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ABSTRACT

Modern deep learning paradigms heavily rely on over-parameterized models,
leading to excessive costs and limited interpretability. While growing neural net-
works (GrowNNs) offer a biologically inspired alternative by incrementally ex-
panding architectures, existing methods lack theoretical grounding and often re-
sult in unstable, heuristic-driven growth. This paper proposes a novel geometric
framework that interprets neural network growth as folding the learned represen-
tation manifolds to enhance model capacity. We theoretically establish that strate-
gically adding neurons—equivalent to introducing geometric folds—at locations
corresponding to systematic prediction mistakes optimally increases expressiv-
ity. Our method introduces: (1) A manifold-based strategy for effective network
growth by identifying “typical mistakes” via clustering of mis-predictions and
targeted folding; (2) A stable fine-tuning solution using gradient-aligned initial-
ization and folding hyperplane regularization to ensure targeted correction of mis-
takes; (3) Ante-hoc instance-level interpretability, where each grown neuron can
be justified and explained by a specific mis-predicted data instance representing
a model deficiency. Experiments on synthetic manifolds, MNIST, and CIFAR-10
demonstrate controlled capacity expansion, competitive parameter efficiency, and
inherent explainability throughout the growth process.

1 INTRODUCTION

Motivated by neural scaling laws (Kaplan et al., 2020; Isik et al., 2024), the modern deep learning
paradigm tends to initialize over-parameterized models to ensure sufficient representational capacity
before training. This practice has driven the excessive scaling up of models in both academia and
industry, particularly with the dominance of Large Language Models (LLMs) (OpenAI, 2022; Guo
et al., 2025), which typically contain far more parameters than necessary to fit their training data or
to learn task-specific knowledge (Zhang et al., 2017; Thompson et al., 2020; Nakkiran et al., 2021;
Aghajanyan et al., 2021).

Numerous studies have explored parameter-efficient approaches in deep learning. For instance, Neu-
ral Architecture Search (NAS) (Ren et al., 2021), Network Pruning (Cheng et al., 2024), and Dy-
namic Neural Networks (DyNNs) (Han et al., 2021) are typical research directions that adaptively
adjust model architectures to enhance parameter efficiency. However, these methods often involve
computationally intensive searches over massive candidate architectures, require distinct stages be-
fore or after the main training phase, or perform structural modifications mainly at the macro-level
of blocks, layers, or modules instead of fine-grained neuron- or connection-level adaptations.

A promising line of research proposes incrementally growing small neural networks into larger, ca-
pable ones during training (Wu et al., 2019; Evci et al., 2022). This idea of growing neural networks
(GrowNNs) is intuitively appealing: biological nervous systems learn mainly by growing connec-
tions (synapses) through interactions with the environment. Compared to the dominant directions
described above, GrowNNs offer a more direct, efficient, and structurally coherent path to achieving
optimized neural architectures 1.

1A detailed review of studies on the optimization of neural network architecture, along with related works
on GrowNNs, is provided in the Appendix A.1.
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Figure 1: Visualization of the neural network’s growing process on sine functions classification
simulation dataset.

Nevertheless, all the approaches discussed above are primarily empirical, offering limited theoretical
explanations for why specific architectural modifications optimize efficiency or how they influence
learning dynamics. Particularly for GrowNNs, where current works rely heavily on intuition and
focus mainly on the empirical efficiency of proposed growth policies (in a bid to rival NAS methods)
without understanding how growth processes affect model capacity and learning behaviors, nor
theoretically justifying why individual growth steps are effective and non-trivial. This often results
in aimless growth and even unstable performance 2.

In this study, we provide an interpretation of the neural network growth process through the lens
of established theories on manifold representations and expressivity of neural network architec-
tures. Specifically, we posit that: neural networks grow to enhance model capacity through
geometrically “folding” the learned representation manifold. This growth of capacity increases
expressive power, enabling the potential correction of systematic prediction mistakes in the original,
under-capacity model. Therefore, we propose that: effective growth can be achieved by strategi-
cally adding “folds” at manifold regions corresponding to the model’s “typical mistakes”. We
support this idea with theoretical analysis (Section 2), design a corresponding GrowNNs framework
(Section 3), and validate its efficacy through both observing according phenomena in simulations
on synthetic datasets as well as achieving successful learning on large scale images datasets like
MNIST and CIFAR-10 (Section 4).

