary can attack
multiple agents, rather than being restricted to a single agent. Specifically, we consider
an adversary targeting a subset of agents V ⊆ [n], and for each victim agent-k ∈ V, the
adversary performs SUSA(k, δk,∆k) on agent-k. We specify such an utility poisoning at-
tack as the tuple (V, {δk}k∈V , {∆k}k∈V), and we denote the corresponding adversary as
SUSA(V, {δk}k∈V , {∆k}k∈V).

The proofs provided in this section apply to any SUSA(V, {δk}k∈V , {∆k}k∈V), and thus also
apply to the special case when V = {k}, which is the setting considered in the main paper.
For simplicity of notations, we denote the vector δ = (δ1, · · · , δn) ∈ Rnd, where δi = δi if
i ∈ V, and δi = 0 if i /∈ V. In the following, we restate the generalized versions of our results
in Section 4 under SUSA(V, {δk}k∈V , {∆k}k∈V) and then present their proofs.

B.1 Proof of Lemma 1

We prove the following generalized version of Lemma 1 as follows:

Lemma 3. For any β-strongly monotone and second-order L-smooth game
G(n, {Xi}ni=1, {ui}ni=1) under SUSA(V, {δk}k∈V , {∆k}k∈V), the corrupted game

G̃(V, {δk}k∈V , {∆k}k∈V) with ∥δ∥2 < β/L remains strongly monotone.

Proof. By the definition of strongly monotonicity, for any x = (x1, · · · ,xn),x
′ =

(x′
1, · · · ,x′

n) ∈ X , it holds that

n∑
i=1

(x′
i − xi)

⊤(vi(x
′
i,x

′
−i)− vi(xi,x−i)) ≤ −β∥x′ − x∥22, (29)

where vi(x) = ∇xi
ui(x). Without loss of generality let’s assume the SUSA targets at all

agents (for a agent i /∈ V, simply let δi = 0 and ∆i ≡ 0). Then for agent-1’s corrupted
utility function ũ1, it holds that ṽ1(x) = ∇x1

ũ1(x) = v1(x1 + δ1,x−1). By the definition of
strictly monotonicity, what we need to show is that there exists a β0 > 0 such that

n∑
i=1

(x′
i − xi)

⊤(vi(x
′
i + δi,x

′
−i)− vi(xi + δi,x−i)) < −β0∥x′ − x∥22. (30)

According to the second-order L-smooth condition, for any i ∈ [n] and δi ∈ Rd, the function
hi(x) : Rnd → Rd defined as

hi(x) =
vi(xi,x−i)− vi(xi + δi,x−i)

∥δi∥
(31)

is L-Lipschitz in x. As a result, we have
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|LHS of Eq. (29)− LHS of Eq. (30)|

≤
n∑

i=1

∣∣(x′
i − xi)

⊤(vi(x
′
i,x

′
−i)− vi(x

′
i + δi,x

′
−i) + vi(xi + δi,x−i)− vi(xi,x−i))

∣∣
=

n∑
i=1

∥δi∥ ·
∣∣(x′

i − xi)
⊤(hi(x

′)− hi(x))
∣∣

≤
n∑

i=1

∥δi∥ · ∥x′
i − xi∥ · ∥hi(x

′)− hi(x)∥

≤
n∑

i=1

∥δi∥ · ∥x′
i − xi∥ · L∥x′ − x∥

=L∥x′ − x∥ ·
n∑

i=1

∥δi∥ · ∥x′
i − xi∥

≤L∥x′ − x∥ ·

(
n∑

i=1

∥δi∥2
) 1

2
(

n∑
i=1

∥x′
i − xi∥2

) 1
2

≤L∥x′ − x∥2 ·

(
n∑

i=1

∥δi∥2
) 1

2

.

Since
(∑n

i=1 ∥δi∥2
) 1

2 < β
L , there must exist a β0 ∈ (0, β] such that

(∑n
i=1 ∥δi∥2

) 1
2 ≤ β−β0

L .
As a result, the difference between the LHS of Eq. (29) and the LHS of Eq. (30) does

not exceed (β − β0)∥x′ − x∥2. Hence, Eq. (30) holds and the corrupted game G̃ remains
β0-strongly monotone.

B.2 Proof of Theorem 1

We prove the following generalized version of Theorem 1:

Theorem 4 (Vulnerability of MAL algorithms for strongly monotone games under
SUSA(V, {δk}k∈V , {∆k}k∈V)). Consider a SUSA(V, {δk}k∈V , {∆k}k∈V) to a β-strongly
monotone game G(n, {Xi}ni=1, {ui}ni=1) (with unique NE x∗). Suppose the victim agent-k’s
utility function uk is second-order L0-smooth for all k ∈ V. All agents run an (α, p)-MAL
algorithm A for T rounds. If the following conditions are satisfied:

1. ∥δ∥2 < β/L0,

2. ∆(x−k, δ) = −uk(BRk(x−k),x−k) + uk(BRk(x−k) − δ,x−k),∀k ∈ V, where

BRk(x−k) ≜ argmaxxk∈Xk
uk(xk,x−k) is the best response mapping of agent-k,

3. ui is L1-Lipschitz in xi,∀i ∈ [n] and BRk is L2-Lipschitz in x−k,∀k ∈ V.

Then, the resulting dynamics induced by A converges to some x̃∗, such that

1. The deviation to the original NE satisfies

∥x̃∗ − x∗∥2 ≥ β∥δ∥2/ sup
x∈[x∗,x̃∗]

{ρ(HG(x))}, (32)

where ρ(HG(x)) represents the spectral norm of the game’s Hessian HG at x.

2. The expected total budget satisfies

E

[
T∑

t=1

|ct|

]
≤ C0 · T 1− pα

p+1 , (33)
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where the constant C0 = [CL1(4L2 + 5) + 2] · |V|.

Proof. From Lemma 3 we know that the corrupted game G̃ is strongly monotone and thus
also has a unique NE x̃∗. We first give an estimation of the distance between x∗ and x̃∗.

Define the best response mapping fi(x−i) = argmaxt ui(t,x−i) for any i ∈ [n]. Then by
the definition of NE, x∗ = (x∗

1, · · · ,x∗
n) is the unique stationary point of the system

x1 = f1(x2,x3, · · · ,xn),

x2 = f2(x1,x3, · · · ,xn),
...

xn = fn(x1,x2, · · · ,xn−1),

(34)

while x̃∗ = (x̃∗
1, · · · , x̃∗

n) is the unique stationary point of the system
x1 = f1(x2,x3, · · · ,xn)− δ1,

x2 = f2(x1,x3, · · · ,xn)− δ2,
...

xn = fn(x1,x2, · · · ,xn−1)− δn,

(35)

where δi = 0 if i /∈ V. If we let F (x) =
(f1(x2,x3, · · · ,xn), f2(x1,x3, · · · ,xn), · · · , fn(x1,x2, · · · ,xn−1)) as an n-valued func-
tion and G(x) = F (x)− x, Eq. (34) and Eq. (35) can be further expressed as

G(x∗) = 0,

G(x̃∗) = (δ1, δ2, · · · , δn).

When G is twice differentiable, from the mean value theorem for vector valued functions
(Hall & Newell, 1979), there exists λ ∈ [0, 1] such that

∥G(x∗)−G(x̃∗)∥ ≤ max
λ∈[0,1]

ρ(J(λx̃∗ + (1− λ)x∗)) · ∥x∗ − x̃∗∥, (36)

where J(x) is the Jacobian of G at x, and ρ(J) ≜ sup∥u∥2=1 ∥Ju∥2 is the spectral norm of

J . Let ρmax(J) ≜ maxλ∈[0,1](ρ(J(λx̃
∗ + (1− λ)x∗))), we immediately obtain

∥x∗ − x̃∗∥ ≥ ∥δ∥/ρmax(J). (37)

Next we estimate the upper bound of ρ(J). In fact, from implicit function theorem, we can
derive the (i, j)-th element of J as

Ji,i = −1, 1 ≤ i ≤ n,

Ji,j =
∂fi(x−i)

∂xj
=

∂ argmaxt ui(t,x−i)

∂xj
= −

(
∂2ui(xi,x−i)

∂x2
i

)−1

· ∂
2ui(xi,x−i)

∂xi∂xj
.

