
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

GROWING NETWORKS BY FOLDING MANIFOLDS
AT MISTAKES

Anonymous authors
Paper under double-blind review

ABSTRACT

Modern deep learning paradigms heavily rely on over-parameterized models,
leading to excessive costs and limited interpretability. While growing neural net-
works (GrowNNs) offer a biologically inspired alternative by incrementally ex-
panding architectures, existing methods lack theoretical grounding and often re-
sult in unstable, heuristic-driven growth. This paper proposes a novel geometric
framework that interprets neural network growth as folding the learned represen-
tation manifolds to enhance model capacity. We theoretically establish that strate-
gically adding neurons—equivalent to introducing geometric folds—at locations
corresponding to systematic prediction mistakes optimally increases expressiv-
ity. Our method introduces: (1) A manifold-based strategy for effective network
growth by identifying “typical mistakes” via clustering of mis-predictions and
targeted folding; (2) A stable fine-tuning solution using gradient-aligned initial-
ization and folding hyperplane regularization to ensure targeted correction of mis-
takes; (3) Ante-hoc instance-level interpretability, where each grown neuron can
be justified and explained by a specific mis-predicted data instance representing
a model deficiency. Experiments on synthetic manifolds, MNIST, and CIFAR-10
demonstrate controlled capacity expansion, competitive parameter efficiency, and
inherent explainability throughout the growth process.

1 INTRODUCTION

Motivated by neural scaling laws (Kaplan et al., 2020; Isik et al., 2024), the modern deep learning
paradigm tends to initialize over-parameterized models to ensure sufficient representational capacity
before training. This practice has driven the excessive scaling up of models in both academia and
industry, particularly with the dominance of Large Language Models (LLMs) (OpenAI, 2022; Guo
et al., 2025), which typically contain far more parameters than necessary to fit their training data or
to learn task-specific knowledge (Zhang et al., 2017; Thompson et al., 2020; Nakkiran et al., 2021;
Aghajanyan et al., 2021).

Numerous studies have explored parameter-efficient approaches in deep learning. For instance, Neu-
ral Architecture Search (NAS) (Ren et al., 2021), Network Pruning (Cheng et al., 2024), and Dy-
namic Neural Networks (DyNNs) (Han et al., 2021) are typical research directions that adaptively
adjust model architectures to enhance parameter efficiency. However, these methods often involve
computationally intensive searches over massive candidate architectures, require distinct stages be-
fore or after the main training phase, or perform structural modifications mainly at the macro-level
of blocks, layers, or modules instead of fine-grained neuron- or connection-level adaptations.

A promising line of research proposes incrementally growing small neural networks into larger, ca-
pable ones during training (Wu et al., 2019; Evci et al., 2022). This idea of growing neural networks
(GrowNNs) is intuitively appealing: biological nervous systems learn mainly by growing connec-
tions (synapses) through interactions with the environment. Compared to the dominant directions
described above, GrowNNs offer a more direct, efficient, and structurally coherent path to achieving
optimized neural architectures 1.

1A detailed review of studies on the optimization of neural network architecture, along with related works
on GrowNNs, is provided in the Appendix A.1.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Visualization of the neural network’s growing process on sine functions classification
simulation dataset.

Nevertheless, all the approaches discussed above are primarily empirical, offering limited theoretical
explanations for why specific architectural modifications optimize efficiency or how they influence
learning dynamics. Particularly for GrowNNs, where current works rely heavily on intuition and
focus mainly on the empirical efficiency of proposed growth policies (in a bid to rival NAS methods)
without understanding how growth processes affect model capacity and learning behaviors, nor
theoretically justifying why individual growth steps are effective and non-trivial. This often results
in aimless growth and even unstable performance 2.

In this study, we provide an interpretation of the neural network growth process through the lens
of established theories on manifold representations and expressivity of neural network architec-
tures. Specifically, we posit that: neural networks grow to enhance model capacity through
geometrically “folding” the learned representation manifold. This growth of capacity increases
expressive power, enabling the potential correction of systematic prediction mistakes in the original,
under-capacity model. Therefore, we propose that: effective growth can be achieved by strategi-
cally adding “folds” at manifold regions corresponding to the model’s “typical mistakes”. We
support this idea with theoretical analysis (Section 2), design a corresponding GrowNNs framework
(Section 3), and validate its efficacy through both observing according phenomena in simulations
on synthetic datasets as well as achieving successful learning on large scale images datasets like
MNIST and CIFAR-10 (Section 4).