In summary, this paper makes the following contributions:
• We provide a novel geometric interpretation of the neural network growing process.
• We propose an advanced GrowNNs framework featuring:

– An explainable, targeted growing strategy that identifies “typical mistakes” via mis-prediction
clustering and conducts targeted “manifold folding”;

– A stable fine-tuning solution using gradient-aligned initialization and folding hyperplane regu-
larization to ensure targeted correction of mistakes;

– Ante-hoc instance-level interpretability, where each grown neuron can be justified and ex-
plained by a specific mis-predicted data instance representing a model deficiency.

2 THEOREMS & DEFINITIONS

2.1 GROWING NEURAL NETWORKS AS FOLDING MANIFOLD

Unlike XAI studies for deep learning, which pursue intuitive interpretations for practical appli-
cations, theoretical studies of deep learning never cease to seek fundamental understanding of its

2A review of existing eXplainable Artificial Intelligence (XAI) in deep learning, discussed using the tax-
onomy of ante-hoc and post-hoc methods along with their respective challenges, relevant to the topic of this
research, is provided in Appendix A.2.
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principles. These studies look for more universal explanations, such as the approximation capaci-
ties, learning behaviors, and knowledge generalizability of deep learning models, for which, various
theories have been proposed.

One core theoretical framework explaining deep learning builds upon the Manifold Hypothesis,
which posits that high-dimensional real-world data often lie on or near a lower-dimensional man-
ifold (Tenenbaum et al., 2000; Roweis & Saul, 2000; Belkin & Niyogi, 2003). Neuroscience first
identified similar principles in biological recognition systems (DiCarlo & Cox, 2007), later extended
by Bengio et al. as a foundation for representation learning (Bengio et al., 2013). Brahma et al. for-
mally advanced this hypothesis to explain deep learning effectiveness (Brahma et al., 2015), and
subsequent evidence has further complemented the theory (Huang, 2018; Cohen et al., 2020):
Theorem 1 (Manifold Learning in Deep Neural Networks). Let M ⊂ RD be a d-dimensional
data manifold (d ≪ D), and X ⊂ RD be a finite set of (potentially noisy) samples drawn from a
neighborhood ofM. Consider a deep neural network fθ : RD → Y with parameters θ, trained on
X to approximate g :M→ Y . Then, fθ learns a compositional map:

fθ = ψ ◦ ϕ, fθ ≈ g
where ϕ : RD → Rh (h ≥ d) is a continuous map (often the penultimate layer) to a lower-
dimensional Euclidean representation space Rh whereM is approximately unfolded, and ψ : Rh →
Y is a simple function (e.g., linear).

This theorem implies that the internal representations learned by neural networks often exhibit
lower-dimensional topological structures. Moreover, since these networks are primarily trained for
regression or classification tasks, these structures are typically well-behaved and locally manifold-
like (homeomorphic to a Euclidean space). We can therefore define such structures as a single or a
collection of “learned manifold(s)”:
Definition 1 (Learned Manifold (Set) 3). For a deep neural network fθ = ψ ◦ ϕ trained on samples
near a data manifoldM⊂ RD, a learned manifoldMθ ⊂ RD is a single or collection of connected
topological manifold(s) implicitly learned by the network through ϕ and is defined by the task:
• For a regression task: Mθ is learned such that ϕ(Mθ) ≈ ϕ(M) in Rh. It can be interpreted as

the regression surface approximated by the set of connected sub-manifold(s) in the region where
the mapping ϕ is locally injective.

• For a classification task with classes K: a learned manifold Mθ:a,b is defined for each pair of
classes (a, b) (a ∈ K, b ∈ K) as a or a set of connected sub-manifold(s) of their binary decision
boundary. It is learned such that its embedding ϕ(Mθ:a,b) lies on and approximates a hyperplane
in Rh that linearly separates the representations of the two classes, ϕ(Ma) and ϕ(Mb).

