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Abstract
Molecular modeling at the quantum level requires
choosing a parameterization of the wavefunction
that both respects the required particle symme-
tries, and is scalable to systems of many particles.
For the simulation of fermions, valid parameter-
izations must be antisymmetric with respect to
the exchange of particles. Typically, antisymme-
try is enforced by leveraging the anti-symmetry
of determinants with respect to the exchange of
matrix rows, but this involves computing a full
determinant each time the wavefunction is evalu-
ated. Instead, we introduce a new antisymmetriza-
tion layer derived from sorting, the sortlet, which
scales as O(N logN) with regards to the num-
ber of particles – in contrast to O(N3) for the
determinant. We show numerically that applying
this anti-symmeterization layer on top of an at-
tention based neural-network backbone yields a
flexible wavefunction parameterization capable
of reaching chemical accuracy when approximat-
ing the ground state of first-row atoms and small
molecules.

1. Introduction
1.1. Overview

Quantum Monte Carlo (QMC) methods are a class of algo-
rithm that aim to model the wavefunction for a system of
quantum particles, typically an atom or molecule. In its sim-
plest form, Variational Quantum Monte Carlo (VQMC) is a
QMC method that aims to estimate the lowest-energy state
of a system via the variational principle. This is done by
minimizing the Rayleigh quotient of the system’s Hamilto-
nian over a parametric family of wavefunctions – commonly
referred to as the wavefunction ansatz. Variational principles
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from functional analysis yield that under mild assumptions,
the minimizer approaches the true ground state wavefunc-
tion as the parametric family increases in expressiveness.

The first method resembling modern VQMC was proposed
by London and Heilter in the late 1920s [9], where they
attempted to calculate the ground state of the diatomic hy-
drogen molecule. Fermi and then later Kalos [21] converted
the problem into a Monte Carlo Sampling one. The advent
of the practical Slater determinant ansatz in the 1950s and
the growth in available computational power since has al-
lowed QMC algorithms to become one of the benchmark
frameworks for deriving the properties of chemical systems
in silico. Often, QMC is used to benchmark other non-
sampling methods, such as Coupled Cluster methods [2]
and Density Functional Theory (DFT).

Advances in automatic differentiation complemented by em-
pirical ML experience have recently produced new types
of wavefunction ansatz, assembled around deep neural net-
work backbones. Neural networks are particularly attractive
in this setting, due to their favourable scalability as dimen-
sion increases. Electron configuration space, R3N , grows
exponentially in the number of electrons N , rendering this
ability critical. Hybrid methods, seeking to combine Slater
determinants with neural orbitals or Jastrow factors, have
recently shown promise on systems comprised of a large
number of particles – even when relatively few Slater deter-
minants are employed [34]. Their performance is especially
notable when contrasted against existing Hartree-Fock im-
plementations with an equivalent number of determinants.

Despite these recent successes, there is a good reason to
look beyond Slater determinants when designing ansatz –
determinants are relatively computationally expensive. Eval-
uating a determinant-based ansatz scalesO(N3) in the num-
ber of electrons, devolving to O(N4) when evaluating the
local energy (due to the Laplacian). Estimating the energy
is required at every step of nearly every QMC algorithm
(variational or otherwise), so this quickly becomes a bot-
tleneck if we look to scale QMC beyond small molecules
to problems of practical interest, where N could be on the
order of thousands or even tens of thousands of electrons.
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The Sortlet Ansatz

α
α α

πα παπα

–

Ψ = σ(πα)
( )

−
( )

−
( )

−

Figure 1: Geometric illustration of the Sortlet ansatz con-
struction given in Equation (4). Here πα is the permutation
that sorts the output of α(r).

1.2. Our Contribution

Seeking to reduce this complexity, we introduce a novel an-
tisymmetrization operation, the sortlet, and apply it within
the VQMC framework to model ground states of various
atoms and molecules. Crucially, our operation enjoys an
improved O(N logN) complexity, which comes from re-
placing the determinant with a cheaper alternative: sorting.
Sorting is known to be universal for systems of 1d electrons
[40; 20], and has been alluded to previously as a method for
designing ansatz (see Appendix B of [34] and [24]). Our
contribution is twofold – we show both that a natural exten-
sion of sorting for electrons in 3d space exists, as well as that
this ansatz can achieve chemical accuracy, at least on small
systems, when paired with a sufficiently flexible functional
backbone such as a modern attention based neural network.

