
Under review as a conference paper at ICLR 2024

GRADSIMCORE: GRADIENT SIMILARITY BASED REP-
RESENTATIVE INSTANCES AS CORESET

Anonymous authors
Paper under double-blind review

ABSTRACT

The rise in size and complexity of modern datasets and deep learning models
have resulted in the usage of extensive computational resources and a surge in
training time and effort. It also has increased the carbon footprint of training
and fine-tuning models. One way to reduce the computational requirement is to
extract the most representative subset (referred to as coreset) that can substitute
for the larger dataset. Coresets can thus replace massive datasets to train mod-
els and tune hyperparameters, especially in the early stages of training. This will
result in a significant reduction of computational resource requirement and re-
duce carbon footprint. We propose a simple and novel framework based on the
similarity of loss gradients for identifying the representative training instances
as a coreset. Our method, dubbed as GradSimCore, outperforms the state-of-
the-art coreset selection algorithms on popular benchmark datasets ranging from
MNIST to ImageNet. Because of its simplicity and effectiveness, our method is
an essential baseline for evaluating the effectiveness of the coreset selection algo-
rithms. Anonymized codes for implementing the proposed method are provided
at https://anonymous.4open.science/r/GradSimCore-8884.

1 INTRODUCTION

Modern deep learning tasks (especially supervised ones) require a lot of data to train the models.
They often need extensive hyperparameter tuning to achieve the best accuracy. With fast-growing
semiconductor and communication technologies in this digital era, humans have created heaps of
digital content (images, videos, text, audio). Massive data indeed serves the data-hungry deep learn-
ing to read the complex patterns in the data, which would be otherwise difficult. However, asso-
ciated challenges include data redundancy, maintenance overhead, and computational requirements
to perform learning activities on these digital piles. For instance, the size of various popular object
recognition datasets is observed in Table 1. Other application fronts of Artificial Intelligence (AI),
such as natural language and speech processing, also have accumulated massive datasets.

Table 1: Popular object recognition datasets and their size

Dataset Number of samples

CIFAR10 / CIFAR100 (Krizhevsky, 2009) 60000
MNIST (Deng, 2012) 70000

Fashion MNIST (Xiao et al., 2017) 70000
MSCOCO (Lin et al., 2015) 330000
VisDrone (Zhu et al., 2021) 300000

IMDB Wiki (Pavlichenko & Ustalov, 2021) 460723
ImageNet-1K (Russakovsky et al., 2015) 1431167

The large datasets have simultaneously resulted in the complexity of the deep learning models grow-
ing exponentially. Millions of model parameters, innovative components, and computationally de-
manding regularizers make these architectures sophisticated machine learning models. In conjunc-
tion with massive training datasets, it has resulted in a significant increase in end-to-end training

1

https://anonymous.4open.science/r/GradSimCore-8884

Under review as a conference paper at ICLR 2024

time, cost of the required computational resources, energy requirement, and carbon footprint (Kil-
lamsetty et al., 2021a).

Coresets are weighted subsets of the data which approximate certain desirable characteristics of the
full data (e.g., the loss function) (Feldman, 2020). Coreset selection is a technique that aims to
obtain the most representative training samples from a given large dataset. The primary purpose of
this technique is to get a generalization performance on the representative dataset compared to the
original training dataset. Training duration and computation requirements for end-to-end training
can be reduced drastically if the desired generalization can be obtained.

Naturally, a line of thought based on loss gradients emerged to compose coresets. This set of ideas,
referred to as the gradient matching-based methods, work on the expectation that the optimal coreset
can approximate the gradients produced by the entire training dataset through a weighted combina-
tion. This, in the incremental gradient descent framework, enables the coreset to result in similar
updates for the model parameters as the full dataset. This ultimately leads the coreset-based model
training to reach a nearby location to the local minima learned by the full dataset.

