
Transferable Hypergraph Neural Networks via Spectral
Similarity

Mikhail Hayhoe
Amgen, Inc.

contact@mhayhoe.com

Hans Riess∗
Duke University

hans.riess@duke.edu

Michael M. Zavlanos
Duke University

michael.zavlanos@duke.edu

Victor M. Preciado
University of Pennsylvania

preciado@seas.upenn.edu

Alejandro Ribeiro
University of Pennsylvania

aribeiro@seas.upenn.edu

Abstract
Hypergraphs model higher-order interactions in complex systems, e.g., chemicals
reacting only in the presence of an enzyme or rumors spreading across groups,
and encompass both the notion of an undirected graph and a simplicial complex.
Nonetheless, due to computational complexity, machine learning on hypergraph-
structured data is notoriously challenging. In an effort to transfer hypergraph
neural network models, addressing this challenge, we extend results on the
transferability of Graph Neural Networks (GNNs) to design a convolutional
architecture for processing signals supported on hypergraphs via GNNs, which
we call Hypergraph Expansion Neural Networks (HENNs). Exploiting multiple
spectrally-similar graph representations of hypergraphs, we establish bounds
on the transferability error. Experimental results illustrate the importance of
considering multiple graph representations in HENNs, and show promise of
superior performance when transferability is required.

1 Introduction

Machine learning on graph-structured data, as well as other types of data with inherent symmetries,
has greatly benefited from the perspective of signal processing. By signal processing, we mean the
study of signals, which are defined as a mappings from an arbitrary set called the signal domain into a
vector space whose dimensions are called channels. In classical signal processing, the signal domain
encodes time (either discrete or continuous) and each channel represents some value that is changing
over time (e.g. a voltage in an electrical circuit). However, this need not be the case. Graph Neural
Networks (GNNs) are machine learning architectures for processing graph signals [10, 39], signals
whose domain is either the vertices or edges of a graph (or both), and whose channels correspond
to features of the nodes (e.g. user attributes, molecular properties). GNNs have been widely used
in practice for problems ranging from text analysis [16] to recommendation systems [53] to control
of multi-agent robotic systems [45], among others [50, 54]. While the specific implementation
details and philosophies of GNNs vary greatly from model to model, what these architectures have
in common is that relationships between entities, the nodes of the graph, are inherently pairwise.
However, in both the natural and social sciences, it is reasonable—even necessary—to consider
higher-order interactions. Examples of higher-order interactions can be found in the disparate fields
of neuroscience [23], biochemistry [30], or physics [7]. In social science, emergent dynamics of
group opinions, often, are informed by, not merely interactions between pairs of individuals (edges),
but inter-group interactions (within groups) involving arbitrarily many individuals (hyperedges) as
well as intra-group interactions (across groups). In an online setting, in particular, a rumor can be

∗Equal contribution.

M. Hayhoe et al., Transferable Hypergraph Neural Networks via Spectral Similarity. Proceedings of the Second
Learning on Graphs Conference (LoG 2023), PMLR 231, Virtual Event, November 27–30, 2023.

Transferable Hypergraph Neural Networks via Spectral Similarity

spread through users who are members of multiple online microcommunities, e.g. closed forums,
group chats.

Thus, higher-order relationships are represented with greater fidelity by enumerating all (possibly-
overlapping) subsets of nodes which form interactions; these subsets are called hyperedges. Fur-
thermore, as we will see, while interactions between nodes in the same hyperedge are argued to be
linear, interactions between nodes in different hyperedges are nonlinear. Hypergraphs (or higher-
order graphs) and simplicial complices are tools for representing these higher-order relationship
and have seen use in many applications [42]. Simplicial complexes require the collection of node
subsets (called simplices) to be closed under taking subsets [40]. Hence, simplicial complexes are
a specialization of hypergraphs. Simplicial complexes, with this seemingly-benign constraint, are
endowed with rich geometric and topological structure arising from combinatorial Hodge theory [18],
a discretization of the theory of differential forms on manifolds [9]. The so-called Hodge Laplacians
and their eigenvalues can be understood as higher-order spectral analogues of the ordinary graph
Laplacian, and have seen success for higher-order graph learning [37, 25, 8, 52, 6, 3]. Unfortunately,
these spectral methods do not carry over to generic hypergraphs, stymieing our geometric intuition
about these structures. However, generic hypergraphs, which often present themselves in real-world
applications, are the structures we wish to establish a learning framework for with transferability
properties.

Building on these concepts, we introduce a hypergraph learning framework called Hypergraph
Expansion Neural Networks (HENNs) by combining graph representations of hypergraphs. No
existing approach to hypergraph signal processing, to the best of our knowledge, reconciles the spectral
approach of combinatorial Hodge Theory with nonlinear potentials between nodes and hyperedges,
while maintaining the ability to process both node and hyperedge signals simultaneously (see Table 3).
Our approach is a middle ground between hypergraph learning algorithms that exclusively utilize a
nonlinear Laplacian [36] or, equivalently, minimize a potential function [48], and hypergraph learning
algorithms exploiting the linear Hodge k-Laplacian, e.g. [37]. The former approach abandons the
spectral approach which has been highly successful in convolutional architectures [39]. The later
restricts diffusions to those that mix signals (via the boundary and coboundary operators) supported
on simplices of one dimension higher or lower. Very recently, however, attention mechanisms
based on the Dirac operator [11] have been introduced to mix signals supported on simplicies of
non-consecutive orders [6]. Their approach, nonetheless, requires the hypergraph to be a simplicial
complex, while ours does not.

The raison d’être, we argue, for combining both linear and nonlinear aspects of (hyper)graph signal
processing is the ability to reason about the transferability of hypergraph neural networks while,
still, taking into account mixtures of signals over hyperedges of various cardinalities. Informally,
transferability is a type of generalization property for graph neural networks which says that, given
two graphs generated from the same distribution, the graphs should process signals in a similar
manner [31]. There have been three main approaches for codifying the similarity of graphs, i.e., that
graphs model similar phenomena. The first compares the original graph to a mildly perturbed version
[21, 32, 27], although the notions of perturbation and the measure of transferability differ. The second
approach assumes a latent space model by which similar graphs are created. For example, the nodes
of similar graphs may belong to the same latent measure space with signals sampled accordingly
[31], or the graphs themselves may be random and drawn from the same distribution [28]. The
third approach assumes similar graphs are obtained from a graphon, which can be understood as a
measurable limiting object of graphs as the number of nodes approaches infinity [33]. Transferability
bounds using graphons have been explored in both the asymptotic sense [38] and the non-asymptotic
sense [35, 39].

While these approaches describe transferability of GNNs across similar graphs, it remains unclear
how useful they are in practice. The core concept is that GNNs are spectral operators and, hence,
should be transferable across graphs with similar spectra. This spectral similarity is achieved as a
consequence of the assumptions under which the similar graphs are obtained, generated, or sampled.
Unfortunately, given two real graphs of interest, it may not be possible to assert that they are small
perturbations of one another, or are sampled from the same latent space or graphon. As such, it
is of great practical interest to obtain transferability bounds across arbitrary graphs, without any
assumptions on their origin. To this end, we provide the first GNN transferability bound directly
between two arbitrary graphs of the same size. The key tool in our analysis is to explicitly measure
the spectral similarity [43, 4] of the graphs for which the transferability bound is desired.

2

Transferable Hypergraph Neural Networks via Spectral Similarity

Using our approach, we provide what is, to the best of our knowledge, the first bound on the
transferability performance of neural networks that perform convolutions with signals supported on
arbitrary hypergraphs. The conceptual leap, herein, is to scrutinize the spectral similarity of, not hy-
pergraphs or simplicial representations of hypergraphs (via Hodge Theory), but graph representations
of hypergraphs (described in Section 3) that compress the hypergraph in different, but sometimes
compositional, ways. While previous results on GNN transferability which make assumptions on
graph structure may not apply, by measuring the spectral similarity of the graph representations, even
before any training has occurred,2 we may apply our results.

2 Preliminaries
2.1 Graph Neural Networks

A graph is a tuple G = (V, E ,W) with a set of n nodes V , m edges E ⊆ V × V , and a real
edge weighting function W : E → R. We assume throughout that G is undirected and connected
(without loss of generality). Per usual, the graph G can be represented using a matrix S ∈ Rn×n

which respects its sparsity pattern, i.e., [S]ij = 0 whenever (i, j) ̸∈ E (i ̸= j) with the standard
examples being the (un-) normalized adjacency matrix, (un-) normalized graph Laplacian, and
the (un-) normalized random walk Laplacian. Since G is undirected with real edge weights, the
matrix representation S is symmetric and, thus, diagonalizable, with an orthonormal eigenbasis
V = [v1, . . . ,vn] and eigenvalue matrix Λ = diag(λ1, . . . , λn), where the eigenvalues are real and
ordered so that λ1 ⩽ · · · ⩽ λn. By our assumption of connectivity, λi = 0 if i = 1 and λi > 0
otherwise. Node signals are data vectors x = [x1, . . . , xn]

⊺ ∈ Rn where xi is associated to node i,
although we can readily generalize this setting to signals with multiple channels (i.e. features).

To process a graph signal x, we use a matrix representation S as a graph shift operator (GSO) via
the linear map y = Skx, where the k-fold application of S represent local exchanges of information
between nodes connected by a (possibly- self-intersecting) path of length k [39]. With this in mind,
we define linear graph filters as polynomials on the GSO below.
Definition 1 (Graph filter). A graph convolutional filter H(S) with filter coefficients {hk}∞k=0 is
defined as

H(S) :=

∞∑
k=0

hkS
k. (1)

Moreover, the graph frequency response of the filter is

h(λ) :=

∞∑
k=0

hkλ
k. (2)

We often consider filters with an analytic frequency response, i.e., a finite number of coefficients, so
that for some K, hk = 0 ∀k > K. Moreover, we assume |h(λ)| ⩽ 1 for all λ ∈ [λ1(S), λn(S)] so
that filters do not amplify signals (trivially satisfied via normalization of the GSO).

In order to improve the representation power of graph filters, in practice they are stacked together
with pointwise nonlinearities to create a graph neural network (GNN), defined below.
Definition 2 (Graph neural network). Graph neural networks are a cascade of L layers of graph
filters, each followed by a pointwise nonlinearity. Let each layer have fl graph signals (or features)
x1
l , . . . ,x

fl
l ∈ Rn. At layer l, we apply flfl−1 graph filters of the form Hij

l (S) followed by a
pointwise (or elementwise) nonlinear function σ : R → R to process the fl−1 input features into the
fl output features via

xi
l = σ

fl−1∑
j=1

∞∑
k=0

hij
lkS

kxj
l−1

 , i ∈ {1, . . . , fl}.

