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Abstract

A long-term goal of reinforcement learning is to design agents that can au-
tonomously interact and learn in the world. A critical challenge to such autonomy
is the presence of irreversible states which require external assistance to recover
from, such as when a robot arm has pushed an object off of a table. While standard
agents require constant monitoring to decide when to intervene, we aim to design
proactive agents that can request human intervention only when needed. To this
end, we propose an algorithm that can efficiently learns to detect and avoid states
that are irreversible, and proactively ask for help in case the agent does enter them.
On a suite of continuous control environments with unknown irreversible states,
we find that our algorithm exhibits both better sample- and intervention-efficiency
compared to existing methods.

Figure 1: Autonomous agents struggle to make progress without external interventions when they are stuck
in an irreversible state. Reinforcement learning agents therefore need active monitoring throughout training to
detect and intervene when the agent reaches an irreversible state. Enabling the agents to detect irreversible states
and proactively request for help can substantially reduce the human monitoring required for training agents.

1 Introduction

A reinforcement learning (RL) agent should be able to autonomously learn behavior by exploring
in and interacting with its environment. However, in most realistic learning environments, there are
irreversible states from which the agent cannot recover on its own. For example, a robot arm can
inadvertently push an object off the table, such that an external supervisor must return it back to the
robot’s workspace to continue the learning process. Current agents demand constant monitoring to
decide when the agent enters an irreversible state and therefore when to intervene. In this work, we
aim to build greater autonomy into RL agents by addressing this problem. In particular, we envision
proactive agents that can instead detect irreversible states, proactively request interventions when
needed, and otherwise learn autonomously.
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While prior work has studied autonomy in RL with the objective of minimizing the number of
human-provided resets at the end of each episode, previous setups generally assume the environment
is fully reversible [19, 51, 35, 34, 17]. A related desiderata, however, arises in the safe RL setting; safe
RL methods aim to learn policies that minimize visits to unsafe states, and the developed approaches
are designed to avoid those particular parts of the state space [1, 10, 39, 37, 43, 41]. Prior safe RL
algorithms assume that agent is given a safety label on demand for every state it visits. In contrast,
an autonomous agent may not know when it has reached an irreversible state (such as knocking an
important object off a table), and an algorithm in this setting should instead learn to both detect and
avoid such states, while minimizing queries about whether a state is reversible.

We can reduce the labeling requirement with a simple observation: all states proceeding an irreversible
state are irreversible, and all states preceding a reversible state will be reversible. Based on this
observation, we design a deterministic scheme based on binary search to generate reversibility labels
for a trajectory of length T using at most O(log T ) label queries, compared to the O(T ) queries
made by safe RL methods. We further reduce labeling burden by only querying labels in a large batch
at the end of each extended episode, i.e. typically only after tens of thousands of steps. By combining
this label efficient scheme with proactive requests for an intervention and batch of labels, we can
enable agents to learn amidst irreversible states with a high degree of autonomy.

Concretely, we propose a framework for reversibility-aware autonomous RL, which we call proactive
agent interventions (PAINT), that aims to minimize human monitoring and supervision required
throughout training. First, we train a reversibility-aware Q-value function that penalizes visits to
irreversible states. Second, the reversibility labels are generated by our proposed label-efficient
binary search routine, which makes at most logarithmic number of queries in the length of the
interaction with the environment. Finally, the labeled states can be used to learn a classifier for
predicting irreversible states, which can then be leveraged to proactively call for interventions. Our
proposed framework PAINT can be used to adapt any value-based RL algorithm, in both episodic
and non-episodic settings, to learn with minimal and proactive interventions. We compare PAINT to
prior methods for autonomous RL and safe RL on a suite of continuous control tasks, and find that
PAINT exhibits both better sample- and intervention-efficiency compared to existing methods. On
challenging autonomous object manipulation tasks, PAINT only requires around 100 interventions
while training for 3 million steps, which is upto 15× fewer than those required by prior algorithms.

2 Related Work

Deployment of many RL algorithms in physical contexts is challenging, because they fail to avoid
undesirable states in the environment and require human-provided resets between trials. Safe RL,
reversibility-aware RL, and autonomous RL, which we review next, address parts of these problems.

Safe RL. The goal of our work is to learn to avoid irreversible states. Algorithms for safe RL also
need to avoid regions of the state space, and achieve this by formulating a constrained optimization
problem [10, 39, 37, 48] or by assigning low rewards to unsafe states [43, 41]. Another class of
algorithms construct shielding-based policies that yield control to a backup policy if following the
learning policy leads to an unsafe state [1, 3, 42, 40, 7, 43, 6]. Critically, however, all of these
approaches assume that safety labels for each state can be queried freely at every time-step of training,
whereas our objective is to minimize labeling requirements over training.

Reversibility-aware RL. Reversibility and reachability have been studied in the context of RL to
avoid actions that lead to irreversible states [24, 23, 31, 15] or, conversely, to guide exploration
towards difficult-to-reach states [33, 5]. Unlike prior work, our study of reversibility primarily
focuses on the non-episodic setting to minimize the number of human interventions during learning.
While prior methods are self-supervised, our experiments also find that our algorithm learns with
significantly fewer interventions than prior methods by leveraging some binary reversibility labels.

Autonomous RL. Multiple prior works have also studied autonomy in RL, motivated by the fact
that deployments of RL algorithms on real robots often require human-provided resets between
episodes [13, 16, 14]. To avoid the supervision needed for episodic resets, prior work has proposed to
learn controllers to return to specific state distributions, such as the initial state [19, 11], the uniform
distribution over states [51] or demonstration states [36], adversarially learned distributions [47], or
curriculum-based distributions [34]. However, most work in the reset-free setting assumes the agent’s
environment is reversible [30, 35, 34, 17], whereas we specifically tackle the setting where this is
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not the case. One notable exception is the Leave No Trace algorithm [11], which checks whether
the agent has successfully returned back to the initial state distribution and requests an intervention
otherwise. Our approach differs from Leave No trace by requesting a reset based on the estimated
reversibility of the state, which we find requires significantly fewer interventions in our evaluation.

Human-in-the-loop learning. Learning from human feedback has enabled RL agents to acquire
complex skills that are difficult to encode in a reward function [22, 27, 45, 12, 4]. However, interactive
RL algorithms are often to difficult to scale as they rely on feedback at every time-step of training.
More feedback-efficient algorithms have learned reward models from human-provided preferences [2,
38, 46, 32, 8, 26, 44], which removes the need for constant feedback. Similarly, the interactive
imitation learning learning has seen more query-efficient algorithms, which query expert actions
based on the estimated risk or novelty of a visited state [49, 28, 21, 20]. While these algorithms
augment the agent with human-provided preferences or expert actions, our approach leverages a
different mode of feedback, that is, reversibility labels for visited states.

3 Reinforcement Learning in Irreversible Environments

Consider a Markov decision processM = (S,A,P, r, ρ0, γ) with state space S, action space A,
transition dynamics P : S × A× S 7→ [0, 1], bounded reward function r : S × A 7→ [Rmin, Rmax],
initial state distribution ρ0 : S 7→ [0, 1] and discount factor γ ∈ [0, 1). In this work, we build on the
formalism of autonomous RL [35], but we remove the assumption that the environment is reversible,
i.e., the MDP is no longer strongly connected (see example in [25, Chapter 38] and description
below). The environment is initialized at s0 ∼ ρ and an algorithm continually interacts with the
environment till it requests the environment to be reset via an external intervention to state s′0 ∼ ρ.
Specifically, an algorithm A : {si, ai, si+1, ri}t−1

i=0 7→ (at, πt) generates a sequence (s0, a0, s1, . . .)
inM, mapping the states, actions, and rewards seen till time t−1 to an action at ∈ A∪{areset}, and
the current guess at the optimal policy πt : S ×A 7→ [0,∞). Here, areset is a special action the agent
can execute to reset the environment through extrinsic interventions, i.e. P (· | s, areset) = ρ0(·).