CRAIG (Mirzasoleiman et al., 2020) suggests finding the optimal coreset by converting the gradi-
ent matching problem to maximizing a submodular function and then using a greedy approach to
optimize it. The result is a coreset of samples and their importance (weights). GRAD-MATCH (Kil-
lamsetty et al., 2021a) constructs an objective for matching the gradients computed over the coreset
with that of the complete dataset. They propose minimizing the matching error by casting the ob-
jective as a weakly submodular maximization problem and solving it using an orthogonal matching
pursuit (OMP) based greedy algorithm. These approaches rely on sophisticated modules such as
submodular facility location, OMP, etc. GRAD-MATCH identifies the coreset by selecting different
subsets during the course of model training to perform gradient matching. So, to obtain coresets at
various fractions of the full dataset, training must be carried out each time. Moreover, in CRAIG,
because of the individual weights (or learning rates) on the samples, it may not be straightforward to
train the models on the coresets in the mini-batch gradient descent framework. Hence, the training
speed gains are not maximal on such coresets.

Our method, GradSimCore, is based on the intuition that most samples of a particular class produce
gradients in similar directions (particularly in the early stages of the model training). In the case
of a class with large intra-class diversity, there can be multiple subgroups of samples based on
the similarity of gradient directions. Our method proposes that samples with a strong gradient
similarity to many others constitute a representative coreset. In the case of a classification task,
which is the focus of this work, to represent all the classes present in the original dataset, we identify
representative samples class-wise and combine them into a coreset.

Our approach uses gradient similarity scores to rank the data samples of each class. Based on the
desired coreset size, the top-ranked samples from each class are picked to represent the whole
dataset. While CRAIG uses per-element step size while training from the coreset, our method uses a
single step size. We also introduce various steps to reduce the computational time. These steps are
discussed in Section 4.

Major contributions of our work can be summarized as:

• Introduces a novel, intuitive, gradient similarity-based method for identifying class-wise
representative samples as coreset.

• Thoroughly evaluate the proposed method with respect to multiple object recognition
datasets of increasing complexity, different CNN classifier architectures, and cross-
architecture generalization study, demonstrating that our method can achieve higher ac-
curacy than state-of-the-art coreset selection methods.

• Overall, this work provides an essential baseline for evaluating the effectiveness of more
sophisticated coreset selection algorithms that are forthcoming.

Guo et al. (Guo et al., 2022) have developed an excellent and comprehensive code library named
DeepCore that implements current popular and state-of-the-art coreset selection methods in a uni-
fied framework based on PyTorch (Paszke et al., 2019). They have reported accuracy obtained at
various selection fractions on the CIFAR10 and ImageNet-1K datasets. DeepCore also provides a
framework to interface with other popular object recognition datasets such as MNIST (Deng, 2012),
QMNIST (Yadav & Bottou, 2019), FashionMNIST (Xiao et al., 2017), SVHN (Goodfellow et al.,

2

Under review as a conference paper at ICLR 2024

2016), CIFAR100 (Krizhevsky, 2009), and TinyImageNet. Note that we use the results they reported
to identify the state-of-the-art results in a given setting (combination of dataset, coreset size, etc.)
and compare our results against it.

2 RELATED WORKS

Recently, multiple works have been carried out to perform coreset selection for training deep
learning classifiers. Here, we present a few of the most prominent works briefly.

K-Center Greedy approximation (Sener & Savarese, 2018) attempts to solve the minimax fa-
cility location problem to select coresets from a large dataset such that the maximum distance
between points in the non-coreset and its closest point in the coreset is minimized. Uncertainty-
based methods work on the idea that samples having lower confidence may have a higher impact
during training than those with higher confidence. Thus, these methods suggest constituting the
coresets with the samples with lower confidence. Commonly used metrics to calculate sample
uncertainty are least confidence, entropy, and margin (Coleman et al., 2020).

