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ABSTRACT

Despite remarkable capabilities, large language models (LLMs) struggle to con-
tinually update their knowledge without catastrophic forgetting. In contrast, hu-
mans effortlessly integrate new information, detect conflicts with existing beliefs,
and selectively update their mental models. This paper introduces a cognitive-
inspired investigation paradigm to study knowledge updating in LLMs. We im-
plement two key components inspired by human cognition: (1) Dissonance and
Familiarity Awareness, analyzing model behavior to classify information as novel,
familiar, or dissonant; and (2) Targeted Network Updates, which track neural ac-
tivity to identify frequently used (stubborn) and rarely used (plastic) neurons.
Through carefully designed experiments in controlled settings, we uncover a num-
ber of empirical findings demonstrating the potential of this approach. First, disso-
nance detection is feasible using simple activation and gradient features, suggest-
ing potential for cognitive-inspired training. Second, we find that non-dissonant
updates largely preserve prior knowledge regardless of targeting strategy, reveal-
ing inherent robustness in LLM knowledge integration. Most critically, we dis-
cover that dissonant updates prove catastrophically destructive to the model’s
knowledge base, indiscriminately affecting even information unrelated to the cur-
rent updates. This suggests fundamental limitations in how neural networks han-
dle contradictions and motivates the need for new approaches to knowledge up-
dating that better mirror human cognitive mechanisms.

1 INTRODUCTION

Humans effortlessly update their knowledge as they experience the world. They seamlessly inte-
grate new information, ignore redundant stimuli, and actively resolve conflicts with existing beliefs
before updating their mental models. This cognitive flexibility stems from several key abilities. Hu-
mans exhibit (1) selective attention, focusing on novel or relevant information while filtering out
irrelevant or familiar stimuli (Posner et al., 1990; Petersen & Posner, 2012; Desimone et al., 1995;
Ranganath & Rainer, 2003). They readily (2) detect conflicts (Croyle & Cooper, 1983) between
new information and existing knowledge and actively engage in resolving them, a process known in
psychology as cognitive-dissonance (Festinger, 1957; Van Veen et al., 2009). Moreover, their brains
exhibit a form of (3) adaptive plasticity, allowing for updates to neural networks that can incorporate
new information while often preserving existing knowledge. While the exact mechanisms are still
being investigated, this process seems to balance the stability of well-established knowledge with
flexibility in the face of new or uncertain information (McClelland et al., 1995; Behrens et al., 2007).

Despite demonstrating remarkable capabilities across various tasks, Large Language Models
(LLMs) are still far from such learning abilities. Current LLMs face significant challenges in real-
world deployment and long-term utility due to their static nature and training paradigms. They
suffer from catastrophic forgetting (Kirkpatrick et al., 2017a; Kemker et al., 2018; Li et al., 2022;
Luo et al., 2024; Kotha et al., 2024), where incorporating new information often leads to the era-
sure of previously learned knowledge. Furthermore, LLMs engage during training in indiscriminate
learning, passively accepting all training data, even when it contradicts what they already learned.
Despite emergent sparsity (Jaiswal et al., 2023; Mirzadeh et al., 2024), knowledge in LLMs follows
backpropagation and the objective function, with no explicit mechanism for targeted knowledge
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Table 1: Taxonomy of Incremental Learning Approaches. See Appendix.A for an extended version

Examples Incremental
Type

Memory
Usage

Task
Awareness

Weight
Plasticity Architecture Conflict

Detection
Update

Mechanism
iCaRL (Rebuffi et al., 2017) Class-incremental Replay Task-Agnostic Fixed Fixed No Rehearsal
EWC (Kirkpatrick et al., 2017b) Task-incremental None Task-Aware Selective Fixed No Regularization
Progressive Nets (Rusu et al., 2016) Task-incremental None Task-Aware Fixed Expanding No New Subnetworks
DEN (Yoon et al., 2017) Task-incremental None Task-Aware Selective Expanding No Selective Expansion
GEM (Lopez-Paz & Ranzato, 2017) Task-incremental Replay Task-Aware Constrained Fixed No Constrained Optimization
ROME (De Cao et al., 2021) Fact-incremental None Fact-Aware Localized Fixed No Rank-One Update
OWM (Zeng et al., 2019) Task-incremental None Task-Aware Orthogonal Fixed No Orthogonal Projection
PackNet (Mallya & Lazebnik, 2018) Task-incremental None Task-Aware Selective Fixed No Weight Masking
HAT (Serra et al., 2018) Task-incremental None Task-Aware Selective Fixed No Attention Masking
This paper Fact-incremental None Conflict-Aware Selective Fixed Yes Neuron-Specific Update

storage or retrieval. This results in a situation where all weights are potential candidates for storing
knowledge, necessitating comprehensive retraining to properly incorporate new information.

In this work, we embark on a systematic empirical investigation of how LLMs handle knowledge up-
dates, drawing inspiration from human cognitive traits. Through carefully controlled experiments,
we examine (1) the feasibility of Dissonance Awareness, i.e. whether it is possible to correctly
classify facts into novel, familiar, and dissonant using features extracted from the LLM. We also in-
vestigate the benefits of (2) Adaptive Plasticity by studying how different neuron targeting strategies
affect knowledge retention and update. For this, we develop a simple method for tracking historical
neuron usage to identify ”plastic” (rarely used) and ”stubborn” (previously used) neurons, allowing
us to study how knowledge updates affect different regions of the model’s parameter space. This
experimental framework lets us systematically investigate fundamental properties of knowledge in-
tegration in LLMs.

Our investigation reveals a fundamental distinction in how LLMs handle knowledge updates: the
case of non-dissonant updates (adding entirely new knowledge) versus dissonant updates (modi-
fying existing associations). While prior work has focused mostly on editing individual factual
associations within LLMs (Meng et al., 2022a; Mitchell et al., 2022; Meng et al., 2022c) or pre-
serving knowledge across distinct tasks as in continual learning (Rebuffi et al., 2017; Kirkpatrick
et al., 2017b; Mallya & Lazebnik, 2018), our controlled experiments take a different approach. We
systematically study how the placement of new knowledge in the network’s parameter space affects
both the integration of that knowledge and its impact on existing, unrelated knowledge. As shown
in 1, this positions our work uniquely: rather than proposing new editing or continual learning
methods, we reveal fundamental properties about how LLMs handle knowledge integration in both
dissonant and non-dissonant scenarios. Critically, our experimental design allows us to precisely
track the impact of updates on a controlled set of initial knowledge, providing clear visibility into
how different update strategies affect unrelated information.

Key takeaways. This leads us to uncover several fundamental properties of LLM knowledge
updating: (i) dissonance awareness is feasible using simple model features, suggesting poten-
tial for cognitive-inspired training; (ii) LLMs show inherent robustness when incorporating non-
dissonant information, largely preserving prior knowledge regardless of targeting strategy; (iii)
avoiding heavily-used (stubborn) neurons during updates further improves this robustness, motivat-
ing adaptive plasticity in this scenario; (iv) regions of the network heavily used during pre-training
are particularly effective at incorporating new knowledge, extending lottery ticket hypothesis find-
ings (Frankle & Carbin, 2019) to language models; and most critically, (v) dissonant updates prove
catastrophically destructive to unrelated knowledge, suggesting fundamental limitations in how neu-
ral networks handle contradictions: while some of our targeted update strategies show comparable
performance to existing editing methods like ROME and MEMIT, all approaches fundamentally
struggle with dissonant updates, suggesting the need for fundamentally different mechanisms.

Implications. These findings point to concrete opportunities such as the feasibility of dissonance
awareness, and the benefits of adaptive plasticity in case of non-dissonant updates. But they also
reveal fundamental challenges when handling contradictory information. Current approaches essen-
tially attempt to erase and replace old knowledge - a process we show leads to catastrophic forgetting
of even unrelated information. But this contrasts sharply with human cognition, where we maintain
both old and new knowledge with appropriate temporal context. Consider how humans handled
learning that Pluto was no longer classified as a planet: rather than erasing our previous understand-
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ing, we maintained both pieces of knowledge, understanding their historical context and why the
classification changed. Our experiments motivate the exploration of future fundamentally differ-
ent mechanisms for handling contradictions - ones that can maintain and contextualize conflicting
information rather than attempting to overwrite it.1

2 DISSONANCE-AWARE TARGETED KNOWLEDGE UPDATE

The core of our approach involves (1) awareness concerning the type of information the model
ingests, which is then used to (2) selectively target sparse portions of the LLMs for incremental
updates. Both rely on the extraction of activations and gradients.

2.1 EXTRACTION OF HISTORICAL ACTIVATIONS AND GRADIENTS

We maintain an aggregate profile of neuronal activity by accumulating activations and gradi-
ents for each neuron at every training step. Specifically, for each neuron n in the Transformer
blocks—including feed-forward (MLP) layers and attention projections (Key, Query, Value matri-
ces)—we compute HĜn, the cumulative historical gradient magnitude over time, and HÂn, the
cumulative historical activation magnitude over time. To mitigate scale differences across layers,
we also experiment with layer-wise normalization of activations and gradients before accumulation.
Precise notation and computation methods are detailed in Appendix B.

This historical activity data enables us to classify neurons as “plastic” or “stubborn” based on their
past usage, which is useful for our targeted network updates. We use the historical data also to
normalize the input features when classifying facts as we see next.

2.2 DISSONANCE AND NOVELTY AWARENESS

We cast our classification problem on three classes: for a given input sequence X , decide if it is
Novel (and should be integrated by the Transformer), Familiar (and can be ignored), or Dissonant
(thus likely requiring proper resolution).

We design a simple classifier that leverages activation and gradient information to assess the nature
of new information. For any input sequence X , we first perform a forward pass to obtain its current
activations and a backward pass to obtain its current gradients (without updating the model weights).
Since the goal is to assess feasibility using easy-to-compute features and lightweight methods that
could be integrated into large-scale models, we extract for each layer the mean, standard deviation,
minimum, maximum, and quartiles (Q1, Q2, Q3) of the activations and gradients, eventually first
normalized by historical activations and gradients. We perform ablation studies to assess the im-
portance of different features and employ feature importance analyses to understand which aspects
contribute most to the classifier’s performance. We evaluate our ability to classify facts in Sec. 3.2.
Despite using simple classifiers like Random Forests and SVMs, we achieve high accuracy, opening
the way for future integration of dissonance awareness into LLM training pipelines.