Prior work [31; 1] explored the usage of Vandermonde de-

terminants which scale O(N2), but both were unable to
achieve the high degree of accuracy required for applica-
tions in quantum chemistry. In Section 5.2 we present a
topological obstruction to a single continuous Vandermonde
determinant learning the exact ground state, based on the
known geometry of the wavefunction’s nodal surface.

The construction of a universal, sub-cubic-time continuous
representation of ground-state wavefunctions remains an
open problem. However, we show that, like the vander-
monde determinant, our sortlet can represent the ground
state exactly if we allow discontinuous parameterizations.
We also highlight a key benefit of the lower scaling complex-
ity of the sortlet – allowing more terms in the wavefunction
ansatz with the same (asymptotic) computational budget.
Classical QMC techniques have relied on larger expansions
to help mitigate topological inconsistencies between the
parametric ansatz and the true ground state [3; 5]. In the
context of VQMC, this might partially explain why our
method is able to achieve higher accuracy than previous
Vandermonde constructions [31; 1].

Numerically, we demonstrate that combining our sortlet
antisymmetrization layer with the PsiFormer [41] attention
backbone is sufficient to achieve chemical accuracy on a
handful of atoms and small molecules, as well as reproduce
the potential energy surface of H4 rectangles as one bond
length is scanned. While wavefunction ansatz built from
alternatives to determinants have existed in the QMC lit-
erature for some time, to the best of our knowledge, this
is the first work to demonstrate chemical accuracy with
something other than a determinant – even if only on small
molecular systems at the current stage. Flexibility of the
attention neural network backbone of [41] offers another
partial explanation for why our ansatz has proven more accu-
rate than other full determinant alternatives in the past. That
said, at the current state our results are far from competitive
with those of neural network ansatz with full determinants
[34; 38; 41]. In fairness to our approach, the results pre-
sented in that body of work are the outcome of a long series
of incremental improvements – far beyond the scope of
the initial proof-of-concept described in this paper. Our
accuracy on small systems, we believe, is a evidence that
the sortlet ansatz is a promising direction for further study,
and that with similar investments in software engineering,
our method could become competitive on more difficult
benchmarks.

1.3. Where did the determinants come from anyway?

Determinants appear in nearly all QMC ansatz as a simple
mathematical way to satisfy the generalized Pauli Exclusion
Principle: any valid wavefunction must be antisymmetric
under exchange (transposition) of any two electrons with
the same spin. Intuitively, this follows from the idea that
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quantum particles such as electrons are indistinguishable,
so changing their order (which has no physical meaning)
cannot change the state of the system. Explaining the ap-
pearance of the -1 factor is more involved – representing the
fundamental difference between Fermions and Bosons (see
[17]) – but for our purposes, we just assume any valid wave-
function for Fermions needs to respect the antisymmetry
equation:

Ψ(r↑1 , · · · , r
↑
M , r

↓
1 , · · · , r

↓
i , · · · , r

↓
j , · · · ) =

−Ψ(r↑1 , · · · , r
↑
M , r

↓
1 , · · · , r

↓
j , · · · , r

↓
i , · · · ) (AS)

Alternation of the determinant under the exchange of any
two rows or columns has been conventionally employed to
satisfy this property. Originally, the Slater determinants
typically consisted of parameterizing a matrix function
Φ : R3N −→ RN×N via a collection of N single electron
orbitals Φij = ϕi(rj), each of which was only a function of
a single rj . Upon interchanging the electron positions, the
resulting matrix Φ′

ij is exactly Φij with two rows swapped,
flipping the sign of Ψ := det[Φij ].

Though this approach is undeniably tidy, it suffers limited
expressive power due to its inability to accurately model
electronic correlation, which involves the interactions of
all N-particles at a time rather than treating particles as
mean-field orbitals. Common remedies include either the
addition of parametric Jastrow factors which are multiplica-
tive against the determinant, i.e Ψ = eJ(r) det[Φij(r)], or
backflow transformations [10], which makes each orbital
ϕi(qj) dependent on all electron positions through so called
pseudo-coordinates qj = rj + εiri. Modern neural network
approaches such as FermiNet, PsiFormer or PauliNet can
be seen as a more flexible generalization of backflow, since
they opt to parameterize the matrix Φij as the output of
a deep neural network, but in a way that the Φij depend
symmetrically on all electron positions except for rj , which
is allowed non-symmetric influence. Filling out Φij this
way preserves the antisymmetry of the Slater determinant,
and provides sufficient flexibility to capture electronic corre-
lation. Large neural networks have allowed this approach to
scale to systems of around 40 electrons with state-of-the-art
results [41].