Figure 2: Example of
an MDP with irreversible
states (in red). The agent
starts in the state ‘S’ and
its goal is to reach the state
‘G’, which are connected.

A MDP is strongly connected if for all pairs of states si, sj ∈ S, there
exists a policy π such that sj has a non-zero probability of being visited
when executing the policy π from state si. This assumption can easily
be violated in practice, for example, when a robot arm pushes an object
out of its reach. At an abstract level, the agent has transitioned into a
component of MDP that is not connected with the high reward states, and
thus cannot continue making progress, as visualized in Figure 2. The agent
can invoke an extrinsic agent (such as human) through areset, and the
extrinsic agent can reset the environment to a state from the initial state
distribution. For example, the human supervisor can reset the object to
the initial state, which is within the reach of the robot arm. For every state
s ∈ S, define Rρ : S 7→ {0, 1} as the indicator whether the state s is in
the same component as the initial state distribution. State s is defined to
be reversible ifRρ(s) = 1, and irreversible ifRρ(s) = 0. We assume that theRρ is unknown, but
can be queried for a state s.

While we do not assume that the MDP is strongly connected, we assume that the states visited by
the optimal policy are in the same connected component as the initial state distribution. Under this
assumption, we can design agents that can autonomously practice the task many times. Otherwise,
the environment would need to be reset after every successful trial of the task.

The objective is to learn an optimal policy π∗ ∈ argmaxπ J(π) = argmaxπ E[
∑∞

t=0 γ
tr(st, at)].

Note, J(π) is approximated by computing the return when the policy is rolled out from
s0 ∼ ρ0. Algorithms are typically evaluated on the sample efficiency, that is minimizing
D(A) =

∑∞
t=0 J(π

∗)− J(πt). However, since we care about minimizing the human supervision
required and resetting the environment can entail expensive human supervision, we will primarily
evaluate algorithms on intervention-efficiency, defined as I(A) =

∑∞
k=0 J(π

∗)− J(πk), where πk is
the policy learned after k interventions.
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4 Preliminaries

Episodic settings reset the environment to a state from the initial state distribution after every trial,
typically after every few hundred steps of interaction with the environment. Such frequent resetting
of the environment entails an extensive amount of external interventions, typically from a human.
Prior works on autonomous RL have sought to reduce the supervision required for resetting the
environments by learning a backward policy that resets the environment [11, 50, 34]. Meaningfully
improving the autonomy of RL in irreversible environments requires us to curb the requirement
of episodic resets first. While our proposed framework is compatible with any autonomous RL
algorithm, we describe MEDAL [36], which will be used in our experiments.

MEDAL learns a forward policy πf and a backward policy πb, alternately executed for a fixed
number of steps in the environment. The forward policy maximizes the conventional cumulative
task reward, that is E [

∑∞
t=0 γ

tr(st, at)], and the backward policy minimizes the Jensen-Shannon
divergence DJS

(
ρb(s) || ρ̂∗(s)

)
between the marginal state distribution of the backward policy ρb

and the state distribution of the optimal forward policy ρ̂∗, approximated by a small number of expert
demonstrations. Thus, the backward policy keeps the agent close to the demonstration states, allowing
the forward agent to try the task from a mix of easy and hard initial states. The proposed divergence
can be minimized via the objective minπb

maxC Es∼ρ∗
[
logC(s)

]
+ Es∼ρb

[
log(1−C(s))

]
, where

C : S 7→ [0, 1] is a classifier that maximizes the log-probability of states visited in the forward
demonstrations, and minimizes the probability of the states visited by the backward policy. The
optimization problem for the backward policy can be written as a RL problem:

min
πb

Es∼ρb [log (1− C(s))] = max
πb

E

[
−

∞∑
t=0

γt log (1− C(s))

]
(1)

where πb maximizes the reward function r(s, a) = − log (1− C(s)). Correspondingly, C(s) is
trained to discriminate between states visited by the backward policy and the demonstrations.

5 Proactive Agent Interventions for Autonomous Reinforcement Learning

To minimize human monitoring and supervision when an agent is learning in an environment with
irreversible states, the agent needs to (a) learn to avoid irreversible states over the course of training
and (b) learn to detect and request an intervention whenever the agent is stuck. For the former,
we first describe a simple modification to the reward function to explicitly penalize visitation of
irreversible states in Section 5.1. However, such a modification requires the knowledge of reversibility
of the visited states, which is not known apriori. We learn a classifier to estimate reversibility,
proposing a label-efficient algorithm to query reversibility labels of visited states in Section 5.2. Since
both the dynamics and the set of irreversible states are unknown apriori, the agent will inevitably
still visit irreversible states as a part of the exploration. To ensure that a human does not have to
monitor the agent throughout training, the agent should have a mechanism to decide and request
for an intervention. We discuss such a mechanism in Section 5.3. Finally, we put together all these
components in Section 5.4 for our proposed framework Proactive Agent INTerventions (PAINT), an
overview of which is given in Figure 3

5.1 Penalizing Visitation of Irreversible States

Our goal is to penalize visitation of irreversible states by ensuring all actions leading to irre-
versible states are ‘worse’ than those leading to reversible states. To this end, we adapt the
reward-penalty framework from safe RL [41] for learning in the presence of irreversible states.
Let Srev = {(s, a) | (Rρ(s

′) = 1} denote the set of state-action pairs that lead to a reversible state,
where Rρ indicates whether a state is reversible. For a transition (s, a, s′), consider a surrogate
reward function r̃:

r̃(s, a) =

{
r(s, a), (s, a) ∈ Srev

Rmin − ϵ, (s, a) ̸∈ Srev
(2)

Whenever the next state s′ is a reversible state, the agent gets the environment reward. Otherwise if it
has entered an irreversible, it gets a constant reward Rmin − ϵ that is worse than any reward given out
by the environment. Whenever an agent enters an irreversible state, it will continue to remain in an
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Figure 3: Overview of our framework PAINT for minimiz-
ing human monitoring and supervision when learning in the
presence of irreversible states. The agent proactively requests
interventions, freeing the human from active monitoring of
training. When an intervention is requested, the human re-
sets the environment and provides reversibility labels for the
latest experience since the previous intervention.

Algorithm 1: Reversibility Labeling via
Binary Search
input: τ = {si}Ti=0; // unlabeled trajectory
while len(τ) > 0 do

m← ⌊len(τ)/2⌋; // get midpoint
// query for midpoint
ifRρ(sm) = 1 then

// label first half reversible and query
for second half
label {si}mi=0 as 1;
τ ← {si}len(τ)

i=m+1;
else

// label second half irreversible and
query for first half
label {si}len(τ)

i=m+1 as 0;
τ ← {si}mi=0;

irreversible state and get a constant reward of Rmin − ϵ. Therefore, for any (s, a) ̸∈ Srev, the Q-value
can be computed directly as:

Qπ(s, a) = E

[ ∞∑
t=0

γtr̃(st, at) | s0 = s, a0 = a

]
= (Rmin − ϵ)

∞∑
t=0

γt =
Rmin − ϵ

1− γ

This observation allows us to bypass the need to perform Bellman backups on irreversible states, and
instead directly regress to the Q-value. More specifically, we can rewrite the loss function for the
Q-value function as, ℓ(Q) = E(s,a,s′,r)∼D [Q(s, a)− BπQ(s, a)] , where the application of Bellman
backup operator BπQ(s, a) can be expanded as:

BπQ(s, a) =

{
r(s, a) + γEa′∼π(·|s′)Q̂(s′, a′), Rρ(s

′) = 1

(Rmin − ϵ) / (1− γ) , Rρ(s
′) = 0

(3)

= Rρ(s
′)
(
r(s, a) + γEa′∼π(·|s′)Q̂(s′, a′)

)
+ (1−Rρ(s

′))
Rmin − ϵ

1− γ
(4)

Here,D denotes the replay buffer, Q̂ denotes the use of target networks commonly used in Q-learning
algorithms to stabilize training when using neural networks as function approximators [29]. This
surrogate reward function and the modified Bellman operator can be used for any value-based
RL algorithm in both episodic and autonomous RL settings. The hyperparameter ϵ controls how
aggressively the agent is penalized for visiting irreversible states. The following theorem shows that
the surrogate reward function induces desirable behavior for ϵ > 0:

Theorem 5.1. Let (s, a) ∈ Srev denote a state-action leading to a reversible state and let
(s_, a_) ̸∈ Srev denote a state-action pair leading to an irreversible state. Then, for all such pairs

Qπ(s, a) > Qπ(s_, a_)

for all ϵ > 0 and for all policies π.

The proof can be found in Appendix A.1. The result guarantees that actions leading to irreversible
states indeed have worse Q-values than those keeping the agent amongst the reversible states,
encouraging policies to visit irreversible states fewer times over the course of training. Additionally,
any ϵ > 0 should suffice in theory, though practical considerations for optimization affect this choice.

5.2 Estimating Reversibility

In general, Rρ is not known apriori and will have to be estimated. We define R̂ρ : S 7→ [0, 1]
as an estimator of the reversibility of a state s ∈ S. We can then define an em-
pirical Bellman backup operator B̂π from equation 4 by replacing Rρ with the estima-
tor R̂ρ. We propose to fit a classifier by minimizing the binary cross-entropy loss
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ℓ(R̂ρ) = −Es∼D
[
Rρ(s) log R̂ρ(s) + (1−Rρ(s)) log(1− R̂ρ(s))

]
, where the states s ∼ D rep-

resent the states visited by the agent. Minimizing the loss requires the reversibility labelsRρ(s) for
s ∼ D. Since labeling requires supervision, it is critical to queryRρ efficiently.

Given a trajectory of states τ = (s0, s1, . . . sT ), a naïve approach would be to query the labelsRρ(si)
for all states si, leading to O(T ) queries per trajectory. However, observe that we have the following
properties: (a) all states following an irreversible state will be irreversible and (b) all states preceding
a reversible state will be reversible. It follows from these properties that every trajectory can be
split into a reversible segment τr = (s0, s1, . . . sk) and an irreversible segment τ∼r = (sk+1, . . . sT ),
where the irreversible segment τ∼r can be empty potentially. Identifying sk+1, the first irreversible
state, generates the labels for the entire trajectory automatically. Fortunately, we can construct a
scheme based on binary search to identify sk+1 in O(log T ) queries: sk+1 occurs after the midpoint
of the trajectory if the midpoint is reversible, otherwise it occurs before it. The pseudocode for this
binary search inspired routine is given in Algorithm 1.

The total number of labels required would beO
(
N log |τ |max

)
, where N is the number of trajectories

in the replay buffer D and the |τ |max denotes the maximum length of the trajectory. This represents
a reduction in label requirement of O

(
N |τ |max

)
by prior safe RL methods. Since the agent trains

to avoid irreversible states, there will be fewer and longer trajectories as training progresses. Thus,
labeling reduces over time because the labels required is linear in N and logarithmic in |τ |max.

5.3 Proactive Interventions

Despite trying to avoid irreversible states via reward penalties, an agent will inevitably encounter
some irreversible states due to exploratory behaviors. It is critical that the agent proactively asks for
help in such situations, rather than requiring a human to constantly monitor the training process. An
agent should request an intervention when it is an irreversible state. SinceRρ(s) is not available, the
agent again needs to estimate the reversibility of the state. It is natural to reuse the learned reversibility
estimator R̂ρ to proactively request interventions. We propose the following rule: the agent executes
areset whenever the reversibility classifier’s prediction falls below 0.5, i.e., R̂ρ(s) < 0.5.

5.4 Putting it Together
Algorithm 2: PAINT
input: P; // agent, params abstracted away
initialize R̂ρ,D; // rev classifier, replay buffer
while not done do

s ∼ ρ0; // reset environment
// continue till classifier detects irreversibility
while R̂ρ(s) > 0.5 do

// step in the environment
a ∼ P(s), s ∼ P(· | s, a);
// update replay buffer and agent
update D,P;

// optionally explore environment
for explore steps do

a ∼ unif(A), s ∼ P(· | s, a);
update D;

// reversibility labels via binary search
update reversibility labels in D;
// train classifier on all labeled data, new and old
train R̂ρ;

With the key components in place, we summa-
rize our proposed framework. High-level pseu-
docode is given in Alg. 2, and a more detailed
pseudocode is deferred to Appendix A.2.

PAINT can modify any value-based RL algo-
rithm, in both episodic and autonomous settings.
This description and Alg. 2 focus on the latter
setting, although adapting it to the episodic set-
ting is straightforward. The agent’s interaction
with the environment consists of a sequence of
trials that end whenever the environment is re-
set to a state s ∼ ρ0. During each trial, the
agent operates autonomously, and the Bellman
update for the critic is modified according to
the empirical Bellman backup B̂π. Whenever
the reversibility classifier R̂ρ < 0.5, the agent
requests an intervention. The agent can execute
a fixed number of exploration steps after requesting an intervention and before the intervention is
performed. Whenever the classifier predicts an irreversible state correctly, these exploration steps
can help the agent gather more information about irreversible states. At the time of the intervention,
all new states visited since the previous intervention are labeled for reversibility via Algorithm 1.
Finally, the reversibility classifier is trained on all the labeled data before the environment is reset to a
state s ∼ ρ0 for the next trial.

The agent is provided reversibility labels only when the external reset is provided. This simplifies
supervision as the human can reset the environment and provide labels at the same time. This means
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Figure 4: A subset of our evaluation tasks: Tabletop Manipulation, Peg Insertion, and Half-Cheetah Velocity.
Irreversible states in the first two environments are when the agent drops the object outside the red boundary
(left) and off of the table (middle). Cheetah is in an irreversible state whenever it is flipped over (right).

the replay buffer D will contain states with and without reversibility labels, since states from the
current trial will not yet have labels. We use Eq. 4 for states that have reversibility labels to avoid
errors from the classifier affecting the critic update and use B̂π for those that do not have labels.

6 Experiments

We design several experiments to study the efficiency of our algorithm in terms of the required
number of reset interventions and number of queried reversibility labels. Videos of our results are at:
https://sites.google.com/view/proactive-interventions.

6.1 Experimental Setup

Environments. To illustrate the wide applicability of our method, we design environments that
represent three distinct RL setups: episodic, forward-backward, and continuing.

• Maze (episodic). A 2D continuous maze environment with trenches, which represent groups of
connected irreversible states. The agent can fall into a trench, and once entered, it can roam freely
within the trench but cannot leave it without an environment reset.

• Tabletop Organization [35] (forward-backward). The agent must grasp the mug and put it down
on one of the four goal positions. Dropping the mug outside of the red boundary is irreversible.

• Peg Insertion [35] (forward-backward). The agent must insert the peg into the goal but can
potentially drop it off the table, which is irreversible.