2.3 TARGETED NEURON UPDATES

Building upon the historical tracking of neural activity, we implement targeted network updates
to incorporate new knowledge into the model’s parameters while preserving existing information.
We design four main types of targeted updates, which we experimentally evaluate. During training
on new information, we perform standard forward and backward passes to compute the loss and
gradients. Before the optimizer step, we modify the gradients to freeze certain neurons. Specifically,
given the gradients for all parameters of a given layer, we zero-out those that do not belong to
the selected set of neuron and corresponding weights, defined as plastic, stubborn, candidate and
specific, as described below. This process effectively freezes the weights of non-selected neurons,
allowing for targeted updates to specific parts of the model. By varying the choice of selected
neurons, we control how new information is integrated into the model while managing its impact on
existing knowledge. Next, we introduce strategies to select which neurons and weights to update:

1Anonymized code available at https://figshare.com/s/81f7108d823b5e08e8ec
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Figure 1: Targeted neuron updates. The historical activity of neurons during previous training is
used to identify localized areas where to store future knowledge, according to four strategies.

Figure 1a illustrates the conceptual relationship between the various neuron updates strategies within
the model’s parameter space.

Plastic Neurons. Neurons underutilized during past model updates. To identify them, we rank neu-
rons by increasing historical gradient values and select the top N neurons with the lowest cumulative
gradients:

Nplastic = {n | rank(HĜn) ≤ N},
where HĜn is the historical gradient for neuron n, accumulated over all prior training. By target-
ing underutilized neurons, we aim to integrate new knowledge while minimizing interference with
existing information.

Stubborn Neurons. Neurons that accumulated high historical gradients, indicating significant in-
volvement in previous learning. We rank neurons by decreasing historical gradient values and select
the top N neurons:

Nstubborn = {n | rank(HĜn) > |N | −N},
where |N | is the total number of neurons, and HĜn is the historical gradient for neuron n. Updating
stubborn neurons allows us to test the model’s capacity for knowledge integration and assess the
potential risks of overwriting existing information.

Candidate Neurons. These neurons are relevant for encoding new information: to identify them, we
perform a single back-propagation pass on the new input data, without updating the model weights.
We then rank neurons based on the magnitude of these gradients and select the top N :

Ncandidate = {n | rank(Gnew
n ) > |N | −N},

where Gnew
n is the gradient for neuron n obtained from the back-propagation pass on the new input

data. Targeting candidate neurons focuses updates on areas of the network that are most relevant to
the new information, as suggested by the back-propagation process.

Specific Neurons. To identify neurons capable of storing new information while avoiding interfer-
ence with existing knowledge, we first: (1) identify stubborn neurons Nstubborn, using N as defined
earlier; we next (2) rank all neurons based on the magnitude of their gradients Gnew

n obtained from a
single back-propagation pass on the new data, without updating model weights; finally, (3) we select
few specific neurons, by choosing the top N neurons that are not in Nstubborn:

Nspecific = TopN (Nall \ Nstubborn),

where Nall is the set of all neurons ranked by their gradient magnitudes. This last approach ensures
that we select neurons that are most relevant to the new information (high gradient) while explicitly
avoiding those that are crucial for existing knowledge (stubborn neurons).

3 EXPERIMENTAL EVALUATION

We discuss our (1) experimental setup, to evaluate (2) cognitive dissonance-awareness, as well as
(3) continual knowledge update.

4
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3.1 EXPERIMENTAL SETUP

Dataset We use the COUNTERFACT dataset (Meng et al., 2022b) as our primary data source,
containing both facts and counterfacts.2. This dataset, with approximately 17,000 facts, allows us
to test models’ handling of conflicting knowledge and addition of potentially known information3,
two key aspects of our dissonance-aware approach. To address the lack of truly novel facts in
COUNTERFACT, we generate additional data using GPT-3.5. We transform existing statements
into plausible yet fictitious information, maintaining structural similarity while introducing novel
content. For example, “Danielle Darrieux’s mother tongue is French” becomes “Sylvan Myrthil’s
mother tongue is Sylvan” (see Appendix C.1 for details).

For our dissonance awareness experiments, we construct a balanced dataset comprising 1,000 sam-
ples each of familiar, conflicting, and novel facts. When using the pre-trained GPT-2-small model,
we adjust the familiar class to 600 samples due to the limited number of known facts extracted from
the model’s pre-training. For our targeted update experiments, we use 5-fold cross-validation vary-
ing each time the sets of old and new facts but keeping the following proportions: 2000 old facts vs.
1000 new facts. For conflicting updates, we also test with 10 and 100 new facts.

Models We employ both GPT-2-small and GPT-2-xl for their accessibility, and to facilitate repro-
ducibility and scale impact analysis. However, the dataset size (≃17,000 facts) limits full stress-
testing of larger models like GPT-2-xl (less visible catastrophic forgetting compared to compressed
models). As a result, the effects of our experiments are most clearly observed with GPT-2-small, on
which we focus most in the main body of this paper, deferring GPT-2-xl results to the Appendix.

We implement experiments using Hugging Face Transformers on NVIDIA GPUs. Before setting
learning rates and epochs, we conduct a search for optimal hyperparameters that allow effective
learning of facts (see App. D.2 for an example for GPT-2-xl). We perform the search based on the
ability to correctly learn 10,000 facts from the dataset. More detailed results and our implementation
are available in the code repository.

3.2 DISSONANCE AWARENESS

Figure 2: Classifier pipeline from data creation to classification.

Settings. Our first goal is to evaluate the ability to discriminate familiar, novel, and conflicting
information using the readily-available4 simple features we extract from the models during the for-
ward and backward passes. As schematized in Fig. 2, we do so by relying on simple classifiers
(random forests and SVMs), contrasting two scenarios for the input features: (1) a GPT-2 model
fine-tuned on 1000 facts (the knowns), and (2) a GPT-2 pre-trained model (using its 600 extracted
known facts as known class samples).

For each scenario, we compile a balanced dataset with equal examples per class (familiar, novel,
conflicting). To create novel facts, we employ GPT-4 with carefully designed prompts, using the
structure of known facts (subject, relation, object) as templates, replacing key elements with ficti-
tious (but plausible) information. This method ensured structural similarity to known facts while

2While this dataset allows us to test models’ handling of conflicting knowledge, we acknowledge its limita-
tions in representing more complex real-world knowledge, a limitation which we plan to address in the future

3For instance, general facts that pre-trained models likely were exposed to during training.
4We explore the use of model output-only features in Appendix. C.5 showing that using output probabilities

as feature is also successful.
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maintaining novelty. Appendix C.1 provides detailed prompts and examples (full datasets will be
made available upon acceptance).

Classification performance We extracted activations (A) and gradients (G) as described in Ap-
pendix B, and experimenting with A, G and A+G as input feature sets, using raw (R), per-layer
(L) and historical (H) normalization strategies. As classifiers, we employ Random Forest (RF) and
Support Vector Machines (SVM), optimizing hyperparameters using Bayesian search with 5-fold
cross-validation. For clarity, we report the best results for each combination in Table 2 (average and
standard deviation accuracy over the 5-folds) and defer the full results and ablation study to Table 5
in the appendix for the interested reader.

Table 2: Classification Results

Scenario Classifier Accuracy

Fine-tuned SVM (A+G, H) 0.995 (0.001)
RF (A+G, R) 0.988 (0.001)

Pre-trained SVM (A+G, H) 0.947 (0.004)
RF (A+G, R) 0.928 (0.012)

Models consistently achieve high performance.
Using features from the finetuned model
reaches as high as (99.5%), but also using fea-
tures from a pre-trained model still achieves de-
cent performance (94.7%). Interestingly, com-
bining activations and gradients consistently
outperformed using either feature set alone,
with a slight advantage of SVM over RF. Also,
historical normalization helps SVM, but does
not provide benefits for RF.
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(a) Finetuned model
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(b) Pretrained model

Figure 3: Dissonance awareness. Feature importance grouped by feature type (notice the higher
importance of gradient-related features for finetuned models).

Feature importance While a full analysis of feature explainability is outside the scope of this
paper, we further seek to observe structural differences in the learning process by comparing feature
importance, using the feature importance scores derived from the random forest algorithm.

To further shed light on such difference, Fig. 3 opposes feature importance in both cases, focusing on
Activation versus Gradient-related features. It turns out that in the finetuned scenario, gradient-based
features are substantially more important. This is likely due to the fact that finetuning the models on
these facts has somewhat overfit them leading to gradients that are more discriminative: e.g. a clearly
null gradient for known facts and a clearly high one for unknown ones. For the pretrained scenario,
however, which is the most likely case in a real case scenario, both activation and gradient features
contribute significantly, suggesting that for long-term knowledge, both internal representations and
learning dynamics should be mixed in order to achieve good classification. Appendix.C.3 expands
this analysis by focusing on transformer block importance instead.

Finally, deferred to the appendix, comparing the performance of different normalization strategies
for the pretrained model scenario using both activations and gradients (Table 5), we found that
although normalization slightly helps, historical normalization does not seem to be crucial, since it
was only slightly helpful for Random Forest classifiers.

Key findings Overall, despite the simplicity of our features, the results demonstrate the feasibility
of distinguishing between familiar, novel, and conflicting information, even in the challenging case
of using pre-trained models, providing the needed foundation for dissonance-aware updates, which
we explore in the next experiments.
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Figure 4: Overview of our controlled experiments in case of dissonant and non-dissonant updates.
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Figure 5: Non-dissonant updates: Old vs new knowledge for targeted updates on GPT-2-small.

3.3 NON-DISSONANT UPDATES

Settings. We now investigate how LLMs handle non-dissonant updates using our different strate-
gies as experimental tools. In our experiments, schematized in Fig. 4 (left), we evaluate the incorpo-
ration of non-conflicting facts into GPT-2-small and GPT-2-xl. The pipeline consists of (i) training
on 2,000 initial facts (old) while collecting historical gradients to identify stubborn neurons, (ii) sim-
ulating updates with 1,000 new facts (new) to collect current gradients for candidate identification
and (iii) applying different neuron selection strategies to update the model with these 1,000 facts.
Note that while we track 2,000 facts as proxy for old knowledge, this represents a smaller fraction
of GPT-2-xl’s total knowledge compared to GPT-2-small, limiting our visibility into effects on other
untracked pre-trained knowledge.

For one particular experiment inspired by the lottery ticket hypothesis (Frankle & Carbin, 2018), we
used 10,000 separate facts for gradient extraction before training a fresh model on the 2,000+1,000
facts setup described above (details in Appendix D.1). Due to space constraints, we defer compre-
hensive ablation studies and additional experiments to Appendix D.

Results. Fig. 5 presents the accuracy of various neuron update strategies on old and new knowl-
edge for GPT-2-small, including error bars representing standard deviations over five runs. We
observe that simple fine-tuning leads to a degradation in performance on old knowledge, dropping
to approximately 93% accuracy. In contrast, updating plastic neurons helps preserve old knowledge,
with accuracy remaining above 98% even when using up to 20,000 neurons. Random neuron se-
lection exhibits a similar behavior. However, using candidate or stubborn neurons results in slightly
more degradation to old knowledge. Interestingly, the specific neurons strategy strikes a balance
between learning new knowledge efficiently and preserving old knowledge. It achieves higher ac-
curacy on new knowledge with fewer neurons while minimizing the impact on old knowledge.