2. Variational Quantum Monte Carlo
The following is a brief summary of the core aspects VQMC,
but it is by no means exhaustive. Those experienced with
the framework will likely find it redundant, and those com-
pletely new will probably find it incomplete. For the lat-
ter group, we recommend either [4] or [25], which pro-
vide much more exhaustive treatments of the relevant back-
ground.

2.1. The Born-Oppenheimer Hamiltonian

While our wavefunction ansatz is general enough to describe
any system of Fermions, in this paper we will focus on quan-
tum chemical systems comprised of electrons. Similar to
[34; 38] we will work in the Born-Oppenheimer approxima-
tion, where the molecular nuclei are treated as fixed, and the
Hamiltonian governing the forces acting on the electrons is
given by

Ĥ = −∇2

2
+

∑
i>j

1

|ri − rj |
−
∑
i,I

ZI

|ri −RI |
+
∑
I>J

ZIZJ

|RI −RJ |


where

ri: electron positions
Ri: nuclei positions
ZI : nuclear charges

(BO)

The terms inside the square brackets are often written sim-
ply as V (r), since they represent the potential energy of the
electrons. Analogously, −∇2 is the kinetic energy opera-
tor. For a given system Ĥ , the ground state Ψg is nothing
more than the eigenfunction corresponding to the smallest
eigenvalue E1 of Ĥ .

2.2. The Variational Principle

The variational aspect of VQMC comes from the following
proposition:
Proposition 1. Variational Principle
Let Ψ1 be minimum eigenvector of the Hermitian opera-
tor Ĥ , that is, the eigenfunction associated to the smallest
eigenvalue E1. Then

Ψ1 = argmin
Ψ

〈
Ψ|Ĥ|Ψ

〉
⟨Ψ|Ψ⟩

(VAR)

The term inside argmin is often called the Rayleigh quotient
and so denoted by R(Ψ). Proving this proposition amounts
to hardly more than a little bookkeeping, see Appendix A.1

2.3. The Local Energy and its Vanishing Variance

The variational energy E = R(Ψθ), for any parameteric
configuration of θ can in principle be computed from the
inner product in (VAR). Since we are limited to approxi-
mating the energy with a finite average in practice, this is
suboptimal – the variance will be prohibitive, and we will
need a tremendous number of samples to achieve a reason-
able estimate. A much better approach is to instead define
the local energy (at any point x ∈ R3N )

Eloc(Ψθ)(x) =
[ĤΨθ](x)

Ψθ(x)
Ex∼Ψ2

θ
[Eloc(x)] = E (1)

where x ∼ Ψ2
θ is taken to mean that the x are drawn from

the normalized distribution, Ψ2
θ

⟨Ψθ|Ψθ⟩ . Reformulating the en-
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ergy approximation in terms of Eloc instead of the Rayleigh
quotient has two immediate advantages : (1) we lower the
variance of our estimator drastically by using importance
sampling (drawing x ∼ Ψ2

θ) and (2) we don’t need to es-
timate the normalization constant of Ψ2

θ, since the local
energy is invariant to scalar multiplication of Ψθ. VQMC
also benefits from a third seemingly magical property: as
we update θ to minimize E, the variance vanishes. To see
why, consider the following:

Proposition 1. Let Ψ1 be the eigenfunction associated to
the ground state energy E1 (as before), then

Eloc(Ψ1)(x) = E1 ∀x ∈ R3N (2)

i.e the local energy is constant at optimality.

Proof. Equation (2) is a direct consequence of the varia-
tional principle; Ψ1 is an eigenvector of Ĥ , thus ĤΨ1 =

E1Ψ1, which yields Eloc(Ψ1)(x) =
ĤΨ1(x)
Ψ1(x)

= E1Ψ1(x)
Ψ1(x)

=

E1

2.4. Derivatives of the Energy Functional

Performing any sort of first order optimization over the pa-
rameters of our ansatz Ψθ to minimize its energy, denoted
E(θ), will also require its gradients. Following the pre-
ceding section, we will estimate E(θ) via the following
Monte-Carlo estimate

E(θ) ≈ Ē(θ) =

N∑
i=1

Eloc(Ψθ)(xi) xi ∼ Ψ2
θ (3)

Any MCMC method (such as Random-Walk Metropolis
Hastings for example) can be used to draw the xi, which
we will detail further in the next section. Approximating
the energy via (3), while superior for the reasons laid out
above, comes at the price of making the computation of its
gradients more involved than naively applying automatic
differentiation to each term in the finite sum. Differentiating
∂E
∂θ correctly requires also accounting for the influence of
the parameters on the distribution Ψ2

θ which the xi are drawn
from. Like in many other other works [34; 41; 4; 1; 38; 13],
we use the gradient estimator

∇E(θ) =
2

n

n∑
i=1

[
Eloc(xi)∇ logΨθ(xi)

−
( 1
n

n∑
j=1

[Eloc(xj)]
)
∇ logΨθ(xi)

]

where xi ∼ Ψ2
θ are drawn using MHMC, but we offer a full

derivation in Appendix A.2. Notably, this can be seen as
an instance of the REINFORCE estimator widely used in
reinforcement learning [16].