• Half-Cheetah Vel [9] (continuing). The agent must run at the specified target velocity, which
changes every 500 steps, and can potentially flip over onto its back, which is irreversible.

We visualize and fully describe each environment in Fig. 4 and in Appendix A.3 respectively.

Comparisons. In the episodic and continuing settings, we consider safe RL baselines that rely on
reversibility labels at every time-step of training.

• Safe Model-Based Policy Optimization (SMBPO) [41]. This comparison implements the modi-
fied Bellman operator defined in Eqn. 4 in Section 5.1, using the true reversibility labels.

• Safety Q-functions for RL (SQRL) [37]. A safe RL method that trains a safety critic, which
estimates the future probability of entering an irreversible state for a safety-constrained policy.

In the forward-backward setting, we consider methods designed for the autonomous learning setup.
These methods do not require any reversibility labels. Hence, our goal here is to compare the
reset-efficiency of our method to prior work.

• Leave No Trace (LNT) [11]. An autonomous RL method that jointly trains a forward policy and
reset policy. When the reset policy fails to return to the initial state, the agent requests a reset.

• Matching Expert Distributions for Autonomous Learning (MEDAL) [36]. This method trains a
reset policy that returns to the distribution of demonstration states provided for the forward policy.
MEDAL does not have a built-in intervention rule.

In all tasks, we compare to a recently proposed reversibility-aware RL method, Reversibility-Aware
Exploration (RAE) [15], which does not require any reversibility labels. It instead trains a self-
supervised reversibility estimator to predict whether a state transition (s, s̃) is more likely than the
reverse (s̃, s). We augment RAE with an intervention rule, similar to our method, defined in terms
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Figure 5: (left) Task success versus interventions.
Shaded regions denote the standard error over 5 seeds.
(right) Predictions generated by our reversibility classi-
fier, where the purple region is predicted to be reversible.

Task Method Labels

Maze SMBPO/SQRL 200K
PAINT (Ours) 3260± 12

Tabletop PAINT (Ours) 1021± 69

Peg Insertion PAINT (Ours) 2083± 149

Cheetah SMBPO w Term. 3M
PAINT (Ours) 8748± 3762

Figure 6: Number of queried reversibility labels. For
our method, we average the number of labels used
across 5 seeds and report the standard error.

of predictions from its self-supervised classifier. In the forward-backward setting, we train both the
forward and backward policies with RAE. Finally, we also evaluate Episodic RL, which represents
the typical RL setup with frequent resets and thus provides an upper-bound on task success. In
Appendix A.4, we provide full implementation details of each comparison.

6.2 Main Results

In Fig. 5 (left) and Fig. 7, we plot the task success versus the number of interventions in the 4 tasks.
For methods that use reversibility labels, we report the total number of labels queried in Fig. 6.

Maze. In the Maze task, resets are provided to each agent every 500 time-steps. While the safe RL
methods, SMBPO and SQRL, require reversibility labels at every time-step, our approach PAINT
only requires on average 3260 queries to label all 200K states visited. In Fig. 5 (right), we visualize
predictions from our reversibility classifier at the end of training, where zero predicts ‘reversible’
and one predicts ‘irreversible’. The classifier correctly identifies the path that leads to the goal as
reversible. Interestingly, it classifies all other regions as stuck states, including the states that are
reversible. Because these states are irrelevant to the task, however, classifying them as irreversible,
and therefore to be avoided, is advantageous to our policy as it reduces its area of exploration.

More complex domains. In the Tabletop Organization and Peg Insertion tasks, each agent is reset
every 200K and 100K time-steps, per the EARL benchmark [35]. However, we allow agents to
request earlier resets, and under this setting, we compare PAINT to other methods that implement
intervention rules. Compared to Leave No Trace and Reversibility-Aware Exploration, PAINT
requires significantly fewer resets—80 and 124 resets respectively, which corresponds to roughly one
intervention for every 25K steps. Importantly, the number of interventions plateaus as training
progresses, and the agent requires fewer and fewer resets over time (see Appendix A.5 for additional
plots of number of interventions versus time-steps). The exception is MEDAL (green segment near
the origin), which is not equipped with an early termination rule and so only uses 10 interventions
total. However, it also fails to make meaningful progress on the task with few resets.

On the continuing Half-Cheetah task, agents do not receive any resets, unless specifically requested.
Here, we compare PAINT to SMPBO with early termination, an oracle version of our method,
which assumes that reversibility labels are available at every time-step and immediately requests an
intervention if the agent is flipped over. PAINT converges to its final performance after around 750
resets, on par with the number of resets required by SMPBO with early termination. On the other
hand, a standard episodic RL agent, which receives resets at every 2K steps, and RAE, which trains a
self-supervised classifier, learn significantly slower with respect to the number of interventions.

6.3 Ablations and Sensitivity Analysis

Early termination. In the episodic Maze setting, our algorithm switches to a uniform-random policy
for the remainder of the episode if the termination condition is met. In Fig. 8 (left), we plot the
performance without early termination, i.e., running the agent policy for the full episode. Taking
random explorations, after the agent believes it has entered an irreversible state, significantly helps
our method, as it increases the number and diversity of irreversible states the agent has seen.
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Figure 7: Task success versus interventions averaged over 5 seeds. Methods with stronger assumptions, i.e.,
SAC resets every H steps and SMBPO requires labels at every time-step, are dotted.

Figure 8: (left) After removing the early termination condition, which initiates random exploration, we find that
PAINT learns less efficiently. (right) Varying the number of demonstrations suggests that PAINT and SMBPO
are robust to the amount of available demonstrations.

Varying the number of demonstrations. Our method leverages demonstrations in a subset of
environments. While we provide these demonstrations to all comparisons as well, we want to study
how much our method relies on them. We plot the average task success during training versus number
of demonstrations in Fig. 8 (right). While PAINT and SMBPO are robust to the amount, alternative
methods tend to achieve significantly lower success when given fewer demonstrations.

We study additional ablations on the termination condition and pseudo-labeling in Appendix A.5.

7 Discussion

In this work, we sought to build greater autonomy into RL agents, particularly in irreversible
environments. We proposed an algorithm, PAINT, that learns to detect and avoid irreversible states,
and proactively requests an intervention when in an irreversible state. PAINT leverages reversibility
labels to learn to identify irreversible states more quickly, and improves upon existing methods on a
range of learning setups in terms of task success, reset-efficiency, and label-efficiency.

Despite these improvements, PAINT has multiple important limitations. In environments where
irreversible states are not encountered until further into training, the reversibility classifier may
produce false positives which would significantly delay the next intervention. Further, while PAINT is
far more label-efficient than prior safe RL methods, it still requires around thousands of reversibility
labels. We expect that this limitation may be mitigated with more sophisticated querying strategies,
e.g. that take into account the classifier’s confidence. Finally, we hope that future work can validate the
ability for reversibility aware techniques to improve the autonomy of real robotic learning systems.
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A Appendix

A.1 Proofs

A.1.1 Penalizing Visitation of Irreversible States

We give a simple proof for Theorem 5.1 assuming deterministic dynamics first, and then give a more
restricted proof for stochastic dynamics under additional assumptions.

Theorem 5.1. Let (s, a) ∈ Srev denote a state-action leading to a reversible state and let
(s_, a_) ̸∈ Srev denote a state-action pair leading to an irreversible state. Then, for all such pairs

Qπ(s, a) > Qπ(s_, a_)

for all ϵ > 0 and for all policies π.