Note that the n-by-n matrix H =
[
∂2ui(xi,x−i)

∂xi∂xj

]
is exactly the Hessian of G (i.e., HG), and

the diagonal matrix D = diag(HG). Thus, the Jacobian J can be represented as

J = D−1HG . (38)

Since G is β-strongly monotone, each diagonal element of D is lower bounded by β > 0.
Hence, the spectral norm of J can be upper bounded by

ρmax(J) ≤
ρmax(HG)

β
, (39)

and
∥x∗ − x̃∗∥ ≥ β∥δ∥/ρmax(HG),

where ρmax(HG) ≜ maxλ∈[0,1](ρ(HG(λx̃
∗ + (1− λ)x∗))).
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Next, we derive a upper bound of the total corruption budget needed by an SUSA adver-
sary. Since A is an (α, p)-MAL algorithm and G̃ is strictly monotone, the resulting playing

sequence {xt} converges to the unique NE of G̃ with a polynomial rate specified by

E[∥xt − x̃∗∥p2] ≤ Cp · t−pα.

Let γ be any number such that 0 < γ < pα. From Chebyshev’s inequality, with probability
at least 1− t−pα+γ , ∥xt − x̃∗∥p2 ≤ Cp · t−γ , and the following bounds also hold:

∥xt,i − x̃∗
i ∥

p
2 ≤ Cp · t−γ ,∀i ∈ [n], t ∈ [T ]. (40)

Denote the attacking cost at round t for a agent i ∈ V as ct,i, which is given by ct,i =
|ũi(xt,i,xt,−i)− ui(xt,i,xt,−i)|. By the choice of ∆i, it holds that

max
xi∈Xi

ũi(xi,x−i) = ui(B̃Ri(x−i),x−i),∀x−i ∈ X−i. (41)

Hence, we can estimate an upper bounded of ct,i as the following:

ct,i = |ũi(xt,i,xt,−i)− ui(xt,i,xt,−i)|
≤ |ui(xt,i,xt,−i)− ui(B̃Ri(xt,−i),xt,−i)|+ |ũi(xt,i,xt,−i)− ui(B̃Ri(xt,−i),xt,−i)|
= |ui(xt,i,xt,−i)− ui(B̃Ri(xt,−i),xt,−i)|+ |ũi(xt,i,xt,−i)− max

xi∈Xi

ũi(xt,i,xt,−i)|. (42)

Since ui is L1-Lipschitz in xi, and B̃Ri(·) = BR(·)− δi is L2-Lipschitz, the first part of of
RHS of Eq. (42) can be upper bounded by

|ui(xt,i,xt,−i)− ui(B̃Ri(xt,−i),xt,−i)| ≤ L1∥xt,i − B̃Ri(xt,−i)∥
= L1∥xt,i − x̃∗

i ∥+ L1∥B̃Ri(x
∗
−i)− B̃Ri(xt,−i)∥

≤ L1∥xt,i − x̃∗
i ∥+ L1L2∥x∗

−i − xt,−i∥
≤ CL1(1 + L2)t

−γ/p. (43)

For the second part, we have

|ũi(xt,i,xt,−i)− max
xi∈Xi

ũi(xt,i,xt,−i)|

≤|ũi(xt,i,xt,−i)− ũi(x
∗
i ,x

∗
−i)|+ |ũi(x

∗
i ,x

∗
−i)− max

xi∈Xi

ũi(xt,i,xt,−i)|. (44)

Because ũi(xi,x−i) = ui(xi + δi,x−i) − ui(BRi(x−i),x−i) + ui(BRi(x−i) − δi,x−i) and
ui, BRi are L1, L2-Lipschitz continuous, ũi is (L1 + 2L1(1 + L2)) = L1(2L2 + 3)-Lipschitz
continuous. Therefore, the first part of the RHS of Eq. (44) can be upper bounded by

|ũi(xt,i,xt,−i)− ũi(x
∗
i ,x

∗
−i)| ≤ CL1(2L2 + 3)t−γ/p. (45)

To upper bound the second term of the RHS of Eq. (44), just observe that

max
xi∈Xi

ũi(xi,x−i) = max
xi∈Xi

ui(xi + δi,x−i)− ui(BRi(x−i),x−i) + ui(BRi(x−i)− δi,x−i)

= ui(BRi(x−i),x−i)− ui(BRi(x−i),x−i) + ui(BRi(x−i)− δi,x−i)

= ui(BRi(x−i)− δi,x−i). (46)

Using Eq. (46), we can obtain∣∣∣∣ũi(x
∗
i ,x

∗
−i)− max

xi∈Xi

ũi(xt,i,xt,−i)

∣∣∣∣
=

∣∣∣∣max
xi∈Xi

ũi(xi,x
∗
−i)− max

xi∈Xi

ũi(xt,i,xt,−i)

∣∣∣∣
=
∣∣ui(BRi(x

∗
−i)− δi,x

∗
−i)− ui(BRi(xt,−i)− δi,xt,−i)

∣∣
≤L1(∥BRi(x

∗
−i)−BRi(xt,−i)∥+ ∥x∗

−i − xt,−i∥)
≤CL1(L2 + 1)t−γ/p. (47)
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Assembling Eq. (43), Eq. (45), Eq. (44) and Eq. (47) together, from Eq. (42) we conclude
that with probability at least 1− t−pα+γ , it holds that

ct,i ≤ CL1(1 + L2)t
−γ/p + CL1(2L2 + 3)t−γ/p + CL1(L2 + 1)t−γ/p

= CL1(4L2 + 5)t−γ/p. (48)

On the other hand, in the event (with a probability at most t−pα+γ) that Eq. Eq. (40) do
not hold, we can use the fact that ui ∈ [0,M ] to give a trivial upper bound of ct,i as follows:

ct,i = |ũ1(xt,i,xt,−i)− u1(xt,i,xt,−i)|
= |ui(xt,i + δi,xt,−i)− ui(BRi(xt,−i),xt,−i) + ui(BRi(xt,−i)− δi,xt,−i)− ui(xt,i,xt,−i)|
≤ |ui(xt,i + δi,xt,−i)− ui(BRi(xt,−i),xt,−i)|+ |ui(BRi(xt,−i)− δi,xt,−i)− ui(xt,i,xt,−i)|
≤ 2M. (49)

Putting Eq. (48) and Eq. (49) together, the expected corruption on agent-i the adversary
needs at round t can be thus upper bounded by

E[ct,i] ≤ (1− t−pα+γ) · CL1(4L2 + 5)t−γ/p + t−pα+γ · 2M

≤ [CL1(4L2 + 5) + 2M ]t−
pα
p+1 ,

and the optimal order is achieved when γ = p2

p+1 ·α. As a result, the total expected corruption

is upper bounded by

E

[
n∑

i=1

T∑
t=1

ct,i

]
≤ [CL1(4L2 + 5) + 2M ]|V| · T 1− pα

p+1 . (50)

B.3 Proof of Theorem 2 and Corollary 1

Proof. (of Theorem 2) For any k ∈ [n], Let x∗(δk) be the PNE of the corrupted game
G(n, {Xi}, {ũi}) induced by SUSA(k, δk,∆), where

ũk(xk,x−k) = uk(xk + δk,x−k),

ũj(xj ,x−j) = uj(xj ,x−j), 1 ≤ j ≤ n, j ̸= k.

According to Lemma 1, there exists an L > 0 such that the multi-variate function x∗(δk) :

Rd → Rdn is well-defined in the ball δ ∈ B(0, β
L ).

Next, we derive the derivative of W (x∗(δk)) w.r.t. δk. Let

Fk(x, δk) =

(
∂u1

∂x1
, · · · , ∂uk−1

∂xk−1
,
∂ũk

∂xk
,
∂uk+1

∂xk+1
, · · · ∂un

∂xn

)
,

which is both differentiable w.r.t. both x and δk due to the smoothness assumption on

{ui}ni=1. If we further let F (x) =
(

∂u1

∂x1
, · · · , ∂uk−1

∂xk−1
, ∂uk

∂xk
, ∂uk+1

∂xk+1
, · · · ∂un

∂xn

)
, it also holds that

Fk(x, δk = 0) = F (x),∀k ∈ [n].

From the assumption x∗
i /∈ ∂Xi we know the PNE x∗ satisfies the first-order condition

Fk(x
∗(δk), δk) = 0. According to the implicit function theorem (Krantz & Parks, 2002), we

have
∂x∗

∂δk
= −

(
∂Fk

∂x∗

)−1
∂Fk

∂δk
, (51)

and therefore
dW

dδk
=

dW

dx∗ ·
∂x∗

∂δk
= −dW

dx∗

(
∂Fk

∂x∗

)−1
∂Fk

∂δk
. (52)
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We note that the matrix ∂Fk

∂x∗ must be invertible, because it is the Hessian of the corrupted

game G̃ under SUSA(k, δk,∆) which is strongly monotone, and according to Lemma ??, it
is negative definite.