In summary, this paper makes the following contributions:
• We provide a novel geometric interpretation of the neural network growing process.
• We propose an advanced GrowNNs framework featuring:

– An explainable, targeted growing strategy that identifies “typical mistakes” via mis-prediction
clustering and conducts targeted “manifold folding”;

– A stable fine-tuning solution using gradient-aligned initialization and folding hyperplane regu-
larization to ensure targeted correction of mistakes;

– Ante-hoc instance-level interpretability, where each grown neuron can be justified and ex-
plained by a specific mis-predicted data instance representing a model deficiency.

2 THEOREMS & DEFINITIONS

2.1 GROWING NEURAL NETWORKS AS FOLDING MANIFOLD

Unlike XAI studies for deep learning, which pursue intuitive interpretations for practical appli-
cations, theoretical studies of deep learning never cease to seek fundamental understanding of its

2A review of existing eXplainable Artificial Intelligence (XAI) in deep learning, discussed using the tax-
onomy of ante-hoc and post-hoc methods along with their respective challenges, relevant to the topic of this
research, is provided in Appendix A.2.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

principles. These studies look for more universal explanations, such as the approximation capaci-
ties, learning behaviors, and knowledge generalizability of deep learning models, for which, various
theories have been proposed.

One core theoretical framework explaining deep learning builds upon the Manifold Hypothesis,
which posits that high-dimensional real-world data often lie on or near a lower-dimensional man-
ifold (Tenenbaum et al., 2000; Roweis & Saul, 2000; Belkin & Niyogi, 2003). Neuroscience first
identified similar principles in biological recognition systems (DiCarlo & Cox, 2007), later extended
by Bengio et al. as a foundation for representation learning (Bengio et al., 2013). Brahma et al. for-
mally advanced this hypothesis to explain deep learning effectiveness (Brahma et al., 2015), and
subsequent evidence has further complemented the theory (Huang, 2018; Cohen et al., 2020):
Theorem 1 (Manifold Learning in Deep Neural Networks). Let M ⊂ RD be a d-dimensional
data manifold (d ≪ D), and X ⊂ RD be a finite set of (potentially noisy) samples drawn from a
neighborhood ofM. Consider a deep neural network fθ : RD → Y with parameters θ, trained on
X to approximate g :M→ Y . Then, fθ learns a compositional map:

fθ = ψ ◦ ϕ, fθ ≈ g
where ϕ : RD → Rh (h ≥ d) is a continuous map (often the penultimate layer) to a lower-
dimensional Euclidean representation space Rh whereM is approximately unfolded, and ψ : Rh →
Y is a simple function (e.g., linear).

This theorem implies that the internal representations learned by neural networks often exhibit
lower-dimensional topological structures. Moreover, since these networks are primarily trained for
regression or classification tasks, these structures are typically well-behaved and locally manifold-
like (homeomorphic to a Euclidean space). We can therefore define such structures as a single or a
collection of “learned manifold(s)”:
Definition 1 (Learned Manifold (Set) 3). For a deep neural network fθ = ψ ◦ ϕ trained on samples
near a data manifoldM⊂ RD, a learned manifoldMθ ⊂ RD is a single or collection of connected
topological manifold(s) implicitly learned by the network through ϕ and is defined by the task:
• For a regression task: Mθ is learned such that ϕ(Mθ) ≈ ϕ(M) in Rh. It can be interpreted as

the regression surface approximated by the set of connected sub-manifold(s) in the region where
the mapping ϕ is locally injective.

• For a classification task with classes K: a learned manifold Mθ:a,b is defined for each pair of
classes (a, b) (a ∈ K, b ∈ K) as a or a set of connected sub-manifold(s) of their binary decision
boundary. It is learned such that its embedding ϕ(Mθ:a,b) lies on and approximates a hyperplane
in Rh that linearly separates the representations of the two classes, ϕ(Ma) and ϕ(Mb).

There are also many other theoretical works exploring how neural architecture—particularly the
number of neurons—affects models’ expressive power and representation capacity (Pascanu et al.,
2013; Montúfar et al., 2014; Raghu et al., 2017; Lu et al., 2017; Hanin & Sellke, 2017a; Yarotsky,
2017; Park et al., 2020; Hanin & Rolnick, 2019), convergence behaviors and learning dynamics (Du
et al., 2019; Jacot et al., 2018; Lee et al., 2019; Allen-Zhu et al., 2019), as well as optimization land-
scapes and generalizability (Belkin et al., 2019; Liang et al., 2018; Arora et al., 2019). A consensus
from these studies indicates that increasing the number of neurons typically enhances a network’s
ability to approximate more complex functions. Geometrically, this process can be interpreted as
locally increasing the topological complexity of the learned manifold by “folding” it on the input /
feature spaces.
Definition 2 (Folding on Manifold). Given a neural network with parameters θ ∈ Rp, let
Mθ ⊂ RD be the maximum-complexity manifold (set) learnable by the network. Adding a neu-
ron with activation σ : R → R transforms the learned manifold (set) into Mθ′ ⊂ RD (with the
new set of network parameters θ′ ∈ Rq , q > p), locally increasing topological complexity, which,
geometrically performs a “folding” operation on the manifold / sub-manifold in form of either:

• Non-Smooth Folding: If σ is piecewise linear (e.g., ReLU), the manifold’s complexity increases
by introducing additional “crease” (non-differentiable edge):

C(Mθ′) < C(Mθ)

where C denote a function of smoothness measuring the number of continuous derivatives (differ-
entiability class) on the manifold.

3Proof of the existence of learned manifold (set) are provided in the Appendix B.1

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

• Smooth Folding: If σ is smooth (e.g., sigmoid, tanh), the manifold’s complexity increases by
introducing additional variation to its total curvature:∫

Mθ′

∥κ∥2dV ≥
∫
Mθ

∥κ∥2dV

where ∥κ∥2 denotes the squared norm of the curvature tensor.

Given that the mechanism of the GrowNNs algorithms is to expand network architecture through
the strategic addition of neurons, we can interpret the process as follows:
Theorem 2 (Growing Neural Networks as Folding Manifold 4). Network growth through the addi-
tion of a neuron induces a local folding of the learned manifold (set).

Beyond interpreting neural network growth, a key innovation of the above framework is that: we
can also precisely locate where “folding” occurs in input / intermediate feature spaces. This enables
geometric analysis of GrowNNs algorithms through topological changes.

Specifically, each growth step can be formularized as follow:
Definition 3 (Growing a Neuron). Consider a Multi-Layer Perceptron (MLP), which is the most
typical neural network, as a function fθ : RD → Y , taking an input x ∈ X (X ⊂ RD):

fθ(x) = σL−1

(
WL−1σL−2

(
· · ·σ1(W1x+ b1) · · ·

)
+ bL−1

)
where L is the total number of layers, Wi and bi denote the weight matrix and bias vector of the
i-th layer, and σi is the layer’s activation function introducing non-linearity.

Growing a new neuron in the i-th layer of the MLP (where 1 ≤ i ≤ L− 2) appends new parameters
to layers i and i+ 1:

Wnew
i =

[
Wi

wnew
i

]
, bnew

i =

[
bi

bnew
i

]
, Wnew

i+1 =
[
Wi+1 wnew

i+1

]
where wnew

i (input-weight vector), bnew
i (scalar bias), and wnew

i+1 (output-weight column vector) are
the new parameters added after growing each neuron.

The spatial location of where “folding” occurs can be find by:
Theorem 3 (Location of Folding5). Given a neuron grown in the i-th layer of a neural network
fθ : RD → Y , let wnew

i , bnew
i , and wnew

i+1 be the new parameters introduced on the i-th and the
(i+1)-th layer by this growth, the folding of a learned manifold occurs on the (D−1)-dimensional
pre-activation hyperplane under the linear constrain:

F = {x ∈ RD | ⟨wnew
i , ϕi−1(x)⟩+ bnew

i = 0}
where ϕi−1 : RD → Rdi−1 is the feature map up to layer i − 1 (ϕ0 = identity). The output-weight
vector wnew

i+1 does not affect F’s geometry.

2.2 GROW BY FOLDING AT TYPICAL MISTAKES

Building on the geometric framework established above, we now address the second research ques-
tion: How can we ensure the effectiveness of each growth step in Growing Neural Networks
(GrowNNs)? Given that network growth is geometrically interpretable as folding the learned man-
ifold (or manifold set) at specific locations, this question can be further specified as: Can we maxi-
mize growth effectiveness by identifying the optimal folding location during each growth step?

Before answering this question, we also need to define what is an “effective growth”. The funda-
mental objective of growing a neural network is to enhance its capacity to approximate complex
functions. Considerable theoretical studies also correlate increased neurons with reduction of sys-
tematic learning errors (Yarotsky, 2017; Hanin & Sellke, 2017b; Jacot et al., 2018). Thus, an effec-
tive growth can be considered as one that can mitigate systematic approximation errors arising from
insufficient model capacity.

4Proof of this theorem is provided in the Appendix B.2.
5Proof of this theorem is provided in the Appendix B.3.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Definition 4 (Typical Mistakes). Given a neural network fθ trained to approximate g :M→ Y , let
Mθ be a local manifold learned by the network. A “typical mistake” is an instance xmistake ∈ RD

such that:
xmistake ∈Mθ ∧ x /∈M∧ ∥fθ(xmistake)− g(xmistake)∥ > τ

where τ > 0 is an error tolerance threshold.