Adversarial Deepfool (Ducoffe & Precioso, 2018) and Contrastive active learning (Margatina et al.,
2021) work to find data points distributed near the decision boundary. Gradient matching-based
methods work on the expectation that the optimal coreset can approximate the gradients produced
by the entire training dataset. Several recent works used gradient-based formulation for the
selection of coreset. CRAIG (Mirzasoleiman et al., 2020) selects representative subsets that closely
approximate the full gradient. They achieve this by converting the gradient matching problem
to optimizing a submodular function using a greedy approach. In particular, they have shown
that weighted subsets that minimize the upper bound on the estimation error of the total gradient
maximize a submodular facility location function.

Error-based methods try to select training samples that contribute more to the training of the
neural networks. Two metrics called the Gradient Normed (GraNd) and the Error L2-Norm (EL2N)
scores are introduced by (Paul et al., 2023) that help in pruning significant fractions of training data
without sacrificing test accuracy. GraNd measures the importance of each sample to the training
loss at early epochs. EL2N approximates the GraNd score, which measures the norm of the error
vector, with a higher score indicating higher potential influence. The authors conclude that the
images with higher scores tend to be harder to learn (forgettable examples). Their method chooses
these forgettable samples as the coreset.

RETRIEVE (Killamsetty et al., 2021c) formulates coreset selection for Semi-Supervised
Learning (SSL) as a bil-level optimization problem. This method considers both a labeled set
and an unlabeled set to formulate the bi-level optimization problem. It uses a greedy algorithm
to select the coreset that minimizes the labeled set loss. GLISTER (Killamsetty et al., 2021b),
Generalization-based Data Subset Selection for Efficient and Robust Learning, applies bi-level
optimization for supervised and active learning. GLISTER formulates coreset selection as a bi-level
optimization problem that maximizes the log-likelihood on a held-out validation dataset.

GRADMATCH (Killamsetty et al., 2021a) method follows a similar approach. It introduces a
squared L2 regularization term over the weight vectors and uses a greedy Orthogonal Matching
Pursuit (OMP) algorithm to select the coreset iteratively. After training on the resulting coreset for
a pre-determined number of epochs, the algorithm repeats the coreset construction using the latest
iterate.

Work published by (Balles et al., 2021) explores the application of gradient matching for a
continual learning setting. Their method tries to select a subset C from the original dataset T such
that∇LC(θ) ≈ ∇LT (θ) for some loss function L and all parameters θ.

3 METHODOLOGY

In this section, we provide a detailed description of our GradSimCore approach. Note that we focus
on the supervised classification task of object recognition using Convolutional Neural Networks

3

Under review as a conference paper at ICLR 2024

(CNN) as the chosen classifiers because of their proven effectiveness.

Notation:

V = {(xi, yi)} The complete training dataset
S ⊂ V Coreset of V (desired)
θ Model parameters of the classifier (also represent the

model)
Φ Threshold for neighborhood identification
Vc Training dataset belonging to class c
gθxi

Loss gradients computed at model parameters θ and data
sample xi

||x|| L2 norm of x
1 Indicator function

Our

objective is to select a representative subset S of the complete dataset V such that model θS trained
on S has a generalization performance close to that of the model θV trained on V. Training deep
neural networks is reduced to an empirical risk minimization problem often optimized in the
gradient descent framework. In practice, the incremental Gradient (IG) methods, such as Stochastic
Gradient Descent (SGD), iteratively estimate the gradient on mini-batches of training data that
construct the parameter updates.

Existing gradient-based coreset selection methods such as CRAIG (Mirzasoleiman et al., 2020) and
GRAD-MATCH (Killamsetty et al., 2021a) try to find an optimal coreset such that the weighted
sum of the gradients of the coreset elements remains within an error margin of the gradients of the
full dataset. The objective function can be written as:

argmin
w,S

F (
1

|V |
∑

(x,y)∈V

(gθx),
1

|w| 1

∑
(x,y)∈S

(wxg
θ
x)) (1)

where w is the weights associated with the elements of the coreset, and F is a distance metric.