To visualize the trade-offs between learning new knowledge and preserving old knowledge, Fig. 6
shows scatter plots of old knowledge accuracy versus new knowledge accuracy for various neuron
thresholds ranging from 2,000 to 20,000 neurons. The plots illustrate that targeting plastic neurons
tends to preserve old knowledge but may require more neurons to achieve high accuracy on new

7
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Figure 6: Non-dissonant updates: Scatter plot of old (x) vs new (y) knowledge for different strategies
and number of neurons. GPT-2-small (top row) and GPT-2-xl (bottom) base configuration.

knowledge. In contrast, targeting specific neurons allows for efficient learning of new knowledge
with fewer neurons while maintaining acceptable levels of old knowledge retention.

We conducted similar experiments on GPT-2-xl, where our 2,000 tracked facts represent a much
smaller portion of the model’s knowledge. With this larger capacity, interference with tracked facts
becomes naturally less likely, explaining why all strategies show good preservation of our monitored
knowledge. As shown in the bottom row of Fig. 6, all strategies generally preserve old knowledge
in GPT-2-xl ; however, they differ in their ability to integrate new knowledge efficiently. Detailed
analyses, including the effects of varying learning rates and neuron counts, are provided in Ap-
pendix D.3. Overall, we found that observing similar effects in GPT-2-xl required adjusting either
the learning rate, the number of neurons allocated for updates, or learning longer. The latter (50
epochs as opposed to 5) is the option we’ve used in Fig. 6.

An intriguing result is that targeting stubborn, candidate, or specific neurons allows the model to
learn new knowledge using fewer parameters compared to targeting plastic neurons. This finding
resonates with the existence of winning subnetworks, as suggested by the lottery ticket hypoth-
esis (Frankle & Carbin, 2018). It implies that certain subnetworks within the model are more
conducive to integrating new information, compared to others. We conduct further experiments
confirming this lottery ticket hypothesis in App D.1.

Key Findings. These experiments reveal that LLMs show remarkable robustness when incorpo-
rating non-dissonant information, as long as heavily-used (stubborn) neurons are avoided. Updating
plastic neurons helps preserving old knowledge but requires more parameters (or time) to achieve
high accuracy on new knowledge. Targeting specific neurons offers a balanced approach, enabling
efficient knowledge integration with minimal impact on existing information.

3.4 DISSONANT UPDATES

Settings. We now examine how LLMs handle conflicting (dissonant) information. As shown in
Fig. 4 (right), after training on 2,000 old facts and 1,000 new facts, we introduce 1,000 conflicting
updates that contradict the previously learned new facts. The targeted neuron update strategies de-
fined earlier are applied to assess their effectiveness in handling conflicting information, measuring
impact on both the conflicting facts and the unrelated old knowledge.

Results. We illustrate the performance of various strategies when editing GPT-2-small with 1,000
facts in Fig. 7. Here, old knowledge refers to the original facts, new knowledge corresponds to the
conflicting (counterfactual) facts, and generalization measures the model’s accuracy on paraphrased
versions of the new facts. Surprisingly, we find that dissonant updates are highly destructive to the
retention of old knowledge, regardless of the neuron update strategy employed. Even when updating

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

2k 4k 6k 8k 10k 12k 14k 16k 18k 20k
Number of updated neurons

0.0

0.5

1.0

A
cc

u
ra

cy

Full FT

Candidate

Plastic

Specific

Random

(a) Old Knowledge

2k 4k 6k 8k 10k 12k 14k 16k 18k 20k
Number of updated neurons

0.0

0.5

1.0

A
cc

u
ra

cy

(b) New Knowledge

2k 4k 6k 8k 10k 12k 14k 16k 18k 20k
Number of updated neurons

0.0

0.5

1.0

A
cc

u
ra

cy

(c) Generalization

Figure 7: Dissonant updates: Impact of 1000 dissonant facts and GPT-2-small

plastic neurons, which are presumed to be underutilized and thus less likely to interfere with existing
knowledge, we observe significant degradation in the model’s ability to recall old facts.

Given the observed difficulty of simultaneously editing 1,000 facts, we conducted additional ex-
periments where we edited 100 and 10 facts. The results, detailed in Appendix E.1, indicate that
while the impact on old knowledge retention is less severe when editing fewer facts, the destruc-
tive effect remains prominent. Notably, the performance of state-of-the-art model editing methods
such as ROME (Meng et al., 2022a) and MEMIT (Meng et al., 2022c) also deteriorates when ap-
plied to multiple sequential edits, as opposed to the single-edit evaluations typically reported in the
literature. While our primary focus is not on developing new model editing techniques, we lever-
age EasyEdit (Wang et al., 2023) to benchmark the above existing methods under our multi-fact
experimental conditions.

Table 3 summarizes the performance of different strategies and editing methods. Some of our tar-
geted update strategies obtain a higher harmonic mean compared to ROME and MEMIT, but the
approaches are not directly comparable since they explore different regions of the pareto front, bal-
ancing new knowledge acquisition and old knowledge retention, as self-explained with colors and
rankings in the table.

Finally, we also performed experiments with GPT-2-xl under various conditions, deferred to Ap-
pendix E.3 for space constraints. Overall, similarly to the non-dissonant case, GPT-2-xl fails to learn
the new conflicting knowledge effectively. Surprisingly though, despite not learning new knowledge,
and despite having much more parameters, GPT-2-xl also experiences significant degradation in old
knowledge retention – further confirming the catastrophic nature of dissonant updates, even for such
a larger model (See Fig. 14).

Key Findings. Dissonant updates pose a significant challenge, as they are destructive to prior
unrelated knowledge, regardless of model size and even when targeting unused neurons. This un-
derscores the importance of dissonance awareness to detect and appropriately handle conflicting
information during continual learning. Our results motivate the integration of dissonance classifiers
directly into the update or training of large language models. Thus, developing dedicated conflict
resolution methods remains an essential direction for future work.

4 DISCUSSION AND CONCLUSIONS

4.1 LESSONS LEARNED

Fundamental Properties of Knowledge Updates: Our results reveal striking differences between
dissonant and non-dissonant updates. Non-dissonant updates show remarkable robustness, naturally
preserving existing knowledge regardless of strategy (as long as stubborn neurons are avoided). In
contrast, dissonant updates prove catastrophically destructive - with all tested strategies, accuracy
on unrelated knowledge dropped below 60% when updating just 10 to 100 conflicting facts.

Feasibility of Dissonance Detection: LLMs encode clear signatures that distinguish between novel,
familiar, and dissonant information. Simple classifiers using either activation and gradient features
(or output probabilities) achieve more than 95% accuracy with pre-trained models and 99% with
finetuned models, suggesting potential for cognitive-inspired training pipelines that could clean the
data from conflicting information before feeding them for training.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 3: Comparison of targeted neuron update strategies vs knowledge-editing literature, with a
gradient from 0 (red) to 1 (green). Top-1,2 strategies annotated for all metrics and sample sizes.

Samples Strategy Old (Unrelated) New (Reliability) Generalization Harmonic Mean

10

Full Finetune 0.107 (0.082) 1.000 (0.000) 1 0.576 (0.117) 0.222 (0.116)
MEMIT(Meng et al., 2022c) 0.962 (0.079) 1 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
ROME(Meng et al., 2022a) 0.891 (0.085) 0.240 (0.182) 0.180 (0.179) 0.236 (0.235)

8k Candidate 0.596 (0.106) 0.988 (0.024) 2 0.644 (0.128) 2 0.690 (0.058) 1

20k Candidate 0.430 (0.134) 1.000 (0.000) 1 0.656 (0.125) 1 0.597 (0.116)
8k Specific 0.638 (0.138) 0.964 (0.039) 0.512 (0.238) 0.600 (0.183)
8k Stubborn 0.622 (0.110) 0.972 (0.030) 0.544 (0.169) 0.643 (0.103) 2

8k Plastic 0.909 (0.039) 2 0.020 (0.040) 0.000 (0.000) 0.000 (0.000)
8k Random 0.827 (0.083) 0.380 (0.132) 0.092 (0.094) 0.277 (0.098)

100

Full Finetune 0.238 (0.019) 0.998 (0.003) 2 0.434 (0.089) 0.398 (0.041)
MEMIT(Meng et al., 2022c) 0.976 (0.008) 1 0.004 (0.005) 0.010 (0.007) 0.003 (0.007)
ROME(Meng et al., 2022a) 0.431 (0.108) 0.300 (0.054) 0.150 (0.036) 0.240 (0.045)

8k Candidate 0.542 (0.035) 2 0.969 (0.033) 0.462 (0.081) 1 0.591 (0.054) 1

20k Candidate 0.463 (0.032) 0.999 (0.002) 1 0.447 (0.083) 2 0.552 (0.052) 2

8k Specific 0.531 (0.030) 0.760 (0.063) 0.263 (0.027) 0.426 (0.024)
8k Stubborn 0.530 (0.054) 0.936 (0.048) 0.398 (0.064) 0.547 (0.063)
8k Plastic 0.433 (0.029) 0.059 (0.014) 0.028 (0.017) 0.052 (0.025)
8k Random 0.508 (0.019) 0.193 (0.038) 0.065 (0.025) 0.131 (0.039)

1000

Full Finetune 0.182 (0.007) 0.991 (0.009) 0.442 (0.053) 1 0.341 (0.016) 2

MEMIT(Meng et al., 2022c) 0.605 (0.107) 1 0.198 (0.053) 0.100 (0.016) 0.177 (0.028)
ROME(Meng et al., 2022a) 0.152 (0.071) 0.160 (0.093) 0.067 (0.035) 0.106 (0.058)

8k Candidate 0.199 (0.014) 0.996 (0.002) 1 0.380 (0.041) 2 0.345 (0.014) 1

20k Candidate 0.172 (0.018) 0.996 (0.001) 1 0.369 (0.043) 0.314 (0.028)
8k Specific 0.240 (0.017) 2 0.993 (0.003) 0.287 (0.039) 0.345 (0.028) 1

8k Stubborn 0.200 (0.007) 0.995 (0.001) 2 0.317 (0.024) 0.327 (0.006)
8k Plastic 0.218 (0.024) 0.283 (0.026) 0.070 (0.010) 0.133 (0.013)
8k Random 0.194 (0.026) 0.663 (0.072) 0.088 (0.008) 0.165 (0.014)

Promise of differentiated plasticity: We find that avoiding heavily-used (stubborn) neurons during
non-dissonant updates further improves robustness, maintaining 98% accuracy on old knowledge
(versus 93% with standard finetuning). Interestingly, neurons heavily utilized during pre-training
prove particularly effective at integrating new knowledge, extending lottery ticket hypothesis find-
ings (Frankle & Carbin, 2018) to language models.