There are also many other theoretical works exploring how neural architecture—particularly the
number of neurons—affects models’ expressive power and representation capacity (Pascanu et al.,
2013; Montúfar et al., 2014; Raghu et al., 2017; Lu et al., 2017; Hanin & Sellke, 2017a; Yarotsky,
2017; Park et al., 2020; Hanin & Rolnick, 2019), convergence behaviors and learning dynamics (Du
et al., 2019; Jacot et al., 2018; Lee et al., 2019; Allen-Zhu et al., 2019), as well as optimization land-
scapes and generalizability (Belkin et al., 2019; Liang et al., 2018; Arora et al., 2019). A consensus
from these studies indicates that increasing the number of neurons typically enhances a network’s
ability to approximate more complex functions. Geometrically, this process can be interpreted as
locally increasing the topological complexity of the learned manifold by “folding” it on the input /
feature spaces.
Definition 2 (Folding on Manifold). Given a neural network with parameters θ ∈ Rp, let
Mθ ⊂ RD be the maximum-complexity manifold (set) learnable by the network. Adding a neu-
ron with activation σ : R → R transforms the learned manifold (set) into Mθ′ ⊂ RD (with the
new set of network parameters θ′ ∈ Rq , q > p), locally increasing topological complexity, which,
geometrically performs a “folding” operation on the manifold / sub-manifold in form of either:

• Non-Smooth Folding: If σ is piecewise linear (e.g., ReLU), the manifold’s complexity increases
by introducing additional “crease” (non-differentiable edge):

C(Mθ′) < C(Mθ)

where C denote a function of smoothness measuring the number of continuous derivatives (differ-
entiability class) on the manifold.

3Proof of the existence of learned manifold (set) are provided in the Appendix B.1
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• Smooth Folding: If σ is smooth (e.g., sigmoid, tanh), the manifold’s complexity increases by
introducing additional variation to its total curvature:∫

Mθ′

∥κ∥2dV ≥
∫
Mθ

∥κ∥2dV

where ∥κ∥2 denotes the squared norm of the curvature tensor.

Given that the mechanism of the GrowNNs algorithms is to expand network architecture through
the strategic addition of neurons, we can interpret the process as follows:
Theorem 2 (Growing Neural Networks as Folding Manifold 4). Network growth through the addi-
tion of a neuron induces a local folding of the learned manifold (set).

Beyond interpreting neural network growth, a key innovation of the above framework is that: we
can also precisely locate where “folding” occurs in input / intermediate feature spaces. This enables
geometric analysis of GrowNNs algorithms through topological changes.

Specifically, each growth step can be formularized as follow:
Definition 3 (Growing a Neuron). Consider a Multi-Layer Perceptron (MLP), which is the most
typical neural network, as a function fθ : RD → Y , taking an input x ∈ X (X ⊂ RD):

fθ(x) = σL−1

(
WL−1σL−2

(
· · ·σ1(W1x+ b1) · · ·

)
+ bL−1

)
where L is the total number of layers, Wi and bi denote the weight matrix and bias vector of the
i-th layer, and σi is the layer’s activation function introducing non-linearity.

Growing a new neuron in the i-th layer of the MLP (where 1 ≤ i ≤ L− 2) appends new parameters
to layers i and i+ 1:

Wnew
i =

[
Wi

wnew
i

]
, bnew

i =

[
bi

bnew
i

]
, Wnew

i+1 =
[
Wi+1 wnew

i+1

]
where wnew

i (input-weight vector), bnew
i (scalar bias), and wnew

i+1 (output-weight column vector) are
the new parameters added after growing each neuron.

The spatial location of where “folding” occurs can be find by:
Theorem 3 (Location of Folding5). Given a neuron grown in the i-th layer of a neural network
fθ : RD → Y , let wnew

i , bnew
i , and wnew

i+1 be the new parameters introduced on the i-th and the
(i+1)-th layer by this growth, the folding of a learned manifold occurs on the (D−1)-dimensional
pre-activation hyperplane under the linear constrain:

F = {x ∈ RD | ⟨wnew
i , ϕi−1(x)⟩+ bnew

i = 0}
where ϕi−1 : RD → Rdi−1 is the feature map up to layer i − 1 (ϕ0 = identity). The output-weight
vector wnew

i+1 does not affect F’s geometry.