A graph neural network is the mapping Φ(x0;S,H) = xL. In this work we consider normalized
Lipschitz continuous nonlinearities so that |σ(x)− σ(y)| ⩽ |x− y|, e.g., rectified linear unit (ReLU),
sigmoid, tanh(·).

2As we will show, certain design choices for architecture of a GNN will affect its transferability.

3

Transferable Hypergraph Neural Networks via Spectral Similarity

(a) (b) (c)

Figure 1: Hypergraph with graph representations: (a) clique expansion, (b) line graph, and (c)
bipartite expansion.

A property of graph filters which has been shown to be valuable for stability of GNNs [21, 39] is the
so-called integral Lipschitz condition, defined below.
Definition 3 (Integral Lipschitz filter). A filter with frequency response h is integral Lipschitz on an
interval I if there is some C > 0 such that, for all λ1, λ2 ∈ I,

|h(λ1)− h(λ2)| ⩽ C
|λ1 − λ2|
|λ1 + λ2|/2

, (3)

which implies that the derivative of h satisfies |λh′(λ)| ⩽ C. We omit the interval I when it
is clear from context, e.g., for filters that will be applied to some GSOs S1, . . . , Sm we have
I = ∪m

i=1[λ1(Si), λn(Sn)].

Integral Lipschitz graph filters can be arbitrarily discriminative for small eigenvalues, but become
effectively flat for larger eigenvalues. However, by applying nonlinearities to the output of these
filters, the portion of the spectrum containing larger eigenvalues may be scattered to the lower portion.
In other words, GNNs with integral Lipschitz filters can be both discriminative and stable [21]. Given
some finite GSO S as well as a filter H(S) with an analytic frequency response and support contained
in [λ1(S), λn(S)], the integral Lipschitz condition is trivially satisfied with

C = max

{∣∣∣∣∣
K∑

k=1

hkkλ1(S)
k

∣∣∣∣∣ ,
∣∣∣∣∣

K∑
k=1

hkkλn(S)
k

∣∣∣∣∣
}
. (4)

Furthermore, we note that the value of the integral Lipschitz constant in a learning architecture may
be affected by adding a penalty term to the loss function used for training.

3 Hypergraph Neural Networks

Table 1: Notation for a hypergraph with n nodes and m hyperedges
Symbol Meaning

A ∈ Rn×n Adjacency matrix
B ∈ Rn×m Node-hyperedge incidence matrix
Dv ∈ Rn×n Diagonal node degree matrix
De ∈ Rm×m Diagonal hyperedge size matrix
Dee ∈ Rm×m Diagonal hyperedge intersection count matrix
W ∈ Rm×m Diagonal hyperedge weight matrix

A hypergraph, or higher-order graph, is a tuple H = (V, E ,W) with a set of n nodes V and a
collection of m hyperedges E ⊆ 2V , where 2V is the powerset of V , i.e., the collection of all subsets
of V . Thus, the hyperedges are arbitrarily-sized sets of nodes, to which we ascribe some hyperedge
weighting function W : E → R. With an abuse of notation, we stack the hyperedge weights into a
diagonal matrix W . If all hyperedges have cardinality two, we recover the ordinary definition of a
graph. Hypergraphs are commonly represented as matrices via the node-hyperedge incidence matrix
B ∈ Rn×m, where

[B]i,e =

{
1, i ∈ e

0, otherwise
, i ∈ {1, . . . , n}, e ∈ {1, . . . ,m}. (5)

4

Transferable Hypergraph Neural Networks via Spectral Similarity

The energy of a hypergraph node signal x on H (called the total variation in [26]) is defined as

QH(x) :=
∑
e∈E

W (e)max
i,j∈e

(xi − xj)
2. (6)

The hypergraph Laplacian is then defined as the gradient of the energy functional, i.e.,

LH(x) :=
1

2
∇QH(x). (7)

The hypergraph energy (6) is a generalization of the graph energy of a signal [4] defined for a graph
G = (V, EG ,W) as

QG(x) =
∑

(i,j)∈EG

(xi − xj)
2 = x⊺BB⊺x = x⊺LGx, (8)

where B is the node-edge incidence matrix, and LG is the graph Laplacian. If H is a graph, the
definitions of hypergraph energy and the hypergraph Laplacian coincide with (8) and LG , respectively.
However, in general, LH is a nonlinear operator. As such, the resultant diffusions are not easily-
approximated with any linear graph Laplacian. Indeed, in contrast to diffusion of graph signals, the
hypergraph Laplacian diffuses a node signal x across both nodes and hyperedges.

A common technique for processing hypergraph signals is to use graph representations [20, 22, 2, 51,
17]. While many representations are used in practice [42], the most common are the clique expansion,
line graph, and bipartite expansion (see Figure 1). The clique expansion is the graph generated by
replacing each hyperedge with k nodes by a k-clique, and the line graph is the clique expansion of the
dual hypergraph (wherein the roles of nodes and hyperedges are reversed). The bipartite expansion
partitions the nodes and hyperedges, and places edges between them based on hyperedge inclusions
in the hypergraph.

In principle, any choice of graph representation induces a signal processing framework on the
underlying hypergraph via the GSO on the graph representation. However, in this paper, we narrow
our focus on the clique expansion and line graph. To justify our choices, we note that convolution on
the bipartite expansion graph is difficult to interpret due to the inherent heterogeneity of the graph
node-set, although we admit polynomial filters make sense if we restrict the filter coeficients to be
zero for odd powers of the GSO. In contrast, the clique expansion and line graph are homogeneous
and of reasonable size; moreover, they are intimately related to the theory of simplicial complices.
Indeed, since simplicial complices require closure under taking subsets, we can build a simplicial
complex from a hypergraph by taking the original hyperedges and adding any missing subsets of these
hyperedges as simplices. The clique expansion is, then, the 1-skeleton of this simplicial representation
of the hypergraph, i.e., it includes only the 0-simplices (nodes) and 1-simplices (edges) and throws
away all higher-order simplices. The line graph can also be seen as the 1-skeleton of the nerve of the
cover of the nodes of the hypergraph by hyperedges [24]. Finally, we remark that the hypergraph
Laplacian in (7) is a nonlinear operator that diffuses information across both the nodes and hyperedges
and, hence, cannot be well-approximated via the linear graph Laplacian of one representation alone.

For these reasons we introduce HENN below, which combines convolutions using the clique expansion
and line graph.
Definition 4 (HENN). A Hypergraph Expansion Neural Network (HENN), Φ(·;Sc,Θc, Sl,Θl) is
composed of cascades of clique expansion layers of the form

X l+1
v = σ

(
K∑

k=0

(
D−1/2

v BWB⊺D−1/2
v

)k
X l

vH
k,l
v

)
, (9)

and line graph layers of the form

X l+1
e = σ

(
K∑

k=0

(
D−1/2

ee B⊺BWD−1/2
ee

)k
X l

eH
k,l
e

)
, (10)

where Dee is the hyperedge degree matrix from the line graph. The two GNN modules are composed
at the interface between the last clique expansion layer and the first line graph layer via the max-
pooling operation ρ(X)e = maxv∈e Xv. We pool between these types of layers using max-pooling
according to node-hyperedge membership, i.e., based on the entries of B (see [13] for a similar,
but more general pooling framework). Max-pooling was chosen as the aggregation function for
node-signals into hyperedge-signals in order to align with the definition of the nonlinear hypergraph
Laplacian in (7), thus conditioning the architecture with an appropriate relational inductive bias
[5, 46].

5

Transferable Hypergraph Neural Networks via Spectral Similarity

3.1 Spectral similarity

We quantify the similarity of connected, undirected graphs with the same number of nodes, including
graph representations of hypergraphs, by measuring the similarity of the spectra of their graph shift
operators (GSOs), which we assume to be symmetric and positive semi-definite. We stress that a
graph admits many different shift operators, such as the normalized graph Laplacian, and a hypergraph
admits many graph representations, such as the clique expansion and line graph. While our notion
of similarity will be dependent on which graph representations and/or GSOs we consider, this is an
appropriate measure for similarity when signals are being processed by these particular GSOs.
Definition 5 (Spectral similarity [43]). The symmetric and positive semi-definite matrices S ∈ Rn×n

and S̃ ∈ Rn×n are called ϵ-spectrally similar if (1− ϵ)S ⪯ S̃ ⪯ (1 + ϵ)S, i.e.,

(1− ϵ)x⊺Sx ⩽ x⊺S̃x ⩽ (1 + ϵ)x⊺Sx ∀x ∈ Rn, (11)

which implies,

(1− ϵ)λi(S) ⩽ λi(S̃) ⩽ (1+ϵ)λi(S) ∀i ∈{1, . . . , n}. (12)

For arbitrary graphs G and G̃ with n nodes and GSOs S and S̃, respectively, the coefficient ϵ of
spectral similarity can be computed to precision κ in time polynomial in n and log(1/κ) [4], for
example via semi-definite programming. If the GSOs of interest are diagonally dominant (e.g., graph
Laplacians), we may instead employ linear programming to greatly increase scalability [1]. Note also
that the multiplicity of the eigenvalue zero must be the same (possibly both zero) for S and S̃, which
will be the case for most GSOs of connected graphs, such as the normalized Laplacian.

The coefficient of spectral similarity, ϵ, will be the quantity by which we will provide bounds on the
transferability of GNNs between two arbitrary graphs of the same size. This coefficient may always
be measured between the GSOs of arbitrary graphs with the same number of nodes, however ϵ may,
in practice, not be small. However, for a GNN to be transferable we require only that the output is
close for similar graphs. Indeed, if the output of a GNN was similar when considering graphs that are
not spectrally similar, the GNN would have poor ability to discriminate.

4 Transferability via spectral similarity
To claim that an architecture is transferable, we need to show that using similar graphs to process
signals produces similar outputs. In this paper, we will investigate transferability of graph filters,
graph neural networks, and hypergraph neural networks that use graph representations. Since these
tools are permutation equivariant [21], we need not be concerned with differences in node labelings
between the graphs G and G̃. To that end, given some signal processing architecture Φ along with
GSOs S and S̃, we wish to examine the quantity∥∥∥Φ(S̃)− Φ(S)

∥∥∥
P
:= min

P∈P
max

x∈Rn:∥x∥2=1

∥∥∥Φ(x;P ⊺S̃P)− Φ(x;S)
∥∥∥
2
, (13)

which is referred to as the distance modulo permutation [21]. Here, the set of all permutation matrices
is denoted P := {P ∈ {0, 1}n×n : P1 = P ⊺1 = 1}. Note that when Φ is linear, we may substitute
the operator norm and ignore the unit-norm signal x. If (13) is small, then the way Φ processes
signals with S is similar to the way it processes signals using S̃, in a worst-case sense, regardless of
any differences in the node labeling. In particular, if (13) is small whenever S and S̃ are ϵ-spectrally
similar with small ϵ, then Φ has the transferability property. We formalize this intuition below.
Proposition 1. For ϵ-spectrally similar symmetric GSOs S and S̃ and an integral Lipschitz filter with
constant C, the operator difference modulo permutation between the filters H(S) and H(S̃) satisfies∥∥∥H(S̃)−H(S)

∥∥∥
P
⩽ Cϵ+O(ϵ2).