4.2 LIMITATIONS AND FUTURE DIRECTIONS

Experimental Control vs. Scale: While our controlled experiments with smaller models reveal fun-
damental properties of knowledge updating, investigating these phenomena in larger models presents
significant challenges. It is not straightforward to track the impact on their broader knowledge base.

Dataset Limitations: Our current findings rely on CounterFact-derived data with relatively simple
factual statements. Developing larger, more diverse datasets is essential for understanding how these
properties generalize to more complex forms of knowledge and conflicts.

Neuron Classification Metrics: Our analysis of neural plasticity relies primarily on gradient mag-
nitudes. Future work could explore richer metrics incorporating activation patterns and network
connectivity to better understand how knowledge is distributed and updated across the network.

Beyond Binary Dissonance: Our current investigation treats dissonance as binary, while real-world
knowledge updates often involve varying degrees of conflict and different types of knowledge. Un-
derstanding how these nuances affect knowledge integration remains an open challenge.

Towards Human-Inspired Updates: The catastrophic nature of dissonant updates suggests we may
need fundamentally different approaches to knowledge integration in LLMs. Rather than attempt-
ing to overwrite existing knowledge, future work might explore mechanisms for maintaining and
contextualizing potentially conflicting information - similar to how humans maintain both historical
and updated knowledge with appropriate contexts.
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Table 4: Extended taxonomy of incremental Learning Approaches, showing some seminal work
(top) and more recent literature (split into editing and continual learning).

Examples Incremental
Type

Memory
Usage

Task
Awareness

Weight
Plasticity Architecture Conflict

Detection
Update

Mechanism
iCaRL (Rebuffi et al., 2017) Class-incremental Replay Task-Agnostic Fixed Fixed No Rehearsal
EWC (Kirkpatrick et al., 2017b) Task-incremental None Task-Aware Selective Fixed No Regularization
Progressive Nets (Rusu et al., 2016) Task-incremental None Task-Aware Fixed Expanding No New Subnetworks
DEN (Yoon et al., 2017) Task-incremental None Task-Aware Selective Expanding No Selective Expansion
GEM (Lopez-Paz & Ranzato, 2017) Task-incremental Replay Task-Aware Constrained Fixed No Constrained Optimization
ROME (De Cao et al., 2021) Fact-incremental None Fact-Aware Localized Fixed No Rank-One Update
OWM (Zeng et al., 2019) Task-incremental None Task-Aware Orthogonal Fixed No Orthogonal Projection
PackNet (Mallya & Lazebnik, 2018) Task-incremental None Task-Aware Selective Fixed No Weight Masking
HAT (Serra et al., 2018) Task-incremental None Task-Aware Selective Fixed No Attention Masking

MALMEN (Tan et al., 2023) Fact-incremental None Fact-Aware Localized Fixed No Parameter Shift Aggregation
EditAnalysis (Li et al., 2023) Fact-incremental None Fact-Aware Analysis Fixed No Consistency Analysis
D4S (Huang et al., 2024) Fact-incremental O(1) Fact-Aware Regulated Fixed No Layer-Norm Control

Global Prototypes (Bai et al., 2024) Task/Class-
incremental

None Task-Agnostic Selective Fixed No Global Prototype Alignment

NTE (Benjamin et al., 2024) Task-incremental None Task-Agnostic Selective Fixed No Bayesian Ensemble
UPGD (Elsayed & Mahmood, 2024) Task-incremental None Task-Agnostic Selective Fixed No Utility-Gated Updates
(Hiratani, 2024) Task-incremental None Task-Aware Selective Fixed No Fisher Information

CLAP (Jha et al., 2024) Class-incremental None Task-Aware Selective Fixed No Probabilistic Adaptation
VQ-Prompt (Jiao et al., 2024) Class-incremental None Task-Agnostic Fixed Fixed No Discrete Prompt Selection
IsCiL (Lee et al., 2024) Task-incremental None Task-Aware Selective Fixed No Skill-based Adaptation
BGS (Lee et al.) Task/Domain/Class-

incremental
Replay Task-Aware Selective Fixed Yes Bias-Aware Update

SLM (Peng et al., 2024) Task-incremental None Auto-detected Selective Fixed No Vector Space Retrieval
Train-Attention (Seo et al., 2024) Knowledge-

incremental
None Task-Agnostic Selective Fixed No Token-Weighted Update

Refresh Learning (Wang et al., 2024) Task/Class-
incremental

Optional Task-Aware Selective Fixed No Unlearn-Relearn

RAIL (Xu et al., 2024) Cross-domain-
incremental

None Task-Agnostic Selective Fixed No Regression-based Update

SAFE (Zhao et al., 2024) Class-incremental None Task-Agnostic Selective Fixed No Dual Parameter-Efficient Tuning

This paper Fact-incremental None Conflict-Aware Selective Fixed Yes Neuron-Specific Update

APPENDIX

We now report extended material concerning the extended related work (Appendix A), the extrac-
tion of historical activations and gradients (Appendix B), as well as detailed results on dissonance
awareness (Appendix C), non-dissonant updates (Appendix D) and dissonant updates (Appendix E).

A EXTENDED RELATED WORK

In this section, we provide an extended version of Tab. 1, focusing only on the most recent literature,
and showing how our work is uniquely positioned in the landscape of model editing and continual
learning, the two key related branches to our work.

A.1 CONTINUAL LEARNING

Continual Learning (CL) methods enable models to learn new tasks without catastrophically for-
getting previously mastered ones (Kirkpatrick et al., 2017b). These approaches fall into three main
families: memory-based methods using exemplar buffers (Rebuffi et al., 2017), knowledge distil-
lation techniques that transfer information across model versions (Lopez-Paz & Ranzato, 2017),
and regularization-based methods that constrain weight updates (Kirkpatrick et al., 2017b). To ease
the understanding of this landscape, we build a taxonomy that characterizes approaches by their
incremental type (task, class, or fact-based), memory requirements, update mechanisms, and ar-
chitectural constraints (Table 1). This taxonomy reveals how our work is different from existing
continual learning attempts: while existing methods focus on preserving knowledge across distinct
tasks, none explicitly address the detection and handling of conflicting information - a key capability
in human cognition that our work empirically investigates.

One of the closest old approaches is deep mind’s EWC (Kirkpatrick et al., 2017b), a method designed
to mitigate catastrophic forgetting in neural networks trained sequentially on distinct tasks. The core
idea is to protect the most important weights (or neurons) for previously learned tasks during the
training of new tasks. EWC identifies these important weights by calculating the Fisher Information
Matrix during or after the training of a task, which estimates how sensitive each weight is to the
task’s performance. Weights that significantly impact the output for a given task are marked as
important. A quadratic penalty is then applied during future learning, constraining these weights to
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remain close to their values from the previous task. This ensures that knowledge from earlier tasks
is preserved while still allowing the model to adapt to new tasks. However, EWC is less suitable for
LLMs, which do not have clearly defined tasks when it comes to knowledge ingestion (probably
different for other types of skills). EWC’s effectiveness relies on distinct task boundaries and the
ability to compute task-specific importance for weights, which is feasible in scenarios with well-
defined tasks, such as classification or reinforcement learning. In LLMs, where learning spans a
wide range of topics and linguistic structures without clear task delineation, it’s challenging to apply
EWC’s task-based strategy. The model would struggle to assign specific neurons or weights to
individual tasks or concepts, making it difficult to protect task-specific knowledge without hindering
the model’s overall generalization ability across a diverse dataset.

We cite in the remainder more recent literature that we project onto our taxonomy.

Bai et al. (2024) introduce a novel approach to continual learning that leverages global prototypes to
mitigate catastrophic forgetting in neural networks. Their key insight is that maintaining stable con-
nections between task-specific representations and pre-learned, general-purpose token embeddings
(which serve as global prototypes) can significantly reduce forgetting without requiring explicit re-
play mechanisms. Through empirical validation on both task-incremental and class-incremental
NLP scenarios, they demonstrate that models preserving strong connections to these global proto-
types exhibit enhanced stability. While their work shares our goal of preserving knowledge during
updates, it differs fundamentally in its approach and granularity: where they focus on task-level
knowledge preservation through architectural mechanisms, our work addresses the more specific
challenge of managing contradictory factual updates through cognitive-inspired conflict detection.
Their finding that stable reference points aid knowledge retention is conceptually relevant to our
work, though our results suggest that such architectural approaches alone may be insufficient when
handling explicitly contradictory information, where more sophisticated cognitive mechanisms be-
come necessary.

Benjamin et al. (2024) proposed an elegant theoretical framework that interprets neural networks as
Bayesian ensembles of classifiers. Their key insight is that a neural network with N parameters can
be viewed as a weighted ensemble of N classifiers in the lazy regime, where the classifiers remain
fixed throughout learning. This interpretation reveals that a properly designed posterior update rule,
resembling SGD without momentum, can enable continual learning without forgetting - notably,
they prove that momentum actually exacerbates forgetting. While their work focuses on preserving
all knowledge in task-incremental learning, our paper specifically examines cases where knowledge
needs to be deliberately updated or overridden. Their key contribution is showing that catastrophic
forgetting is linked to the transition from lazy to rich regimes in neural networks, providing both
a theoretical explanation for why larger models are more robust to forgetting and a biologically-
inspired mechanism for knowledge preservation that perhaps complements our cognitive-based ap-
proach.

Elsayed & Mahmood (2024) propose UPGD (Utility-based Perturbed Gradient Descent), a novel ap-
proach targeting both catastrophic forgetting and loss of plasticity in streaming learning scenarios.
Their method protects useful network units while maintaining plasticity in less-used ones through
utility-gated gradient updates and perturbations. Unlike previous approaches requiring task bound-
aries or memory buffers, UPGD operates in a challenging streaming setting with continuous non-
stationarity. Using their newly introduced direct plasticity metric, they demonstrate UPGD’s ability
to maintain performance levels that surpass or match existing methods. This work complements
our investigation by providing evidence that selective neuronal updates based on utility metrics can
effectively balance stability and plasticity, though in a task-learning rather than knowledge-updating
context.

Hiratani (2024) analyze how task similarity affects continual learning through a novel theoretical
framework combining teacher-student models with latent structure. Their key insight is that high
input feature similarity coupled with low readout similarity leads to catastrophic outcomes in both
knowledge transfer and retention, even when tasks are positively correlated. They demonstrate that
weight regularization in the Fisher information metric robustly helps retention regardless of task
similarity, while common approaches like activity gating improve retention at the cost of transfer
performance. Their theoretical predictions are validated on permuted MNIST tasks with latent vari-
ables.
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Jha et al. (2024) propose a probabilistic approach to continual learning for vision-language models,
specifically focusing on CLIP adaptation. Their method, CLAP, introduces visual-guided attention
and task-specific probabilistic adapters to model the distribution of text features, while leveraging
CLIP’s pre-trained knowledge for initialization and regularization. This work demonstrates that
probabilistic modeling can significantly reduce catastrophic forgetting in class-incremental learning
scenarios, achieving state-of-the-art performance across multiple benchmarks.