3. The Sortlet Ansatz
3.1. The Sortlet Ansatz

We are ready to define what we coin the Sortlet Ansatz. First,
let’s define what we call a sortlet, denoted by Ψα:

Ψα(r) = σ(πα)

N∏
i=1

(αi+1(r)− αi(r)) (4)

where

• α : RN×3 −→ RN , permutation equivariant, and rein-
dexed such that αi < αi+1 : 1 ≤ i ≤ N − 1, and
αN+1 = α1. This is the neural network backbone.

• πα is the permutation on N letters which re-indexes
(sorts) the tuple α(r)

• σ(πα) is the parity, equivalently number of transposi-
tions in πα, mod 2.

Analogously to other VQMC ansatz, we will employ an
expansion of sortlets to serve as our sortlet ansatz in VQMC.
Specifically, our Ψ is expanded as

Ψ = exp[−Jβ ]
K∑
i=1

[
Ψαi

∑
I

e−γI

∑
j |rj−RI |

]
(5)

where Jβ is the same as in [38; 41]

As we will show in Section 3.2, with discontinuous α we
can exactly represent the ground state wavefunction with a
single sortlet.

Complexity: The sortlet for a given α can be computed
in time O(N logN). Taking K = O(N) and with the
assumption α(r) can be evaluated in time O(N2), we have
that Ψ can be evaluated in time O(N2 logN), significantly
faster than a determinant.

3.2. Properties of the Sortlet Ansatz

Proposition 2. The Sortlet Ansatz satisfies the generalized
Pauli exclusion principle – it is anti-symmetric to the ex-
change of electrons with the same spin.

Proposition 3. Each Ψα is continuously once-differentiable
on R3N , meaning ∂Ψα

∂ri is continuous for all i.

We defer the proof to Appendix A.4 and Appendix A.3
respectively.
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Figure 2: Comparison of Vandermonde
and Sortlet Ansatz

4. Numerical Experiments
4.1. Evaluation on first row atoms and small molecules

Section 6 collects the results of running QMC with our
Sortlet ansatz on the ground state for a small collection of
first row atoms and small molecules. We see that up to and
including Boron, we are able to recover the ground state
experimental energy to chemical accuracy. For Carbon and
beyond, while we no longer achieve chemical accuracy, our
method still outperforms the previous O(N2) method of
[31].

4.2. Performance as a function of sortlets on Boron

In Figure 3a, we show an ablation study comparing per-
formance in terms of absolute difference to the empirical
ground state values after 50, 000 optimization steps, against
the number of sortlets on Boron. While all except one of
the runs terminate at less than 20 mHa to the ground state,
we see that those with K > 16 reach a slightly lower error
on average, but achieve that value significantly faster than
those with K < 16. Size of the network is kept constant for
all runs (with the exception of the linear output layer), the
only variable explored in this study is the number of terms
K.

4.3. Reproduction of H4 potential energy curve

In Figure 3b we reproduced the H4 experiment from [34],
where the geometry of the H4 rectangle was linearly ad-
justed by varying the bond length of the bottom two hydro-
gen atoms. In agreement with FermiNet, we were able to
reproduce the curve showing a maximum at Θ = 90deg,
not a minimum like the benchmark Coupled Cluster calcu-
lations.

(a) Comparing the number of Sortlets K (color) against the error
to the empirical ground state energy.

Θ
H H

H H

(b) Reproduction of H4 potential energy surface from the Fer-
miNet paper.

Figure 3: Boron Sortlet Ablation and H4 rectangle.

4.4. Direct Comparison to Vandermonde Ansatz

In Section 3.2 we directly compare training curves of van-
dermonde ansatz vs those of the Sortlet ansatz with the
same number of terms in their expansion. We see that even
with effectively more computational resources (since each
term is O(N2)), the Vandermonde ansatz is still unable to
outperform the Sortlet.
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5. Comparison with other Pairwise
Constructions and Universality

In this section, we show a weak form of universality of
the sortlet and that of the Vandermonde construction put
forward in [1; 31]. We show that a slight modification of
Theorem 2 in [31] also yields universality for the sortlet, but
similar to the argument in the Appendix of [34], requires dis-
continuous functions. Theoretical universality so remains an
open question, but we finish by discussing the implications
of the nodal structure on experimental results.