It can be re-written as:

Eθ

[
1

|V |
∑
xi∈V

gθxi

]
= Eθ

[
1

|w| 1

∑
xi∈S

wxig
θ
xi

]
+ ϵ (2)

where ϵ is the error term having the same dimension as the gradient vector. Note that equation 2
considers the expected value of the approximation error in the parameter space.

Our method identifies the representative samples based on their gradients. Intuitively, data samples
whose gradients are similar to that of most other samples best approximate the complete dataset. In
other words, these representative samples result in local minima close to the minima achieved by the
complete dataset.

Our method thus selects a subset S of a desired cardinality that approximately covers the whole
dataset V. We define the normalized gradient similarity between two samples as

ρ(xi, xj , θ) =
< gθxi

, gθxj
>∥∥gθxi

∥∥∥∥∥gθxj

∥∥∥ (3)

For each sample xi in the dataset V, we can measure its ability to represent V as

f(xi) = Eθ

[∑
xj∈V, j ̸=i

ρ(xi, xj , θ)

]
(4)

Using this measure, we compute the suitability of all the samples in V to become the elements of
the coreset S. Essentially, this translates to sorting the dataset samples in the decreasing order of this
measure and composing the coreset of a desired size. The exact steps involved in this process are
described in the next paragraph.

4

Under review as a conference paper at ICLR 2024

We start with a randomly initialized model and update its parameters on the complete dataset for a
few epochs. We observe in our experiments that generally, 5 to 10 epochs (during which the loss
value doesn’t plateau) are sufficient. We save the checkpoints of the model parameters after each
epoch. For each of these checkpoints, we calculate the gradients of the loss function with respect to
the model parameters computed at each data sample. We score the dataset samples based on their
ability to represent other samples as denoted in equation 4. We aggregate these scores across the
saved checkpoints as an approximation to the expectation over the parameter space.

To improve the time efficiency of our approach, we further modify it into a nearest neighbor search
algorithm. The per-sample scores denoted by equation 4 are measured in terms of the number of
dataset samples present in close proximity in the gradient space. A nearest neighbor search algorithm
finds the number of samples within a given radius from each sample (or, with similarity more than
a threshold Φ) and assigns it as its score. We then rank the samples according to their aggregated
scores across multiple checkpoints. The top-ranked images are selected as the representative coreset.

The formulation of GradSimCore can be represented as below. For a given class c, the top ranked
samples based on their scores are selected.

xj = argmax
xi∈Vc

∑
θ

∑
j ̸=i

1(ρ(xi, xj , θ) > Φ) (5)

Algorithm 1 presents our approach more formally.

Algorithm 1 GradSimCore algorithm

Require: Train set: V; Total epochs: T ; number of classes: C; number of coreset images per class: N
Ensure: Coreset S

for class c in 1,..., C do
for xi ∈ Vc do

for epochs t in 1,..., T do
compute gθtxi

end for
f(xi) =

∑
θt

∑
xj∈Vc,j ̸=i

1(ρ(xi, xj , θt) > Φ)

Store f(xi)
end for

end for

S = ∅

for class c in 1,..., C do
S← S ∪ argsortxi∈Vc

f(xi)[: N] ▷ Descending order
end for

4 IMPLEMENTATION OF GRADSIMCORE

We have implemented the proposed method GradSimCore using the PyTorch framework. An
anonymized version of the codes for implementing the proposed method is provided at https:
//anonymous.4open.science/r/GradSimCore-8884. Multiple steps are undertaken to
speed up the coreset selection process. These are enumerated below.

4.1 GRADIENTS W.R.T. THE CLASSIFICATION LAYER

Deep learning models such as ResNet-18 have millions of parameters, and it is impractical to con-
sider the gradient of loss with respect to each of the parameters. It is observed that variation of gradi-
ent norm is mostly captured by the gradient with respect to the parameters of the last (classification)
layer of the neural network (Katharopoulos & Fleuret, 2019). Similar to the earlier works (Ash
et al., 2020; Killamsetty et al., 2021a), we avoid gradient computation of all the model parameters,

5

https://anonymous.4open.science/r/GradSimCore-8884
https://anonymous.4open.science/r/GradSimCore-8884

Under review as a conference paper at ICLR 2024

restricting to only the final fully connected layer while calculating the score of data samples (equa-
tion 4).