Next, we show that there must exist some k ∈ [n] such that dW
dδk

∣∣
δk=0

̸= 0. In fact, according

to Eq. (52) we have

n∑
k=1

dW

dδk

∣∣∣∣
δk=0

= −dW

dx∗ ·
(
∂Fk(x,0)

∂x∗

)−1

·
n∑

k=1

∂F

∂δk

∣∣∣∣
δk=0

= −dW

dx∗ ·
(

∂F

∂x∗

)−1

·
(
∂2u1

∂x2
1

∣∣∣∣
x=x∗

, · · · , ∂
2un

∂x2
n

∣∣∣∣
x=x∗

)⊤

̸= 0,

which indicates that there exists k ∈ [n] such that dW
dδk

∣∣
δk=0

̸= 0. Hence, if the adversary

picks δ̄k = −ϵ · dWdδk

∣∣
δk=0

with a small ϵ > 0 and performs SUSA(k, δ̄k,∆), it necessarily

decreases W at x = x∗.

Proof. (of Corollary 1) From Eq. (52) we have

dW

dδk

∣∣∣∣
δk=0

= −dW

dx∗ ·
(
∂Fk(x,0)

∂x∗

)−1

· ∂F
∂δk

∣∣∣∣
δk=0

= −dW

dx∗ ·
(

∂F

∂x∗

)−1

·
(
0d×d, · · · ,0d×d,

∂2uk

∂x2
k

∣∣∣∣
x=x∗

,0d×d, · · · ,0d×d

)⊤

= −dW

dx∗ ·H
−1
G (x∗)[:, k] · ∇kkuk(x

∗). (53)

As a result, for any sufficiently small ϵ and δk = ϵδ̂, Taylor expansion at δk = 0 gives

W (x̃∗) =W (x∗(ϵδ̂))

=W (x∗(0))− ϵ · dW
dx∗ ·H

−1
G (x∗)[:, k] · ∇kkuk(x

∗) · δ̂ + δ̂⊤∇2
δk
W (x∗)δ̂ · o(ϵ)

≤W (x∗(0))− ϵ

2
· dW
dx∗ ·H

−1
G (x∗)[:, k] · ∇kkuk(x

∗) · δ̂,

as long as dW
dx∗ ·H−1

G (x∗)[:, k] · ∇kkuk(x
∗) · δ̂ > 0.

B.4 A General Argument of Attacking Ability and Proof of Proposition 1

We first provide an argument regarding the relationship between δ and x̃∗ − x∗ in gen-
eral games, and then present the proof of Proposition 1, which rigorously establishes the
corresponding results for the case of Cournot competition.

As pointed out in the proof of Theorem 1, the converged point x̃∗ = (x̃∗
1, · · · , x̃∗

n) under
SUSA(V, {δk}k∈[n], {∆k}k∈[n]) can be described by the solution to the following system:

x1 = f1(x2,x3, · · · ,xn)− δ1,

x2 = f2(x1,x3, · · · ,xn)− δ2,
...

xn = fn(x1,x2, · · · ,xn−1)− δn,

(54)
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where the function fi(x−i) = argmaxt ui(t,x−i) is the best response mapping for agent i.
And x∗ = (x∗

1, · · · ,x∗
n) is the solution to

x1 = f1(x2,x3, · · · ,xn),

x2 = f2(x1,x3, · · · ,xn),
...

xn = fn(x1,x2, · · · ,xn−1).

(55)

Let F (x) = (f1(x2,x3, · · · ,xn), f2(x1,x3, · · · ,xn), · · · , fn(x1,x2, · · · ,xn−1)) as an n-
valued function and G(x) = F (x)− x, we have

G(x∗) = 0,

G(x̃∗) = (δ1, δ2, · · · , δn).

For a small perturbation ∆x, we can approximate the system G around x∗ with a linearized
version:

G(x∗ +∆x) = G(x∗) + J(G(x∗))∆x +O(∥∆x∥2). (56)

If we view the target point to steer x̃∗ as x∗ +∆x, it holds that

δ = G(x̃∗) = G(x∗)+J(G(x∗))(x̃∗−x∗)+O(∥∆x∥2) = J(G(x∗))(x̃∗−x∗)+O(∥(x̃∗−x∗)∥2).
(57)

From Eq. (38) we know that J(G(x∗)) = D−1(x∗)HG(x
∗), where HG(x

∗) is the game
Hessian at x = x∗, and D−1(x∗) is the block diagonal matrix with each block element
being the inverse Hessian of ui w.r.t. x

∗
i . Therefore, we argue the following in the sense of

approximation:

1. if the adversary wants to induce a particular deviation direction v, it can simply
pick δ to be D−1(x∗)HG(x

∗)v;

2. if the goal is to induce largest deviation as possible, it can pick δ to align with the
direction corresponding to the smallest eigenvalues of D−1(x∗)HG(x

∗).

And for the special case when SUSA only has one victim agent k, it need to pick

δk = diag([∇−1
ii ui]

n
i=1)HG [:, k]v (58)

in order to induce an NE shift v = x̃∗ − x∗, and for any δ, it will cause an NE shifting
characterized by

v = H−1
G [:, k][∇kkuk]δ, (59)

which echoes our argument after Theorem 1. In addition, since β-strongly monotonicity
implies that each diagonal element of D is lower bounded by β > 0, we know the smallest
eigenvalue of J can be upper bounded by

ρmin(J) ≤
ρmin(HG)

mink∈[n] βk
=

β

mink∈[n] βk
≤ 1, (60)

where ρmin(HG) = β because G is β-strongly monotone, and βk is a constant such that uk

is βk-strongly concave, meaning βk ≥ β. As a result, we have

∥x̃∗ − x∗∥ = ρmin(J(G(x∗)))−1∥δ∥ ≥ ∥δ∥. (61)

We note that such an argument is not rigorous and only holds in the sense of approximation,
as we omit the high-order term O(∥∆x∥2) in Eq. (56). However, this argument becomes a
rigorous proof for Cournot competition, as the Jacobian of system G becomes a constant
matrix and the high-order term O(∥∆x∥2) in Eq. (56) disappears.

Proof. For Cournot competition, since the Jacobian of G is a constant matrix and we do
not have the high-order term O(∥∆x∥2) in Eq. (56). Hence, from Eq. (56) we have
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G(x∗ +∆x) = G(x∗) +D−1HG∆x, (62)

which means that for any particular δ, it will induce

x̃∗ − x∗ = H−1
G Dδ. (63)

As a result, to induce a particular NE deviation direction v, we only need to pick δ =
D−1HGv. To induce the largest possible deviation distance ∥x̃∗ − x∗∥, it need to pick δ
such that δ aligns with the direction corresponding to the largest eigenvalues of H−1

G D,

which is also the direction corresponding to the smallest eigenvalues of D−1HG .

C Technical Details for Section 5

In this section, we provide the technical details related to Section 5 that we do not have
space to include in the main paper. These include essential details for Algorithm 1 and 3,
as well as the proofs of Theorem 3, Proposition 4, and Corollary 2.

C.1 Essential Details for Algorithm 1

In this subsection, we outline all the necessary details for Algorithm 1. The algorithm
requires selecting a self-concordant barrier Ri (see Definition 6) and using a specific prox-

mapping, PRi
(x

(t)
i , ṽ

(t)
i , ηt, λi, β) (see Definition 7), to update the action for the subsequent

round.

Algorithm 1: MD-SCB under Utility Poisoning Attack (Ba et al., 2024)

Input: step-size ηt =
t−ϕ

2d , weight λi > 0, game’s strongly concave parameter β > 0,
and self-concordant barrier Ri : int(Xi)→ R

1 Initialize: Let x
(t)
i = argminxi∈Xi

Ri(xi) for all i ∈ [n]
2 for t ∈ [T ] do
3 for i ∈ [n] do

4 Set A
(t)
i ← (∇2Ri(x

(t)
i ) + ηtβ(t+1)

λi
Idi

)−
1
2

5 Draw direction z
(t)
i uniformly from unit sphere Sdi

6 Play action x̂
(t)
i ← x

(t)
i +A

(t)
i z

(t)
i

7 Receive µ̃
(t)

ĩ
← µĩ(x̂t) + ct,̃i(x̂t) for ĩ ∈ Ĩt, µ̃(t)

i ← µi(x̂t) for i ∈ [n] \ Ĩt
8 for i ∈ [n] do

9 Compute gradient ṽ
(t)
i ← diµ̃

(t)
i (A

(t)
i )−1z

(t)
i

10 Update action x
(t+1)
i ← PRi(x

(t)
i , ṽ

(t)
i , ηt, λi, β)

Definition 6 (Self-concordance). A function R : int(A)→ R is self-concordant if it satisfies

1. R is three times continuously differentiable, convex, and approaches infinity along
any sequence of points approaching the boundary of int(A).