5.1. Non-smooth universality

A nearly identical construction to Theorem 2 in [31] recov-
ers a similar type of universality for the sortlet:

Proposition 4. For a given ground state wavefunction Ψg,
if we allow α to be discontinuous, setting

αj = π∗(r, j)

(
Ψg [π∗(r)r]

(N − 1)

)1/N

(6)

yields that Ψα = Ψg. Here π∗(r) is the permutation on N
letters that maps r ∈ R3N back to the fundamental domain
(see [7]), π∗(r, j) ∈ [1, N ] is the index the jth electron
maps to.

Proof. The proof is immediate from the definition of Ψα in
Equation (4)

Ψα = σ(π∗)

N∏
i=1

[αi+1 − αi] (7)

= σ(π∗)

(
N−1∏
i=1

[
|Ψg|

(N − 1)

]1/n)
(N − 1)

[
|Ψg|

(N − 1)

]1/n
(8)

= σ(π∗)|Ψg| (9)

5.2. Comparison with the Vandermonde Ansatz

In [18; 1] and later [31], a similar type of pairwise antisym-
metric ansatz was proposed, which takes the form

ψ′
pair(r) =

∏
i<j

[ϕB(ri, {r})− ϕB(rj , {r})] (10)

where the second argument to ϕB is denoted as such to indi-
cate the function is invariant to permutations of the electron
positions, except for ri. This expression is also equiva-
lent to a Vandermonde matrix determinant (see Equation
1 [31]), which is why we refer to it simply as the Vander-
monde Ansatz. Pang et al claim to have proved this form
is universal for ground states, but unfortunately a simple
argument shows this is not quite accurate. Ground states for

small atoms (Li, Be) have been proven to possess exactly
two nodal domains [26] – open sets N ⊆ R3N where the
wavefunction is non-zero. So to represent them exactly,
the ansatz must also have two nodal domains. Below we
prove that for ψ′

pair this is not the case – regardless of the
parameterization of ϕB , ψ′

pair always has at least 4 nodal
domains.

Proposition 5. ψ′
pair, as defined in (10) has N↑! + N↓!,

nodal domains. The ground state is proven to have only
2 for Li, Be (see [5]) so this implies one Vandermonde de-
terminant is insufficient to accurately represent the ground
state.

For the proof and discussion see Appendix A.5

5.3. Advantages of the Sortlet Ansatz against the
Vandermonde Ansatz

To be clear, a single sortlet suffers from the same issue
of too many nodal domains proven for the Vandermonde
determinant in Proposition 5. Nonetheless, an advantage
of the Sortlet is that, due to the O(N logN) scaling of
each term, we can use an expansion with a linear num-
ber of sortlets, K = O(N), while retaining log-quadratic
complexity O(N2 logN). To achieve the same scaling, a
Vandermonde ansatz would be limited to a logarithmic num-
ber of terms. Increasing the number of terms is known to
be crucial in classical QMC methods, where thousands or
even millions of terms can be employed to refine the energy
[3]. For Hartree-Fock wavefunctions, increasing the number
of terms is known to reduce the number of nodal domains
[27; 26; 5].

Learned neural QMC ansatz such as [34; 38] have mostly
bucked this trend, opting to fix the number of terms to a
relatively small constant (K ≈ 16), but increase network
size instead. While we are not able to match the flexibility
of the determinant PsiFormer, which is likely universal with
a constant number of determinants, as seen in Figure 3a,
mitigating the nodal inaccuracy of our sortlet by increasing
K does seem to increase the speed of convergence.

6. Related Work
Neural Networks as representations for wavefunctions were
applied to discrete quantum systems in [6; 8; 28; 30; 24]
and to continuous bosonic systems in [35]. However, the
first models considering fermionic continuous-space sys-
tems were DeepWF [18], Ferminet [34], and Paulinet [19].
These approaches were furthered with the introduction of
the Psiformer model [42] and works that pushed the frame-
work forward by fine-tuning the techniques and devising
new specialized architectures [13; 22; 23; 32] and train-
ing procedures [29]. Other directions tried to construct
architectures that are easy to sample [40; 43] by leveraging
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normalizing flows, and meta-learning approaches where the
wavefunction is conditioned on the Hamiltonian to transfer
to different systems [12; 36; 37; 11]. Sorting as a method of
guaranteeing antisymmetry was recently proposed in [40],
but limited to the setting where electron positions are re-
stricted to one-dimension.
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O(N2) Ansatz O(N3) Ansatz

Molecule
Exp.