4.2 NEAREST NEIGHBOR ALGORITHM

The complexity of similarity score computation (equation 4) among the samples of a particular class
of size N is O(N2). Clearly, the computation time increases quickly with the number of samples
within a class. Further, the complexity is linear in the number of classes in the classification dataset
C. Instead of computing N similarity scores for each sample in a given class, our approach finds
the number of these N samples that lie within its neighborhood. This important modification saves
us nontrivial complexity. We have utilized the radius-based nearest neighbor algorithm implemen-
tation from scikit-learn (Pedregosa et al., 2011) with the proposed distance (or similarity) measure
mentioned in equation 3. This results in a ≈ 10X speed up of the computation time.

5 EXPERIMENTS AND RESULTS

We have considered three popular benchmark object recognition datasets used in computer vision
with varied complexity (number of classes, image resolution, and intra-class diversity). CIFAR10
(Krizhevsky, 2009) dataset consists of 50, 000 color images of dimension 32×32×3 belonging to 10
different classes, each class having 5, 000 images. CIFAR100 (Krizhevsky, 2009) dataset consists
of 50, 000 training images belonging to 100 classes with 500 training images per class. ImageNet-
1K (Russakovsky et al., 2015) is a subset of the larger dataset ImageNet, an image dataset organized
according to the WordNet hierarchy. ImageNet-1K consists of 1000 classes, with 1, 281, 167 training
images and 50, 000 validation images.

We used a randomly initialized ResNet-18 (He et al., 2016) architecture as our base classifier for
coreset selection. We report classification (generalization) accuracy for various sizes of coreset
expressed as fractions of the complete dataset. However, note that for cross-architecture generaliza-
tion experiments, we also worked with other popular CNN classifiers, such as VGG16 (Simonyan
& Zisserman, 2015) and inception-V3 (Szegedy et al., 2015).

We perform the proposed GradSimCore coreset selection as described in algorithm 1. On the re-
sulting coreset, we trained the classifier for 200 epochs starting with a randomized initial seed in
PyTorch. For statistical significance, we repeated this training procedure 10 times for each coreset
size. We compare the mean accuracy obtained by our method with the best mean accuracy reported
by DeepCore.

5.1 RESULTS FOR CIFAR10

A comparison of accuracy values obtained on the CIFAR10 for various fractions of the original
dataset are presented in Table 2. The algorithms having the best accuracy at each percentage level
as reported by DeepCore are mentioned within brackets againsts the accuracy value.

Table 2: Comparison of results on CIFAR10 Dataset

Percentage of Dataset Max. Accuracy DeepCore Max. Accuracy GradSimCore

0.1 % 24.3 ± 1.5 (GraphCut) 28.77 ± 1.26
0.5 % 34.9 ± 2.3 (GraphCut) 39.58 ± 0.72
1 % 42.8 ± 1.3 (GraphCut) 48.00 ± 2.10
5 % 65.7 ± 1.2 (GraphCut) 69.40 ± 0.26

10 % 76.6 ± 1.5 (GraphCut) 78.62 ± 1.05
20 % 87.1 ± 0.5 (Random) 82.64 ± 0.21

To study the robustness of our coreset selection method, we have carried out cross architecture gener-
alization performance comparison at 1% and 10% fractions of the full dataset for three deep learning
architectures ResNet18 (He et al., 2016), VGG16 (Simonyan & Zisserman, 2015) and Inception-

6

Under review as a conference paper at ICLR 2024

V3 (Szegedy et al., 2015) and compared results obtained by our method against results reported by
DeepCore. The comparative analysis is tabulated in Table 3 and Table 4.