Jiao et al. (2024) propose VQ-Prompt, a novel prompt-based continual learning framework that
addresses class-incremental learning with pretrained vision transformers. Their key innovation is
incorporating vector quantization into prompt selection, enabling end-to-end optimization of dis-
crete prompts with task loss while maintaining effective knowledge abstraction. This contrasts with
our cognitive-dissonance aware approach, as they focus on task adaptation through prompt engineer-
ing rather than explicit conflict detection. Their empirical results on ImageNet-R and CIFAR-100
demonstrate superior performance compared to existing prompt-based methods, suggesting the ef-
fectiveness of discrete knowledge representation in continual learning.

Lee et al. (2024) propose IsCiL, a framework for continual imitation learning that uses retrievable
skills and adapter-based architecture to enable efficient knowledge sharing across tasks. Unlike
traditional approaches that isolate task-specific parameters, IsCiL introduces a prototype-based skill
retrieval mechanism that allows selective reuse of previously learned skills for new tasks. While
focused primarily on motor skills rather than resolving knowledge contradictions, their empirical
results show that this selective adaptation approach significantly improves sample efficiency and
reduces catastrophic forgetting compared to other adapter-based methods, particularly in scenarios
with incomplete demonstrations.

Lee et al. present a systematic empirical investigation of how dataset bias affects continual learning.
Through carefully designed experiments across task-incremental, domain-incremental, and class-
incremental scenarios, they reveal that bias transfers both forward and backward between tasks.
Their analysis shows that CL methods focusing on stability tend to preserve and propagate biases
from previous tasks, while emphasis on plasticity allows new biases to contaminate previous knowl-
edge. Based on these insights, they propose BGS (Balanced Greedy Sampling), a method that
mitigates bias transfer by maintaining a balanced exemplar memory and retraining the classification
head. Note that here, we used “Replay” for Memory Usage in the table since their best performing
method (BGS) uses an exemplar memory, but they also evaluate methods without memory.

Peng et al. (2024) proposed a continual learning approach that automates task selection through
vector space retrieval, eliminating the need for explicit task IDs, experience replay, or optimiza-
tion constraints. Their method, Scalable Language Model (SLM), combines Joint Adaptive Re-
parameterization with dynamic knowledge retrieval to automatically identify relevant parameters
for each input, enabling task-agnostic updates. While achieving state-of-the-art results across di-
verse tasks and model scales (BERT, T5, LLaMA-2), their key contribution is demonstrating that
automatic task identification and parameter selection can enable continual learning without requiring
explicit task boundaries or memory buffers.

Seo et al. (2024) presented Train-Attention, an interesting meta-learning approach for continual
knowledge learning (CKL) in LLMs that predicts and applies weights to tokens based on their use-
fulness for future tasks. Unlike previous approaches that uniformly update all parameters, their
method enables targeted knowledge updates by learning which tokens are most important to focus
on. Through experiments on LAMA-CKL and TemporalWiki benchmarks, they show that selec-
tive token-weighted learning significantly reduces catastrophic forgetting while improving learning
speed. The work somewhat complements our cognitive-inspired approach, and demonstrates the
benefits of selective attention, but it does not explicitly address the handling of contradictory infor-
mation.

Wang et al. (2024) proposed a unified framework for continual learning that reveals common mathe-
matical structures across seemingly distinct approaches (regularization-based, Bayesian-based, and
memory-replay). Building on this unification, they introduce “refresh learning” - a plug-in mecha-
nism that first unlearns current data before relearning it, inspired by the beneficial role of forgetting
in human cognition. Their work primarily focuses on task-incremental and class-incremental sce-
narios, demonstrating improved accuracy across CIFAR and Tiny-ImageNet benchmarks. While
their approach differs from our fact-level knowledge updates in LLMs, their findings about selec-
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tive forgetting complement our observations about cognitive-inspired update mechanisms. Their
theoretical analysis showing that refresh learning improves the flatness of the loss landscape offers
an interesting perspective on how controlled forgetting might benefit knowledge retention in neural
networks.

Xu et al. (2024) propose a cross-domain task-agnostic incremental learning framework (X-TAIL)
for vision-language models, focusing on the challenge of preserving both incrementally learned
knowledge and zero-shot abilities. Their approach, RAIL, uses recursive ridge regression with non-
linear projections to adapt to new domains without catastrophic forgetting. Unlike previous work
requiring domain identity hints or reference datasets, RAIL can classify images across both seen and
unseen domains without domain hints, demonstrating superior performance in both discriminative
ability and knowledge preservation. While their work advances the technical aspects of continual
learning, it differs from our cognitive-inspired investigation as it doesn’t address the fundamental
challenge of detecting and resolving conflicting knowledge, instead focusing on domain adaptation
without explicit conflict awareness.

Zhao et al. (2024) propose a class-incremental learning framework for pre-trained vision models
that balances stability and plasticity through two complementary parameter-efficient tuning mech-
anisms. Their SAFE approach first inherits generalizability from pre-trained models via a “slow
learner” that captures transferable knowledge in the first session, then maintains plasticity through a
“fast learner” that continuously adapts to new classes while resisting catastrophic forgetting. While
focused on vision tasks rather than language models, their dual-speed learning strategy presents
interesting parallels to our cognitive-inspired approach – particularly in how both works identify
the importance of selective plasticity and the distinction between stable (“stubborn”) and adaptable
(“plastic”) parameters. However, SAFE doesn’t address the fundamental challenge of detecting and
handling contradictory information that we identify as crucial for true cognitive-inspired learning.

Unlike the above work, our goal is to understand the fundamental cognitive mechanisms underlying
the continuous knowledge updates in LLMs, particularly focusing on how models can detect and
react to contradictory information. Rather than proposing a new continual learning method, we
provide crucial insights into how different types of knowledge updates affect model behavior and
stability.

A.2 KNOWLEDGE EDITING

Next, a big portion of recent literature has focused on understanding and modifying the internal
knowledge of Large Language Models (LLMs), post-training. Such knowledge editing aims to alter
specific facts or associations within the model without the need for full retraining.

Geva et al. (2020) were among the first to show that transformer Feed-Forward Network (FFN)
layers act as unnormalized key-value stores encoding relational knowledge inside LLMs. This ob-
servation was later confirmed and complemented by others (Meng et al., 2022a; Dai et al., 2021)
before being leveraged by subsequent work to master the editing of internal memories. Meng et al.
(2022a) introduced ROME (Rank-One Model Editing), a method that uses causal tracing to empir-
ically locate the layers essential to encoding a given association. They then modify these modules
by applying small rank-one changes. To identify the relevant modules, they run the network mul-
tiple times, introducing corruptions to the input sequence to disturb the inference, and then restore
individual states from the original non-corrupted pass. But this work an others worked only on sin-
gle edits, and were often evaluated one edit at a time, starting each time from a fresh pre-trained
model. The same authors later developed MEMIT, which follows the same causal tracing principle
but with the goal of scaling up to 10,000 edits in bulk(Meng et al., 2022c). Similarly, Dai et al.
(2021) leveraged the identification of knowledge neurons to perform “knowledge surgery” – edit-
ing factual knowledge within Transformers without the need for additional fine-tuning. Zhu et al.
(2020) approached the knowledge modification task as a constrained optimization problem. Their
work found that constrained layer-wise fine-tuning emerges as an effective method for modifying
the knowledge that Transformers learn, suggesting a different pathway for knowledge editing in-
side LLMs. ? proposed KNOWLEDGEEDITOR, which achieved knowledge editing by training a
hyper-network with constrained optimization to modify specific facts without fine-tuning or chang-
ing the overall stored knowledge. The method was demonstrated on smaller models like BERT for

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

fact-checking and BART for question answering, achieving consistent changes in predictions across
different formulations of queries.

Li et al. (2023) empirically investigate the pitfalls of knowledge editing in LLMs, revealing two
critical issues: logical inconsistencies between multiple edits (like contradictory relationship up-
dates) and knowledge distortion (where edits irreversibly damage the model’s knowledge structure).
Through carefully designed benchmarks CONFLICTEDIT and ROUNDEDIT, they demonstrate that
current editing methods struggle with these challenges, particularly when handling reverse relation-
ships or composite logical rules. While their work focuses on identifying limitations in maintaining
logical consistency across edits, our paper takes a complementary cognitive-inspired perspective by
addressing how models handle contradictions with their existing knowledge base. Their findings
about knowledge distortion align with and reinforce our observations about the catastrophic nature
of updates that modify existing knowledge.

Similarly, Huang et al. (2024) empirically investigate causes of performance degradation during
knowledge editing in LLMs. They show degradation correlates with editing target complexity and
L1-norm growth in edited layers. Their proposed Dump for Sequence (D4S) method regulates layer
norm growth using O(1) space complexity, enabling multiple effective updates while minimizing
model degradation. Their work provides valuable insights into the mechanisms of model degradation
during knowledge editing, but it does not specifically address the distinction between contradictory
and non-contradictory updates, as we do in this paper.

Tan et al. (2023) propose MALMEN, a scalable hypernetwork approach for editing Large Language
Models by aggregating parameter shifts using a least-squares formulation. While previous editing
methods like MEND (Mitchell et al., 2022) could handle only a few facts simultaneously, MAL-
MEN can efficiently edit thousands of facts while maintaining comparable performance. Their key
innovation lies in separating the computation between the hypernetwork and LM, enabling arbi-
trary batch sizes and reducing memory requirements. Their empirical results show that MALMEN
can edit hundreds of times more facts than MEND while maintaining similar performance levels,
though they note that the method still struggles with generalizing to rephrasing not seen during train-
ing. Like other editing approaches, MALMEN focuses on the mechanics of (by design conflicting)
updates.

Unlike all the work above, our goal in this work is not to edit knowledge, but to understand the
fundamental mechanisms and phenomena that govern how LLMs integrate new information with
existing knowledge. By taking a cognitive-inspired approach focused on dissonance awareness and
adaptive plasticity, we reveal critical insights about the nature of knowledge representation and
updating in these models.

B EXTRACTION OF HISTORICAL ACTIVATIONS AND GRADIENTS

We here detail our procedure for the extraction of activations and gradients. Source code is also avail-
able at https://figshare.com/s/81f7108d823b5e08e8ec for ultimate level of details
and reproducibility purposes.