Proof. By definition, the reward function is bounded, i.e., r(s′, a′) ∈ [Rmin, Rmax] for any
(s′, a′) ∈ S ×A. For any (s′, a′) ∈ Srev, we have the following (using equation 2):

r̃(s′, a′) = r(s′, a′) ≥ Rmin > Rmin − ϵ

and for any (s′, a′) /∈ Srev, we have:

r̃(s′, a′) = Rmin − ϵ

This simplifies to r̃(s′, a′) ≥ Rmin − ϵ for any (s′, a′) ∈ S ×A. From the definition of Qπ , we have

Qπ(s′, a′) = E
[ ∞∑
t=0

γtr̃(st, at)
∣∣s0 = s′, a0 = a′

]
≥

∞∑
t=0

γt(Rmin − ϵ) =
Rmin − ϵ

1− γ
(5)

where the lower bound of Qπ(s′, a′) is achieved if (s′, a′) /∈ Srev. For (s, a) ∈ Srev,

Qπ(s, a) = r̃(s, a) + γEa′∼π(·|s′) [Q
π(s′, a′)]

≥ r̃(s, a) + γ
Rmin − ϵ

1− γ

≥ Rmin + γ
Rmin − ϵ

1− γ

[
r̃(s, a) = r(s, a) ≥ Rmin, since (s, a) ∈ Srev

]
= ϵ+ (Rmin − ϵ) + γ

Rmin − ϵ

1− γ
= ϵ+

Rmin − ϵ

1− γ
= ϵ+Qπ(s_, a_)

where (s_, a_) ̸∈ Srev, implying Qπ(s_, a_) = Rmin−ϵ
1−γ . This concludes the proof as

Qπ(s, a) > Qπ(s_, a_) for ϵ > 0.

To extend the discussion to stochastic dynamics, we redefine the reversibility set as
Srev = {(s, a) | P (Rρ(s

′) = 1) ≥ η1}, i.e, state-action pairs leading to a reversible state with at
least η1 probability and let Sirrev = {(s, a) | P (Rρ(s

′) = 1) ≤ η2} denote the set of state-action
pairs leading to irreversible states with at most η2 probability. The goal is to show that actions leading
to reversible states with high probability will have higher Q-values than those leading to irreversible
states with high probability. The surrogate reward function r̃ is defined as:

r̃(s, a, s′) =

{
r(s, a, s′), Rρ(s

′) = 1

Rmin − ϵ, Rρ(s
′) = 0

(6)

Theorem A.1. Let (s, a) ∈ Srev denote a state-action leading to a reversible state with at least η1
probability and let (s_, a_) ∈ Sirrev denote a state-action pair leading to an irreversible state with at
least (1− η2) probability. Assuming η1 > η2/(1− γ),

Qπ(s, a) > Qπ(s_, a_)

for all ϵ > η2

η1−γη1−η2
(Rmax −Rmin) and for all policies π.
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Proof. For any (s, a) ∈ Srev, we have the following (using equation 6):

Qπ(s, a) = P (Rρ(s
′) = 1)

(
r(s, a) + γEa′∼π(·|s′) [Q

π(s′, a′)]
)
+ P (Rρ(s

′) = 0)
Rmin − ϵ

1− γ

≥ P (Rρ(s
′) = 1)

(
Rmin + γ

Rmin − ϵ

1− γ

)
+ P (Rρ(s

′) = 0)
Rmin − ϵ

1− γ

≥ η1

(
Rmin + γ

Rmin − ϵ

1− γ

)
+ (1− η1)

Rmin − ϵ

1− γ

= η1Rmin + (1 + γη1 − η1)
Rmin − ϵ

1− γ
(7)

where P(Rρ(s
′) = 1) ≥ η1. For any (s, a) ∈ Sirrev,

Qπ(s, a) = P (Rρ(s
′) = 1)

(
r(s, a) + γEa′∼π(·|s′) [Q

π(s′, a′)]
)
+ P (Rρ(s

′) = 0)
Rmin − ϵ

1− γ

≤ P (Rρ(s
′) = 1)

Rmax

1− γ
+ P (Rρ(s

′) = 0)
Rmin − ϵ

1− γ

≤ η2
Rmax

1− γ
+ (1− η2)

Rmin − ϵ

1− γ
(8)

as P(Rρ(s
′) = 1) ≤ η2) by definition of Sirrev. Under the assumption that η1 > η2/(1−γ), whenever

η1Rmin + (1 + γη1 − η1)
Rmin − ϵ

1− γ
> η2

Rmax

1− γ
+ (1− η2)

Rmin − ϵ

1− γ

η1Rmin − η2
Rmax

1− γ
> (η1 − γη1 − η2)

Rmin − ϵ

1− γ

η1(1− γ)Rmin − η2Rmax > (η1 − γη1 − η2)(Rmin − ϵ)

ϵ >
η2

(η1 − γη1 − η2)
(Rmax −Rmin) ,

ensures that Qπ(s, a) > Qπ(s_, a_) for all (s, a) ∈ Srev and for all (s_, a_) ∈ Sirrev, finishing the
proof.

The above proof guarantees that for actions that lead to reversible states with high probability will
have higher Q-values than actions leading to irreversible states with high probabilities for all policies,
even under stochastic dynamics. The restrictive assumption of η1 > η2/(1− γ) is required to ensure
that the Q-value for worst (s, a) ∈ Srev is better than the best (s, a) ∈ Sirrev. An alternate analysis
can be found in [41, Appendix A.2], where the guarantees are only given for the optimal Q-functions
but under less stringent assumptions. Improved guarantees are deferred to future work.

A.1.2 On Empirical Bellman Backup Operator

The empirical Bellman backup operator was introduced in subsection 5.2. In this section, we
prove that it is a contraction, and analyze the convergence under empirical Bellman backup. For
R̂ρ : S 7→ [0, 1], the empirical Bellman backup operator can be written as:

B̂πQ(s, a) = Es′∼P(·|s,a)

[
R̂ρ(s

′)
(
r(s, a) + γEa′∼π(·|s′)Q(s′, a′)

)
+

(
1− R̂ρ(s

′)
) Rmin − ϵ

1− γ

]
(9)

Theorem A.2. Empirical Bellman backup operator in equation 9 is a Contraction under the L∞
norm.
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Proof. For all (s, a) ∈ S ×A, we have the following:∣∣∣B̂πQ(s, a)− B̂πQ′(s, a)
∣∣∣ = γ

∣∣∣Es′∼P(·|s,a)

[
R̂ρ(s

′)Ea′∼π(·|s′) [Q(s′, a′)−Q′(s′, a′)]
]∣∣∣

≤ γ
∣∣Es′∼P(·|s,a)

[
Ea′∼π(·|s′) [Q(s′, a′)−Q′(s′, a′)]

]∣∣(
since R̂ρ(s

′) ∈ [0, 1]
)

≤ γ max
(s′′,a′′)∈S×A

|Q(s′′, a′′)−Q′(s′′, a′′)|

= γ∥Q−Q′∥∞

Since this holds for all (s, a) ∈ S ×A, this implies:
||BπQ− BπQ′||∞ = max

(s,a)∈S×A
|BπQ(s, a)− BπQ′(s, a)| ≤ γ||Q−Q′||∞

The discount factor γ < 1, proving our claim.