Moreover, if the filter applies only one shift operation with bias so H(S) = h0I + h1S, then∥∥∥H(S̃)−H(S)
∥∥∥
P
⩽ Cϵ.

Proof. See Appendix B.1.

6

Transferable Hypergraph Neural Networks via Spectral Similarity

As discussed in Section 2.1, GNNs are cascading layers of graph filters passed through pointwise
nonlinearities. Thus we arrive at our main result, which is a bound on the transferability of graph
neural networks based on spectral similarity.
Theorem 1. Given ϵ-spectrally similar GSOs S and S̃ and a GNN Φ(·;S,Θ) with normalized
Lipschitz nonlinearities and L layers with f features, each with filters that have unit operator norm
and are C-integral Lipschitz, then∥∥∥Φ(·;S,Θ)− Φ(·; S̃,Θ)

∥∥∥
P
⩽ CLfLϵ+O(ϵ2).

Proof. See Appendix B.2.

The proof of Theorem 1 relies on the fact that the filter coeficients are integral Lipschitz so that the
bound is independent of Θ. Informally, since GNNs are spectral operators, our result says that their
actions on any signal x ∈ Rn for graphs with similar spectra will be similar. Indeed, with this result in
hand, the task of GNN transferability is reduced to measuring the difference of graph spectra. While
this bound depends on the design choices of the architecture (such as the number of features and
layers), it is largely independent of the learned parameters of the GNN.3 As a consequence, we may
obtain this bound on the transferability error between arbitrary graphs G and G̃ before any training
has taken place. In practice, computing the spectrum of a matrix takes at most O(n3) time, and the
coefficient of spectral similarity can, then, be computed. For large graphs this may be computationally
expensive; thus, in Appendices C and D we provide bounds for spectral similarity in many regimes
of practical interest. Thus, transferability is entirely characterized by parameters of the architecture
(the integral Lipschitz constant, number of features, and number of layers), and the spectral similarity
between the graphs of interest. Naturally, lesser spectral similarity results in looser transferability
bounds, as does a larger integral Lipschitz constant C and more features f or convolutional layers L.
However, larger C, f , and L suggest enhanced discriminability, since the GNN can produce sharper
filters as C is larger, and more of those filters can be composed as f and L grow. Together, these
insights sugest a trade-off between transferability and discriminability; if a GNN is indifferent to
large differences in graph spectra, it cannot also process similar graphs differently. We remark that,
in practice, the filters may not be normalized, the integral Lipschitz constants may differ, and each
layer may have a different number of features. We explicitly compute our transferability bound in
this context in Appendix B.2.

5 Transferability of Hypergraph Neural Networks
In this section we will provide what is, to the best of our knowledge, the first bound on the transfer-
ability performance of neural networks that perform convolutions with signals supported on arbitrary
hypergraphs. The key herein is to consider graph expansions of hypergraphs (described in Section 3),
which may have arbitrary structure; hence, previous results on GNN transferability which make as-
sumptions on graph structure may not apply. In contrast, we may use our results by simply measuring
the spectral similarity of the graph expansions of the hypergraphs of interest.

Consider a hypergraph H and another (similar) hypergraph H̃. We may consider H̃ as a perturbation
of H (see Appendix D.1), or it may simply be a related hypergraph that models similar phenomena.
Furthermore, consider any hypergraph signal processing framework Φ(·; {Si,Θi}ri=1) comprised of
graph filtering layers for r graph representations of the original hypergraph. By computing the spectral
similarities of these graph representations of H and H̃, the result below allows us to understand how
similar the output of the hypergraph learning framework Φ(·; {Si,Θi}ri=1) will be when applied to
the GSOs S̃r, . . . , S̃r.
Theorem 2. Consider two hypergraphs H and H̃ and r graph representations with GSOs {Si}ri=1

and {S̃i}ri=1, respectively, such that Si and S̃i are ϵi-spectrally similar. If the hypergraph learning
framework Φ(·; {Si,Θi}ri=1) has a normalizing pooling function between graph representations with
normalized Lipschitz nonlinearities, with Li layers having fi features for graph representation i,

3The bound is independent of Θ, excepting (possibly) the filters’ integral Lipschitz constant C. Indeed, if the
filters satisfy |h(λ)| ⩽ 1 and the integral Lipshitz constant is constrained, the bound is truly independent of the
learning parameters. The former may be achieved via normalization during training, and the latter by adding a
penalty term to the training loss, such as a log-barrier function on the integral Lipschitz constant, which may be
computed via (4).

7

Transferable Hypergraph Neural Networks via Spectral Similarity

each with filters that have unit operator norm and are C-integral Lipschitz, then∥∥∥Φ(·; {Si,Θi}ri=1)− Φ(·; {S̃i,Θi}ri=1)
∥∥∥

⩽
r∑

i=1

CLiϵi

r∏
j=1

f
Lj

j +O(ϵ21 + · · ·+ ϵ2r).

Proof. Similar to Theorem 1 with potentially different GSOs in each layer; see Appendix B.2.

Since we make no assumptions on the structure of the hypergraphs and, hence, their graph repre-
sentations beyond connectedness, Theorem 2 provides a transferability bound for any hypergraph
learning framework which uses graph representations. This result also lends intuition to the formation
of HENN. From the connection of the clique expansion and line graph with simplicial complices,
we know these graph representations are associated with the higher-order spectral theory of Hodge
Laplacians [41, 42]. Together with the results of Appendix D, this suggests that HENN will be
stable to structural perturbations in the hypergraph, which is not a statement that can be asserted
for the other hypergraph learning methods described earlier. Hence, for two related hypergraphs,
HENN will be both stable and transferable if the GSOs of their clique expansions and line graphs
are spectrally similar. A critical distinction between transferability of HENNs and transferability of
GNNs is that, as a sufficient condition, every graph representation of H needs to be spectrally similar
to the corresponding graph representation of H̃.

6 Experiments

Table 2: Cross-validated comparison & ablation test.
Model Validation accuracy Test accuracy
Clique Expansion 0.631± 0.027 0.552± 0.016
Line Graph 0.625± 0.057 0.588± 0.016
HGNN [20] 0.638± 0.024 0.580± 0.012
HENN (ours) 0.889± 0.155 0.852± 0.123

To evaluate the performance of HENN, we train several graph and hypergraph neural networks to
solve a hyperedge source localization problem,4 a problem of practical interest in discovering the
sources of rumors that have propagated across groups. In the source localization problem, the goal
is to determine the source hyperedge of a diffusion process that has been occurring over the nodes
of a hypergraph for an unknown period of time. Hence, the input is a node signal, but the desired
output is a hyperedge signal. This nonlinear diffusion of both node and edge signals occurs via the
hypergraph Laplacian (7). To make the problem more difficult, we add both input and measurement
noise to the resulting signals, so our problem also involves hypergraph signal de-noising. We perform
an ablation test for HENN by comparing HENN with GNNs that use only the clique expansion
or line graph of the original hypergraph, as well as a comparison with HGNN [20], showing the
improvement in performance of HENN relative to approaches which diffuse the signal across only
the nodes or hyperedges. Since none of these other approaches can natively handle both node and
hyperedge signals, where appropriate, we pool all signals according to hyperedge inclusions, in the
same manner as HENN. In particular, we note that all methods (including HGNN) were constrained
to have normalized and integral Lipschitz filter weights to match the setting of Theorem 1.

The results of this study are presented in Table 2. Mean and standard deviations of performance
metrics were computed after randomly shuffling the data 5 times. Hyperparameters were set based on
the highest upper-confidence bound cross-validation score (mean plus standard deviation). HENN ex-
hibits a 45-54% improvement in test accuracy over GNNs which use only the clique expansion or line
graph, illustrating the value of combining these representations for problems that inherently involve
a nonlinear diffusion process across both the nodes and hyperedges of a hypergraph. Moreover, it
shows a 47% improvement over HGNN when both methods have normalized and integral Lipschitz
filter weights, suggesting superior performance when transferability is desired.

4Please see Appendix A for more details on experimental setup.

8

Transferable Hypergraph Neural Networks via Spectral Similarity

Table 3: Comparison of hypergraph signal processing approaches which use graph representations,
including the GSOs used, their connections with higher-order spectral theory, a nonlinear hypergraph
Laplacian (7), simplicial complices (SCs), and whether they can process both node and hyperedge
signals.

Architecture GSO(s) Spectral LH SCs Xv & Xe

HENN (ours) D
−1/2
v BWB⊺D

−1/2
v & D

−1/2
ee B⊺BWD

−1/2
ee " " " "

HGNN [20] D
−1/2
v BWD−1

e B⊺D
−1/2
v " "

HGNN+ [22] D−1
v BWD−1

e B⊺ " "

HyperAtten [2] D
−1/2
v B̃WD−1

e B̃⊺D
−1/2
v "

HyperGCN [51] D̃
−1/2
v B̃WD−1

e B̃⊺D̃
−1/2
v "

HNHN [17] D−1
e B⊺Dv & D−1

v BDe " "

HCoN [49] D
−1/2
v BWD−1

e B⊺D
−1/2
v & D

−1/2
v BWD

−1/2
e " "

SHINE [34] D
−1/2
v BWD−1

e B⊺D
−1/2
v "

7 Related Work

There are several existing approaches for learning with hypergraphs via graph convolutions. We
summarize their methodologies, benefits, and particular GSOs in our notation in Table 3. HGNN
[20] performs convolutions using a hyperedge-normalized and weighted clique expansion of the
hypergraph via the incidence matrix. HGNN+ [22] performs a convolution using the weighted
and normalized incidence matrices, but the resulting convolution is interpreted as convolving the
hyperedge signals via WD−1

e B⊺ and then a node convolution via D−1
v B. This process may include

multi-modal nodes and/or hyperedges, in which case the separately learned embeddings are joined
together (stacked, pooled, etc.). HNHN [17] uses the incidence matrices as GSOs in a two-phase
approach, similarly to HGNN+ with an extra nonlinearity added between the hyperedge and node
convolutions. HyperAtten [2] adapts HGNN by adding an attention module to adaptively learn
the weights of the incidence matrix B̃, in cases where the hyperedges and nodes are from the
same domain (e.g., hyperedges are formed from nearest neighbours of nodes). HyperGCN [51]
builds a restricted clique expansion and performs convolutions. Instead of full cliques for each
hyperedge, in each epoch, for each graph filtering layer and each hyperedge e it includes only the
edge (i, j) = argmaxi,j∈e

∥∥xl
i − xl

j

∥∥
2

between the nodes with the largest pairwise signal difference,
following (7). Edges between these two nodes and the other nodes in the hyperedge may also
be included using much smaller weights. Note that the resulting GSO will depend on the node
signals, of which there may be many in a dataset. HCoN [49] leverages both vertex and hyperedge
information, preserves the relationships across them, and incorporates the hypergraph reconstruction
error to learn informative latent representations for both vertices and hyperedges. SHINE [34]
utilizes a mechanism for hyperedge attention over nodes and node attention over hyperedges and
explicitly regularizes with penalty term utilizing the GSO of the clique expansion. The AllSet [13]
framework for hypergraph learning utilizes a multi-set function that pools signals supported on nodes
(resp. hyperedges) to signals supported on hyperedges (resp. nodes). AllSet learns these functions,
assumed to be permutation-equivalent, from scratch with MLPs, while we fix a pooling function and
learn filter coefficients of filters for each graph representations.