Geometrically, these systematic errors can be identified as clusters of prediction mistakes in the
input space, based on the intuition:
Hypothesis 1 (Clustering of Typical Mistakes). Mis-predictions arising from the same model defi-
ciency tend to distribute spatially close to each others in the input space.

This motivates the core growth strategy of our GrowNNs method:
Hypothesis 2 (Effective Growth by Folding at Typical Mistakes). Effective neural network growth
can be achieved by strategically folding the learned manifold at locations corresponding to the most
frequent or severe approximation mistakes.

2.3 FINE-TUNING FOR TARGETED MISTAKE CORRECTION

While identifying typical mistakes justifies the folding locations where network growth may be intu-
itively effective, the folding operation itself (i.e., adding a neuron) cannot directly correct mistakes.
Instead, it is the subsequent fine-tuning after growth that exclusively mitigates these approximation
errors. Therefore, measures also need to be designed to ensure post-growth fine-tuning effectively
addresses these mistakes.

Recent studies (Evci et al., 2022; Yuan et al., 2023; Verbockhaven et al., 2024; Pham et al., 2024) also
acknowledge the critical role of fine-tuning in GrowNNs, in contrast to classic GrowNN algorithms
that focus solely on when and where to add new neurons. Specifically, these methods highlight
the importance of initializing the new parameters that are introduced after adding neurons. For
examples, the GradMax algorithm (Evci et al., 2022) proposes:

1. initializing incoming parameters for the new neuron wnew
i and bnew

i in the prior layer to zero, so
as to preserve the network output unchanged immediately after growth;

2. maximizing the gradient norm of the outgoing parameters wnew
i+1 in the later layer to promote

rapid adjustment during fine-tuning.

However this approach has fundamental limitations:

• Regarding (1): as per our earlier findings, the new incoming parameters in the prior layer play a
key role in defining the location where folding occurs and therefore cannot be set to zero. Con-
versely, setting the outgoing parameters wnew

i+1 in the later layer to zero would cause zero outputs
from the new neurons, preventing gradients from being backpropagated through it;

• Regarding (2): GradMax only optimizes the norm of the gradient without considering its direction
during fine-tuning. This results in an aimless optimization process.

To address these limitations, we first analyzed the roles of each new parameter before proposing our
solutions to enforce fine-tuning towards effective correcting the identified mistakes.
Theorem 4 (Outgoing Parameters Govern Output Displacement6). For a neuron added to the i-th
layer of a neural network fθ, with new parameters wnew

i , bnew
i , and wnew

i+1, let ϕi−1(x) denote the
input and ϕi−1(x) be the feature passed to the i-th layer. The output perturbation is:

∆fθ = wnew
i+1 · σ(wnew

i · ϕi−1(x) + bnew
i)

where wnew
i+1 determines the direction of output displacement, while wnew

i and bnew
i control its mag-

nitude through scaling after activation.

Therefore, instead of setting wnew
i to zero, we propose initializing wnew

i+1 as a non-zero uniform vector
α · 1 (α ∈ R). This preserves non-zero gradients for backpropagation and avoids directional bias in
output space (for classification tasks, it contributes equally to all classes, while for regression tasks,
it also ensure controllable minimal shifts immediately after adding a new neuron).

6Proof of this theorem is provided in the Appendix B.4.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Accordingly, the idea of GradMax can be applied to initialize the remaining parameters wnew
i . No-

tably, besides simply maximizing its gradient norm, we can also constrain its gradient direction in
input space:

Theorem 5 (Incoming Weights Govern Input-Space Gradient Direction7). For a neuron added to
the i-th layer of a neural network fθ, with new parameters wnew

i , bnew
i , and wnew

i+1, let L(fθ(x),y) be
the loss function value, the perturbation of gradient in the input space is:

∆
∂L

∂x
=

(
∂L(fθ(x),y)

∂fθ(x)
·wnew

i+1

)
σ′(s) · Jϕi−1

(x)⊤xnew
i

where s = wnew
i · ϕi−1(x) + bnew

i and Jϕi−1
(x)⊤ is the Jacobian of ϕi−1. For those activated

region s > 0 in the input space, as long as the activation function is positive σ (for example, for
ReLU function, σ′(s) = 1 if s > 0), wnew

i dominates the change of direction for the networks’
input-space gradient ∂L(fθ(x),y)

∂x , wnew
i+1 scales its magnitude, while bnew

i does not affect its gradient.