Energy
Sortlet Energy

(Ours)
Vandermonde

Energy[31]
Non-learned
QMC[33; 39]

FermiNet[34]

Li -7.4780 -7.477(8) -7.4782 -7.4780 -7.4779
LiH -8.0705 -8.070(3) - -8.070 -8.7050
Be -14.6673 -14.667(1) -14.6673 -14.6671 -14.6673
Li2 -14.9947 -14.994(5) - -14.9555 -14.9947
B -24.6539 -24.652(7) 24.5602 -24.6533 -24.6537
C -37.8450 -37.83(1) -37.3531 -37.8437 -37.8447
N -54.5892 -54.01(8) -53.1855 -54.5873 -54.5888
CH4 - -40.20(1) - -40.4416 -40.5140

Figure 4: Results from applying the Sortlet ansatz to a selection of atoms and small molecules. Energy values are all given
in Hartree (Ha) atomic units. Chemical accuracy is defined to be within 1.5 mHa of the experimental values, green denotes
values within this tolerance, red outside. Uncertainty is included in the parenthesis around the last digit – see Appendix B.

A. Assorted Proofs
A.1. Proof of the Variational Principle

Proof. Since multiplying Ψ by any complex constant c ∈ C leaves the value of R(Ψ) unchanged, we can, without loss of
generality, assume that ⟨Ψ|Ψ⟩ = 1. Taking the orthonormal basis Ψn from the application of the spectral theorem to Ĥ , we
can expand

Ψ =

∞∑
n=0

αnΨn

but since ⟨Ψi|Ψj⟩ = δij (1 if i = j, 0 otherwise), plugging this expansion into R yields that

R(Ψ) = R

( ∞∑
n=0

αnΨn

)

=

〈 ∞∑
n=0

αnΨn

∣∣∣Ĥ∣∣∣ ∞∑
m=0

αmΨm

〉

=

∞∑
n=0

∞∑
m=0

αnα
∗
m

〈
Ψn

∣∣∣Ĥ∣∣∣Ψm

〉
=

∞∑
n=0

∞∑
m=0

αnα
∗
mEm ⟨Ψn|Ψm⟩︸ ︷︷ ︸

δmn

=

∞∑
n=0

α2
nEn

Since we assumed ⟨Ψ|Ψ⟩ = 1, it must hold
∑

n α
2
n = 1. This yields that the minimum of R is achieved precisely when

α0 = 1, αn = 0 : ∀n ≥ 1

which implies Ψ = Ψ0.

A.2. Derivation of the energy gradient

First, let’s rewrite the expectation of Eloc in bra-ket notation

Ex∼Ψ2
θ
[Eloc(x)] =

⟨Ψθ|Eloc|Ψθ⟩
⟨Ψθ|Ψθ⟩

(11)

Differentiating by θ yields

∂

∂θ

[
⟨Ψθ|Eloc|Ψθ⟩
⟨Ψθ|Ψθ⟩

]
=
∂ ⟨Ψθ|Eloc|Ψθ⟩

∂θ

1

⟨Ψθ|Ψθ⟩
+ ⟨Ψθ|Eloc|Ψθ⟩

∂

∂θ

1

⟨Ψθ|Ψθ⟩
(12)

10



Sorting Out Quantum Monte Carlo

For the derivative in the first term, since Ĥ is Hermitian, we have:

∂ ⟨Ψθ|Eloc|Ψθ⟩
∂θ

=
∂
〈
Ψθ|Ĥ|Ψθ

〉
∂θ

(13)

= 2

〈
Ψθ|Ĥ|∂Ψθ

∂θ

〉
= 2

〈
Ψθ|Ĥ|∂ logΨθ

∂θ
Ψθ

〉
(14)

= 2

〈
Ψθ|Êloc|

∂ logΨθ

∂θ
Ψθ

〉
(15)

As for the derivative in the second term, some manipulations yield:

∂

∂θ

1

⟨Ψθ|Ψθ⟩
= − 2

⟨Ψθ|Ψθ⟩2

〈
∂Ψθ

∂θ
|Ψθ

〉
(16)

= − 2

⟨Ψθ|Ψθ⟩2

〈
∂ logΨθ

∂θ
Ψθ|Ψθ

〉
(17)