2. For every h ∈ Rd and x ∈ int(A), |∇3R(x)[h, h, h]| ≤ 2
(
h⊤∇2R(x)h

) 3
2 holds,

where |∇3R(x)[h, h, h] := ∂3R
∂t1∂t2∂t3

(x+ t1h+ t2h+ t3h)|t1=t2=t3=0.

In addition to these two conditions, if for every h ∈ Rd and x ∈ int(A), |∇R(x)⊤h ≤
ν

1
2 (h⊤∇2R(x)h) 1

2 | for a positive real number ν, R is ν-self-concordant.

Definition 7 (Specific Prox-mapping). The prox-mapping exploited in Algorithm 1 is de-
fined as

PR(x, v̂, λ, η) = argmin
x′∈x

⟨v̂, x− x′⟩+ ηβ(t+ 1)

2λ
∥x− x′∥22 +DR(x′, x),
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where DR(x′, x) is the Bregman divergence that measures the difference between the values
of a convex R at two points, x and x′, combined with the local linear approximation of R
around x, described by the following equation

DR(x′, x) = R(x′)−R(x)− ⟨∇R(x), x′ − x⟩.

C.2 Proof of Theorem 3

Theorem (Theorem 3 restated). Consider an adversary that attacks a set of agents

Ĩt at round t with a total budget satisfying
∑t

j=1

∑
ĩ∈Ĩj
|cj,̃i| ≤ O(tρ) for all t and

some ρ ∈ [0, 1]. By choosing a learning rate sequence ηt = 1
2d t

−ϕ, for sufficiently

large T the last-iterate convergence rate of Algorithm 1 satisfies E
[
∥x̂T − x∗∥22

]
≤

max
{
O(dTϕ−1),O(dT−ϕ),O(dT ρ− 1

2 (ϕ+1))
}
. Specifically, E

[
∥x̂T − x∗∥22

]
≤ O

(
dT

2(ρ−1)
3

)
can be achieved by choosing ϕ = 2

3 (ρ+
1
2 ).

Proof. The proof outlined below is motivated by the observation that we can quantify the
bias caused by adversarial attack in utility observation in the a Simultaneous Perturbation
Stochastic Approximation (SPSA) estimator, which shares a similar spirit to the gradient
estimation under corruption lemma in Cheng et al. (2024). In particular, we can extend
Lemma 3.5 in Ba et al. (2024) to incorporate adversarial attacks as follows.

Lemma 4 (Extended Lemma 3.5 in (Ba et al., 2024)). Suppose that µi is a concave function
and Ai ∈ Rdi×di is an convertible matrix for each i ∈ [n], we define the smoothed version
of µi with respect to Ai by µ̂i(x) = Ewi∼BdiEz−i∼

∏
j ̸=i S

dj [µi(xi + Aiwi; x̂−i)] where Sdi is

a di dimensional unit sphere, Bdi is a di-dimensional unit ball and x̂i = xi + Aizi for all
i ∈ [n]. Then, the following statement hold true

∇iµ̂i(x) + bi = E[diµi(x̂i; x̂−i)(Ai)
−1zi|x],

where bi = diE[ci(x̂i; x̂−i)(Ai)
−1zi|x].

Remark 2. The key difference between utility shifting attack and random noise is bi ̸= 0.
This is because the corruption ci(x̂i; x̂−i) depends on the randomly sampled vector zi through
x̂i, which makes

E[ci(x̂i; x̂−i)(Ai)
−1zi|x] ̸= E[ci(x̂i; x̂−i)(Ai)

−1|x]E[zi|x].

Thus, we need to control the cumulative impact of the bias in gradient caused by adversarial
attack.

We then carry this bias bi throughout the analysis, closely following the original proof
developed by Ba et al. (2024). Finally, we derive a result demonstrating how the decreasing
speed of the learning rate affects convergence and its associated robustness to adversarial
attacks.

To prepare for the proof, we first extend the Lemma 2.12 and Lemma 3.10 in Ba et al.
(2024) to incorporate adversarial attacks.

Lemma 5 (Extended Lemma 2.12 in (Ba et al., 2024)). Suppose that the iterate {x(t)}t≥1

is generated by Algorithm 2 and let each corrupted utility value µ̃t satisfy that |µ̃t(x)| ≤ 1
for all x ∈ X and 0 < ηt ≤ 1

2d , we have

DR(p,xt+1)+
ηtβ(t+ 1)

2
∥x(t+1)−p∥2 ≤ DR(p,xt)+

ηtβ(t+ 1)

2
∥xt−p∥2+2η2t ∥A(t)ṽt∥2+ηt⟨ṽt, x(t)−p⟩,

where p ∈ X and the sequence {ηt}t≥1 is assumed to be non-increasing.
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Algorithm 2: Single Agent Mirror Descent Self-Concordant Barrier with Bandit Feed-
back under Utility Shifting Attack

Input: step size ηt > 0, module β > 0, and barrier R : int(X )→ R
1 Initialize x(1) = argmina∈X R(x)
2 for t ∈ [T ] do
3 set A(t) ← (∇2R(x(t)) + ηtβ(t+ 1)Id)

−1/2

4 draw z(t) ∼ Sd
5 play x̂(t) ← A(t)z(t)

6 receive µ̃(t) ← µ(t)(x̂(t)) + ct(x̂
(t))

7 set ṽ(t) ← v̂(t) + dct(x̂
(t))(A(t))−1z(t), v̂t = nµ(t)(x̂(t))(A(t))−1z(t)

8 update x(t+1) ← PR(x(t), ṽ(t), ηt)

Remark 3. Algorithm 2 is the single agent version of Algorithm 1. The proof Lemma 5 is
similar to the proof in Appendix A of the paperBa et al. (2024), with a simple modification
for λ(x(t), g) = ηt∥ṽ(t)∥x(t),∗ = dηt|µ̃(t)(x̂(t))|∥z(t)∥2 ≤ dηt ≤ 1

2 , which still holds.

Lemma 6 (Extended Lemma 3.10 in Ba et al. (2024)). Suppose that the iterate {x(t)}t≥1

is generated by Algorithm 1 and let each corrupted utility value µ̃t
i satisfy that |µ̃(t)

i (x)| ≤ 1
for all x ∈ X and 0 < ηt ≤ 1

2d , we have

∑
i∈[n]

λiDR(p,x
(t+1)
i ) +

ηtβ(t+ 1)

2

(∑
i∈N
∥x(t+1)

i − pi∥2
)
≤
∑
i∈[n]

λiDR(pi,x
(t)
i )

+
ηtβ(t+ 1)

2

∑
i∈[n]

∥x(t)
i − pi∥2

+ 2η2t

∑
i∈[n]

λi∥A(t)
i ṽ

(t)
i ∥

2

+ ηt

∑
i∈[n]

λi⟨ṽ(t)
i ,x

(t)
i − pi⟩

 ,

where pi ∈ Xi and the sequence {ηt}t≥1 is assumed to be non-increasing.

Now, we will prove Theorem 3. Taking the expectation of both sides for equation proved in
Lemma 6 conditioned on x(t), we have

E

∑
i∈[n]

λiDR(p,x
(t+1)
i )|xt

+
ηtβ(t+ 1)

2
E

∑
i∈[n]

∥x(t+1)
i − pi∥2|xt

 ≤
∑
i∈[n]

λiDR(pi,x
(t)
i ) +

ηtβ(t+ 1)

2

∑
i∈[n]

∥x(t)
i − pi∥2


+ 2η2tE

∑
i∈[n]

λi∥A(t)
i ṽ

(t)
i ∥

2|xt

+ ηtE

∑
i∈[n]

λi⟨ṽ(t)
i ,x

(t)
i − pi⟩|xt

 .

By the definition of ṽ
(t)
i and using Lemma 3.5 in Ba et al. (2024), we have

E(∥A(t)
i v̂

(t)
i ∥

2|xt) ≤ d2i .