For a policy π, let Qπ be the true Q-value function computed using conventional Bellman backup Bπ
and Q̂π be the Q-values computed using the empirical Bellman backup B̂π . Being fixed point of the
operators, we have Qπ = BπQπ and Q̂π = B̂πQ̂π . The following theorem relates the two:
Theorem A.3. Assuming that ∥Rρ−R̂ρ∥∞ ≤ δ, the difference between true Q-values and empirical
Q-values for any policy π obeys the following inequality:∣∣∣Qπ(s, a)− Q̂π(s, a)

∣∣∣ ≤ δ (Rmax −Rmin + ϵ)

(1− γ)2

Proof. Since Qπ is the fixed point of Bπ and Q̂π is the fixed point of B̂π , we can write:∣∣∣Qπ(s, a)− Q̂π(s, a)
∣∣∣ = ∣∣∣BπQπ − B̂πQ̂π

∣∣∣
=

∣∣∣∣∣Es′∼P(·|s,a)

[(
Rρ(s

′)− R̂ρ(s
′)
)(

r(s, a)− Rmin − ϵ

1− γ

)

+ γEa′∼π(·|s)

[
Rρ(s

′)Qπ(s′, a′)− R̂ρ(s
′)Q̂π(s′, a′)

] ]∣∣∣∣∣
(10)

Consider the following identity:

Rρ(s
′)Qπ(s′, a′)− R̂ρ(s

′)Q̂π(s′, a′) = Rρ(s
′)Qπ(s′, a′)−Rρ(s

′)Q̂π(s′, a′)

+Rρ(s
′)Q̂π(s′, a′)− R̂ρ(s

′)Q̂π(s′, a′)

= Rρ(s
′)
(
Qπ(s′, a′)−Q̂π(s′, a′)

)
+
(
Rρ(s

′)− R̂ρ(s
′)
)
Q̂(s′, a′) (11)

Plugging Eq 11 in Eq 10, we get:∣∣∣Qπ(s, a)− Q̂π(s, a)
∣∣∣ = ∣∣∣∣∣Es′∼P(·|s,a)

[(
Rρ(s

′)− R̂ρ(s
′)
)(

r(s, a) + γEa′∼π(·|s′)[Q̂
π(s′, a′)]− Rmin − ϵ

1− γ

)

+ γRρ(s
′)Ea′∼π(·|s)

[
Qπ(s′, a′)− Q̂π(s′, a′)

] ]∣∣∣∣∣
Taking the modulus inside the expectation and using the triangle inequality, we get:∣∣∣Qπ(s, a)− Q̂π(s, a)

∣∣∣ ≤ Es′∼P(·|s,a)

[ ∣∣∣Rρ(s
′)− R̂ρ(s

′)
∣∣∣ ∣∣∣∣r(s, a) + γEa′∼π(·|s′)[Q̂

π(s′, a′)]− Rmin − ϵ

1− γ

∣∣∣∣
+γ |Rρ(s

′)|Ea′∼π(·|s)

∣∣∣Qπ(s′, a′)− Q̂π(s′, a′)
∣∣∣ ]

15



Using the following inequalities: r(s, a)+γEa′∼π(·|s′)[Q̂
π(s′, a′)] ≤ Rmax/(1−γ) as the maximum

environment reward is Rmax,
∣∣∣R̂ρ(s

′)
∣∣∣ ≤ 1 as R̂ρ ∈ [0, 1] and the assumption ∥Rρ − R̂ρ∥∞ ≤ δ,

we can complete the proof:∣∣∣Qπ(s, a)− Q̂π(s, a)
∣∣∣ ≤ δ

Rmax −Rmin + ϵ

1− γ
+ γEs′∼P(·|s,a),a′∼π(·|s)

∣∣∣Qπ(s′, a′)− Q̂π(s′, a′)
∣∣∣

≤ δ
Rmax −Rmin + ϵ

1− γ
+ γEs′∼P(·|s,a),a′∼π(·|s)

[
δ
Rmax −Rmin + ϵ

1− γ
+ γE . . .

]
≤ δ

Rmax −Rmin + ϵ

(1− γ)2

Theorem A.3 gives us a bound on the difference between the true Q-values and Q-values computed
using the reversibility estimator R̂ρ for any policy π. The bound and the proof also suggest that
closer R̂ρ(s) is toRρ, closer the estimated Q-values are to true ones.

Similar to the empirical Bellman backup, we can define the empirical Bellman optimality operator:

B̂∗Q(s, a) = Es′∼P(·|s,a)

[
R̂ρ(s

′)
(
r(s, a) + γmax

a′
Q(s′, a′)

)
+
(
1− R̂ρ(s

′)
) Rmin − ϵ

1− γ

]
(12)

The empirical Bellman optimality operator is also a contraction, following a proof similar as that
for empirical Bellman backup. Let Q̂∗ denote the fixed point of Bellman optimality operator, that is
B̂∗Q̂∗ = Q̂∗, and let π̂∗ denote the greedy policy with respect to Q̂∗. As a final result,
Theorem A.4. Let π∗ denote the optimal policy and Q∗ denote the corresponding optimal Q-value
function. Let π̂∗ denote the optimal policy returned by empirical Bellman optimality operator B̂∗.
Assuming ∥Rρ − R̂ρ∥∞ ≤ δ,

Qπ̂∗
(s, a) ≥ Q∗(s, a)− 2δ (Rmax −Rmin + ϵ)

(1− γ)2

for all (s, a) ∈ S ×A.

Proof. For clarity of notation, we will use Q(π) denote Qπ(s, a) and Q̂(π) denote Q̂π(s, a) for a
policy π. Now,

Q∗(s, a)−Qπ̂∗
(s, a) =

(
Q(π∗)− Q̂(π∗)

)
+
(
Q̂(π∗)− Q̂(π̂∗)

)
+

(
Q̂(π̂∗)−Q(π̂∗)

)
Using the fact π̂∗ is the optimal policy with respect to B̂∗, we have Q̂(π∗)− Q̂(π̂∗) ≤ 0. This implies
that:

Q∗(s, a)−Qπ̂∗
(s, a) ≤

(
Q(π∗)− Q̂(π∗)

)
+

(
Q̂(π̂∗)−Q(π̂∗)

)
(13)

Using theorem A.3, we have(
Q(π∗)− Q̂(π∗)

)
≤ δ (Rmax −Rmin + ϵ)

(1− γ)2(
Q̂(π̂∗)−Q(π̂∗)

)
≤ δ (Rmax −Rmin + ϵ)

(1− γ)2

Plugging these in Eq 13, we get

Q∗(s, a)−Qπ̂∗
(s, a) ≤ 2δ (Rmax −Rmin + ϵ)

(1− γ)2

Rearranging the above bound gives us the statement in the theorem.

Theorem A.4 gives us the assurance that as long as the estimator R̂ρ is close toRρ, the Q-values of
the greedy policy obtained by value iteration using B̂∗, i.e. π̂∗ will not be much worse than the optimal
Q-values. The above result also suggests choosing a smaller ϵ for a smaller gap in performance.
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A.2 Detailed Pseudocode

In Algorithms 3 and 4, we provide pseudo-code for the episodic and non-episodic variants of our
method PAINT. We build the non-episodic variant upon the MEDAL algorithm [36], which introduces
a backward policy whose objective is to match the state distribution of the forward demonstrations
(summarized in Section 4).

Algorithm 3: PAINT (Episodic)
optional: forward demonstrations N
initialize: π,Q,D; // forward agent parameters
initialize R̂ρ,Dρ; // reversibility classifier and dataset of labels
// add demonstrations to replay buffer
D ← D ∪N ;
while not done do

s ∼ ρ0 // reset environment
Dnew ← Dnew ∪ {s};
aborted← False;
for t = 1, 2, . . . ,H do

if not aborted then
a ∼ π(· | s);
update π,Q; // Eq 9

else
a ∼ unif(A);

s′ ∼ P(· | s, a), r ← r(s, a);
D ← D ∪ {(s, a, s′, r)};
if not aborted and R̂ρ(s) ≤ 0.5 then

aborted← True;
Dnew ← Dnew ∪ {s′};
s← s′;

// query reversibility labels for newly collected states via Alg. 1
label Dnew;
Dρ ← Dρ ∪ Dnew;
Dnew ← ∅;
// train classifier on all labeled data, new and old
update R̂ρ;

A.3 Environment Details

In this section, we provide details of each of the four irreversible environments, which are visualized
in Fig. 4 and Fig. 5.