8 Conclusion

We introduced HENNs as a stitching of two GNN models, one supported on the clique expansion, the
other supported on the line graph. As our primary theoretical contribution, we provided transferability
bounds given the degree of spectral similarity between arbitrary graph representations as well as
design considerations. We hope practitioners can apply our methods to gain computational advantages
by training on a spectral sparsifications of graph representations of large hypergraphs, utilizing the
transferability guarantees. In the future, we hope to explore transferability of hypergraph neural
networks from the perspective of hypergraphons [33], limiting objects of hypergraphs analogus to
graphons. We also plan to investigate other ways to compose GNNs supported on different graph
representations.

9

Transferable Hypergraph Neural Networks via Spectral Similarity

References
[1] Amir Ali Ahmadi and Anirudha Majumdar. Dsos and sdsos optimization: more tractable

alternatives to sum of squares and semidefinite optimization. SIAM Journal on Applied Algebra
and Geometry, 3(2):193–230, 2019. 6

[2] Song Bai, Feihu Zhang, and Philip HS Torr. Hypergraph convolution and hypergraph attention.
Pattern Recognition, 110:107637, 2021. 5, 9

[3] Sergio Barbarossa and Stefania Sardellitti. Topological signal processing over simplicial
complexes. IEEE Transactions on Signal Processing, 68:2992–3007, 2020. 2

[4] Joshua Batson, Daniel A Spielman, Nikhil Srivastava, and Shang-Hua Teng. Spectral sparsifica-
tion of graphs: theory and algorithms. Communications of the ACM, 56(8):87–94, 2013. 2, 5,
6

[5] Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius
Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan
Faulkner, et al. Relational inductive biases, deep learning, and graph networks. arXiv preprint
arXiv:1806.01261, 2018. 5

[6] Claudio Battiloro, Lucia Testa, Lorenzo Giusti, Stefania Sardellitti, Paolo Di Lorenzo, and
Sergio Barbarossa. Simplicial attention neural networks. arXiv preprint arXiv:2203.07485,
2022. 2

[7] Federico Battiston, Enrico Amico, Alain Barrat, Ginestra Bianconi, Guilherme Ferraz de Arruda,
Benedetta Franceschiello, Iacopo Iacopini, Sonia Kéfi, Vito Latora, Yamir Moreno, et al. The
physics of higher-order interactions in complex systems. Nature Physics, 17(10):1093–1098,
2021. 1

[8] Cristian Bodnar, Fabrizio Frasca, Yuguang Wang, Nina Otter, Guido F Montufar, Pietro Lio,
and Michael Bronstein. Weisfeiler and Lehman go topological: Message passing simplicial
networks. In International Conference on Machine Learning, pages 1026–1037. PMLR, 2021.
2

[9] Raoul Bott, Loring W Tu, et al. Differential forms in algebraic topology, volume 82. Springer,
1982. 2

[10] Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst.
Geometric deep learning: going beyond euclidean data. IEEE Signal Processing Magazine,
34(4):18–42, 2017. 1

[11] Lucille Calmon, Michael T Schaub, and Ginestra Bianconi. Higher-order signal processing
with the dirac operator. In 2022 56th Asilomar Conference on Signals, Systems, and Computers,
pages 925–929. IEEE, 2022. 2

[12] Arijit Chakrabarty, Rajat Subhra Hazra, Frank den Hollander, and Matteo Sfragara. Spectra of
adjacency and Laplacian matrices of inhomogeneous Erdős–Rényi random graphs. Random
matrices: Theory and applications, 10(01):2150009, 2021. 18

[13] Eli Chien, Chao Pan, Jianhao Peng, and Olgica Milenkovic. You are allset: A multiset
function framework for hypergraph neural networks. In International Conference on Learning
Representations, 2022. 5, 9

[14] Fan Chung. Spectral graph theory. American Mathematical Soc., 1997. 22

[15] Fan Chung, Linyuan Lu, and Van Vu. The spectra of random graphs with given expected
degrees. Internet Mathematics, 1(3):257–275, 2004. 17, 18, 19

[16] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks
on graphs with fast localized spectral filtering. Advances in neural information processing
systems, 29, 2016. 1

[17] Yihe Dong, Will Sawin, and Yoshua Bengio. Hnhn: Hypergraph networks with hyperedge
neurons. ICML Graph Representation Learning and Beyond Workshop, 2020. 5, 9

[18] Beno Eckmann. Harmonische funktionen und randwertaufgaben in einem komplex. Commen-
tarii Mathematici Helvetici, 17(1):240–255, 1944. 2

[19] László Erdős, Horng-Tzer Yau, and Jun Yin. Rigidity of eigenvalues of generalized Wigner
matrices. Advances in Mathematics, 229(3):1435–1515, 2012. 18, 19

10

Transferable Hypergraph Neural Networks via Spectral Similarity

[20] Yifan Feng, Haoxuan You, Zizhao Zhang, Rongrong Ji, and Yue Gao. Hypergraph neural
networks. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages
3558–3565, 2019. 5, 8, 9

[21] Fernando Gama, Joan Bruna, and Alejandro Ribeiro. Stability properties of graph neural
networks. IEEE Transactions on Signal Processing, 68:5680–5695, 2020. 2, 4, 6, 14, 20, 23

[22] Yue Gao, Yifan Feng, Shuyi Ji, and Rongrong Ji. HGNN+: General hypergraph neural networks.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022. 5, 9

[23] Chad Giusti, Robert Ghrist, and Danielle S Bassett. Two’s company, three (or more) is a simplex.
Journal of computational neuroscience, 41(1):1–14, 2016. 1

[24] Branko Grünbaum. Nerves of simplicial complexes. Aequationes Mathematicae, 4(1):63–73,
1970. 5

[25] Mustafa Hajij, Ghada Zamzmi, Theodore Papamarkou, Vasileios Maroulas, and Xuanting Cai.
Simplicial complex representation learning. In Machine Learning on Graphs (MLoG) Workshop
at 15th ACM International WSDM (2022) Conference, 2022. 2

[26] Matthias Hein, Simon Setzer, Leonardo Jost, and Syama Sundar Rangapuram. The total
variation on hypergraphs-learning on hypergraphs revisited. Advances in Neural Information
Processing Systems, 26, 2013. 5

[27] Henry Kenlay, Dorina Thanou, and Xiaowen Dong. Interpretable stability bounds for spectral
graph filters. In International conference on machine learning, pages 5388–5397. PMLR, 2021.
2

[28] Nicolas Keriven, Alberto Bietti, and Samuel Vaiter. Convergence and stability of graph convo-
lutional networks on large random graphs. Advances in Neural Information Processing Systems,
33:21512–21523, 2020. 2, 16, 18

[29] Nicolas Keriven, Alberto Bietti, and Samuel Vaiter. On the universality of graph neural networks
on large random graphs. Advances in Neural Information Processing Systems, 34:6960–6971,
2021. 16, 18

[30] Steffen Klamt, Utz-Uwe Haus, and Fabian Theis. Hypergraphs and cellular networks. PLoS
computational biology, 5(5):e1000385, 2009. 1

[31] Ron Levie, Wei Huang, Lorenzo Bucci, Michael M. Bronstein, and Gitta Kutyniok. Trans-
ferability of spectral graph convolutional neural networks. J. Mach. Learn. Res., 22, 2021.
2

[32] Ron Levie, Elvin Isufi, and Gitta Kutyniok. On the transferability of spectral graph filters. In
2019 13th International conference on Sampling Theory and Applications (SampTA), pages 1–5.
IEEE, 2019. 2

[33] László Lovász. Large networks and graph limits, volume 60. American Mathematical Soc.,
2012. 2, 9, 19

[34] Yuan Luo. Shine: Subhypergraph inductive neural network. Advances in Neural Information
Processing Systems, 35:18779–18792, 2022. 9

[35] Sohir Maskey, Ron Levie, and Gitta Kutyniok. Transferability of graph neural networks: an
extended graphon approach. arXiv preprint arXiv:2109.10096, 2021. 2, 16, 19

[36] Konstantin Prokopchik, Austin R Benson, and Francesco Tudisco. Nonlinear feature diffusion
on hypergraphs. In International Conference on Machine Learning, pages 17945–17958. PMLR,
2022. 2

[37] T Mitchell Roddenberry, Nicholas Glaze, and Santiago Segarra. Principled simplicial neural
networks for trajectory prediction. In International Conference on Machine Learning, pages
9020–9029. PMLR, 2021. 2

[38] Luana Ruiz, Luiz Chamon, and Alejandro Ribeiro. Graphon neural networks and the trans-
ferability of graph neural networks. Advances in Neural Information Processing Systems,
33:1702–1712, 2020. 2, 16, 18, 19

[39] Luana Ruiz, Fernando Gama, and Alejandro Ribeiro. Graph neural networks: architectures,
stability, and transferability. Proceedings of the IEEE, 109(5):660–682, 2021. 1, 2, 3, 4

[40] Vsevolod Salnikov, Daniele Cassese, and Renaud Lambiotte. Simplicial complexes and complex
systems. European Journal of Physics, 40(1):014001, 2018. 2