In addition, using Lemma 3.5 in Ba et al. (2024) again and the Young’s inequality, we have

E
(
⟨v̂(t)

i ,x
(t)
i − pi⟩|xt

)
≤ ⟨∇iµi(xt),x

(t)
i − pi⟩+

λil
2
i

2β

∑
i∈[n]

(σmax(A
(t)
i ))2

+
β

2λi
∥x(t)

i − pi∥2 + b
(t)⊤
i (x

(t)
i − pi),
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where we have b
(t)
i equals the following b

(t)
i = niE

[
ct,i(x̂

(t))(A
(t)
i )−1z

(t)
i |xt

]
. b

(t)
i ̸= 0, this

is because ct,i(x̂) is a function of z
(t)
i . Since ∇2Ri(x) is positive definite for all x ∈ X and

E

∑
i∈[n]

λi⟨ṽ(t)
i ,x

(t)
i − pi⟩|xt

 ≤ ∑
i∈[n]

λi⟨∇iµi(x
(t)),x

(t)
i − pi⟩+

1

2ηtβ2(t+ 1)

∑
i∈[n]

λi

∑
i∈[n]

λ2
i l

2
i


+

β

2

(
∥x(t)

i − pi∥2
)
+
∑
i∈[n]

λib
(t)⊤
i (x

(t)
i − pi)

≤ 1

2ηtβ2(t+ 1)

∑
i∈[n]

λi

∑
i∈[n]

λ2
i l

2
i

− β

2

(
∥x(t)

i − pi∥2
)
+
∑
i∈[n]

λib
(t)⊤
i (x

(t)
i − pi) +

∑
i∈[n]

λi⟨∇iµi(pi),x
(t)
i − pi⟩.

In this way, we have

E

∑
i∈[n]

λiDRi
(pi,x

(t+1)
i )

+
ηt+1β(t+ 1)

2
E

∑
i∈[n]

∥x(t+1)
i − pi∥2

 ≤ ηtE

∑
i∈[n]

λi⟨∇iui(p),x
(t)
i − pi⟩


+ E

∑
i∈[n]

λiDRi
(pi,x

(t)
i )

+
ηtβt

2
E

∑
i∈[n]

∥x(t)
i − pi∥2

+ 2η2t

∑
i∈[n]

d2iλi


+

1

2β2(t+ 1)

∑
i∈[n]

λi

∑
i∈[n]

λ2
i ℓ

2
i

+ ηtE

∑
i∈[n]

λib
(t)⊤
i (x

(t)
i − pi)

 .

Summing up the above inequality over t = 1, 2, . . . , T − 1, we have

E

∑
i∈[n]

λiDRi(pi,x
(t)
i )

+
ηTβT

2
E

∑
i∈[n]

∥x(t)
i − pi∥2

 ≤ T−1∑
t=1

ηtE

∑
i∈[n]

λi⟨∇iui(p),x
(t)
i − pi⟩


+
∑
i∈[n]

λiDRi(pi,x
(1)
i ) +

η1β

2

(∑
i∈N

∥x(1)
i − pi∥2

)
+ 2

∑
i∈[n]

d2iλi

(T−1∑
t=1

η2t

)

+
1

2β2

∑
i∈[n]

λi

∑
i∈[n]

λ2
i ℓ

2
i

(T−1∑
t=1

1

t+ 1

)
+

T−1∑
t=1

ηtE

∑
i∈[n]

λib
(t)⊤
i (x

(t)
i − pi)



We should notice that for each round, there is freedom for the adversary to choose who
to attack. To be consistent with the lower bound, in this upper bound, we assume that
the adversary consistently choose i := ĩ to attack. Before proceeding afterwards, now let’s
analyze the cumulative impact of bias on the convergence of action profile. Notice that for

i ̸= ĩ, b
(t)
i = 0. Therefore we can use Cauchy Schwartz to bound the following inequality

T−1∑
t=1

ηtE

∑
i∈[n]

λib
(t)⊤
i (x

(t)
i − pi)

 ≤ C̃ ′
√
β

T−1∑
t=1

η
3/2
t

√
t+ 1|ct,̃i(x̂t)|, C̃ ′ = C̃dBmax

i∈[n]

√
λi,
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where B = maxi∈[n] Bi, Bi is the radius of Xi. In particular, C̃ is the constant such that for

all t, σmax

(
∇2Rĩ(x

(t)

ĩ
) + ηtβ(t+1)

λĩ
Idĩ

)
≤ C̃ ηtβ(t+1)

λĩ
. Therefore, we have

E

∑
i∈[n]

λiDRi
(pi,x

(t)
i )

+
ηTβT

2
E

∑
i∈[n]

∥x(t)
i − pi∥2

 ≤ T−1∑
t=1

ηtE

∑
i∈[n]

λi⟨∇iui(p),x
(t)
i − pi⟩


+
∑
i∈[n]

λiDRi
(pi,x

(1)
i ) +

η1β

2

∑
i∈[n]

∥x(1)
i − pi∥2

+ 2

∑
i∈[n]

d2iλi

(T−1∑
t=1

η2t

)

+
1

2β2

∑
i∈[n]

λi

∑
i∈[n]

λ2
i ℓ

2
i

(T−1∑
t=1

1

t+ 1

)
+ C̃ ′

√
β

T−1∑
t=1

η
3/2
t

√
t+ 1|ct,̃i(x̂t)|.

Since E
[∑

i∈[n] λiDRi(pi,x
(t)
i )
]
> 0, we have the following equation

E

∑
i∈[n]

∥x(t)
i − pi∥2

 ≤ 2

ηTβT

T−1∑
t=1

ηtE

∑
i∈[n]

λi⟨∇iui(p),x
(t)
i − pi⟩


+

2

ηTβT

∑
i∈[n]

λiDRi(pi,x
(1)
i ) +

η1
ηTT

∑
i∈[n]

∥x(1)
i − pi∥2

+
4

ηTβT

∑
i∈[n]

d2iλi

(T−1∑
t=1

η2t

)

+
2

ηTβ3T

∑
i∈[n]

λi

∑
i∈[n]

λ2
i ℓ

2
i

(T−1∑
t=1

1

t+ 1

)
+

2

ηT
√
βT

C̃ ′
T−1∑
t=1

η
3/2
t

√
t+ 1|ct,̃i(x̂t)|.

(64)

By the initialization x
(1)
i = argminx∈X Ri(x), we have ∇Ri(x

(1)
i ) = 0 which implies that

DRi
(pi,x

(1)
i ) = Ri(pi) − R(x(1)

i ). Then, let us inspect each coordinate of a unique Nash
equilibrium x∗ and set p coordinate by coordinate in 64; indeed, we consider the following
two cases:

• A point x∗
i ∈ Xi satisfies that πx1(x∗

i ) ≤ 1− 1√
T
. By Lemma 2.4 (Ba et al., 2024),

we have DRi
(x∗

i ,x
(1)
i ) = Ri(x

∗
i )−Ri(x

(1)
i ) ≤ νi log(T ). In this case, we set pi = x∗

i .

• A point x∗
i ∈ Xi satisfies that πx1(x∗

i ) > 1 − 1√
T
. Thus, we can find x̄i ∈ Xi such

that ∥x̄i − x∗
i ∥ = O( 1√

T
) and πx1(x̄i) ≤ 1− 1√

T
. By Lemma 2.4 (Ba et al., 2024),

we have DRi(x̄i,x
(1)
i ) = Ri(x̄i)−Ri(x

(1)
i ) ≤ νi log(T ). In this case, we set pi = x̄i.
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Therefore, we have the following equation. By choosing ηt =
1
2d t

−ϕ, we have

E

∑
i∈[n]

∥x(t)
i − x∗

i ∥2
 ≤ E

 ∑
i∈[n]\I

∥x(t)
i − x∗

i ∥∥x∗
i − x̄i∥

 (65)

+
4d

βT 1−ϕ

T−1∑
t=1

ηt

E

∑
i∈[n]

λiℓi∥x(t)
i − x∗

i ∥

 ∑
i∈[n]\I

∥x∗
i − x̄i∥

+
∑
i∈[n]

λi∥∇iui(x
(t)
I , x̄N\I)∥∥x∗

i − x̄i∥


(66)

+
1

T 1−ϕ

∑
i∈[n]

B2
i

 (67)

+
2

dβT 1−ϕ

∑
i∈[n]

d2iλi

 T−1∑
t=1

t−2ϕ (68)

+
4d log T

βT 1−ϕ

∑
i∈[n]

λi

∑
i∈[n]

λ2
i ℓ

2
i

 (69)

+
2C̃ ′

d
√
βT 1−ϕ

T−1∑
t=1

t
1
2−

3
2ϕ|ct,̃i(x̂t)| (70)

+
2C̃ ′

d
√
βT 1−ϕ

T−1∑
t=1

t−
3
2ϕ|ct,̃i(x̂t)| (71)

+
4d

βT 1−ϕ

∑
i∈[n]

νiλi log T (72)

We will analyze the convergence of E
[∑

i∈[n] ∥x
(t)
i − x∗

i ∥2
]
by bounding the convergence

of the right-hand size one by one. By Lemma 2.4 (Ba et al., 2024), we have Eq. (65) and

Eq. (66) are upper bounded by O
(

d√
T

)
. Eq. (67) is upper bounded by O( d

T 1−ϕ ). Eq. (68)

is upper bounded by O( d
Tϕ ). Eq. (69) and Eq. (72) are upper bounded by Õ( d

T 1−ϕ ). Now
it remains to analyze the convergence rate for Eq. (70), which we regard as the impact
of observation error. Note that Eq. (72) can never be the dominant term, therefore, we
drop it from the analysis. Since t−ϕ − (t + 1)−ϕ ≤ t−(ϕ+1) for integer t and ϕ > 0 and if∑t

j=1 |cj,̃i(x̂j)| ≤ tρ holds for all t, then we can bound

2C̃ ′

d
√
βT 1−ϕ

T−1∑
t=1

t
1
2−

3
2ϕ|ct

ĩ
(x̂(t))| ≤ O(T ρ− 1

2 (ϕ+1)).