This enables our key innovation: since wnew
i controls the input-space gradient direction, we can

initialize it to align the entire network’s input-space gradient ∂L(fθ(x)
new,y)

∂x with directions pointing
toward the identified typical mistakes. Thus, the subsequent fine-tuning can explicitly optimize on
the direction to correct these target mistakes.

Nevertheless, initialization alone cannot enforce the model’s optimization behaviors during fine-
tuning, thus it still cannot guarantee effective correction of the identified typical mistakes, resulting
in the instability in the existing GrowNNs methods. To address this, a regularization can be eas-
ily proposed based on our geometric framework, to constrain the fine-tuning so that the folding
hyperplane on the learned manifold can always be kept in the right direction:

Definition 5 (Folding Hyperplane Regularization). Let wnew
i , bnew

i , and wnew
i+1 be the parameters

introduced by the newly grown neuron, xmistake be the identified typical mistake that is used to fold
and growth the new neuron, and xfold be the original location where folding occurred on the original
learned manifold in the input / feature space. During the fine-tuning process, an regularization
Lfold-reg can be applied by adding together distances from two points to the folding hyperplane:

Lfold-reg =
|wnew

i · ϕi−1(xmistake) + bnew
i |+ |wnew

i · ϕi−1(xfold) + bnew
i |

∥wnew
i ∥

3 IMPLEMENTATION

Following the preceding analyses, we present our GrowNNs framework by answering the “when,
where, how, why” questions below.

3.1 WHEN TO GROW:

Network growth is triggered only when model convergence is statistically verified. Following estab-
lished practices (Wu et al., 2019; Evci et al., 2022), we define convergence as the state where further
parameter updates yield no meaningful improvement in training loss. This ensures deficiencies in
approximation capacity are identifiable once the model exhausts its existing expressive power, sepa-
rating systematic errors from transient mis-predictions. Specifically, convergence is verified through
two criteria: (i) attainment of a local minimum in training loss; and (ii) stationarity confirmed by an
Augmented Dickey-Fuller (ADF) test (p-value < 0.05) applied to the losses over the last 20 epochs.

3.2 WHERE TO GROW:

The discussion on “where to grow” mainly concerns about the optimal layer for expansion in a deep
network. Whereas, recent theoretical insights reveal that it may not need to be a concern: we can
simply grow to expand the width in a shallow ReLU network. Considerable research (Hanin & Rol-
nick, 2019; Bietti & Bach, 2021; Mao & Zhou, 2023; Villani & Schoots, 2023) have indicated that,
for ReLU-activated neural networks, increasing depth marginally impacts model expressiveness,

7Proof of this theorem is provided in the Appendix B.5.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

while widening the network does. What even more astonishing finding is that: any deep ReLU net-
work can be represented by a functionally equivalent shallow network. In this context, we propose
commencing with a shallow ReLU-activated single-hidden-layer MLP and expanding it by incre-
mentally adding neurons to this hidden layer 8. For its expressiveness guarantees and simplicity, it
is a universally adaptable baseline to grow from.

3.3 HOW TO GROW:

Our neural network growing strategy has been outlined in previous sections. Here, we consolidate
the implementation through the following pseudocode of our main algorithm 9.

Algorithm 1: Grow by Folding at Mistakes

Require: compact single-hidden-layer ReLU-activated MLP fθ : RD → RY with initial hidden
size h0 ≥ 1; hidden weights WA ∈ Rh0×D, biases bA ∈ Rh0 ; output weights WB ∈ Rh0×Y ,
biases bB ∈ RY ; training set X ; loss L; regularization coefficient α > 0 ;
WA,bA,WB ,bB ← train initial fθ on X using L until convergence;
repeat
xmistake ← cluster fθ’s mis-predictions in RD, find the centroid of the largest cluster,

and identify the closest instance in X to centroid;
if xmistake not found then

return fθ with current parameters WA, bA, WB and bB ;
end if
xfold ← find the closest point to xmistake on the hyperplane of the corresponding local region

of the learned manifold in RD (regression surface or decision boundary);
Initialize new neuron’s parameters:

(wnew
A)⊤ = maxwnew

A
(cosine-similarity(∂L∂x , (xfold − xmistake)) + E∥ ∂L

∂wnew
A
∥) /* ensure the

input-space gradient direction while maximize weight’s gradient norm */

bnew
A = −(wnew

A · xfold) // ensure folding at xfold

wnew
B = mean(WB) · 1 // initial outgoing parameters as a uniform vector

Grow by adding new neuron:

WA ←
[

WA

(wnew
A)⊤

]
bA ←

[
bA

bnew
A

]
WB ← [WB wnew

B]