2.2 GROW BY FOLDING AT TYPICAL MISTAKES

Building on the geometric framework established above, we now address the second research ques-
tion: How can we ensure the effectiveness of each growth step in Growing Neural Networks
(GrowNNs)? Given that network growth is geometrically interpretable as folding the learned man-
ifold (or manifold set) at specific locations, this question can be further specified as: Can we maxi-
mize growth effectiveness by identifying the optimal folding location during each growth step?

Before answering this question, we also need to define what is an “effective growth”. The funda-
mental objective of growing a neural network is to enhance its capacity to approximate complex
functions. Considerable theoretical studies also correlate increased neurons with reduction of sys-
tematic learning errors (Yarotsky, 2017; Hanin & Sellke, 2017b; Jacot et al., 2018). Thus, an effec-
tive growth can be considered as one that can mitigate systematic approximation errors arising from
insufficient model capacity.

4Proof of this theorem is provided in the Appendix B.2.
5Proof of this theorem is provided in the Appendix B.3.
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Definition 4 (Typical Mistakes). Given a neural network fθ trained to approximate g :M→ Y , let
Mθ be a local manifold learned by the network. A “typical mistake” is an instance xmistake ∈ RD

such that:
xmistake ∈Mθ ∧ x /∈M∧ ∥fθ(xmistake)− g(xmistake)∥ > τ

where τ > 0 is an error tolerance threshold.

Geometrically, these systematic errors can be identified as clusters of prediction mistakes in the
input space, based on the intuition:
Hypothesis 1 (Clustering of Typical Mistakes). Mis-predictions arising from the same model defi-
ciency tend to distribute spatially close to each others in the input space.

This motivates the core growth strategy of our GrowNNs method:
Hypothesis 2 (Effective Growth by Folding at Typical Mistakes). Effective neural network growth
can be achieved by strategically folding the learned manifold at locations corresponding to the most
frequent or severe approximation mistakes.

2.3 FINE-TUNING FOR TARGETED MISTAKE CORRECTION

While identifying typical mistakes justifies the folding locations where network growth may be intu-
itively effective, the folding operation itself (i.e., adding a neuron) cannot directly correct mistakes.
Instead, it is the subsequent fine-tuning after growth that exclusively mitigates these approximation
errors. Therefore, measures also need to be designed to ensure post-growth fine-tuning effectively
addresses these mistakes.

Recent studies (Evci et al., 2022; Yuan et al., 2023; Verbockhaven et al., 2024; Pham et al., 2024) also
acknowledge the critical role of fine-tuning in GrowNNs, in contrast to classic GrowNN algorithms
that focus solely on when and where to add new neurons. Specifically, these methods highlight
the importance of initializing the new parameters that are introduced after adding neurons. For
examples, the GradMax algorithm (Evci et al., 2022) proposes:

1. initializing incoming parameters for the new neuron wnew
i and bnew

i in the prior layer to zero, so
as to preserve the network output unchanged immediately after growth;

2. maximizing the gradient norm of the outgoing parameters wnew
i+1 in the later layer to promote

rapid adjustment during fine-tuning.

However this approach has fundamental limitations:

• Regarding (1): as per our earlier findings, the new incoming parameters in the prior layer play a
key role in defining the location where folding occurs and therefore cannot be set to zero. Con-
versely, setting the outgoing parameters wnew

i+1 in the later layer to zero would cause zero outputs
from the new neurons, preventing gradients from being backpropagated through it;

• Regarding (2): GradMax only optimizes the norm of the gradient without considering its direction
during fine-tuning. This results in an aimless optimization process.

To address these limitations, we first analyzed the roles of each new parameter before proposing our
solutions to enforce fine-tuning towards effective correcting the identified mistakes.
Theorem 4 (Outgoing Parameters Govern Output Displacement6). For a neuron added to the i-th
layer of a neural network fθ, with new parameters wnew

i , bnew
i , and wnew

i+1, let ϕi−1(x) denote the
input and ϕi−1(x) be the feature passed to the i-th layer. The output perturbation is:

∆fθ = wnew
i+1 · σ(wnew

i · ϕi−1(x) + bnew
i )

where wnew
i+1 determines the direction of output displacement, while wnew

i and bnew
i control its mag-

nitude through scaling after activation.