Maze. In this 2-D continuous-control environment, the agent is a point mass particle that starts in
the top left corner of the maze and must reach the bottom right corner. Throughout the environment,
there are trenches (marked in black) that the agent must avoid. Entering them is irreversible: the
agent can roam freely within the trench but cannot leave it without an environment reset. The agent is
placed back at the top left corner upon a reset, which is provided every 500 time-steps. The agent’s
state space consists of its xy-position, and two control inputs correspond to the change applied to its
xy-position. The reward function is defined as rt = 1(∥st− g∥2 < 0.1), where g is the goal position.
We provide 10 demonstrations of the task to the agent at the beginning of training.

Tabletop Organization. This environment modifies the Tabletop Organization task from Sharma
et al. [35]. The agent’s objective is to grasp the mug and move it to one of the four specified goal
positions. Grasping the mug and dropping it off beyond the red boundary is irreversible, i.e., the
agent can no longer re-grasp the mug. Upon a reset, which is provided every 200K time-steps or
when requested by the agent, the agent is placed back at the center of the table and the mug is placed
on its right, just within the red boundary (see Fig. 4). The agent’s state space consists of the its own
xy-position, the mug’s xy-position, an indicator of whether the mug is grasped, the goal position of
the mug, and finally, the goal position of the agent after putting the mug down at its goal. There are
three control inputs, which apply changes to the agent’s xy-position and toggle between grasping, if
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Algorithm 4: PAINT with MEDAL [36] (Non-episodic)
input: forward demonstrations Nf ;
optional: backward demonstrations Nb;
initialize: πf , Q

f ,Df ; // forward agent parameters
initialize: πb, Q

b,Db; // backward agent parameters
initialize R̂ρ,Dρ; // reversibility classifier and dataset of labels
initialize C(s); // state-space discriminator for backward policy
// add demonstrations to replay buffer
Df ← Df ∪Nf ;
Db ← Db ∪Nb;
Dnew ← ∅ ;
while not done do

s ∼ ρ0; // reset environment
Dnew ← Dnew ∪ {s};
// continue till the reversibility classifier detects an irreversible state
while R̂ρ(s) > 0.5 do

// run forward policy for a fixed number of steps, switch to backward policy
if forward then

a ∼ πf (· | s);
s′ ∼ P(· | s, a), r ← r(s, a);
Df ← Df ∪ {(s, a, s′, r};
update πf , Q

f ; // Eq 9
else

a ∼ πb(· | s);
s′ ∼ P(· | s, a), r ← − log(1− C(s′));
Db ← Db ∪ {(s, a, s′, r)};
update πb, Q

b; // Eq 9
// train disriminator every K steps
if train-discriminator then

// sample a batch of positives Sp from the forward demos Nf , and a batch of
negatives Sn from backward replay buffer Db

Sp ∼ Nf , Sn ∼ Db;
update C on Sp ∪ Sn;

Dnew ← Dnew ∪ {s′};
s← s′;

// optionally explore environment
for explore steps do

a ∼ unif(A), s′ ∼ P(· | s, a), r ← r(s, a);
update Df ,Db; // use C(s) for the reward labels in Db

Dnew ← Dnew ∪ {s′};
s← s′;

// query reversibility labels for newly collected states via Alg 1
label Dnew;
Dρ ← Dρ ∪ Dnew;
Dnew ← ∅;
// train classifier on all labeled data, new and old
update R̂ρ on Dρ;
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the object is nearby (i.e., within a distance of 0.4), and releasing, if the object is currently grasped.
The agent’s reward function is rt = 1(∥st − g∥2 < 0.1), i.e., both the agent’s xy-position and the
mug’s xy-position must be close to their targets. We provide 50 forward demonstrations, 50 backward
demonstrations, and 1000 examples of (randomly generated) irreversible states to the agent at the
beginning of training.

Peg Insertion. This environment modifies the Peg Insertion task from Sharma et al. [35]. The
objective of this task is to grasp and insert the peg into the hole in the box. We modified the table
so that the raised edges that stop the peg from rolling off the table are removed and the table is
significantly narrower. Hence, the peg may fall off the table, which cannot be reversed by the robot.
Instead, when the environment is reset, which automatically occurs every 100K time-steps or when
requested by the agent, the peg is placed back at one of 15 possible initial positions on the table.
The agent’s state space consists of the robot’s xyz-position, the distance between the robot’s gripper
fingers, and the object’s xyz-position. The agent’s action consists of 3D end-effector control and
normalized gripper torque. Let speg

t represent the state of the peg and gpeg be its goal state, then
the reward function is rt = 1(∥speg

t − gpeg∥2 < 0.05). We provide the agent with 12 forward
demonstrations and 12 backward demonstrations.

Half-Cheetah. We design this environment based on the version from Brockman et al. [9]. In
particular, the agent must run at one of six target velocities {3, 4, 5, 6, 7, 8}, specified to the agent.
Every 500 time-steps, the target velocity switches to a different value selected at random. The agent’s
actions, which correspond to torque control of the cheetah’s six joints, are scaled up by a factor of
5. When the agent is flipped onto its back (i.e., its normalized orientation is greater than 2π/3), we
label these states irreversible. When the agent is reset, which only occurs when requested, the agent
is placed upright again at angle of 0. The agent’s observation space consists of the velocity of the
agent’s center of mass, angular velocity of each of its six joints, and the target velocity. Let v be
the velocity of the agent, then the reward function, which is normalized to be between 0 and 1, is
rt = 0.95 ∗ (8− v)/8 + 0.05 ∗ (6− ∥at∥22)/6. There are no demonstrations for this task.

A.4 Implementation Details

Below, we provide implementation details of our algorithm PAINT and the baselines. Every algorithm,
including ours, has the following components.

Forward policy network. The agent’s forward policy is represented by an MLP with 2 fully-connected
layers of size 256 in all experimental domains, trained with the Soft Actor-Critic (SAC) [18] algorithm.

Forward critic network. The agent’s forward critic is represented by an MLP with 2 fully-connected
layers of size 256 in all experimental domains, trained with the Soft Actor-Critic (SAC) [18] algorithm.

Balanced batches. In the Tabletop Organization and Peg Insertion tasks, the agent’s forward policy
and critic networks are trained with batches that consist of demonstration tuples and of tuples sampled
from the agent’s online replay buffer. We control the ratio p of demonstration tuples to online tuples
with a linearly decaying schedule,

pt =

{
(pT−p0)

T t+ p0 t < T

pT t ≥ T.

In the Tabletop Organization and Peg Insertion tasks, p0 = 0.5, pT = 0.1, and T = 500K. We do not
train with balanced batches in the Maze task, and simply populate the online replay buffer with the
demonstrations at the beginning of training.

Episodic RL (Soft Actor-Critic) [18]. In addition to the policy and critic networks trained with
balanced batches, the episodic RL comparison requests for resets every H ′ time-steps in the Tabletop
Organization (H ′ = 2000), Peg Insertion (H ′ = 1000), and Half-Cheetah (H ′ = 2000) tasks.

Safe Model-Based Policy Optimization (SMBPO) [41]. This comparison trains the forward critic
with the modified Bellman update BπQ(s, a) defined in Eqn. 4, where ϵ = 0 in the Maze and
Half-Cheetah tasks and ϵ = −0.1 in the Tabletop Organization and Peg Insertion tasks.