Noticing that

E

∑
i∈[n]

∥x̂(t)
i − x

(t)
i ∥

2

 ≤ E

∑
i∈[n]

(σmax(A
(t)
i ))2

 ≤ 2d
∑

i∈[n] λi

βT 1−ϕ

We have the following

E

∑
i∈[n]

∥x̂(t)
i − x∗

i ∥2
 ≤ max

{
O(dTϕ−1), O(dT−ϕ), O

(
T ρ− 1

2 (ϕ+1)
)}

,

which completes the proof.
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C.3 Essential Details for MAMD (Bravo et al., 2018)

At the beginning of this section, we provide necessary details for Muti-Agent Mirror Descent
(MAMD), initially developed by Bravo et al. (2018) for multi-agent learning (see Algorithm
3). We attempt to evaluate the robustness of Algorithm 3 under utility shifting attack,
highlighted by the red line (Line 7 of Algorithm 3).

Algorithm 3: MAMD (Bravo et al., 2018) under Utility Shifting Attack

Input: step-size ηt,1 = γt−3ϕ, query radius ηt,2 = δt−ϕ, safety ball Bri(pi) ⊂ Xi for all
agents

1 Initialize action x
(0)
i ∈ Xi for each agent i ∈ [n]

2 for t ∈ [T ] do
3 for i ∈ [n] do

4 Draw direction z
(t)
i uniformly from Sdi

5 Set w
(t)
i ← z

(t)
i − r−1

i (x
(t)
i − pi)

6 play x̂
(t)
i ← x

(t)
i + ηt,2w

(t)
i

7 Receive µ̃
(t)

ĩ
← µĩ(x̂t) + ct,̃i(x̂t) for i ∈ Ĩt, µ̃(t)

i ← µi(x̂t) for i ∈ [n] \ Ĩt
8 for i ∈ [n] do

9 Set v̂
(t)
i ← (di/ηt,2)µ̃

(t)
i z

(t)
i

10 Update x
(t+1)
i ← P

x
(t)
i

(
ηt,1v̂

(t)
i

)
a

aThe proximal mapping PX(y) := argx′∈X min{y⊤(x − x′) + D(x′, x)}, where DR(x′, x) is the

Bregman divergence, where DR(x′, x) = R(x′)−R(x)−∇R(x)⊤(x′ −x), for some strongly convex
function R. Additionally, Algorithm 3 creates a safety ball Bri(pi), with δ/ri < 1, and generate

x̂
(t)
i bases on the adjusted randomly sampled direction z

(t)
i to ensure the feasibility.

C.4 Proof of Proposition 4

Proposition 4. Consider an adversary that attacks a set of agents Ĩt at round t with a
total budget satisfying

∑t
j=1

∑
ĩ∈Ĩj
|cj,̃i| ≤ O(tρ) for all t and some ρ ∈ [0, 1]. By choosing

parameters ηt,1 := γt−3ϕ and ηt,2 := δt−ϕ, for constants γ > 1
3β and δ > 0, 1

4 < ϕ ≤
1
3 , running Algorithm 3 a sufficiently large T , the last-iterate convergence rate satisfies:

E
(
∥x̂T − x∗∥2

)
≤ O(d2 max{T−ϕ, T ρ−2ϕ}).

Proof. Similar to the proof structure in Appendix C.2, at core of the proof of Proposition
4 is to quantify the bias, bi, caused by utility shifting attack in gradient estimation for a
SPSA estimator developed by Bravo et al. (2018), resulting the following lemma.

Lemma 7 (Extended Lemma C.1 in (Bravo et al., 2018)). Consider v̂
(t)
i (defined in Line 9

of Algorithm 3) and Let µ̂i(x) := Ewi∼BdiEz−i∼
∏

j ̸=i S
dj [µi(xi + ηt,2wi; x̂−i)], then we have

E(v̂i|x) := ∇iµ̂i(x) + bi,

where bi :=
di

ηt,2
E (ci(x̂)zi|x).

Using Lemma 7, by choosing ηt,1 = γt−p, ηt,2 = δt−q, we can extend Equation D.13 (see
Eq. (73)) in Bravo et al. (2018) to incorporate bias (see term C in Eq. (74)), where we use
D̄t to denote the average Bergman divergence E(Dt) between x∗ and xt induced by some
K-strongly convex function R, and V 2 =

∑
i d

2
i , we have

D̄t+1 ≤ (1− βγ

tp
)D̄t +

γ

tp

(
δ

tq

)
+

V 2

2K

γ2δ2

t2(p−q)
, (73)
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D̄t+1 ≤ (1− βγ

tp
)D̄t︸ ︷︷ ︸

A

+
γ

tp

(
δ

tq

)
︸ ︷︷ ︸

B

+ ηt,1

∑
i∈[n]

b
(t)
i


︸ ︷︷ ︸

C

+
V 2

2K

γ2δ2

t2(p−q)︸ ︷︷ ︸
D

. (74)

To analyze the convergence rate of D̄t+1, we need further extend the convergence lemma
(Lemma D.2 in Bravo et al. (2018)) from smooth decaying bt ∼ O( 1

tq ) to only a sublinear
summation bound (see Eq. (75)) to incorporate utility shifting attack.

Lemma 8 (Extended Lemma D.2 in (Bravo et al., 2018)). Let an be a non-negative sequence
satisfying that

at+1 ≤ at

(
1− P

tp

)
+

Q

tp
· bt,

T∑
t=1

bt < Tα,∀T > 0. (75)

where P,Q > 0, p ∈ (0, 1], α ∈ [ 12 , 1), bt ∈ [0, 1]. Then, there exists a constant C > 0 such
that for sufficiently large t, we have

1. there exists positive constants C, T0 such that for any t > T0,

at ≤
C

tp−α
,

2. if the sequence {bt}∞t=0 is non-increasing starting from t = t0, there exists positive
constants C, T0 such that for any t > T0,

at ≤
C

t1−α
.

Proof. For the first situation, it holds that

at+1 ≤ at

(
1− P

tp

)
+

Q

tp
· bt

≤
(
at−1

(
1− P

(t− 1)p

)
+

Q

(t− 1)p
· bt−1

)(
1− P

tp

)
+

Q

tp
· bt

≤ · · ·

= Q ·
t−1∑
k=0

[
bt−k

(t− k)p

k∏
i=1

(
1− P

(t− i+ 1)p

)]
(76)

≤ Q ·
tα∑
k=0

[
1

(t− k)p

k∏
i=1

(
1− P

(t− i+ 1)p

)]
(77)

≤ Q ·
tα∑
k=0

[
1

(t− k)p

]
≤ Qtα−p,

where Eq. (77) holds because the sequence
{

1
(t−k)p

∏k
i=1

(
1− P

(t−i+1)p

)}∞

k=0
is non-

increasing when p ∈ (0, 1]. Therefore, the maximum possible value of the RHS of Eq. (76)
is achieved when bt = · · · = bt−tα+1 = 1. When {bt} is non-increasing, the RHS of Eq. (76)
achieves its maximum possible value when b1 = · · · = bt = tα−1. Therefore, it holds that
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at+1 ≤ Q ·
t−1∑
k=0

[
bt−k

(t− k)p

k∏
i=1

(
1− P

(t− i+ 1)p

)]

≤ tα−1Q ·
t−1∑
k=0

[
1

(t− k)p

k∏
i=1

(
1− P

(t− i+ 1)p

)]
≤ O(tα−1).

Armed with Lemma 8, we can analyze the convergence of Eq. (74). Firstly, we note that

ηt,1

(∑
i∈[n] b

(t)
i

)
≤ O(dT ρ−q). Second, we need to choose p, q > 0 such that the cumulative

sum with respect to the term A,B,C,D converge to a constant. To satisfy this constraint,
we need 1

4 < q ≤ 1
3 and we choose q to make the order of term B and D equal, we get p = 3q.