Therefore, instead of setting wnew
i to zero, we propose initializing wnew

i+1 as a non-zero uniform vector
α · 1 (α ∈ R). This preserves non-zero gradients for backpropagation and avoids directional bias in
output space (for classification tasks, it contributes equally to all classes, while for regression tasks,
it also ensure controllable minimal shifts immediately after adding a new neuron).

6Proof of this theorem is provided in the Appendix B.4.
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Accordingly, the idea of GradMax can be applied to initialize the remaining parameters wnew
i . No-

tably, besides simply maximizing its gradient norm, we can also constrain its gradient direction in
input space:

Theorem 5 (Incoming Weights Govern Input-Space Gradient Direction7). For a neuron added to
the i-th layer of a neural network fθ, with new parameters wnew

i , bnew
i , and wnew

i+1, let L(fθ(x),y) be
the loss function value, the perturbation of gradient in the input space is:

∆
∂L

∂x
=

(
∂L(fθ(x),y)

∂fθ(x)
·wnew

i+1

)
σ′(s) · Jϕi−1

(x)⊤xnew
i

where s = wnew
i · ϕi−1(x) + bnew

i and Jϕi−1
(x)⊤ is the Jacobian of ϕi−1. For those activated

region s > 0 in the input space, as long as the activation function is positive σ (for example, for
ReLU function, σ′(s) = 1 if s > 0), wnew

i dominates the change of direction for the networks’
input-space gradient ∂L(fθ(x),y)

∂x , wnew
i+1 scales its magnitude, while bnew

i does not affect its gradient.

This enables our key innovation: since wnew
i controls the input-space gradient direction, we can

initialize it to align the entire network’s input-space gradient ∂L(fθ(x)
new,y)

∂x with directions pointing
toward the identified typical mistakes. Thus, the subsequent fine-tuning can explicitly optimize on
the direction to correct these target mistakes.

Nevertheless, initialization alone cannot enforce the model’s optimization behaviors during fine-
tuning, thus it still cannot guarantee effective correction of the identified typical mistakes, resulting
in the instability in the existing GrowNNs methods. To address this, a regularization can be eas-
ily proposed based on our geometric framework, to constrain the fine-tuning so that the folding
hyperplane on the learned manifold can always be kept in the right direction:

Definition 5 (Folding Hyperplane Regularization). Let wnew
i , bnew

i , and wnew
i+1 be the parameters

introduced by the newly grown neuron, xmistake be the identified typical mistake that is used to fold
and growth the new neuron, and xfold be the original location where folding occurred on the original
learned manifold in the input / feature space. During the fine-tuning process, an regularization
Lfold-reg can be applied by adding together distances from two points to the folding hyperplane:

Lfold-reg =
|wnew

i · ϕi−1(xmistake) + bnew
i |+ |wnew

i · ϕi−1(xfold) + bnew
i |

∥wnew
i ∥

3 IMPLEMENTATION

Following the preceding analyses, we present our GrowNNs framework by answering the “when,
where, how, why” questions below.

3.1 WHEN TO GROW:

Network growth is triggered only when model convergence is statistically verified. Following estab-
lished practices (Wu et al., 2019; Evci et al., 2022), we define convergence as the state where further
parameter updates yield no meaningful improvement in training loss. This ensures deficiencies in
approximation capacity are identifiable once the model exhausts its existing expressive power, sepa-
rating systematic errors from transient mis-predictions. Specifically, convergence is verified through
two criteria: (i) attainment of a local minimum in training loss; and (ii) stationarity confirmed by an
Augmented Dickey-Fuller (ADF) test (p-value < 0.05) applied to the losses over the last 20 epochs.