11

Transferable Hypergraph Neural Networks via Spectral Similarity

[41] Michael T Schaub, Austin R Benson, Paul Horn, Gabor Lippner, and Ali Jadbabaie. Random
walks on simplicial complexes and the normalized Hodge 1-Laplacian. SIAM Review, 62(2):353–
391, 2020. 8

[42] Michael T Schaub, Yu Zhu, Jean-Baptiste Seby, T Mitchell Roddenberry, and Santiago Segarra.
Signal processing on higher-order networks: Livin’on the edge... and beyond. Signal Processing,
187:108149, 2021. 2, 5, 8

[43] Daniel A Spielman and Shang-Hua Teng. Spectral sparsification of graphs. SIAM Journal on
Computing, 40(4):981–1025, 2011. 2, 6

[44] Terence Tao. Topics in random matrix theory, volume 132. American Mathematical Soc., 2012.
18, 19, 20, 23

[45] Ekaterina Tolstaya, Fernando Gama, James Paulos, George Pappas, Vijay Kumar, and Alejandro
Ribeiro. Learning decentralized controllers for robot swarms with graph neural networks. In
Conference on robot learning, pages 671–682. PMLR, 2020. 1

[46] Petar Veličković and Charles Blundell. Neural algorithmic reasoning. Patterns, 2(7), 2021. 5

[47] Renato Vizuete, Federica Garin, and Paolo Frasca. The Laplacian spectrum of large graphs
sampled from graphons. IEEE Transactions on Network Science and Engineering, 8(2):1711–
1721, 2021. 19

[48] Peihao Wang, Shenghao Yang, Yunyu Liu, Zhangyang Wang, and Pan Li. Equivariant hy-
pergraph diffusion neural operators. In The Eleventh International Conference on Learning
Representations, 2022. 2

[49] Hanrui Wu, Yuguang Yan, and Michael Kwok-Po Ng. Hypergraph collaborative network on
vertices and hyperedges. IEEE Transactions on Pattern Analysis and Machine Intelligence,
45(3):3245–3258, 2023. 9

[50] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A
comprehensive survey on graph neural networks. IEEE transactions on neural networks and
learning systems, 32(1):4–24, 2020. 1

[51] Naganand Yadati, Madhav Nimishakavi, Prateek Yadav, Vikram Nitin, Anand Louis, and Partha
Talukdar. HyperGCN: A new method for training graph convolutional networks on hypergraphs.
Advances in neural information processing systems, 32, 2019. 5, 9

[52] Maosheng Yang, Elvin Isufi, and Geert Leus. Simplicial convolutional neural networks. In
ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 8847–8851. IEEE, 2022. 2

[53] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure
Leskovec. Graph convolutional neural networks for web-scale recommender systems. In
Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery &
data mining, pages 974–983, 2018. 1

[54] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng
Wang, Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods and
applications. AI Open, 1:57–81, 2020. 1

[55] Yizhe Zhu. A graphon approach to limiting spectral distributions of Wigner-type matrices.
Random Structures & Algorithms, 56(1):251–279, 2020. 18

[56] Afra Zomorodian. Fast construction of the Vietoris-Rips complex. Computers & Graphics,
34(3):263–271, 2010. 13

Author Contributions
Mikhail Hayhoe contributed in writing the original draft, writing proofs, visualization, methodology,
software, and validation. Hans Riess contributed in conceptualization, review and editing, project
administration, methodology, and visualization. Michael M. Zavlanos contributed in funding acqui-
sition. Victor M. Preciado contributed in supervision and funding acquisition. Alejandro Ribeiro
contributed in conceptualization, supervision, and funding acquisition.

12

Transferable Hypergraph Neural Networks via Spectral Similarity

Acknowledgements
This work is supported in part by AFOSR under award #FA9550-19-1- 0169 and by ONR under
agreement #N00014-18-1-2374.

A Experimental setup
The hypergraph is created by randomly sampling 500 points on a 3-dimensional torus with inner
radius 1 and outer radius 2, and keeping maximal hyperedges of a Vietoris-Rips complex [56] with
radius 0.4, i.e., constructing simplices between any points jointly within a 2-norm distance 0.4. At
random, 10 hyperedges are selected to be the sources, making the source localization problem a
10-class classification problem.

To generate K data samples {(xk, yk)}Kk=1, we pick 10 hyperedges at random to be the sources. For
each source hyperedge i, we construct a node source signal for node j:

xi
0,j =

{
1 + z, node i is in the source hyperedge,
z, otherwise.

where z ∼ Normal(0, 0.01) is independent Gaussian white noise. This noisy source signal is diffused
for tmax = 30 time steps via the nonlinear hypergraph Laplacian (7) to generate the sequence
{xi

t}
tmax
t=0 . Samples are then of the form (xi

t + z, yi), where we pick xi
t by randomly sampling a

source hyperedge i and time t and add measurement noise z ∼ Normal(0, 0.01In), and the hyperedge
label is yi = i. We use 500 of these signals for training (including cross-validation), and 300 of these
signals for testing. Note that while we may sample a signal from the same source at the same time
more than once, they will not be identical due to the added independent measurement noise.

All GNNs have two graph filtering layers with one input feature per node and a fixed readout layer to
select signals from the 10 candidate source hyperedges. The filters are normalized during training
to ensure |h(λ)| ⩽ 1 and the integral Lipschitz constant is constrained to be less than 10 via a
loss penalty term. Pooling from node to hyperedge signals is done based on node inclusion in the
hyperedges. We train using adam with weights 0.9 and 0.999 with a learning rate of 0.0005, decay
rate of 0.99 and decay period of 20. These hyperparameters, as well as others such as the number of
filters and number of filter taps were chosen via 5-fold cross-validation.

B Proofs of main results
B.1 Transferability of graph filters

Proof of Proposition 1. By spectral similarity, we have that

(1− ϵ)S ⪯ S̃ ⪯ (1 + ϵ)S (14)

⇒ (1− ϵ)x⊺Sx ⩽ x⊺S̃x ⩽ (1 + ϵ)x⊺Sx ∀x ∈ Rn. (15)

Hence,

H(S̃)−H(S) =

∞∑
k=0

hk(S̃
k − Sk) =

∞∑
k=1

hk(S̃
k − Sk)

⪯
∞∑
k=1

hk(((1 + ϵ)S)k − Sk).

For symmetric matrices ∥A∥op ⩽ ∥B∥op if A ⪯ B. Thus, using the first-order expansion ((1 +

ϵ)S)k = (1 + kϵ)Sk +O(ϵ2), since graph filters are permutation equivariant we have∥∥∥H(S̃)−H(S)
∥∥∥
P
=
∥∥∥H(S̃)−H(S)

∥∥∥
op

⩽

∥∥∥∥∥
∞∑
k=1

hk(((1 + ϵ)S)k − Sk)

∥∥∥∥∥
op

13

Transferable Hypergraph Neural Networks via Spectral Similarity

=

∥∥∥∥∥
∞∑
k=1

hk((1 + kϵ)Sk − Sk) +O(ϵ2)

∥∥∥∥∥
op

⩽

∥∥∥∥∥
∞∑
k=1

hkkϵS
k

∥∥∥∥∥
op

+O(ϵ2).

Next, notice that the derivative of the frequency response is h̃′(λ) =
∑∞

k=1 hkkλ
k−1. Thus, using

the graph Fourier representation of x,

∞∑
k=1

hkkϵS
kx = ϵ

∞∑
k=1

hkkS
k

(
n∑

i=1

x̃ivi

)

= ϵ

n∑
i=1

x̃i

∞∑
k=1

hkkS
kvi

= ϵ

n∑
i=1

x̃i

∞∑
k=1

hkkλ
k
i vi

= ϵ

n∑
i=1

x̃iλih̃
′(λi)vi.

By the integral Lipschitz assumption of the filter, λh̃′(λ) ⩽ C. Moreover, since the signal is assumed
to have a unit norm, ∥x∥2 = ∥x̃∥2 = 1. Thus, by orthonormality of the vi,∥∥∥∥∥

∞∑
k=1

hkkϵS
kx

∥∥∥∥∥
2

2

=

∥∥∥∥∥ϵ
n∑

i=1

x̃iλih̃
′(λi)vi

∥∥∥∥∥
2

2

= ϵ2
n∑

i=1

(x̃iλih̃
′(λi))

2

⩽ (Cϵ)2
n∑

i=1

x̃2
i = (Cϵ)2.

Finally, we thus have

∥∥∥H(S̃)−H(S)
∥∥∥
P
⩽

∥∥∥∥∥
∞∑
k=1

hkkϵS
k

∥∥∥∥∥
op

+O(ϵ2) ⩽ Cϵ+O(ϵ2),

as desired. Moreover, note that if we apply only one shift operation with a bias term, i.e., H(S) =

h0I + h1S, then the first-order expansion performed earlier is exact and
∥∥∥H(S̃)−H(S)

∥∥∥
P

⩽

Cϵ.

B.2 Transferability of graph neural networks (GNNs)

Proof of Theorem 1. We wish to bound the quantity ||Φ(·;S,Θ)− Φ(·; S̃,Θ)||P , and proceed simi-
larly to [21, Theorem 4]. At an arbitrary layer l ∈ {1, . . . , L} of Φ(·;S,Θ) with fl features (where
l = L is the output layer), the (possibly hidden) node signals are some {xf

l }
fl
f=1, where xf

l ∈ Rn.
Similarly, the node signals in the GNN Φ(·; S̃,Θ) at layer l are denoted by {x̃f

l }
fl
f=1. We thus wish

to bound quantities of the form ||xf
l − x̃f

l ||2, i.e.,∥∥∥∥∥∥σ
fl−1∑

g=1

Hfg
l (S)xg

l−1

−σ

fl−1∑
g=1

Hfg
l (S̃)x̃g

l−1

∥∥∥∥∥∥
2

. (16)

14

Transferable Hypergraph Neural Networks via Spectral Similarity

Since the nonlinearities are assumed to be normalized Lipschitz, |σ(x)− σ(y)| ⩽ |x− y|. So, by the
triangle inequality,∥∥∥xf

l − x̃f
l

∥∥∥
2

⩽
fl−1∑
g=1

∥∥∥Hfg
l (S)xg

l−1 −Hfg
l (S̃)x̃g

l−1

∥∥∥
2

=

fl−1∑
g=1

∥∥∥Hfg
l (S)

(
xg
l−1−x̃g

l−1

)
+
(
Hfg

l (S)−Hfg
l (S̃)

)
x̃g
l−1

∥∥∥
2

⩽
fl−1∑
g=1

∥∥∥Hfg
l (S)

∥∥∥
op

∥∥xg
l−1−x̃g

l−1
∥∥
2
+
∥∥∥Hfg

l (S)−Hfg
l (S̃)

∥∥∥
op

∥∥x̃g
l−1
∥∥
2
.