In this way, the convergence rate is determined by O(d2 max{t−q, tρ−2q}), completing the
proof.

D Additional Discussion about Absolute Robustness

In Section 5, we explored the efficiency-robustness trade-off based on a specific concept of
robustness—whether a utility poisoning adversary can induce NSA. However, this is not
the only measure of robustness. In this section, we introduce a new concept called absolute
robustness and establish a formal efficiency-robustness trade-off, analogous to our results in
Section 5, under this broader notion of robustness.

To introduce the notion of absolute robustness, we need to first define a generalized con-
cept of utility poisoning attack outcome, named γ-Successful Attack (γ-SA), as shown in
Definition 8. Intuitively, γ-SA depicts a broader and milder goal (i.e., slowing down the
convergence rate or causing non-convergence) compared to NSA.

Definition 8 (γ-Successful Attack and Absolute Robustness). We say an adversary suc-
cessfully implements a γ-Successful Attack (γ-SA) for some γ ∈ [0, 1] to an (α, p)-MAL
dynamics running a game if it induces a joint strategy sequence {x(t)}Tt such that for any
sufficiently large T , the cumulative error

T∑
t=1

E[∥x(t) − x∗∥p2] = Ω
(
T 1−pα(1−γ)

)
. (78)

In addition, we say an MAL dynamics A is absolutely robust to a utility poisoning adversary
C with budget O(T ρ) if C with budget O(T ρ) cannot induce γ-SA for any γ > 0.

Naturally, NSA is a form of 1-SA, as shifting the NE inevitably results in a linearly growing
cumulative error. Therefore, γ-SA is a weaker concept in terms of the attack’s impact, while
absolute robustness represents a stronger defensive notion, since it implies that not only can a
new convergence point not be imposed, but the original convergence rate remains unaffected.
Our next result shown in Corollary 3 indicates that if an adversary aims to achieve γ-SA
for some γ ∈ (0, 1), it requires a smaller total budget, as expected. To accomplish this, the
adversary can divide the time horizon into different phases, alternating between performing
SUSA and doing nothing. By adjusting the lengths of these phases, the adversary can
balance the attack budget and the desired level of regret.

Corollary 3. Under the same conditions as stated in Theorem 1, an adversary can imple-
ment a γ-SA within a total budget

E

[
T∑

t=1

|ct|

]
= O

(
T (1−

pα
p+1 )(1−pα(1−γ))

)
. (79)
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Proof. Define the p-th moment regret Regp(T ) =
∑T

t=1 E[∥xt−x∗∥p2]. Then from Theorem
1, we know that for any sufficiently large T0, the adversary can use an expected total

budget of O
(
T

1− pα
p+1

0

)
to incur a regret Ω(T0). Consequently, for any given T , setting

T0 = T 1−pα(1−γ), the adversary can useO
(
T (1− pα

p+1 )(1−pα(1−γ))
)
total budget in expectation

to incur a regret of the order Ω(T 1−pα(1−γ)) by performing SUSA for the initial T0 rounds.
For the remaining rounds, the adversary can refrain from injecting corruptions and allow
the agents to run their MAL algorithm without interference. In this way, the adversary

can incur at least Ω(T 1−pα(1−γ)) regret while using at most O
(
T (1− pα

p+1 )(1−pα(1−γ))
)
total

expected budget.

Theorem 1 and Corollary 3 together highlight an intriguing trade-off between the efficiency
and robustness of MAL learning dynamics. That is, the faster an MAL algorithm converges
(i.e., a larger α), the smaller the total corruption budget required to implement a successful
attack (either NSA or γ-SA). Next, we establish an analogous result to Corollary 2 under
a new (and stronger) robustness concept, that is, whether an MAL dynamics is absolutely
robust to a utility poisoning adversary with certain budget, as defined below:

ρ̄(C,A) = inf{ρ ∈ [0, 1]|C with budget O(T ρ) can achieve γ-SA against A.},
= sup{ρ ∈ [0, 1]|A is absolutely robust to C with budget O(T ρ).},

where C ∈ ADV represents a generic utility poisoning adversary. Similarly, we fix p = 2
and define the following quantities:

ρ̄−(α) = inf
C∈ADV

sup
A∈MAL(α,2)

ρ(C,A), ρ̄+(α) = sup
A∈MAL(α,2)

inf
C∈ADV

ρ(C,A). (80)

Here, the function ρ̄−(α) defined in Eq. (80) represents the optimal strategy of a utility
poisoning adversary. Specifically, for any MAL algorithm known to enjoy convergence rate
α, ρ̄−(α) denotes the minimum budget level ρ required for a successful γ-SA by the adversary.
In contrast, the function ρ̄+(α) characterizes the optimal defense from the perspective of the
algorithm designer. Given a required convergence rate α, ρ̄+(α) identifies the most robust
algorithm that can withstand γ-SA of level ρ from any utility poisoning adversary. From
minimax theorem (v. Neumann, 1928; Sion, 1958) we still have ρ̄−(α) ≥ ρ̄+(α),∀α ∈ [0, 1

4 ].
Furthermore, Corollary 3 and Theorem 3 lead to the following result

Corollary 4. Given the definitions of ρ̄−(α) and ρ̄+(α) in Eq. (80), for some particular
MAL algorithm A0 and adversary C0 ∈ ADV , we further define

ρ̄(A0(α)) = inf
C∈ADV

ρ(C,A = A0(α)), ρ̄(α, C0) = sup
A∈MAL(α,2)

ρ(C = C0,A),

where A0(α) denotes algorithm A0 with a set of hyper-parameters that guarantees MAL(α, 2)
convergence. Then for any α ∈ [0, 1

4 ], it holds that

1− 3α ≤ ρ̄(MD-SCB(α)) ≤ ρ̄+(α) ≤ ρ̄−(α) ≤ ρ̄(α;SUSA) ≤
(
1− 2α

3

)
(1− 2α). (81)

The proof of Corollary 4 follows exactly from the idea of Corollary 2, and thus we put them
together in Appendix D.1.

Figure 3 illustrates this trade-off. The yellow dashed line represents ρ̄−(α); above it, a bud-
get of O(T ρ) suffices for a powerful adversary to induce γ-SA in any MAL(α, 2) dynamics.
The red region, a subset of this area, corresponds to the actual budget required for γ-SA
for the specific attacking strategy outlined in Corollary 3. Conversely, the blue dashed line
represents ρ̄+(α); below it, the most robust MAL(α, 2) dynamics is absolutely robust to any
adversary with a total corruption of O(T ρ). For a specific MAL dynamics like MD-SCB, the
green region shows the budget within which it remains absolutely robust. We only present
ρ ∈ [0.25, 1] because the MAL dynamics with the best achievable convergence rate in such
a setting (alpha = 0.25)(Ba et al., 2024) can withstand a corruption level of ρ = 0.25 (see
Theorem 3). The three gaps in Figure 3 correspond to three open problems similar to those
we proposed in Figure 1.
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D.1 Proof of Corollary 2 and Corollary 4

Proof. By the definitions of ρ−(α), ρ+(α), ρ̄−(α), ρ̄+(α) and minimax theorem, it holds that

ρ(MD-SCB(α)) ≤ ρ+(α) ≤ ρ−(α) ≤ ρ(α; SUSA),

ρ̄(MD-SCB(α)) ≤ ρ̄+(α) ≤ ρ̄−(α) ≤ ρ̄(α; SUSA).

Taking p = 2 in Theorem 1, we have ρ(α; SUSA) ≤ 1− 2α
3 , and taking p = 2 in Corollary 3,

we have ρ̄(α; SUSA) ≤
(
1− 2α

3

)
(1− 2α).

Next, we show that ρ(MD-SCB(α)) ≥ 1 − α and ρ̄(MD-SCB(α)) ≥ 1 − 3α. By Theorem
3, we know that for MD-SCB, in order to incorporate a corruption O(T ρ) with ρ > 0, we
have to slow down the learning rate by increase ϕ. Therefore, for any particular choice of
ϕ, the resultant convergence rate α = 1−ϕ

2 . Hence, only when −ρ + ϕ+1
2 ≥ 1 − ϕ, this

choice does not affect the convergence rate, and we obtain ρ ≤ 3
2ϕ −

1
2 = 1 − 3α, meaning

ρ̄(MD-SCB(α)) ≥ 1 − 3α. On the other hand, if ρ ≥ 1 − 3α, as long as ρ − ϕ+1
2 < 0 (i.e.,

ρ < 1−α), NSA is impossible to induce as MD-SCB will still converge although at a slower
speed. This implies that ρ(MD-SCB(α)) ≥ 1− α.
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Figure 3: Illustration of the four
quantities in Corollary 4, re-
vealing the intrinsic efficiency-
robustness trade-off under γ-
SA.