3.2 WHERE TO GROW:

The discussion on “where to grow” mainly concerns about the optimal layer for expansion in a deep
network. Whereas, recent theoretical insights reveal that it may not need to be a concern: we can
simply grow to expand the width in a shallow ReLU network. Considerable research (Hanin & Rol-
nick, 2019; Bietti & Bach, 2021; Mao & Zhou, 2023; Villani & Schoots, 2023) have indicated that,
for ReLU-activated neural networks, increasing depth marginally impacts model expressiveness,

7Proof of this theorem is provided in the Appendix B.5.
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while widening the network does. What even more astonishing finding is that: any deep ReLU net-
work can be represented by a functionally equivalent shallow network. In this context, we propose
commencing with a shallow ReLU-activated single-hidden-layer MLP and expanding it by incre-
mentally adding neurons to this hidden layer 8. For its expressiveness guarantees and simplicity, it
is a universally adaptable baseline to grow from.

3.3 HOW TO GROW:

Our neural network growing strategy has been outlined in previous sections. Here, we consolidate
the implementation through the following pseudocode of our main algorithm 9.

Algorithm 1: Grow by Folding at Mistakes

Require: compact single-hidden-layer ReLU-activated MLP fθ : RD → RY with initial hidden
size h0 ≥ 1; hidden weights WA ∈ Rh0×D, biases bA ∈ Rh0 ; output weights WB ∈ Rh0×Y ,
biases bB ∈ RY ; training set X ; loss L; regularization coefficient α > 0 ;
WA,bA,WB ,bB ← train initial fθ on X using L until convergence;
repeat
xmistake ← cluster fθ’s mis-predictions in RD, find the centroid of the largest cluster,

and identify the closest instance in X to centroid;
if xmistake not found then

return fθ with current parameters WA, bA, WB and bB ;
end if
xfold ← find the closest point to xmistake on the hyperplane of the corresponding local region

of the learned manifold in RD (regression surface or decision boundary);
Initialize new neuron’s parameters:

(wnew
A )⊤ = maxwnew

A
(cosine-similarity(∂L∂x , (xfold − xmistake)) + E∥ ∂L

∂wnew
A
∥) /* ensure the

input-space gradient direction while maximize weight’s gradient norm */

bnew
A = −(wnew

A · xfold) // ensure folding at xfold

wnew
B = mean(WB) · 1 // initial outgoing parameters as a uniform vector

Grow by adding new neuron:

WA ←
[

WA

(wnew
A )⊤

]
bA ←

[
bA

bnew
A

]
WB ← [WB wnew

B ]

WA,bA,WB ,bB ← train current fθ on X using L+ αLfold-reg until convergence;
until validation accuracy plateau
return fθ with current parameter WA, bA, WB and bB

3.4 WHY GROWTH IS EFFECTIVE:

Our GrowNNs framework allows justification of its rational with inherent (ante-hoc) interpretabil-
ity: as each growth of a neuron targets a specific “typical mistake”, which is an mis-predicted data
instance identifiable within the dataset, conceivably in representative of a systematic approxima-
tion error to be addressed in the subsequent fine-tuning. By visualizing this instance of marginal
case example, each neuron growth are tailored, can be justified and can be correspond to rectify-
ing a specific verified deficiency of in-capable model, thus enable us to achieve an instance-based
interpretation.

8While network depth remains pertinent to parameter efficiency and optimization dynamics (Mhaskar et al.,
2017; Belkin et al., 2019), hence subsequent methods to rewrite grown shallow network into its deep equivariant
and pruning the fully-connection MLP into sparsely-connected one will be discussed in later works given page
limitation

9More implementation details are provided in Appendix C
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Figure 2: Changes of accuracies on training and testing set of the MNIST dataset on a network
growth to 50 hidden neurons and compare to another network initialized to have 50 hidden neurons.

4 EXPERIMENT

To validate our framework, we first visualize the “folding” process by growing network model on
some low-dimensional handcrafted manifolds. Specifically, we construct two datasets for simulation
experiments: 1. classification of two sine functions (separable in the input dimension by non-linear
function); 2. classification of two overlapped quadratic functions (inseparable in the current space).
Both experiments demonstrated enhanced model approximation capabilities after a single growth of
adding a neuron. For the sine classification task, we visually observed the folding process near iden-
tified “typical mistake” and corresponding adjustments of the decision boundary towards rectifying
the mis-prediction during the subsequent fine-tuning process.