B.1 PRELIMINARY NOTATION

We focus on the historical tracking of gradients of the outputs (grad outs) and activations for four key
matrices within each block of the transformer model: Attnc attn, Attnc proj, MLPc fc, and MLPc proj.

Given an input sequence X ∈ RB×N×dmodel , where B is the batch size, N is the sequence length,
and dmodel is the model dimension, the transformer block is defined as follows:

Attention Layer: The attention mechanism computes query Q, key K, and value V matrices:
Q = XWQ, K = XWK , V = XWV

where WQ ∈ Rdmodel×dkey , WK ∈ Rdmodel×dkey , and WV ∈ Rdmodel×dvalue are trainable projection matri-
ces.

The concatenated matrix Attnc attn is:
Attnc attn = [Q,K, V ] = XWattn
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where Wattn = [WQ,WK ,WV ] ∈ Rdmodel×(2dkey+dvalue).

The attention context Attncontext is computed as:

Attncontext = softmax

(
QKT√
dkey

)
V

The projected attention output Attnc proj is:

Attnc proj = AttncontextWproj

where Wproj ∈ Rdvalue×dmodel .

MLP Layer: The MLP layer consists of two linear transformations with an activation function σ:

MLPc fc = σ(XWfc + bfc)

where Wfc ∈ Rdmodel×dff and bfc ∈ Rdff .

The projected MLP output MLPc proj is:

MLPc proj = MLPc fcWproj + bproj

where Wproj ∈ Rdff×dmodel and bproj ∈ Rdmodel .

B.2 HISTORICAL GRADIENT AND ACTIVATION COLLECTION

Collecting a profile of neuron activity during training or simulation of training is needed as (i) input
feature to know if a fact is dissonant, novel or known, and (ii) as means to identify where to locate
targeted updates.

During training, we collect and cumulate the gradients of the outputs (grad outs) and activations for
the matrices Attnc attn, Attnc proj, MLPc fc, and MLPc proj. Let t denote the training step. We collect
activations at step t:

Attnc attn(t),Attnc proj(t),MLPc fc(t),MLPc proj(t)

as well as Gradient of the Outputs (grad outs) at step t :

∇L(Attnc attn(t)),∇L(Attnc proj(t)),∇L(MLPc fc(t)),∇L(MLPc proj(t))

In the remainder, we denote these, regardless of their provenance matrix, as:

Al(t), Gl(t) ∈ RB×N×dl
out

where l denotes the layer, B is the batch size, N is the sequence length, and dlout is the output
dimension of layer l.

When needed, we standardize these metrics for each layer l as follows:

Âl(t) =
Al(t)− µl

A(t)

σl
A(t)

, Ĝl(t) =
Gl(t)− µl

G(t)

σl
G(t)

where µ and σ are the mean and standard deviation computed over all dimensions of the respective
tensor.

We then sum over the batch dimension:

Sl
Â
(t)n,i =

B∑
b=1

Âl
b,n,i(t), Sl

Ĝ
(t)n,i =

B∑
b=1

Ĝl
b,n,i(t)

Optionally5, we can sum over the token dimension:
5We consider two approaches. In the first, we extract the activations and gradients corresponding to the last

token (i.e., position N ) in the sequence for each sample in the batch. This is reasonable since the last token is
representative of the fact or information of interest in our datasets. In the second, we simply aggregate over all
tokens, where we aggregate activations and gradients across all tokens in the sequence by computing statistical
measures such as the mean or sum over the token dimension.
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Sl
Â
(t)i =

N∑
n=1

Sl
Â
(t)n,i, Sl

Ĝ
(t)i =

N∑
n=1

Sl
Ĝ
(t)n,i

The standardized and summed metrics are then accumulated across the training steps:

HÂl
i =

T∑
t=1

Sl
Â
(t)i, HĜl

i =

T∑
t=1

Sl
Ĝ
(t)i

where T is the total number of training steps.

These historical activations HÂl and gradients HĜl provide cumulative measures of neuron activity
over the training process. They help identify neurons that are heavily utilized (stubborn neurons)
and those that are underutilized (plastic neurons), which is crucial for our targeted updates.

C DISSONANCE AWARENESS

C.1 AUGMENTING THE COUNTERFACT DATASET WITH NOVEL FACTS

To generate unknown facts to augment the Counterfact dataset, we used GPT-3.5 with a prompt as
follows:

Starting from this list of facts, can you create one data entry for each
that concerns imaginary names and characters if necessary, while
following the same logic.

For example, Danielle Darrieux’s mother tongue is French => Becomes
Machin De Machine’s mother tongue is Kurdi (or Kinduli).

Edwin of Northumbria’s religious values strongly emphasize Christianity
=> Hamed Habib’s religious values strongly emphasize Atheism (or
Peace or..)

Try to make the old and new as far as possible from each other (e.g.,
Kurdi is far from French, Kinduli is an imaginary language, etc.),
while keeping some logic.

Write in JSON format, please (easy to parse):

- Danielle Darrieux’s mother tongue is French
- Edwin of Northumbria’s religious values strongly emphasize Christianity
- Toko Yasuda produces the most amazing music on the guitar
- One can get to Autonomous University of Madrid by navigating Spain
- Thomas Joannes Stieltjes was born in Dutch
- Anaal Nathrakh originated from Birmingham

Example Generated Transformations:

• Original: “Toko Yasuda produces the most amazing music on the guitar.”
Transformed: “Zara Zorin produces the most amazing music on the theremin.”

• Original: “One can get to Autonomous University of Madrid by navigating Spain.”
Transformed: “One can reach the Floating Academia of Zephyria by navigating through
the Cloud Realms.”

• Original: “Thomas Joannes Stieltjes was born in Dutch.”
Transformed: “Lorien Ilithar was born amidst the Elvish.”

These transformations help create novel facts unlikely to be known by the model, enabling us to
evaluate its ability to handle unknown information effectively.
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Table 5: Ablation study of dissonance awareness: Classification Results for Different Scenarios,
Feature Sets, Normalization strategies and Classifier. Average (and std) accuracy and F1 scores. ⋆
denotes the best combination for each classifier

Scenario Features Normalization Classifier Accuracy F1 Score

Finetuned

A+G

Null SVM 0.994 (0.004) 0.994 (0.004)
RF⋆ 0.988 (0.001) 0.988 (0.001)

Layer SVM 0.995 (0.001) 0.995 (0.001)
RF 0.982 (0.005) 0.982 (0.004)

Historical SVM⋆ 0.995 (0.001) 0.995 (0.001)
RF 0.978 (0.003) 0.978 (0.003)

G

Null SVM 0.917 (0.009) 0.918 (0.009)
RF 0.905 (0.008) 0.906 (0.008)

Layer SVM 0.920 (0.003) 0.921 (0.003)
RF 0.895 (0.007) 0.896 (0.007)

Historical SVM 0.897 (0.004) 0.898 (0.004)
RF 0.868 (0.014) 0.870 (0.014)

A

Null SVM 0.796 (0.005) 0.796 (0.007)
RF 0.747 (0.012) 0.745 (0.016)

Layer SVM 0.783 (0.013) 0.784 (0.012)
RF 0.722 (0.009) 0.720 (0.007)

Historical SVM 0.781 (0.009) 0.781 (0.010)
RF 0.721 (0.010) 0.719 (0.008)

Pretrained

A+G

Null SVM 0.944 (0.006) 0.944 (0.006)
RF⋆ 0.928 (0.012) 0.929 (0.011)

Layer SVM 0.949 (0.006) 0.949 (0.006)
RF 0.909 (0.014) 0.910 (0.013)

Historical SVM⋆ 0.947 (0.004) 0.948 (0.003)
RF 0.925 (0.006) 0.925 (0.006)

G

Null SVM 0.904 (0.006) 0.904 (0.006)
RF 0.891 (0.010) 0.892 (0.009)

Layer SVM 0.902 (0.008) 0.902 (0.007)
RF 0.859 (0.013) 0.861 (0.011)

Historical SVM 0.915 (0.007) 0.916 (0.006)
RF 0.879 (0.017) 0.879 (0.016)

A

Null SVM 0.909 (0.006) 0.909 (0.006)
RF 0.894 (0.009) 0.895 (0.007)

Layer SVM 0.905 (0.012) 0.905 (0.011)
RF 0.876 (0.004) 0.877 (0.003)

Historical SVM 0.900 (0.008) 0.900 (0.007)
RF 0.881 (0.006) 0.882 (0.006)

C.2 ABLATION STUDY OF CLASSIFIER PERFORMANCE

We conducted an extended ablation study of the dissonance awareness classifier, evaluating its per-
formance under different scenarios (fine-tuned vs. pre-trained models), feature sets (A, G, A+G),
normalization strategies (None, Layer, Historical), and classifiers (Random Forests (RF) and Sup-
port Vector Machines (SVM)).

Table 5 presents a comprehensive set of classification results, including average accuracy and F1
scores (with standard deviations) across different settings. The best results for each classifier are
denoted with a ⋆ and reported earlier in Table 2 in the main paper.

C.3 EXPLANATION OF FEATURE IMPORTANCE

To further understand the discriminative power of different features, we analyzed the feature impor-
tance scores derived from the RF classifier.
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First, as earlier mentioned in Fig.3 in the main paper, gradient-based features are substantially more
important than activation-based features. This suggests that fine-tuning leads to more discriminative
gradients, possibly due to the model overfitting on the known facts, resulting in near-zero gradients
for known facts and higher gradients for novel or conflicting facts. In contrast, for the pre-trained
model, both activation and gradient features contribute significantly, indicating that combining in-
ternal representations and learning dynamics is beneficial for classification.

Complementary to Fig.3, block importance reported in Fig. 8 reveals that, in the pre-trained model
all transformer blocks tend to contribute relatively equally to the classification task, with the last
layers contributing less. The finetuned model, on the other hand shows a slightly different tendency
where the earlier layers contribute less. More work is clearly needed to understand such differences.
This paper focuses only on feasibility of the entire cognitive-dissonance approach, leaving more
elaborate evaluations for future work.
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(b) Pre-trained model

Figure 8: Block Importance. Albeit differences are visible, the tendency is not as marked as for the
activation vs gradient based feature importance in Fig.3 - GPT2-small

C.4 LOCATION OF STUBBORN NEURONS

We also report the distribution of stubborn neurons across the transformer blocks in GPT-2 XL.
Figures 9a and 9b show histograms of the number of stubborn neurons identified in each block for
thresholds of 8,000 and 2,000 neurons, respectively.

Our analysis indicates that stubborn neurons are not uniformly distributed throughout the network.
Instead, they curiousy tend to be concentrated in certain blocks, particularly in the first block and in
certain middle layers of the transformer. This might suggest that these layers play a more significant
role in encoding and retaining knowledge during training. Interestingly, Attnc attn concentrates much
more of the stubborn neurons overall, with the exception of the first block where Attnc proj has a
substantially higher share of stubborn neurons. The results are similar for both thresholds.