Substituting these expressions into (12), we find

∂

∂θ

[
⟨Ψθ|Eloc|Ψθ⟩
⟨Ψθ|Ψθ⟩

]
=
∂ ⟨Ψθ|Eloc|Ψθ⟩

∂θ

1

⟨Ψθ|Ψθ⟩
+ ⟨Ψθ|Eloc|Ψθ⟩

∂

∂θ

1

⟨Ψθ|Ψθ⟩

=

[
2

〈
Ψθ|Êloc|

∂ logΨθ

∂θ
Ψθ

〉]
1

⟨Ψθ|Ψθ⟩

− ⟨Ψθ|Eloc|Ψθ⟩

[
2

⟨Ψθ|Ψθ⟩2

〈
∂ logΨθ

∂θ
Ψθ|Ψθ

〉]

= 2

〈
Ψθ|Êloc|∂ log Ψθ

∂θ Ψθ

〉
⟨Ψθ|Ψθ⟩

− 2
⟨Ψθ|Eloc|Ψθ⟩
⟨Ψθ|Ψθ⟩

〈
∂ log Ψθ

∂θ Ψθ|Ψθ

〉
⟨Ψθ|Ψθ⟩

At first, this might not appear like much of an improvement. Recognizing, however, that every term here can be written as
an expectation against Ψ2

θ, makes clear its usefulness

∇E(θ) = 2 E
x∼Ψ2

θ

[
Eloc(x)∇ logΨθ(x)− 2

(
E

y∼Ψ2
θ

[Eloc(y)]

)
∇ logΨθ(x)

]
(18)

In practice, we will estimate (??) using a finite collection of samples drawn from the normalized density Ψ2
θ

⟨Ψθ|Ψθ⟩ .

∇E(θ) = 2
1

n

n∑
i=1

[
Eloc(xi)∇ logΨθ(xi)− 2

(
1

n

n∑
i=1

[Eloc(xi)]

)
∇ logΨθ(xi)

]
(19)

Again, this can thankfully be achieved through standard MHMC techniques without having to estimate the normalization
constant.

Remark: Isn’t that estimate biased?
Mathematically, it is true that since we are reusing the same batch of xi to estimate both expectations in (18) via (??), there
will be bias introduced – the covariance between the two portions of the second term will be non-zero. Vanishing variance
of the energy, however, will save us again here, since we can upper bound the covariance using Cauchy-Schwarz as

X =
1

n

n∑
i=1

[Eloc(xi)] Y =
1

n

n∑
i=1

[∇ logΨθ(xi)] cov(X,Y ) ≤
√

Var(X)Var(Y ) (20)

and we know Var(X) −→ 0 as our estimate of the ground state improves. So for practical purposes, this correlation is
negligible.
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A.3. Proof that the sortlet is once-differatiable

Proof. By assumption, α is itself assumed smooth (C∞), so since σ is constant except for points in the set

D =
{
r ∈ R3N : ∃i ∈ {0..N} such that αi(r) = αi+1(r)

}
(21)

Ψα is also smooth on R3N\D. Now for r ∈ D, continuity of Ψα at r is straightforward since
∏N

i=1 (αi+1(r)− αi(r)) = 0,
which exactly cancels the discontinuity created by σ(r).

Once-Differentiability
As for differentiability, we claim that the derivative is given by

∂Ψα

∂ri
(x) =

(
∂αk+1

∂ri
− ∂αk

∂ri

) N∏
j=1,j ̸=k

(αj+1(r)− αj(r)) (22)

where k satisfies αk+1 − αk = 0. By smoothness, we know this expression is correct on Rd\D, so the claim is that it
extends, as one might expect, to D as well. To see this, let’s consider two cases:

1. k is non-unique. Then it’s easy to see that ∂Ψα

∂ri = 0, since the resulting sum from applying the product rule always
has a zero in each term, canceling any discontinuity potentially resulting from σ(πα). To put this more rigorously, the
limit from any direction limr′−→r

∂Ψα

∂ri (r
′) = 0.

2. k is unique. Handling the case where k is unique requires a little more delicate manipulation. Consider that locally, for
any q ∈ Bε(r)

ψα(q) = σ(πα) (αk+1(q)− αk(q))

N∏
j=1,j ̸=k

(αj+1(q)− αj(q)) (23)

= (α̂k+1(q)− α̂k(q))

N∏
j=1,j ̸=k

(αj+1(q)− αj(q)) (24)

where α̂k and α̂k+1 are the same outputs of α, evaluated locally, but ordered according to a fixed πα̂(r). The exact
ε > 0 can be computed by taking a minimum over all ϵi for i ̸= k, defined to each satisfy

(αi+1(y)− αi(y)) > 0 : ∀y ∈ Bεi(x) (25)

This means that locally, Ψα is smooth, since the sorted order of the other αj does not change inside this neighbourhood.