WA,bA,WB ,bB ← train current fθ on X using L+ αLfold-reg until convergence;
until validation accuracy plateau
return fθ with current parameter WA, bA, WB and bB

3.4 WHY GROWTH IS EFFECTIVE:

Our GrowNNs framework allows justification of its rational with inherent (ante-hoc) interpretabil-
ity: as each growth of a neuron targets a specific “typical mistake”, which is an mis-predicted data
instance identifiable within the dataset, conceivably in representative of a systematic approxima-
tion error to be addressed in the subsequent fine-tuning. By visualizing this instance of marginal
case example, each neuron growth are tailored, can be justified and can be correspond to rectify-
ing a specific verified deficiency of in-capable model, thus enable us to achieve an instance-based
interpretation.

8While network depth remains pertinent to parameter efficiency and optimization dynamics (Mhaskar et al.,
2017; Belkin et al., 2019), hence subsequent methods to rewrite grown shallow network into its deep equivariant
and pruning the fully-connection MLP into sparsely-connected one will be discussed in later works given page
limitation

9More implementation details are provided in Appendix C

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 2: Changes of accuracies on training and testing set of the MNIST dataset on a network
growth to 50 hidden neurons and compare to another network initialized to have 50 hidden neurons.

4 EXPERIMENT

To validate our framework, we first visualize the “folding” process by growing network model on
some low-dimensional handcrafted manifolds. Specifically, we construct two datasets for simulation
experiments: 1. classification of two sine functions (separable in the input dimension by non-linear
function); 2. classification of two overlapped quadratic functions (inseparable in the current space).
Both experiments demonstrated enhanced model approximation capabilities after a single growth of
adding a neuron. For the sine classification task, we visually observed the folding process near iden-
tified “typical mistake” and corresponding adjustments of the decision boundary towards rectifying
the mis-prediction during the subsequent fine-tuning process.

Besides the above directly visualizable empirical evidence in the low dimensional space, we also
apply the proposed GrowNNs method on real-world dataset like the MNIST and CIFAR-10. Both
dataset show continue increasing in accuracy after the growing of every single neuron until final
convergence, indicating nearly the growth of every single neuron are effective in increasing the
model’s expressive power until they reach their learning ceiling on the dataset. On MNIST dataset,
we can even find that the both models of the same architecture, the one grow from compact using our
GrowNNs methods can achieve higher performance compare with another one that directly initalized
with the large architecture, indicating higher parameter utilization during the growth process.

Table 1: Growing networks (to convergence by tests) vs. initially over-parameterized equivalent
architectures on MNIST and CIFAR-10

Dataset Method Testing Set Accuracy
(mean ± sample standard deviation)

MNIST

growth to 50 hidden neuron 97.7943 ± 0.1383
growth to 100 hidden neuron 97.7948 ± 0.1380

initialized with 50 hidden neuron 97.6459 ± 0.1156∗
initialized with 100 hidden neuron 97.7806 ± 0.1205∗

CIFAR-10

growth to 70 hidden neuron 50.4732 ± 0.6048
growth to 100 hidden neuron 50.5286 ± 0.6028∗

initialized with 70 hidden neuron 50.4090 ± 0.5970∗
initialized with 100 hidden neuron 50.9484 ± 0.6067∗

∗ indicates significant difference with p-value < 0.0001 in t-test compare with the first method

A key advantage of our proposed framework is the interpretability it provides by visualizing the the
corresponding “typical mistake” identified in each growth step. Figure 3 demonstrates the identified
mis-predicted data instance when training on the MNIST dataset. Most of these identified typical
mistakes are, indeed, marginal cases that are easily confused between the wrongly predicted class
and the ground truth.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 3: Visualization of the identified typical mistakes in the first 9th growth on MNIST dataset.

5 DISCUSSION

This study introduces a foundational framework for eXplainable Network Growth (XNG), which
interprets the growth of every single neuron in a neural network as a process of “folding” a learned
manifold to address a model’s systematic prediction mistake. Relevant results validate that the pro-
posed framework can incrementally grow a network to achieve performance competitive with, and
sometimes superior to, a statically-initialized model of the same larger architecture. This enables
identifying an appropriate model scale during growth, moving beyond the conventional practice of
initializing an over-parameterized network based on empirical guesswork. Furthermore, the pro-
posed framework provides ante-hoc explainability for the growth process. Each added neuron is
justified by a specific deficiency in the model’s current capability, which can be directly observed by
visualizing the corresponding mis-predicted data instance that the neuron grown targeted at.