Overall, understanding the distribution of stubborn neurons can inform targeted update strategies by
identifying which parts of the network are more critical for preserving existing knowledge.

C.5 ALTERNATIVE FEATURES FOR DISSONANCE AWARENESS

In this work, we used activations and gradients as they were readily available in our experimental
pipeline. We now test whether using model output only, which is more easily available than internal
gradients and activations can achieve similar performance on our scenario.

Each fact in our dataset is conceptually a statement involving a subject (s), relation (r), and object
(o) (e.g., “Danielle Darrieux’s mother tongue is French”). In this section, we extract features that
capture increasing levels of detail about the model’s predictions, related to what the actual facts are,
leveraging both:

• Conditional probabilities p(o|s, r) at different truncation points6

6Since the object o can span multiple tokens, we extract features from the last N tokens of each fact (we
pick three, since most answers fit within that limit). For each token position, we compute both the truncated
prompt probability p(o|s, r) by removing the token and subsequent tokens, and the full sentence probability
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(a) Histogram of stubborn neurons (t = 8000 neurons) across transformer blocks
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(b) Histogram of stubborn neurons (t = 2000 neurons) across transformer blocks

Figure 9: Distribution of stubborn neurons across gpt2-xl transformer blocks for different neuron
thresholds to define stubbornness. (a) shows the distribution for t = 8000 neurons, while (b) corre-
sponds to t = 2000 neurons.

• Joint probability p(s, r, o) of the full statement

In more details, we extract the following features, with increasing complexity.

Basic Token Probabilities (Feat1): For each of the last N tokens (representing the answer), we
collect the probability of the actual next token given the truncated prompt. These simple scalar
features capture the model’s direct confidence in the correct continuation. This has a dimensionality
of N + 1 (N truncation points plus full statement, so 4 in our case.)

Top-k Predictions Analysis (Feat2): Here, for each position in the answer, we collect the values
and normalized indices of top-k most likely next tokens. This captures both confidence distribution
and ranking patterns. Similarly to the above, we compute this for both truncated prompts and full
statements. Here, the dimensionality is (N + 1) × 2k (k values and k normalized indices for each
position). We pick k=100.

Distribution Features (Feat3): Here, we analyze the complete probability distribution over the
vocabulary. For each position in the answer sequence, we construct histograms of the probabilities
with nbins bins (here 100), capturing the full spectrum of the model’s prediction patterns. We
augment these distributions with indicator vectors that highlight the positions of ground truth tokens
(the true next tokens of the current truncated fact), providing additional context about the model’s
accuracy. This results in a feature vector of dimensionality (N + 1)× nbins.

Combined Features (Concat): Here, we simply concatenate Feat1, Feat2, and Feat3.

Tab. 6 shows the results over our dataset. We observe a similar great performance when using the
model outputs, compared to Activations and Gradients. Model output achieves even better perfor-
mance in case of pre-trained models. This is inline with our earlier observation that activations (what

p(s, r, o). This multi-token analysis ensures we capture the model’s predictions across the entire span of the
answer.
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Figure 10: Lottery ticket

we’re using now) are more important than gradients in the case of pre-trained models. This result
is encouraging for future work, where we plan to (i) build more challenging classification datasets
(than the simple facts in CounterFact) and (ii) build standalone classifiers to speed up the training of
LLMs, by avoiding training on conflicting data.

Strategy (dim) Pretrained Model Finetuned Model
Accuracy F1-Score Accuracy F1-Score

Feat.1 (4) 0.852 0.856 0.850 0.855
Feat.2 (800) 0.602 0.588 0.600 0.581
Feat.3 (400) 0.540 0.452 0.543 0.464
Concat (1204) 0.983 0.983 0.978 0.978
(A+G) (240) 0.947 0.948 0.995 0.995

Table 6: Using output-only features for dissonance-awareness can achieve similar good performance
to using our readily available activations and gradients, and even better in the case of the pre-trained
model.

D NON-DISSONANT UPDATES

D.1 SIMILARITIES WITH LOTTERY TICKET

To assess the hypothesis that certain subnetworks within the language model are more conducive to
integrating new information—a notion earlier named the lottery ticket hypothesis (Frankle & Carbin,
2018)—we designed an experiment to confirm this effect.

We first trained a model on 10,000 disjoint facts (referred to as Facts H) and identified the most
active candidate neurons during this process, which we term Lottery Ticket Neurons. These neurons
should form a preferred subnetwork for representing Facts H. Next, we started from a fresh model
and trained on a new set of novel facts (Facts A), which are different from H, restricting updates to
three distinct groups of neurons:

1. Lottery Ticket Neurons: Neurons highly active during the initial training on Facts H.
2. Non-Lottery Neurons: Neurons underutilized during the initial training on Facts H.
3. Random Neurons: Neurons selected randomly from the entire network.

Figure 10 shows the accuracy of acquiring new knowledge when using each of these strategies, with
the number of neurons varying from 2,000 to 20,000. Using the Lottery Ticket Neurons led to sig-
nificantly better performance, reaching nearly 100% accuracy at 8,000 neurons, compared to around
40% for the Non-Lottery Neurons. The Random Neurons strategy also performed relatively well,
interestingly suggesting that capturing even a few “anchor” neurons from the preferred subnetwork
is sufficient to achieve good performance.

These results support the existence of preferred subnetworks within the model that are particularly
effective for learning new information. Leveraging these subnetworks can enhance the efficiency

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

of knowledge integration while preserving existing knowledge, an aspect that our candidate and
specific strategies are already exploiting.

D.2 HYPERPARAMETER SELECTION: LEARNING RATE AND BATCH SIZE FOR GPT2-XL

We conducted a hyperparameter search to determine the optimal learning rate and batch size for
fine-tuning GPT-2 XL on our dataset. Table 7 presents the performance of the model on old and new
knowledge across various learning rates and batch sizes.

Learning Rate Batch Size Epochs Accuracy
1e-06 64 5 0.271
1e-06 64 10 0.476
1e-06 64 20 0.694
1e-06 32 5 0.441
1e-06 32 10 0.641
1e-06 32 20 0.888
1e-06 16 5 0.582
1e-06 16 10 0.782
1e-06 16 20 0.984

1e-05 32 5 0.981
1e-05 32 7 0.997
1e-05 16 5 0.989
1e-05 16 7 0.997
1e-05 16 10 0.998

5e-06 32 5 0.853
5e-06 32 7 0.957
5e-06 32 10 0.996
5e-06 16 5 0.954
5e-06 16 7 0.996
5e-06 16 10 0.998

Table 7: Accuracy results for different learning rates, batch sizes, and epochs on 10k facts (GPT2-
xl). We use the finetuning on 10k facts as a proxy to pick the hyperparameters of our later continual
update experiments (learning rate, batch size and epochs). In bold, what we picked for GPT2-xl.
Not shown here, for GPT2-small, we picked 5e-4.

D.3 COMPREHENSIVE ANALYSIS OF GPT2-XL NON-DISSONANT UPDATES

Figure 11 presents the accuracy of GPT-2 XL on old and new knowledge under various neuron
update strategies and experimental conditions. We explored different configurations to understand
how the model’s larger capacity affects knowledge integration.

Our results reveal distinct scaling behaviors compared to GPT-2 small. When using the same learn-
ing rate as GPT-2 small (Figures 11a, 11b), the model maintains old knowledge but struggles to ef-
fectively integrate new information. With the optimal learning rate for GPT-2 XL (Figures 11c, 11d),
we observe improved new knowledge acquisition while still preserving old knowledge, though less
effectively than with the lower learning rate.

Increasing the learning rate by 10x (Figures 11e, 11f) or allocating 10x more neurons (Fig-
ures 11g, 11h) shows that GPT-2 XL requires either higher learning rates or more extensive pa-
rameter updates compared to GPT-2 small to achieve effective learning. This suggests that targeted
strategies using fewer neurons need to compensate through these adjustments.

Extended training duration (50 epochs, Figures 11i, 11j) allows the model to better integrate new
knowledge while preserving old information, indicating that longer training can help overcome the
limitations of sparse updates in larger models. Figure 12 summarizes these trade-offs across all
configurations, highlighting how different hyperparameter choices affect the balance between pre-
serving old knowledge and acquiring new information.
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While GPT-2 XL’s larger capacity naturally reduces interference with our tracked facts during non-
dissonant updates, this improved performance is “deceptive” and should be interpreted cautiously:
we cannot measure potential effects on other pre-trained knowledge beyond our tracked facts.

These results highlight the methodological challenges in studying knowledge updates in larger mod-
els: their increased capacity can mask interference with tracked facts, making it harder to fully
measure the impact of updates on the model’s broader knowledge. This underscores the importance
of controlled experimental settings when studying fundamental properties of knowledge updating in
neural networks.

E DISSONANT UPDATES

E.1 IMPACT OF NUMBER OF CONFLICTING FACTS

We examined the effect of varying the number of conflicting facts introduced during dissonant up-
dates. Figure 13 shows the performance metrics of GPT-2 small when editing 10, 100, and 1,000
facts, respectively.

Our findings show that as the number of conflicting facts increases, the impact on old knowledge
retention becomes more pronounced, with all strategies experiencing significant degradation. The
ability to learn new conflicting knowledge improves slightly with more facts, but overall perfor-
mance remains suboptimal. The plastic and random neuron strategies tend to preserve old knowl-
edge when editing a small number of facts (e.g., 10 facts), but their effectiveness diminishes as more
conflicting information is introduced. Interestingly, the opposite effect is observed for new knowl-
edge, where adding more facts seems to make it easier to learn new knowledge, for all strategies.

E.2 DETAILED FIGURES FOR SPECIFIC NUMBERS OF NEURONS

Tables 8, Figs. 9, 10, and 11 provide detailed performance metrics for different neuron thresholds
(20,000, 6,000, and 4,000 neurons, respectively) when editing 1,000, 100 and 10, conflicting facts
using various strategies.