Besides the above directly visualizable empirical evidence in the low dimensional space, we also
apply the proposed GrowNNs method on real-world dataset like the MNIST and CIFAR-10. Both
dataset show continue increasing in accuracy after the growing of every single neuron until final
convergence, indicating nearly the growth of every single neuron are effective in increasing the
model’s expressive power until they reach their learning ceiling on the dataset. On MNIST dataset,
we can even find that the both models of the same architecture, the one grow from compact using our
GrowNNs methods can achieve higher performance compare with another one that directly initalized
with the large architecture, indicating higher parameter utilization during the growth process.

Table 1: Growing networks (to convergence by tests) vs. initially over-parameterized equivalent
architectures on MNIST and CIFAR-10

Dataset Method Testing Set Accuracy
(mean ± sample standard deviation)

MNIST

growth to 50 hidden neuron 97.7943 ± 0.1383
growth to 100 hidden neuron 97.7948 ± 0.1380

initialized with 50 hidden neuron 97.6459 ± 0.1156∗
initialized with 100 hidden neuron 97.7806 ± 0.1205∗

CIFAR-10

growth to 70 hidden neuron 50.4732 ± 0.6048
growth to 100 hidden neuron 50.5286 ± 0.6028∗

initialized with 70 hidden neuron 50.4090 ± 0.5970∗
initialized with 100 hidden neuron 50.9484 ± 0.6067∗

∗ indicates significant difference with p-value < 0.0001 in t-test compare with the first method

A key advantage of our proposed framework is the interpretability it provides by visualizing the the
corresponding “typical mistake” identified in each growth step. Figure 3 demonstrates the identified
mis-predicted data instance when training on the MNIST dataset. Most of these identified typical
mistakes are, indeed, marginal cases that are easily confused between the wrongly predicted class
and the ground truth.
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Figure 3: Visualization of the identified typical mistakes in the first 9th growth on MNIST dataset.

5 DISCUSSION

This study introduces a foundational framework for eXplainable Network Growth (XNG), which
interprets the growth of every single neuron in a neural network as a process of “folding” a learned
manifold to address a model’s systematic prediction mistake. Relevant results validate that the pro-
posed framework can incrementally grow a network to achieve performance competitive with, and
sometimes superior to, a statically-initialized model of the same larger architecture. This enables
identifying an appropriate model scale during growth, moving beyond the conventional practice of
initializing an over-parameterized network based on empirical guesswork. Furthermore, the pro-
posed framework provides ante-hoc explainability for the growth process. Each added neuron is
justified by a specific deficiency in the model’s current capability, which can be directly observed by
visualizing the corresponding mis-predicted data instance that the neuron grown targeted at.

The GrowNNs framework presented in this study is currently restricted to width expansion on the
single hidden layer of a shallow, fully-connected network (MLP). However, network depth and layer
sparsity play critical roles in performance and parameter efficiency. Promisingly, findings from
recent studies suggest that a shallow-to-deep conversion and eXplainable Network Pruning (XNP)
could be adopted after the growth process to further enhance learning. These extensions, while
important, are beyond the scope and page constraints of this paper and are left for future work.

While the growth process can still introduces overfitting, the explainable nature of our framework
offers a unique solution: it allows for human intervention to guide the network growth via early
stopping or by rolling back inappropriate growth steps. This paves the way for eXplainable Network
Editing (XNE) with interactive human control, an aspect we will also elaborate on in future studies.

Finally, compared to adding a single neuron at a time, growing multiple neurons simultaneously
sacrifices some parameter efficiency but allows learning more complex features. This is illustrated
by our CIFAR-10 results: although growth to 70 neurons outperformed a statically-initialized 70-
neuron model, an over-parameterized model with 100 neurons achieved higher performance than one
grow to 100, suggesting that extracting complex features may require multiple neurons’ addition.
Thus, investigating the optimal growth granularity—balancing efficiency and feature extraction—is
a valuable future direction.

9
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