The GrowNNs framework presented in this study is currently restricted to width expansion on the
single hidden layer of a shallow, fully-connected network (MLP). However, network depth and layer
sparsity play critical roles in performance and parameter efficiency. Promisingly, findings from
recent studies suggest that a shallow-to-deep conversion and eXplainable Network Pruning (XNP)
could be adopted after the growth process to further enhance learning. These extensions, while
important, are beyond the scope and page constraints of this paper and are left for future work.

While the growth process can still introduces overfitting, the explainable nature of our framework
offers a unique solution: it allows for human intervention to guide the network growth via early
stopping or by rolling back inappropriate growth steps. This paves the way for eXplainable Network
Editing (XNE) with interactive human control, an aspect we will also elaborate on in future studies.

Finally, compared to adding a single neuron at a time, growing multiple neurons simultaneously
sacrifices some parameter efficiency but allows learning more complex features. This is illustrated
by our CIFAR-10 results: although growth to 70 neurons outperformed a statically-initialized 70-
neuron model, an over-parameterized model with 100 neurons achieved higher performance than one
grow to 100, suggesting that extracting complex features may require multiple neurons’ addition.
Thus, investigating the optimal growth granularity—balancing efficiency and feature extraction—is
a valuable future direction.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Armen Aghajanyan, Sonal Gupta, and Luke Zettlemoyer. Intrinsic dimensionality explains the ef-
fectiveness of language model fine-tuning. In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers), pp. 7319–7328, 2021.

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
parameterization. In International conference on machine learning, pp. 242–252. PMLR, 2019.

Sanjeev Arora, Simon Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained analysis of op-
timization and generalization for overparameterized two-layer neural networks. In International
conference on machine learning, pp. 322–332. PMLR, 2019.

Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps for dimensionality reduction and data
representation. Neural computation, 15(6):1373–1396, 2003.

Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern machine-
learning practice and the classical bias–variance trade-off. Proceedings of the National Academy
of Sciences, 116(32):15849–15854, 2019.

Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and new
perspectives. IEEE transactions on pattern analysis and machine intelligence, 35(8):1798–1828,
2013.

Alberto Bietti and Francis Bach. Deep equals shallow for relu networks in kernel regimes. 2021.

Pratik Prabhanjan Brahma, Dapeng Wu, and Yiyuan She. Why deep learning works: A manifold
disentanglement perspective. IEEE transactions on neural networks and learning systems, 27
(10):1997–2008, 2015.

Hongrong Cheng, Miao Zhang, and Javen Qinfeng Shi. A survey on deep neural network pruning:
Taxonomy, comparison, analysis, and recommendations. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2024.

Uri Cohen, SueYeon Chung, Daniel D Lee, and Haim Sompolinsky. Separability and geometry of
object manifolds in deep neural networks. Nature communications, 11(1):746, 2020.

James J DiCarlo and David D Cox. Untangling invariant object recognition. Trends in cognitive
sciences, 11(8):333–341, 2007.

Simon Du, Jason Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent finds global
minima of deep neural networks. In International conference on machine learning, pp. 1675–
1685. PMLR, 2019.

Utku Evci, Bart van Merrienboer, Thomas Unterthiner, Max Vladymyrov, and Fabian Pe-
dregosa. Gradmax: Growing neural networks using gradient information. arXiv preprint
arXiv:2201.05125, 2022.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Yizeng Han, Gao Huang, Shiji Song, Le Yang, Honghui Wang, and Yulin Wang. Dynamic neural
networks: A survey. IEEE transactions on pattern analysis and machine intelligence, 44(11):
7436–7456, 2021.

Boris Hanin and David Rolnick. Deep relu networks have surprisingly few activation patterns.
Advances in neural information processing systems, 32, 2019.

Boris Hanin and Mark Sellke. Approximating continuous functions by relu nets of minimal width.
arXiv preprint arXiv:1710.11278, 2017a.

Boris Hanin and Mark Sellke. Approximating continuous functions by relu nets of minimal width.
arXiv preprint arXiv:1710.11278, 2017b.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Haiping Huang. Mechanisms of dimensionality reduction and decorrelation in deep neural networks.
Physical Review E, 98(6):062313, 2018.

Berivan Isik, Natalia Ponomareva, Hussein Hazimeh, Dimitris Paparas, Sergei Vassilvitskii, and
Sanmi Koyejo. Scaling laws for downstream task performance of large language models. In ICLR
2024 Workshop on Mathematical and Empirical Understanding of Foundation Models, 2024.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and gen-
eralization in neural networks. Advances in neural information processing systems, 31, 2018.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

Jaehoon Lee, Lechao Xiao, Samuel Schoenholz, Yasaman Bahri, Roman Novak, Jascha Sohl-
Dickstein, and Jeffrey Pennington. Wide neural networks of any depth evolve as linear models
under gradient descent. Advances in neural information processing systems, 32, 2019.