Notably, the efficiency-robustness trade off also exists in
Algorithm 3 for γ-SA. Eq. (74) suggest that as long as
1 − ρ − q > q, 1

tp+q , will be the dominant order in decid-

ing the convergence E(∥xT − x∗∥22). This implies that
ρ̄(MAMD(α)) ≥ 1 − 4α, which also shows as long as
ρ < 1−4α, the convergence rate of Algorithm 3 will not be
affected – robust to γ-SA. However, since q is restricted to
1
4 < q ≤ 1

3 to ensure the convergence of D̄t, when ρ > 1
2 ,

the dominant order will be tρ−2q and we can see optimal
choice of q = 1

3 , implying ρ(MAMD(α)) ≥ 2
3 , which we

do not observe such a efficiency-robustness trade-off of
Algorithm 3 for SUSA, theoretically.

E Additional Experiments

E.1 Experiment Result for MAMD

In this section, consider the same experimental setup as
of Section 6 and evaluate the performance of Algorithm
3. We let each agent run MAMD with the game size n ∈
{10, 50, 100}. The learning rate schedule of MAMD is set
to ηt,1 ∝ t−3ϕ, and ηt,2 ∝ t−ϕ, ϕ = 0.33, 0.30, 0.25, corre-
sponding to convergence rates α = 0.165, 0.15, 0.125, p =
2 when no attack is present. We implement SUSA against
agent 1, with a fixed δ = 10.0. For each game instance specified by n and the attacked algo-
rithm specified by the convergence rate α, we compare the dynamics’ behavior both without
attack and under SUSA, and report the actual total budget used.

Result: In the upper row of Figure 4, the left panel plots the convergence curve of the L2

square error for n = 10, serving as a sanity check to confirm that different learning rate
schedules induce different convergence rates for MAMD in absence of an adversary. The
middle panel shows the outcome of SUSA against MAMD with α = 0.165, with the y-axis
representing L2 distance between xt and NE. The dashed lines display the convergence
curve without the adversary, while the solid lines represent the dynamics under SUSA, with
different colors indicating results for various game sizes n. As shown, for different values of
n, the attacked dynamics exhibit divergence, as the solid lines saturate and stop decreasing,
indicating that the dynamics are being steered to converge to a new point. However, the
trend between induced NE deviation magnitude with respect to n is unclear for MAMD,
possibly because the lower bound proved in Eq. (10) of Theorem 1 is not tight. The right

panel shows the cumulative attack budget Ct =
∑t

τ=1 |cτ | at each time step t against MAMD
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with different values of α. As the results indicate, although all exhibit a sublinear trend,
a faster-converging dynamics (α = 0.165) requires a smaller attack budget, corroborating
our findings in Theorem 1 and 3. The bottom row of Figure 4 evaluates the performance of
MAMD under a different sets of parameters nevertheless conveys a similar message.
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Figure 4: Left: square error of MAMD with varying convergence rates. Middle: square
error of MAMD on different sizes of game instances against SUSA. Right: cumulative attack
budget used by SUSA against MAMD with varying convergence rates. Error bars represent
the 1-σ region from 20 independent simulations.

E.2 Additional Results for MD-SCB

Figure 5 evaluates the performance of MD-SCB under a different sets of parameters never-
theless conveys a similar message as of Figure 6.
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Figure 5: Left: square error of MD-SCB with varying convergence rates when n = 100.
Middle: square error of MD-SCB on different sizes of game instances against SUSA with
α = 0.15. Right: cumulative attack budget used by SUSA against MD-SCB with varying
convergence rates when n = 100. Error bars represent the 1-σ region from 20 independent
simulations.

F Experiments

In this section, we validate our theoretical results from Theorem 1, Theorem 2, and Theorem
3 by implementing SUSA against MD-SCB on n-person Cournot games, in which each

player-i has a utility function ui(xi, x−i) = xi

(
a− b

∑n
j=1 xj

)
− cixi. The formal definition

is given in Appendix A. We also direct readers to Appendix E for additional results for
attacks against another algorithm MAMD (see Algorithm 3). We run simulations on two
types of Cournot game instances. In the first type (homogeneous), all players share the
same marginal cost ci, resulting in a symmetric game. In the second type (heterogeneous),
players have varying costs. The results for the homogeneous case are presented in the main
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paper, while those for the heterogeneous case are included in Appendix E.2, as they basically
convey the same message.

Homogeneous n-person Cournot Game Experimental Setup: We set a = 10, b =
0.05, and we consider the cost ci = 1 for all agents i ∈ [n]. The action space is set
to Xi = [0, 50] and the unique NE of such games can be verified as x∗

i = 180
n+1 , i ∈ [n].

We let each agent run MD-SCB with the game size n ∈ {10, 50, 100}. The learning rate
schedule of MD-SCB is set to (ηt ∝ t−ϕ, ϕ = 0.5, 0.7, 0.9), corresponding to convergence
rates α = 0.25, 0.15, 0.05, p = 2 when no attack is present. We implement SUSA against
agent 1, with a fixed δ = −10.0. For each game instance specified by n and the attacked
algorithm specified by the convergence rate α, we compare the dynamics’ behavior both
without attack and under SUSA, and report the actual total budget used.
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Figure 6: This figure displays results for Homogeneous n-person Cournot Game. Top left:
square error of MD-SCB with varying convergence rates. Top right: square error of MD-
SCB on different sizes of game instances against SUSA. Bottom left: cumulative attack
budget used by SUSA against MD-SCB with varying convergence rates. Bottom right:
social welfare W (xt) under SUSA and without attack for n = 10. The red dashed line
denote the social welfare under NE without attack, W (x∗), while the red solid line denote
the social welfare under manipulated NE under SUSA, W (x̃∗). We plot 0.1-σ region from
20 independent simulations for social welfare (the bottom right figure) and 0.5-σ region for
the rest figures.

Result: The top left panel of Figure 6 plots the convergence curve of the L2 square error
for n = 10, serving as a sanity check to confirm that different learning rate schedules induce
different convergence rates for MD-SCB in absence of an adversary. The top right panel
shows the outcome of SUSA against MD-SCB with α = 0.25, with the y-axis representing
L2 distance between xt and NE. The dashed lines display the convergence curve without the
adversary, while the solid lines represent the dynamics under SUSA, with different colors
indicating results for various game sizes n. As shown, for different values of n, the attacked
dynamics exhibit divergence, as the solid lines saturate and stop decreasing, indicating
that the dynamics are being steered to converge to a new point. Additionally, we observe
that the induced NE deviation decreases with respect to n, which aligns with our theoretical
predictions in Theorem 1 and Remark 1. The bottom left panel shows the cumulative attack
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budget Ct =
∑t

τ=1 |cτ | at each time step t against MD-SCB with different values of α. As
the results indicate, although all exhibit a sublinear trend, a faster-converging dynamics
(α = 0.25) requires a smaller attack budget, corroborating our findings in Theorem 1 and
3. The bottom right panel plots the social welfare W (xt) without attack (indicted by the
dashed line) and under SUSA(indicted by the solid line). The panel shows that SUSA with
δ = −10 can lead the learning dynamic to a new NE with a lower social welfare, aligning with
the result in Theorem 2. These observations also hold for Cournot games with heterogeneous
costs, and the corresponding results are presented in Appendix E.2.

Heterogeneous n-person Cournot Game Experimental Setup: Similar to the ho-
mogeneous n-person Cournot game, we set a = 10, b = 0.05, n ∈ [10, 50, 100], α =
[0.25, 0.15, 0.05], and Xi ∈ [0, 50],∀i ∈ [n]. However, in the heterogeneous setting, we
consider different configurations of ci based on the value of n. For n = 10, the costs are
assigned as follows: c1 = 0.5, ci = 0.6 for i ∈ [2, 7], and ci = 0.7 for i ∈ [8, 10]. For larger
values of n, specifically n = 50 and n = 100, we replicate the structure of the n = 10 case,
dividing the sequence into 5 groups when n = 50 and into 10 groups when n = 100. Each
group follows the same pattern of costs assignments as in the n = 10 case. We implement
SUSA against agent 1 with δ = −15.
Result: Figure 7 suggests that all results hold in the heterogeneous setting just as they do
in the homogeneous setting.
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Figure 7: This figure displays results for Heterogeneous n-person Cournot Game.
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