Notice similarly that

∥xgl
l ∥

2
=

∥∥∥∥∥∥σ
 fl−1∑

gl−1=1

H
glgl−1

l (S)x
gl−1

l−1

∥∥∥∥∥∥
2

⩽
fl−1∑

gl−1=1

∥∥Hglgl−1

l (S)x
gl−1

l−1

∥∥
2

⩽
fl−1∑

gl−1=1

∥∥Hglgl−1

l (S)
∥∥
op

∥∥xgl−1

l−1

∥∥
2

⩽
fl−1∑

gl−1=1

· · ·
f0∑

g0=1

∥xg0
0 ∥2

l∏
s=1

∥Hgsgs−1
s (S)∥op .

Since the GSOs S and S̃ are ϵ-spectrally similar, by Proposition 1 we have ||Hglgl−1

1 (S) −
H

glgl−1

1 (S̃)||op ⩽ C
glgl−1

l ϵ+O(ϵ2) for all gl, gl−1, where Cglgl−1

l is the integral Lipschitz constant
of the filter in the l-th layer for the gl−1-th input feature and gl-th output feature. Combining these
results,

∥xgl
l − x̃gl

l ∥
2

⩽
fl−1∑

gl−1=1

∥∥Hglgl−1

l (S)
∥∥
op

∥∥xgl−1

l−1 − x̃
gl−1

l−1

∥∥
2

+ (C
glgl−1

l ϵ+O(ϵ2))
∥∥x̃g

l−1

∥∥
2

⩽ O(ϵ2) +

fl−1∑
gl−1=1

∥∥Hglgl−1

l (S)
∥∥
op

∥∥xgl−1

l−1 − x̃
gl−1

l−1

∥∥
2

+

fl−2∑
gl−2=1

· · ·
f0∑

g0=1

∥x̃g0
0 ∥2 C

glgl−1

l ϵ

l−1∏
s=1

∥Hgsgs−1
s (S)∥op.

This establishes a recurrence relation for ∥xgl
l − x̃gl

l ∥
2
. Notice that for l = 1 and any g1 ∈

{1, . . . , f1},

∥xg1
1 − x̃g1

1 ∥2 ⩽
f0∑

g0=1

Cg1g0
1 ϵ ∥xg0

0 ∥2 +O(ϵ2),

15

Transferable Hypergraph Neural Networks via Spectral Similarity

since the input signals to both GNNs are the same and, hence, ∥xg0
0 ∥2 = ∥x̃g0

0 ∥2 and ∥xg0
0 − x̃g0

0 ∥2 =
0 for all g0 ∈ {1, . . . , f0}. Thus we may solve the recurrence relation above to obtain

∥xgl
l − x̃gl

l ∥
2

⩽
fl−1∑

gl−1=1

· · ·
f0∑

g0=1

∥xg0
0 ∥2

l∑
s=1

Cgsgs−1
s ϵ

l∏
t=1
t ̸=s

∥∥Hgtgt−1

t (S)
∥∥
op
+O(ϵ2).

This inequality makes explicit the effects of the integral Lipschitz constants C
glgl−1

l as well as
the operator norms

∥∥Hgtgt−1

t (S)
∥∥
op

of each filter, which are functions of both the (learned) filter
coefficients and the spectrum of the GSO S used for training. Both quantities control the amplification
of the input signals; if they are smaller, the magnitude of the difference in the signals at layer l is
smaller. The output signals of the GNNs are the quantities {xf

L}
fL
f=1 and {x̃f

L}
fL
f=1. Hence, since we

wish to bound the difference in the output of the GNNs, for an arbitrary input signal x0 = {xf
0}

f0
f=1,

we have ∥∥∥Φ(x0;S,Θ)− Φ(x0; S̃,Θ)
∥∥∥
2

=

fL∑
gL=0

∥xgL
L − x̃gL

L ∥2

⩽
fL∑

gL=0

· · ·
f0∑

g0=1

∥xg0
0 ∥2

L∑
s=1

Cgsgs−1
s ϵ

L∏
t=1,t̸=s

∥∥Hgtgt−1

t (S)
∥∥
op

+O(ϵ2).

If the filter responses are bounded, i.e.,
∥∥Hgtgt−1

t (S)
∥∥
op

⩽ c (which can be achieved via normaliza-
tion during training), all filters share an integral Lipschitz constant C (which is possible by adding a
penalty to the training loss), and the input signals have unit norm (via normalization before training),
then ∥∥∥Φ(x0;S,Θ)− Φ(x0; S̃,Θ)

∥∥∥
2
⩽ CLcL−1

L∏
s=0

fsϵ+O(ϵ2).

The constant c can be understood as controlling the amplification or contraction of the input and
hidden signals, while the number of features fs and layers L determine how many filters are stacked
together, each obeying the bound from Proposition 1, which depends on the integral Lipschitz constant
C and the spectral similarity coefficient ϵ. The desired result is achieved by setting c = 1 and fs = f
for all s ∈ {0, . . . , L}.

C Transferability between random graphs
In this section we show that two graphs of the same size drawn from an appropriate random graph
distribution will be spectrally similar with a coefficient ϵ that shrinks as n grows. In other words,
random graphs become more spectrally similar as they grow larger. By combining this notion with
Theorem 1, we obtain results in agreement with works that investigate the transferability of GNNs
applied to large random graphs [28, 29] and convergent graph sequences[35, 38].

For practicality and to build intuition throughout this section we will assume that all graph shift
operators are normalized Laplacians. However, we stress that this is not a requirement of our approach,
and any GSO that satisfies the conditions we provide can be used in practice. We begin with a general
result which provides the conditions under which a family of random graphs will produce GSOs that
grow more spectrally similar as they grow larger, with high probability.
Proposition 2. Let {Gn}∞n=1 and {G̃n}∞n=1 be two independent sequences of graphs drawn from
the same family of random graph distributions so that Gn, G̃n ∼ PG(n) for each n, with graph shift
operators Sn and S̃n, respectively, having eigenvalues {λi}ni=1 and {λ̃i}ni=1. Assume the following:

(A1) Multiplicity of zero: the zero eigenvalue has almost surely constant multiplicity indepedent of n
(potentially zero);

16

Transferable Hypergraph Neural Networks via Spectral Similarity

(A2) Bounded spectral gap: there exists c > 0 independent of n such that |λi| ⩾ c almost surely for
all non-zero eigenvalues;

(A3) Concentration: given ϵc > 0 and δc > 0 there exist some values γi, i ∈ {1 . . . , n}, such that
for large enough n,

P (|λi − γi| < ϵc, ∀i ∈ {1, . . . , n}) > 1− δc. (17)

Then for any ϵ > 0 and δ > 0, there exists N = N(ϵ, δ) such that for any n ⩾ N ,

P
(
(1−ϵ)λi < λ̃i < (1+ϵ)λi, ∀i ∈ {1, . . . , n}

)
>1−δ. (18)

In other words, for appropriate graph shift operators of large random graphs whose eigenvalues
concentrate, the coefficient of spectral similarity converges in probability to 0 as n → ∞.

Proof. For ease of notation, fix some n and set λi := λi(Sn) and λ̃i := λi(S̃n). Hence, denoting
I := {i ∈ {1, . . . , n} : λi(Sn) ̸= 0}, note that (A1) implies almost surely that we can order the
eigenvalues of S̃n so that I =

{
i ∈ {1, . . . , n} : λi(S̃n) ̸= 0

}
and, thus, |λi− λ̃i| = 0 for all i ̸∈ I .

Thus, it suffices to show that ∀ϵ > 0, δ > 0 there exists some N such that for any n ⩾ N ,

P
(
(1− ϵ)λi ⩽ λ̃i ⩽ (1 + ϵ)λi ∀i ∈ I

)
> 1− δ

⇔ P
(
|λi − λ̃i| ⩽ ϵ|λi| ∀i ∈ I

)
> 1− δ. (19)

By (A2), the non-trivial eigenvalues of Sn and S̃n are bounded away from zero by some c > 0 almost
surely. Thus, since P (A) > P (B) if A ⊇ B,

P
(
|λi − λ̃i| ⩽ ϵ|λi| ∀i ∈ I

)
⩾ P

(
|λi − λ̃i| ⩽ cϵ ∀i ∈ I

)
= P

(
|λi − γi − (λ̃i − γi)| ⩽ cϵ ∀i ∈ I

)
⩾ P

(
|λi − γi|+ |λ̃i − γi| ⩽ cϵ ∀i ∈ I

)
⩾ P

(
|λi − γi| ⩽ cϵ/2 ∀i ∈ I

)
P
(
|λ̃i − γi| ⩽ cϵ/2 ∀i ∈ I

)
,

where the last line follows by independence. Then by (A3), for any ϵ > 0, δ > 0 we can choose N1

large enough such that P (|λi − γi| ⩽ cϵ/2 ∀i ∈ I) >
√
1− δ (and similarly choose N2 for all λ̃i),

and the result follows by picking N = max{N1, N2}.

This proposition applies to a large class of random graphs and corresponding shift operators. As-
sumption (A1) is necessary for spectral similarity to hold but is trivially satisfied by the normalized
Laplacian of a connected graph. As we will show in Appendix C.1, (A2) and (A3) are satisfied
by the normalized Laplacian of many families of random graphs including the Erdös-Rényi and
Chung-Lu models, as well as random power-law graphs with given expected degree sequences and
large enough minimum expected degree [15]. Furthermore, we will show in Appendix C.2 that
graphs sampled from the same well-structured graphon will satisfy all of these conditions and, hence,
become arbitrarily spectrally similar as their size grows larger. The implications of these results in
terms of transferability of GNNs for random graph families is summarized below.
Theorem 3. Let {Gn}∞n=1 and {G̃n}∞n=1 be two independent sequences of random graphs with graph
shift operators {Sn}∞n=1 and {S̃n}∞n=1, respectively, such that Gn, G̃n ∼ PG(n), and let PG(n) satisfy
(A1)-(A3) for all n. Then, for a sequence of GNNs {Φ(·;Sn,Θ)}∞n=1 trained on the GSOs Sn with
normalized Lipschitz nonlinearities, each with the same number of layers and features, as well as
integral Lipschitz filters that have unit operator norm,∥∥∥Φ(·;Sn,Θ)− Φ(·; S̃n,Θ)

∥∥∥
P
→ 0,

in probability as n → ∞.

17

Transferable Hypergraph Neural Networks via Spectral Similarity

Proof. Direct result of Theorem 1 and Proposition 2.