Shiyu Liang, Ruoyu Sun, Jason D Lee, and Rayadurgam Srikant. Adding one neuron can eliminate
all bad local minima. Advances in Neural Information Processing Systems, 31, 2018.

Zhou Lu, Hongming Pu, Feicheng Wang, Zhiqiang Hu, and Liwei Wang. The expressive power of
neural networks: A view from the width. Advances in neural information processing systems, 30,
2017.

Tong Mao and Ding-Xuan Zhou. Rates of approximation by relu shallow neural networks. Journal
of Complexity, 79:101784, 2023.

Hrushikesh Mhaskar, Qianli Liao, and Tomaso Poggio. When and why are deep networks better
than shallow ones? In Proceedings of the AAAI conference on artificial intelligence, volume 31,
2017.

Guido Montúfar, Razvan Pascanu, Kyunghyun Cho, and Yoshua Bengio. On the number of linear
regions of deep neural networks. Advances in neural information processing systems, 27, 2014.

Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and Ilya Sutskever. Deep
double descent: Where bigger models and more data hurt. Journal of Statistical Mechanics:
Theory and Experiment, 2021(12):124003, 2021.

OpenAI. Introducing ChatGPT. Blog post, November 2022. URL https://openai.com/
index/chatgpt/.

Sejun Park, Chulhee Yun, Jaeho Lee, and Jinwoo Shin. Minimum width for universal approximation.
In International Conference on Learning Representations, 2020.

Razvan Pascanu, Guido Montufar, and Yoshua Bengio. On the number of response regions of deep
feed forward networks with piece-wise linear activations. arXiv preprint arXiv:1312.6098, 2013.

Chau Pham, Piotr Teterwak, Soren Nelson, and Bryan A Plummer. Mixturegrowth: Growing neural
networks by recombining learned parameters. In Proceedings of the IEEE/CVF Winter Confer-
ence on Applications of Computer Vision, pp. 2800–2809, 2024.

Maithra Raghu, Ben Poole, Jon Kleinberg, Surya Ganguli, and Jascha Sohl-Dickstein. On the ex-
pressive power of deep neural networks. In international conference on machine learning, pp.
2847–2854. PMLR, 2017.

Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-Yao Huang, Zhihui Li, Xiaojiang Chen, and Xin
Wang. A comprehensive survey of neural architecture search: Challenges and solutions. ACM
Computing Surveys (CSUR), 54(4):1–34, 2021.

Sam T Roweis and Lawrence K Saul. Nonlinear dimensionality reduction by locally linear embed-
ding. science, 290(5500):2323–2326, 2000.

Joshua B Tenenbaum, Vin de Silva, and John C Langford. A global geometric framework for
nonlinear dimensionality reduction. science, 290(5500):2319–2323, 2000.

11

https://openai.com/index/chatgpt/
https://openai.com/index/chatgpt/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Neil C Thompson, Kristjan Greenewald, Keeheon Lee, Gabriel F Manso, et al. The computational
limits of deep learning. arXiv preprint arXiv:2007.05558, 10:2, 2020.

Manon Verbockhaven, Théo Rudkiewicz, Sylvain Chevallier, and Guillaume Charpiat. Growing tiny
networks: Spotting expressivity bottlenecks and fixing them optimally. Transactions on Machine
Learning Research Journal, 2024.

Mattia Jacopo Villani and Nandi Schoots. Any deep relu network is shallow. arXiv preprint
arXiv:2306.11827, 2023.

Lemeng Wu, Dilin Wang, and Qiang Liu. Splitting steepest descent for growing neural architectures.
Advances in neural information processing systems, 32, 2019.

Dmitry Yarotsky. Error bounds for approximations with deep relu networks. Neural networks, 94:
103–114, 2017.

Xin Yuan, Pedro Savarese, and Michael Maire. Accelerated training via incrementally growing neu-
ral networks using variance transfer and learning rate adaptation. Advances in Neural Information
Processing Systems, 36:16673–16692, 2023.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning requires rethinking generalization. In International Conference on Learning Rep-
resentations, 2017.

12

	Introduction
	Theorems & Definitions
	Growing Neural Networks as Folding Manifold
	Grow by Folding at Typical Mistakes
	Fine-Tuning for Targeted Mistake Correction

	Implementation
	When to Grow:
	Where to Grow:
	How to Grow:
	Why Growth is Effective:

	Experiment
	Discussion