Safety Q-functions for RL (SQRL) [37]. This comparison trains an additional safety critic Qπ
safe,

which estimates the future probability of entering an irreversible state, and the policy is updated with
the following augmented objective

Jπ
safe(ν) = Jπ + E(s∼D),a∼π(·|s) [ν (ϵsafe, Q

π
safe(s, a))] ,
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where ν is the Lagrange multiplier for the safety constraint and is updated via dual gradient descent.
We only evaluate this comparison in the Maze task, where ϵsafe = 10.

A.4.1 Forward-Backward Algorithms

In the forward-backward setups, we train a backward policy and critic in addition to their forward
counterparts. The details of the backward components that are shared across all methods are described
below.

Backward policy network. The agent’s backward policy is represented by an MLP with 2 fully-
connected layers of size 256 in all experimental domains, trained with the SAC algorithm.

Backward critic network. The agent’s backward critic is represented by an MLP with 2 fully-connected
layers of size 256 in all experimental domains, trained with the SAC algorithm.

Backward balanced batches. The agent’s backward policy and critic networks are trained with batches
that consist of demonstration tuples and of tuples sampled from the agent’s online replay buffer. We
control the ratio p of demonstration tuples to online tuples with a linearly decaying schedule,

pt =

{
(pT−p0)

T t+ p0 t < T

pT t ≥ T.

In the Tabletop Organization and Peg Insertion tasks, p0 = 0.5, pT = 0.1, and T = 500K.

Leave No Trace (LNT) [11]. This comparison additionally trains backward policy and critic
networks, whose reward function is the sparse indicator of whether the current state is within some
threshold of the initial state. The thresholds are the same as those used for the forward reward
functions defined in A.3.

Policy switching. Leave No Trace switches from the forward to backward policy if the backward
critic’s Q-value is lower than ϵLNT or after 300 time-steps, and switches from the backward to forward
policy after 300 time-steps. In Tabletop, ϵLNT = 0.1, and in Peg Insertion, ϵLNT = 0.005.

Termination condition. Leave No Trace additionally requests a reset if, after 300 time-steps, the
backward policy fails to bring the environment within a distance of 0.1 of the initial state.

Matching Expert Distributions for Autonomous Learning (MEDAL) [36]. Like Leave No Trace,
MEDAL trains a backward policy and critic. However, instead of returning to the initial state, the
backward reward function is whether the current state matches the distribution of demonstration
states, formally defined in Eqn. 1.

MEDAL classifier. The classifier C in Eqn. 1 is represented by an MLP with 1 FC layer of size 128.

Policy switching. The algorithm switches policies (i.e., from forward to backward and from backward
to forward) after every 300 time-steps.

Reversibility-Aware Exploration (RAE) [15]. RAE trains a self-supervised reversibility estimator,
specifically to predict whether a state transition (s, s̃) is more likely than the reverse transition (s̃, s).
RAE generates data for the binary classifier with a windowed approach. For every state trajectory
(st:t+w) of length w collected by the agent, all state pairs (si, sj), where i < j, are labeled positive,
and all pairs (sj , si), where i < j, are labeled negative. For all experimental tasks, we use a window
size of w = 10 time-steps. With this estimator, the forward critic is trained with the modified Bellman
update B̂πQ(s, a), where ϵ = 0 in the Maze and Half-Cheetah tasks and ϵ = −0.1 in the Tabletop
Organization and Peg Insertion tasks.

Reversibility classifier. The classifier R̂ρ is represented by an MLP with 1 FC layer of size 128.

Termination condition. In Maze and Half-Cheetah, the termination condition is R̂ρ > 0.5. In Tabletop
Organization and Peg Insertion, the condition is R̂ρ > 0.8.

Exploration. We augment RAE with uniform-random exploration after the termination condition is
met as proposed in our method. In the Maze environment, the agent takes uniform-random actions
for the rest of the episode (of length 500). In Tabletop Organization and Peg Insertion, Nexplore = 300
time-steps. In Half-Cheetah, Nexplore = 500 time-steps.
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In the Tabletop Organization and Peg Insertion tasks, we train an additional backward policy and
critic, whose reward functions are defined in terms of the MEDAL classifier. The backward critic is
also trained with the modified B̂πQ(s, a), with the same hyperparameters as the forward critic.

MEDAL classifier. The classifier C in Eqn. 1 is represented by an MLP with 1 FC layer of size 128.

Policy switching. The algorithm switches policies (i.e., from forward to backward and from backward
to forward) after every 300 time-steps.

PAINT (Ours). PAINT trains a reversibility classifier R̂ρ and checks whether the current state is
estimated to be irreversible. If it is estimated to be irreversible, the agent takes uniform-random
actions for Hexplore time-steps and requests a reset afterward. The forward critic is also trained with
the modified Bellman update B̂πQ(s, a), where ϵ = 0 in the Maze and Half-Cheetah tasks and
ϵ = −0.1 in the Tabletop Organization and Peg Insertion tasks.

Reversibility classifier. The classifier R̂ρ is represented by an MLP with 1 FC layer of size 128.

Termination condition. In all tasks, the termination condition is R̂ρ > 0.5.

Exploration. In the Maze environment, the agent takes uniform-random actions for the rest of the
episode (of length 500). In Tabletop Organization and Peg Insertion, Nexplore = 300 time-steps. In
Half-Cheetah, Nexplore = 500 time-steps.

In the Tabletop Organization and Peg Insertion tasks, we train an additional backward policy and
critic. The details for the backward policy and critic are the same as in RAE.

A.5 Additional Experimental Results

In this section, we present additional plots to accompany Section 6.2 and additional ablations to
accompany Section 6.3.

A.5.1 Additional Plots

In Fig. 9, we plot the task success, number of reset interventions, and number of reversibility labels
versus the number of time-steps in each of the four tasks.

A.5.2 Ablations and Sensitivity Analysis

Termination conditions. To evaluate the importance of the reversibility classifier, we study an
alternative choice for the termination condition, one based on the Q-value function. Intuitively,
the values for irreversible states will be low, as there is no path that leads to the goal from these
states. We define the value-based termination condition as V π(s) < ϵ where ϵ is the threshold. We
approximate the value V π(s) = Eπ[Q

π(s, a)] with the trained Q-value function evaluated at N = 10
policy actions. We plot the task success in the Tabletop Manipulation task in Fig. 10 (left). After 1M
time-steps, the Q-value-based termination condition requires fewer interventions, approximately half
of the interventions needed by PAINT, but does not converge to the same final performance as PAINT
with the reversibility classifier. Critically, PAINT with Q-value termination also trains a reversibility
classifier to generate pseudo-labels for unlabeled states.

Pseudo-labels for unlabeled states. Currently, when updating the agent with Eqn. 9, our method
uses the predictions from the stuck classifier as pseudo-labels for the unlabeled states collected during
a trial. An alternative choice is labeling them one, i.e., treating them as reversible. We evaluate
this choice in the Tabletop Manipulation task, and plot the task success in Fig. 10 (right). After 1M
time-steps, the number of reset interventions requested by both methods are similar. However, our
method succeeds at the task almost 100% of the time, while the agent trained with pseudo-labels of
one only achieves success of around 60%.
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Figure 9: (left) Task success versus time. (middle) Number of interventions versus time. (right) Number of
queried labels versus time.
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Figure 10: (left) We define a termination condition based on the Q-values, which learns with fewer resets but
also achieves significantly lower final performance. (right) For states collected during a trial, their reversibility
labels are still unknown. When training the agent with Eqn. 9, we use predictions from the reversibility classifier
as pseudo-labels. We compare to labeling the unlabeled states one, i.e., treating them as reversible.
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