Table 3: Cross Architecture comparison for the 1% coreset of the CIFAR10 dataset

Target → ResNet18 VGG16 Inception-V3
Source ↓ DeepCore GradSimCore DeepCore GradSimCore DeepCore GradSimCore
ResNet18 42.78 ± 1.30 48.00 ± 2.10 29.01 ± 3.63 47.21 ± 0.95 37.54 ± 0.62 40.35 ± 0.90
VGG16 43.02 ± 1.30 46.27 ± 0.33 27.47 ± 4.00 47.64 ± 0.71 37.38 ± 2.09 40.48 ± 1.12

Inception-V3 42.06 ± 0.69 46.89 ± 0.58 25.00 ± 3.91 47.11 ± 0.66 37.26 ± 1.23 38.98 ± 0.81

Table 4: Cross Architecture comparison for the 10% coreset of the CIFAR10 dataset

Target → ResNet18 VGG16 Inception-V3
Source↓ DeepCore GradSimCore DeepCore GradSimCore DeepCore GradSimCore

ResNet18 76.65 ± 1.48 78.62 ± 1.05 75.29 ± 1.05 78.22 ± 0.29 73.94 ± 1.11 74.97 ± 0.89
VGG16 78.66 ± 0.55 78.75 ± 0.16 77.91 ± 0.71 78.84 ± 0.33 76.64 ± 1.25 75.92 ± 0.35

Inception-V3 75.49 ± 0.91 79.68 ± 0.25 75.15 ± 1.09 78.66 ± 0.24 73.69 ± 1.42 75.36 ± 0.63

5.2 RESULTS FOR CIFAR100

We follow the same procedure to select a coreset from the CIFAR100 dataset. We train a randomly
initialized ResNet-18 model on the resulting coreset for comparative analysis of accuracy obtained
over multiple runs. In each run, the model is trained for 200 epochs starting with a random PyTorch
seed. The comparative analysis is presented in Table 5. The algorithms having the best accuracy at
each percentage level as reported by DeepCore are mentioned within brackets againsts the accuracy
value.

Table 5: Comparison of results on CIFAR100 Dataset

Percentage of Dataset Max. Accuracy DeepCore Max. Accuracy GradSimCore

0.5 % 8.12 (GraphCut) 11.95
1 % 12.82 (GraphCut) 18.26
5 % 31.6 (GraphCut) 36.08

10 % 41.37 (GraphCut) 43.34
20 % 56.6 (GraphCut) 50.7

5.3 RESULTS FOR IMAGENET-1K

We believe the effectiveness of coreset selection algorithms must be tested in the face of com-
plex datasets. Hence, we evaluate our algorithm with ImageNet-1K dataset. Following the similar
procedure outlined in previous subsections, we extract coresets of varying sizes using a randomly
initialized ResNet-18 model. Similar to other experiments, we train multiple models on the result-
ing coreset. Each model is trained for 200 epochs with a random PyTorch seed. The generalization
performance and comparative analysis are tabulated in Table 6. The algorithms having the best ac-
curacy at each percentage level as reported by DeepCore are mentioned within brackets againsts the
accuracy value.

5.4 CORESET IMAGES FOR IMAGENET-1K

In this subsection, we visualize the top and bottom-ranked samples according to our coreset selec-
tion algorithm. We chose the ‘Zebra’ and ‘Oscilloscope’ classes from the 1000 ImageNet classes.
Figures 1 and 2 present the top and bottom-ranked 12 images. The selected samples clearly empha-
size the fact that the images with top ranks are representative of the class, while images at bottom

7

Under review as a conference paper at ICLR 2024

Table 6: Comparison of results on ImageNet-1K Dataset

Percentage of Dataset Max. Accuracy of DeepCore Max. Accuracy of GradSimCore

0.1 % 1.29 ± 0.09 (CAL) 1.88 ± 0.10
0.5 % 7.66 ± 0.43 (GraphCut) 11.58 ± 0.15
1 % 18.10 ± 0.22 (GraNd) 22.82 ± 0.07
5 % 47.64 ± 0.03 (Forgetting) 43.50 ± 0.41
10 % 55.12 ± 0.13 (Forgetting) 49.51 ± 0.26

positions either have some ambiguity in terms of describing that particular class or have images of
elements from other classes. As our objective is to select the most representative images from each
class, the visualization provides proof for the intuition over which the proposed method is founded.
Please refer to the Appendix A for more visualizations.