The statement above has far-reaching implications. For example, GNNs which use the normalized
Laplacian as a GSO will exhibit better transferability properties as the size of the original training
graph grows, with high probability. This agrees with previous results on GNN transferability in the
regime of large random graphs [28, 29], as well as the regime of convergent random graph sequences
[38]. In particular, these results suggests that for a family of large enough random graphs, when using
the normalized Laplacian as a GSO, it suffices to train on one graph realization to achieve comparable
performance across all realizations of the same size. However, Theorem 3 also presents an issue of
discriminability; with high probability, the action of a GNN trained on a large random graph will look
very similar to the action of that same GNN applied to a different random graph of the same family.
While this may appear to be an artifact of the choice to consider normalized GSOs, we remark that
these are used almost exclusively in practice for large graphs. Indeed, without normalization the
graph frequency response of a filter can become unbounded as n grows.

C.1 Transferability of large random graphs

To make the results in Proposition 2 and Theorem 3 concrete, in this section we will explore specific
families of random graphs that satisfy (A1)-(A3). To this end, and in order to motivate the results
pertaining to concentration of eigenvalues, we will introduce distributions on the spectra of random
graphs.
Definition 6 (Empirical spectral distribution). The empirical spectral distribution (ESD) of a real
symmetric matrix X , µX , is the atomic distribution that assigns equal mass to each of the eigenvalues
of X , i.e.,

µX :=
1

n

n∑
i=1

δλi(X). (20)

Since we wish to study the spectra of random graphs, in our setting the ESD will be a random
measure, i.e., a random variable in the space of probability measures on R (see [44] for more details).
We will also study a common limiting distribution of the ESD of random matrices, called Wigner’s
semicircle law.
Definition 7 (Wigner’s semicircle law). Wigner’s semicircle law µ is the distribution with density
defined on [−1, 1] as

µ(x) :=
2

π

√
1− x2, (21)

and zero otherwise.

Wigner’s semicircle law is to random matrices what the central limit theorem is to random variables.
A result of note, called Wigner’s eigenvalue rigidity theorem [19, Theorem 2.2], states that the
eigenvalues of a matrix whose ESD converges to the semicricle law concentrate around specific
distinct values, i.e., (A3) is satisfied. The exact characterization of the general class of matrices
whose empirical spectral distributions converge to Wigner’s semicircle law is beyond the scope of
this paper (see, e.g, [19, 55]). However, many graphs of interest have corresponding shift operators
that satisfy these conditions, including the Erdös-Rényi and Chung-Lu models, as well as random
power law graphs with large enough minimum degree. Indeed, in [15, Theorem 6] it was shown
that the eigenvalues of the normalized Laplacian of any random graph with an appropriate given
expected degree distribution converge to Wigner’s semicircle law. Moreover, [15, Theorem 5]
provides bounds which may be used to show (A2) is satisfied when the minimum degree is large
enough. Furthermore, in [12] it was shown that inhomogeneous Erdös-Rényi random graphs (where
the connection probabilities may all be different) admit limiting distributions that are related to
Wigner’s semicircle law, although they may be difficult to compute in general. The implications of
these results in the context of transferability of GNNs are summarized below.
Corollary 1. Let {Gn}∞n=1 and {G̃n}∞n=1 be two independent sequences of almost surely connected
random graphs drawn from the same distribution with given expected degrees, with normalized
Laplacians {Sn}∞n=1 and {S̃n}∞n=1, respectively. If the minimum and average degrees are large
enough, then for a sequence of GNNs {Φ(·;Sn,Θ)}∞n=1 following the conditions of Theorem 3,∥∥∥Φ(·;Sn,Θ)− Φ(·; S̃n,Θ)

∥∥∥
P
→ 0,

18

Transferable Hypergraph Neural Networks via Spectral Similarity

in probability as n → ∞.

Proof. Result of [15, Theorems 5 and 6], [19, Theorem 2.2] and Theorem 3.

It may be possible to achieve almost sure convergence above, depending on the family of random
graphs under consideration [44, 19]. While this result is asymptotic in nature, it is possible to obtain
convergence rates which may be informative for finite n. Concretely, in the context of Proposition 2,
the eigenvalue rigidity result in [19, Theorem 2.2] suggests that for some fixed n, ϵ ≈ O(n−1) and
δ ≈ O(n−c) for some small c. In other words, GNNs trained on GSOs of size n satisfying the
conditions of Corollary 1 will have transferability bounds of the order 1/n with high probability.

We remark that these results also apply to the transferability of large random hypergraphs. Consider a
random hypergraph with n nodes and m hyperedges where the expected degrees of the hyperedges,
i.e., the number of other hyperedges that share at least one node, are given by some fixed w1, . . . , wm

and the expected cardinality of the hyperedges are k1, . . . , km. In this case both the clique expansion
and line graph will be random with given expected degrees and, hence, we may apply Corollary 1
to assert with high probability that the HENN trained using one such random hypergraph will be
transferable to others of the same size with a bound of the order 1/n.

C.2 Graphon Transferability

A graphon is a symmetric, measurable function (sometimes called a kernel) W : [0, 1]2 → [0, 1]
which can be understood as the limit of a sequence of dense undirected graphs where the node index
is a continuous set [33]. While many authors explore transferability for sequences of graphs that
converge to the same graphon [35, 38], we will focus on the particular related case of random graphs
sampled from graphons. This allows us to make use of existing results which explore the spectrum
of the normalized Laplacian of such sampled graphs [47]; however, it may be possible to obtain
more general results to measure the spectral similarity of sequences of GSOs obtained from graphs
converging to the same graphon.

We assume that the graphon is bounded away from zero, so that infx,y∈[0,1] W (x, y) > 0. In order to
generate a random graph with n nodes via the graphon W , following [47] we sample some points
x1, . . . , xn ∼ Uniform([0, 1]) and create the edge (i, j) with a probability W (x(i), x(j)), where x(i)

denotes the i-th order statistic of the sampled points. We say the resulting graph Gn is sampled
from the graphon W . There is an explicit connection to the results of Appendix C, as it has been
shown that graphs sampled from graphons in this manner have fixed expected degree distributions
[47]. Indeed, [47, Lemma 3] shows that the eigenvalues of these sampled graphs concentrate, and
[47, Proposition 3] bounds the spectral gap. Moreover, the graphon being bounded away from zero
ensures the sampled graphs will be almost surely connected if they are large enough. Hence, all
conditions of Proposition 2 are satisfied. With this in mind, we present our result on the transferability
of sequences of random graphs sampled from the same graphon.
Corollary 2. Let {Gn}∞n=1 and {G̃n}∞n=1 be two independent sequences of almost surely connected
graphs sampled from the same graphon W , which is bounded away from zero, with normalized
Laplacians {Sn}∞n=1 and {S̃n}∞n=1. Then, for a sequence of GNNs {Φ(·;Sn,Θ)}∞n=1 following the
conditions of Theorem 3, ∥∥∥Φ(·;Sn,Θ)− Φ(·; S̃n,Θ)

∥∥∥
P
→ 0,

in probability as n → ∞.

Proof. Direct result of [47, Lemma 3 and Proposition 3] and Theorem 3.

D Stability of GNNs via spectral similarity
Stability is a generalization property of graph learning architectures that is closely related to transfer-
ability. In particular, an architecture with the stability property is one for which small changes in the
underlying topology or structure of the graph have a small effect on the way signals are processed.
Hence, stability can be understood as a special case of transferability, where one graph is a perturbed
version of another graph. However, stability is no less important, as it characterizes the robustness of

19

Transferable Hypergraph Neural Networks via Spectral Similarity

a graph learning architecture to small changes in the underlying graph, which could arise for example
via measurement noise. In the following sections, we will explore stability of graph neural networks
by computing the spectral similarity of a graph and its perturbed version. By applying the results
from Section 4 together with the similarity bounds we produce herein, we will show that graph neural
networks can be stable to perturbations of the graph structure. In contrast to prior results [21], the
results herein along with Appendix C.1 show that stability does not decay as the size of the graph
grows.

D.1 Spectral similarity of perturbed matrices

To investigate stability, we are interested in small changes to some graph G that results in a perturbed
version which we call G̃. In particular, since we are processing graph signals, we will focus on the
graph shift operator S of the original graph G and the GSO S̃ of the perturbed graph G̃. We will
explore two types of perturbations, both relative and additive, in order to model how a graph may be
changed slightly.

Fundamentally, graph neural networks are spectral operators; the graph frequency response of a
filter (2) makes this relationship explicit. Well-known results such as Weyl’s inequality or the
Weilandt-Hoffman inequalities [44] show that that the spectrum of a real symmetric matrix is stable
to small perturbations. Thus, it stands to reason that if small perturbations of a graph lead to small
perturbations in the eigenvalues, then these small perturbations should not change the graph frequency
response of a filter very much. To this end, we will explore the spectral similarity of a graph and
its perturbed version. In doing so, we can bound the change in the eigenvalues of a graph after a
perturbation has been applied.

We study two types of perturbations herein, called additive and relative perturbations. The first and
simplest type involves adding a small perturbation to the GSO S of the original graph G, so that the
GSO S̃ of the perturbed graph G̃ becomes

S̃ = S + E. (22)

The perturbation is small in the sense of the operator norm, so that ∥E∥op ⩽ δ. Such perturbations
can be understood as adding or removing edge weight regardless of the original magnitude of the
edges, and could be as extreme as adding or removing edges entirely. The other type of perturbation
instead affects the edge weights in a manner that is relative to their magnitude, so that

S̃ = S +
1

2
(SE + ES), (23)

again with ∥E∥op ⩽ δ for some small δ > 0. In both cases we assume that the perturbed GSO S̃ will
be positive semi-definite. We explore the spectral similarity between the original GSOs and their
perturbed versions in the following results, beginning with relative perturbations below.
Proposition 3. Given a symmetric, positive semi-definite GSO S and its symmetric, positive semi-
definite relatively perturbed version S̃ = S + 1

2 (SE + ES), where E is diagonalizable with
∥E∥op ⩽ δ, the matrices are δ-spectrally similar.

Proof. Recall by definition of ϵ-spectral similarity (11) that

(1− ϵ)S ⪯ S̃ ⪯ (1 + ϵ)S

⇔ (1− ϵ)x⊺Sx ⩽ x⊺S̃x ⩽ (1 + ϵ)x⊺Sx ∀x ∈ Rn.

Given some perturbation matrix E, we wish to determine the coefficient of spectral similarity, ϵ. Let
us begin with the latter inequality,

S̃ ⪯ (1 + ϵ)S ⇔ S +
1

2
(SE + ES) ⪯ (1 + ϵ)S

⇔ ϵS − 1

2
(SE + ES) ⪰ 0

⇔ x⊺

(
ϵS − 1

2
(SE + ES)

)
x ⩾ 0 ∀x ∈ Rn.