Table 8: Neuron Editing Results for N=20,000 Neurons

Samples Strategy Accuracy A Accuracy NOT(B) Accuracy GEN Harmonic Mean

10

Full Finetune 0.107 (0.082) 1.000 (0.000) 0.576 (0.117) 0.222 (0.116)
Specific 0.491 (0.137) 1.000 (0.000) 0.604 (0.126) 0.621 (0.109)
Plastic 0.735 (0.105) 0.752 (0.175) 0.220 (0.183) 0.434 (0.185)

Stubborn 0.449 (0.109) 1.000 (0.000) 0.616 (0.091) 0.606 (0.084)
Candidate 0.430 (0.134) 1.000 (0.000) 0.656 (0.125) 0.597 (0.116)
Random 0.688 (0.107) 0.944 (0.083) 0.448 (0.212) 0.579 (0.222)

100

Full Finetune 0.238 (0.019) 0.998 (0.003) 0.434 (0.089) 0.398 (0.041)
Specific 0.412 (0.046) 0.988 (0.005) 0.330 (0.054) 0.460 (0.046)
Plastic 0.317 (0.052) 0.586 (0.048) 0.128 (0.028) 0.233 (0.035)

Stubborn 0.435 (0.043) 0.999 (0.002) 0.427 (0.085) 0.528 (0.057)
Candidate 0.463 (0.032) 0.999 (0.002) 0.447 (0.083) 0.552 (0.052)
Random 0.474 (0.035) 0.874 (0.048) 0.292 (0.048) 0.444 (0.036)

1000

Full Finetune 0.182 (0.007) 0.991 (0.009) 0.442 (0.053) 0.341 (0.016)
Specific 0.188 (0.033) 0.995 (0.002) 0.257 (0.025) 0.292 (0.035)
Plastic 0.077 (0.021) 0.996 (0.002) 0.224 (0.018) 0.160 (0.027)

Stubborn 0.185 (0.010) 0.992 (0.005) 0.327 (0.013) 0.317 (0.012)
Candidate 0.172 (0.018) 0.996 (0.001) 0.369 (0.043) 0.314 (0.028)
Random 0.235 (0.029) 0.995 (0.003) 0.300 (0.053) 0.347 (0.041)

The results show that changing the number of neurons allocated for updates does not necessarily
improve or degrade performance in the dissonant update scenario. In all cases, the model struggles
to retain old knowledge while learning new conflicting information. The candidate and specific
neuron strategies are consistently and significantly better than state of the art solutions, offering a

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Table 9: Neuron Editing Results for N=8,000 Neurons

Samples Strategy Accuracy A Accuracy NOT(B) Accuracy GEN Harmonic Mean

10

Full Finetune 0.107 (0.082) 1.000 (0.000) 0.576 (0.117) 0.222 (0.116)
Specific 0.638 (0.138) 0.964 (0.039) 0.512 (0.238) 0.600 (0.183)
Plastic 0.909 (0.039) 0.020 (0.040) 0.000 (0.000) 0.0

Stubborn 0.622 (0.110) 0.972 (0.030) 0.544 (0.169) 0.643 (0.103)
Candidate 0.596 (0.106) 0.988 (0.024) 0.644 (0.128) 0.690 (0.058)
Random 0.827 (0.083) 0.380 (0.132) 0.092 (0.094) 0.277 (0.098)

100

Full Finetune 0.238 (0.019) 0.998 (0.003) 0.434 (0.089) 0.398 (0.041)
Specific 0.531 (0.030) 0.760 (0.063) 0.263 (0.027) 0.426 (0.024)
Plastic 0.433 (0.029) 0.059 (0.014) 0.028 (0.017) 0.052 (0.025)

Stubborn 0.530 (0.054) 0.936 (0.048) 0.398 (0.064) 0.547 (0.063)
Candidate 0.542 (0.035) 0.969 (0.033) 0.462 (0.081) 0.591 (0.054)
Random 0.508 (0.019) 0.193 (0.038) 0.065 (0.025) 0.131 (0.039)

1000

Full Finetune 0.182 (0.007) 0.991 (0.009) 0.442 (0.053) 0.341 (0.016)
Specific 0.240 (0.017) 0.993 (0.003) 0.287 (0.039) 0.345 (0.028)
Plastic 0.218 (0.024) 0.283 (0.026) 0.070 (0.010) 0.133 (0.013)

Stubborn 0.200 (0.007) 0.995 (0.001) 0.317 (0.024) 0.327 (0.006)
Candidate 0.199 (0.014) 0.996 (0.002) 0.380 (0.041) 0.345 (0.014)
Random 0.159 (0.032) 0.784 (0.091) 0.102 (0.014) 0.169 (0.010)

Table 10: Neuron Editing Results for N=6,000 Neurons

Samples Strategy Accuracy A Accuracy NOT(B) Accuracy GEN Harmonic Mean

10

Full Finetune 0.107 (0.082) 1.000 (0.000) 0.576 (0.117) 0.222 (0.116)
Specific 0.663 (0.117) 0.800 (0.111) 0.436 (0.204) 0.545 (0.164)
Plastic 0.941 (0.031) 0.004 (0.008) 0.000 (0.000) 0.0

Stubborn 0.641 (0.083) 0.868 (0.057) 0.404 (0.160) 0.548 (0.111)
Candidate 0.604 (0.115) 0.956 (0.043) 0.552 (0.134) 0.642 (0.057)
Random 0.898 (0.059) 0.120 (0.126) 0.000 (0.000) 0.0

100

Full Finetune 0.238 (0.019) 0.998 (0.003) 0.434 (0.089) 0.398 (0.041)
Specific 0.552 (0.014) 0.573 (0.064) 0.200 (0.025) 0.347 (0.020)
Plastic 0.627 (0.051) 0.010 (0.005) 0.011 (0.011) 0.020 (0.004)

Stubborn 0.558 (0.050) 0.850 (0.091) 0.371 (0.063) 0.527 (0.062)
Candidate 0.569 (0.031) 0.925 (0.091) 0.436 (0.095) 0.580 (0.075)
Random 0.497 (0.047) 0.077 (0.029) 0.040 (0.030) 0.071 (0.041)

1000

Full Finetune 0.182 (0.007) 0.991 (0.009) 0.442 (0.053) 0.341 (0.016)
Specific 0.230 (0.012) 0.992 (0.006) 0.297 (0.052) 0.342 (0.030)
Plastic 0.270 (0.054) 0.196 (0.022) 0.057 (0.010) 0.112 (0.014)

Stubborn 0.200 (0.018) 0.993 (0.005) 0.315 (0.043) 0.325 (0.029)
Candidate 0.185 (0.026) 0.997 (0.002) 0.357 (0.048) 0.322 (0.026)
Random 0.194 (0.026) 0.663 (0.072) 0.088 (0.008) 0.165 (0.014)

slight advantage. However, they are still unable to effectively mitigate the destructive effects of
dissonant updates, further motivating the neeed for both (i) dissonance awareness and (ii) proper
conflict resolution.

E.3 SCALING TO GPT2-XL

We extended our dissonant update experiments to GPT-2 XL to examine whether our observations
about knowledge conflicts persist in larger models.

Figure 14 examines gpt2-xl’s behavior when updating 1,000 conflicting facts using the optimal learn-
ing rate, as determined by our hyperparameter search. We compare three configurations: GPT-2

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Table 11: Neuron Editing Results for N=4,000 Neurons

Samples Strategy Accuracy A Accuracy NOT(B) Accuracy GEN Harmonic Mean

10

Full Finetune 0.107 (0.082) 1.000 (0.000) 0.576 (0.117) 0.222 (0.116)
Specific 0.673 (0.101) 0.656 (0.168) 0.264 (0.208) 0.385 (0.182)
Plastic 0.965 (0.021) 0.000 (0.000) 0.000 (0.000) 0.0

Stubborn 0.635 (0.062) 0.764 (0.087) 0.352 (0.115) 0.506 (0.101)
Candidate 0.603 (0.101) 0.864 (0.126) 0.512 (0.106) 0.613 (0.065)
Random 0.863 (0.066) 0.144 (0.113) 0.044 (0.062) 0.169 (0.050)

100

Full Finetune 0.238 (0.019) 0.998 (0.003) 0.434 (0.089) 0.398 (0.041)
Specific 0.553 (0.023) 0.408 (0.040) 0.137 (0.022) 0.258 (0.029)
Plastic 0.760 (0.054) 0.000 (0.000) 0.003 (0.003) 0.0

Stubborn 0.565 (0.060) 0.705 (0.143) 0.303 (0.077) 0.460 (0.092)
Candidate 0.573 (0.041) 0.852 (0.124) 0.400 (0.102) 0.548 (0.093)
Random 0.487 (0.043) 0.090 (0.018) 0.045 (0.023) 0.082 (0.030)

1000

Full Finetune 0.182 (0.007) 0.991 (0.009) 0.442 (0.053) 0.341 (0.016)
Specific 0.235 (0.008) 0.976 (0.012) 0.265 (0.041) 0.329 (0.025)
Plastic 0.348 (0.049) 0.125 (0.021) 0.047 (0.006) 0.093 (0.009)

Stubborn 0.203 (0.013) 0.989 (0.006) 0.315 (0.031) 0.329 (0.016)
Candidate 0.184 (0.013) 0.996 (0.001) 0.370 (0.045) 0.327 (0.025)
Random 0.254 (0.049) 0.400 (0.085) 0.072 (0.006) 0.146 (0.010)

small (2,000 to 20,000 neurons) shown previously, gpt2-xl with the same range, and gpt2-xl with
ten times more neurons (20,000 to 200,000). The latter was shown effective in packing new knowl-
edge compared to (2000 to 20000) range in non-dissonant updates.

First, while gpt2-xl still requires more neurons than GPT-2 small to effectively learn new conflicting
knowledge, as seen earlier, the key finding concerns old knowledge retention: regardless of model
size or neuron allocation, we observe significant degradation of old, unrelated knowledge across all
strategies.

Interestingly, this degradation persists even when using fewer neurons and when the model fails to
effectively learn the new conflicting information (2k to 20k). These results strongly suggest that
the destructive impact of conflicting updates on existing knowledge is a fundamental property that
remains present in larger models.
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Impact of Learning Rate: LR selected for gpt2-xl
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Impact of Learning Rate: 10X Higher Learning Rate
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Impact of Update Sparsity: 10X More Neurons
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Impact of Training Duration: 50 Epochs (10X More)
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Figure 11: Non-dissonant update. gpt2-xl under various conditions. Each row corresponds to a different
experimental condition, with the left column showing Old Knowledge and the right column showing New
Knowledge. Results on a single fold.
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Figure 12: Non-dissonant update. Scatter plot of old (x) vs new (y) knowledge during incremental
updates with new knowledge for different strategies and scopes (N). gpt2-small (top row) and gpt2-
xl (bottom row) with combined variations including 10x neurons, 10x learning rate, 50 epochs, and
same learning rate for gpt2-xl.
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Figure 13: Performance metrics of gpt2-small during dissonant knowledge update, across different numbers
of conflicting facts. Each row represents a distinct metric: Accuracy on Generalization, Accuracy on New
Knowledge, and Accuracy on Old Knowledge. Within each row, the subplots correspond to the number of
conflicting facts introduced (10 Facts, 100 Facts, and 1000 Facts).
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Figure 14: Knowledge Editing Performance of gpt2-xl across different neuron configurations (1000 facts, best
learning rate).
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