(a) Top-ranked zebra images. (b) Bottom-ranked Zebra images.

Figure 1: Best and worst ranked images by our method for the ‘zebra’ category.

(a) Top-ranked Oscilloscope images. (b) Bottom-ranked Oscilloscope images.

Figure 2: Best and worst ranked images by our method for the ‘Oscilloscope’ category.

8

Under review as a conference paper at ICLR 2024

6 CONCLUSIONS

In this paper, we introduced GradSimCore, an intuition-driven, gradient similarity-based coreset
selection method for identifying representative instances from large datasets. We studied its effec-
tiveness on popular object recognition datasets (CIFAR10, CIFAR100, ImageNet-1K) at various
coreset sizes. We demonstrated superior generalization performance of classifiers trained on the
resulting coresets. Particularly, we showed that our method consistently achieves state-of-the-art
accuracy at the smaller coreset sizes (up to 20% in the case of CIFAR10 and CIFAR100 and up to
1% in the case of ImageNet-1K). We have also demonstrated that our model achieves consistently
higher performance in the case of cross-architecture generalization. Thus, we strongly propose our
method as an essential baseline to benchmark the forthcoming coreset selection methods. While one
can appreciate the simplicity and intuition behind the proposed coreset selection method, it must be
studied further. Particularly with respect to the approximation error between the gradients computed
by the coreset and full dataset. Inducing diversity in the selected samples along with individual im-
portance weights (or per-sample step size) would further improve the effectiveness of the proposed
approach. We consider these aspects for future study.

REFERENCES

Jordan T. Ash, Chicheng Zhang, Akshay Krishnamurthy, John Langford, and Alekh Agarwal. Deep
batch active learning by diverse, uncertain gradient lower bounds, 2020.

Lukas Balles, Giovanni Zappella, and Cédric Archambeau. Gradient-matching coresets for continual
learning, 2021.

Cody Coleman, Christopher Yeh, Stephen Mussmann, Baharan Mirzasoleiman, Peter Bailis, Percy
Liang, Jure Leskovec, and Matei Zaharia. Selection via proxy: Efficient data selection for deep
learning, 2020.

Li Deng. The mnist database of handwritten digit images for machine learning research. IEEE
Signal Processing Magazine, 29(6):141–142, 2012.

Melanie Ducoffe and Frederic Precioso. Adversarial active learning for deep networks: a margin
based approach, 2018.

Dan Feldman. Core-Sets: Updated Survey, pp. 23–44. Springer International Publishing AG,
Switzerland, 2020. ISBN 978-3-030-29349-9. doi: 10.1007/978-3-030-29349-9 2.

Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning, volume 1.
MIT Press, 2016.

Chengcheng Guo, Bo Zhao, and Yanbing Bai. Deepcore: A comprehensive library for coreset
selection in deep learning, 2022.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Im-
age Recognition. In Proceedings of 2016 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR ’16, pp. 770–778. IEEE, June 2016. doi: 10.1109/CVPR.2016.90. URL
http://ieeexplore.ieee.org/document/7780459.

Angelos Katharopoulos and François Fleuret. Not all samples are created equal: Deep learning with
importance sampling, 2019.

Krishnateja Killamsetty, Durga Sivasubramanian, Ganesh Ramakrishnan, Abir De, and Rishabh
Iyer. Grad-match: Gradient matching based data subset selection for efficient deep model training,
2021a.