A.4. Proof that the sortlet is anti-symmetric

Proof. The product
∏N

i=1[αi+1 − αi] is invariant by design since the terms are always sorted before taking the pairwise
difference, negating any permutation. σ(πα) flips sign upon each odd permutation, since σ is multiplicative, and undoing
the permutation then sorting the original array is equivalent to sorting the permutated array, i.e if τ is any transposition of
two electrons with the same spin, πα(r)τ−1 = πα(τr) and so

σ(πα(τr)) = σ(πα)σ(τ
−1) = −σ(πα) (26)

since any transposition has parity −1.

Note that to avoid over-constraining the ansatz by also making it anti-symmetric to transposition of opposite spin electrons –
something the true wavefunction is not required to satisfy – we use the same trick as in [41], attaching a spin ±1 term to
each input electron coordinate ri as (ri,±1), which breaks equivariance of the output α(r) for those pairs.
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A.5. Proof of Proposition 5

Proof. Let r ∈ R3N be an arbitrary configuration, and let π ∈ S(N↑) ∪ S(N↓) be a permutation on either the spin up or
spin down electrons. We claim then that r and πr must always lie in separate nodal domains. To see this, let (i, j) be any
indices of two electrons with the same spin who are transposed by π. Note that the product comprising ψ′

pair contains a
pairwise term [ϕB(ri, {r})− ϕB(rj , {r})]. Without loss of generality, asume ϕB(ri, {r}) > ϕB(rj , {r}). But for r̂ = πr
we must have

[ϕB(ri, {r})− ϕB(rj , {r})] = − [ϕB(r̂i, {r̂})− ϕB(r̂j , {r̂})] (27)

(because r̂i = rj and r̂j = ri, and ϕB is otherwise invariant to πr). Applying the intermediate value theorem (since ϕB is
assumed continuous), it then follows for any path

γ(t) : [0, 1] −→ R3N γ(0) = r γ(1) = r̂ (28)

connecting r, r̂ must satisfy [ϕB(γ(t
′)i, {γ(t′)})− ϕB(γ(t

′)j , {γ(t′)})] = 0 for some t′ ∈ (0, 1). Since ψ′
pair =∏

i<j [ϕB(ri, {r})− ϕB(rj , {r})], zero in any ϕB(ri, {r}) − ϕB(rj , {r}) zeros Ψ. Since π ∈ S(N↑) ∪ S(N↓) was
arbitrary, so there are exactly N↑! +N↓! nodal domains.

Remark: Since π was arbitrary, this also prohibits the sort of triple exchanges which in the exact ground state, connect
same sign regions and collapse the number of nodal cells to 2 [27]. Additionally, although Beryllium is the largest system
for which the two nodal domain conjecture is proven, it’s frequently conjectured through the literature to be true universally,
again see [7; 27; 5]. It’s also known that π∗ is not constant across nodal domains as claimed in [31] – regions were π∗ is
constant are referred to as permutation domains, and each nodal domain contains multiple permutation cells (see Figure 3 in
[15]).

B. Experimental Details
All results in Figure 3a, Figure 3b and Section 6 were produced by modifying the FermiNet codebase to use our sortlet
instead of the determinant. For the values in Figure 3b we optimized the wavefunction for 20,000 iterations, but for the
others in Section 6, we ran each for 100,000 iterations. For the smaller systems, Li, LiH,Be,H4 we used a batch size
of 512. For those with more electrons, B,C,N we used between 2048 and 4096. We changed the initialization envelope
parameters pursuant to [14], but we found that initializing to the suggested Z/row value too unstable with our ansatz, so we
used 2 instead for Boron and Carbon. All training runs were completed using 2 A6000 GPUs, and ran for approximately 12
hours on average. The energy values except for N,CH4 in Section 6 were computed by averaging over 10,000 separate
estimates, with 500 mcmc equilibriation steps in between. For N,CH4, due to time constraints, the values were estimated
using the last 5000 iterations of training. In both cases, the 3− σ confidence interval reflected by the parenthesis (x) around
a digit where estimated using the Gaussian formula from the central limit theorem as 3σ = 3 σ̂√

n
. Molecules below C in

Section 6 used K = 16 determinants, but those above used K = 32.
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