20

Transferable Hypergraph Neural Networks via Spectral Similarity

Note that, since S is PSD, we may always choose ϵ to be large enough that ϵS − 1
2 (SE + ES) is

PSD. Let us diagonalize E = UMU⊺, and recall that ∥E∥op = |λmax(E)| ⩽ δ. Hence,

x⊺

(
ϵS − 1

2
(SE + ES)

)
x

= x⊺S((ϵ/2)I − E/2)x+ x⊺((ϵ/2)I − E/2)Sx

= x⊺SU((ϵ/2)I−M/2)U⊺x+ x⊺U((ϵ/2)I−M/2)U⊺Sx

⩾
1

2
x⊺SU(ϵI − δI)U⊺x+

1

2
x⊺U(ϵI − δI)U⊺Sx

=
1

2
(ϵ− δ)x⊺SUU⊺x+

1

2
(ϵ− δ)x⊺UU⊺Sx

= (ϵ− δ)x⊺Sx,

with equality when E = δI . Since S is PSD, x⊺Sx ⩾ 0 ∀x ∈ Rn. Thus, if ϵ ⩾ δ, then S̃ ⪯ (1+ ϵ)S.
Moreover, when E = δI , S̃ = (1 + δ)S = (1 + ϵ)S, and δ-similarity is tight.

Next, notice similarly that

(1− ϵ)S ⪯ S̃ ⇔ ϵS +
1

2
(SE + ES) ⪰ 0

⇔ x⊺

(
ϵS +

1

2
(SE + ES)

)
x ⩾ 0 ∀x ∈ Rn.

Then, as above,

x⊺

(
ϵS +

1

2
(SE + ES)

)
x

= x⊺SU((ϵ/2)I+M/2)U⊺x+ x⊺U((ϵ/2)I+M/2)U⊺Sx

⩾
1

2
x⊺SU(ϵI + λmin(E)I)U⊺x

+
1

2
x⊺U(ϵI + λmin(E)I)U⊺Sx

= (ϵ+ λmin(E))x⊺Sx.

Since |λmin(E)| ⩽ |λmax(E)| = δ, ϵ ⩾ δ implies (1 − ϵ)S ⪯ S̃. Hence if ϵ ⩾ δ, we have that
(1− ϵ)S ⪯ S + SE + ES ⪯ (1 + ϵ)S.

Consider a relative perturbation via dilation where E = δI and thus ∥E∥ = δ, and S̃ = (1+ δ)S. We
thus observe that δ-similarity is tight, i.e., for a general E with ∥E∥ ⩽ δ, we cannot hope for a better
bound on the similarity coefficient. Since our results require spectral similarity to hold regardless
of the structure of the perturbation E, the bound in Proposition 3 is thus tight. However, for some
arbitrary relative perturbation, it may be the case that a spectral similarity coefficient ϵ < δ suffices.
Thus, this result and those that follow should be viewed as tight worst-case bounds on the coefficient
of spectral similarity for general relative perturbations. Next, let us explore additive perturbations.
Proposition 4. Given a symmetric, positive semi-definite GSO S and its symmetric, positive semi-
definite additively perturbed version S̃ = S + E, where ∥E∥op ⩽ δ, if ker(E) ⊆ ker(S) then the
matrices are (δ/λ̄(S))-spectrally similar, where λ̄(S) is the smallest non-zero eigenvalue of S.

Proof. As in Proposition 3, let us find the value of ϵ which satisfies the inequality

S̃ ⪯ (1 + ϵ)S ⇔ S + E ⪯ (1 + ϵ)S

⇔ ϵS − E ⪰ 0

⇔ x⊺(ϵS − E)x ⩾ 0 ∀x ∈ Rn.

21

Transferable Hypergraph Neural Networks via Spectral Similarity

For any x ∈ ker(S), x⊺(ϵS − E)x = −x⊺Ex, but by assumption ker(E) ⊆ ker(S). Hence,
regardless of ϵ, x⊺(ϵS − E)x = 0 for x ∈ ker(S). Now, for x ̸∈ ker(S), since ∥E∥op ⩽ δ,

x⊺(ϵS − E)x = ϵx⊺Sx− x⊺Ex

⩾ ϵx⊺Sx− δ ∥x∥2
⩾ ϵλ̄(S) ∥x∥ − δ ∥x∥2
= (ϵλ̄(S)− δ) ∥x∥2 ,

where we have used the fact that min{x⊺Sx | x ̸∈ ker(S)} = λ̄(S) ∥x∥2. Thus, we must have that
ϵ ⩾ δ/λ̄(S). Now, for the second inequality,

(1− ϵ)S ⪯ S̃ ⇔ x⊺(ϵS + E)x ⩾ 0 ∀x ∈ Rn.

Clearly for x ∈ ker(S), x⊺(ϵS + E)x = 0. Then, for x ̸∈ ker(S),

x⊺(ϵS + E)x = ϵx⊺Sx+ x⊺Ex

⩾ (ϵλ̄(S) + λmin(E)) ∥x∥2 .

Thus, if ϵ ⩾ max{−λmin(E)/λ̄(S), 0} then (1− ϵ)S ⪯ S̃. However, δ = |λmax(E)| ⩾ |λmin(E)|.
Hence, it is sufficient for ϵ ⩾ δ/λ̄(S) to ensure (1− ϵ)S ⪯ S + E ⪯ (1 + ϵ)S.

The condition ker(E) ⊆ ker(S) mirrors (A1) from Proposition 2. If S is the normalized Laplacian,
this condition enforces that the perturbation not cause the graph to become disconnected, which is
reasonable in practice. Indeed, from a graph signal processing perspective, disconnected components
have no effect on each other. Further, similarly to (A2), if S is the normalized Laplacian then
Cheeger’s inequality states h2

G/2 ⩽ λ̄(S) ⩽ 2hG , where hG is the Cheeger constant (or conductance)
of the graph G [14]. Hence, our result in Proposition 4 tells us that graphs with higher Cheeger
constant, i.e., better-connected graphs, will be more similar to their additively perturbed versions. In
other words, graphs which are well-connected will result in trained GNNs that exhibit better stability
properties than more sparsely connected graphs.

In practice, perturbations to graphs can be modeled as both relative and additive perturbations. Thus,
below we consider spectral similarity when both perturbations are present.
Proposition 5. Given a symmetric, positive semi-definite GSO S, an additive perturbation matrix D
such that ∥D∥op ⩽ δA and ker(D) ⊆ ker(S), a diagonalizable relative perturbation matrix E such
that ∥E∥op ⩽ δR, and the symmetric, positive semi-definite perturbed GSO S̃ = S+ 1

2 (SE+ES)+D,
the matrices are (δR + δA/λ̄(S))-spectrally similar.

Proof. Combination of Proposition 3 and Proposition 4.

While our bounds on spectral similarity are tight for relative perturbations, they are maximal in the
sense that we require them to hold for all eigenvalues, i.e., they are equivalent to (1 − ϵ)λi(S) ⩽
λi(S̃) ⩽ (1 + ϵ)λi(S) for all i ∈ {1, . . . , n}. However, perturbations in practice will not affect the
eigenvalues in such a uniform manner, and thus the following stability bounds may not be tight for
arbitrary perturbations. Moreover, for additive perturbations, in Proposition 4 the quantity 1/λ̄(S)
arises due to the necessity of satisfying spectral similarity for all signals x ∈ Rn, including the
eigenvector v̄ associated with the smallest non-zero eigenvalue of S. If the signals to be used in
practice are not well-aligned with v̄, we may be able to tighten this bound.

D.2 Stability via spectral similarity

To achieve our main result on stability of graph neural networks, we combine the above results on
perturbations with the transferability bounds from Section 4.
Theorem 4. Consider a symmetric, positive semi-definite GSO S and its perturbed version S̃ =
S + 1

2 (SE + ES) + D, where D is an additive perturbation matrix such that ∥D∥op ⩽ δA and
ker(D) ⊆ ker(S), and E is a diagonalizable relative perturbation matrix such that ∥E∥op ⩽ δR.

22

Transferable Hypergraph Neural Networks via Spectral Similarity

The GNN Φ(·;S,Θ) with normalized Lipschitz nonlinearities and L layers with f features, each with
filters that have unit operator norm and are C-integral Lipschitz, satisfies∥∥∥Φ(·;S,Θ)− Φ(·; S̃,Θ)

∥∥∥
⩽ CLfL(δR + δA/λ̄(S)) +O((δR + δA)

2)

Proof. Follows from Theorem 1 and Proposition 5.

In contrast to previous results on the stability of graph neural networks [21], this bound has no
dependence on the size of the graph n. This can be explained by the effect of the eigenvector
differences which appear in the result in [21]. Via spectral similarity, we instead upper-bound the
difference between the matrices (in the sense of the positive semi-definite cone), i.e., we consider
(1+ϵ)S instead of S̃. In this way we can bound the transferability error by considering the eigenvalues,
which are known to be stable to perturbations, without considering any changes whatsoever to the
eigenvectors, which are known to be unstable [44]. Indeed, the results of Appendix C suggest
that stability in fact improves as the number of nodes n grows larger. Thus, stability is entirely
characterized by parameters of the architecture (the integral Lipschitz constant and number of layers),
the structure of the original graph (via the smallest nonzero eigenvalue of S), and the magnitude
of the perturbations that occur. Naturally, larger magnitude perturbations result in looser stability
bounds, as does a larger integral Lipschitz constant C and more layers L or features f . However,
larger C, L, and f suggest enhanced discriminability, since the GNN can produce sharper filters as C
is larger, and more of those filters can be composed as L and f grow. A larger value of λ̄(S) when S
is the normalized Laplacian suggests better connectedness and, hence, more local smoothing, which
explains how it tightens the stability bound. Together, these insights pose a tradeoff between stability
and discriminability; if a GNN is indifferent to large perturbations in a graph’s structure, it cannot
also tell very similar graphs apart.

23

	1 Introduction
	2 Preliminaries
	2.1 Graph Neural Networks

	3 Hypergraph Neural Networks
	3.1 Spectral similarity

	4 Transferability via spectral similarity
	5 Transferability of Hypergraph Neural Networks
	6 Experiments
	7 Related Work
	8 Conclusion
	A Experimental setup
	B Proofs of main results
	B.1 Transferability of graph filters
	B.2 Transferability of graph neural networks (GNNs)

	C Transferability between random graphs
	C.1 Transferability of large random graphs
	C.2 Graphon Transferability

	D Stability of GNNs via spectral similarity
	D.1 Spectral similarity of perturbed matrices
	D.2 Stability via spectral similarity