Krishnateja Killamsetty, Durga Sivasubramanian, Ganesh Ramakrishnan, and Rishabh Iyer. Glister:
Generalization based data subset selection for efficient and robust learning, 2021b.

Krishnateja Killamsetty, Xujiang Zhao, Feng Chen, and Rishabh Iyer. Retrieve: Coreset selection
for efficient and robust semi-supervised learning, 2021c.

9

http://ieeexplore.ieee.org/document/7780459

Under review as a conference paper at ICLR 2024

Alex Krizhevsky. Learning multiple layers of features from tiny images. pp. 32–33, 2009. URL
https://www.cs.toronto.edu/˜kriz/learning-features-2009-TR.pdf.

Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick, James Hays, Pietro
Perona, Deva Ramanan, C. Lawrence Zitnick, and Piotr Dollár. Microsoft coco: Common objects
in context, 2015.

Katerina Margatina, Giorgos Vernikos, Loı̈c Barrault, and Nikolaos Aletras. Active learning by
acquiring contrastive examples, 2021.

Baharan Mirzasoleiman, Jeff Bilmes, and Jure Leskovec. Coresets for data-efficient training of
machine learning models, 2020.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In Advances in Neural Information Processing Systems 32, pp.
8024–8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf.

Mansheej Paul, Surya Ganguli, and Gintare Karolina Dziugaite. Deep learning on a data diet:
Finding important examples early in training, 2023.

Nikita Pavlichenko and Dmitry Ustalov. Imdb-wiki-sbs: An evaluation dataset for crowdsourced
pairwise comparisons. CoRR, abs/2110.14990, 2021. URL https://arxiv.org/abs/
2110.14990.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-learn:
Machine learning in python. Journal of machine learning research, 12(Oct):2825–2830, 2011.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei.
Imagenet large scale visual recognition challenge, 2015.

Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A core-set
approach, 2018.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition, 2015.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbigniew Wojna. Re-
thinking the inception architecture for computer vision, 2015.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
ing machine learning algorithms, 2017.

Chhavi Yadav and Léon Bottou. Cold case: The lost mnist digits, 2019.

Pengfei Zhu, Longyin Wen, Dawei Du, Xiao Bian, Heng Fan, Qinghua Hu, and Haibin Ling. De-
tection and tracking meet drones challenge. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 44(11):7380–7399, 2021.

10

https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://arxiv.org/abs/2110.14990
https://arxiv.org/abs/2110.14990

Under review as a conference paper at ICLR 2024

A APPENDIX

(a) Top-ranked Bald Eagle images. (b) Bottom-ranked Bald Eagle images.

Figure 3: Best and worst ranked images by our method for the ‘Bald Eagle’ category.

(a) Top-ranked printer images. (b) Bottom-ranked printer images.

Figure 4: Best and worst ranked images by our method for the ‘Printer’ category.

(a) Top-ranked Table Lamp images. (b) Bottom-ranked Table Lamp images.

Figure 5: Best and worst ranked images by our method for the ‘Table Lamp’ category.

11

Under review as a conference paper at ICLR 2024

(a) Top-ranked Siberian Husky images. (b) Bottom-ranked Siberian Husky images.

Figure 6: Best and worst ranked images by our method for the ‘Siberian Husky’ category.

(a) Top-ranked Street Sign images. (b) Bottom-ranked Street Sign images.

Figure 7: Best and worst ranked images by our method for the ‘Street Sign’ category.

(a) Top-ranked House Finch images. (b) Bottom-ranked house finch images.

Figure 8: Best and worst ranked images by our method for the ‘House Finch’ category.

12

	Introduction
	Related Works
	Methodology
	Implementation of GradSimCore
	Gradients w.r.t. the Classification layer
	Nearest Neighbor algorithm

	Experiments and Results
	Results for CIFAR10
	Results for CIFAR100
	Results for ImageNet-1K
	Coreset images for ImageNet-1K

	Conclusions
	Appendix

