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Abstract

Interpretable computer vision models explain their classifications through comparing the
distances between the local embeddings of an image and a set of prototypes that represent the
training data. However, these approaches introduce additional hyper-parameters that need
to be tuned to apply to new datasets, scale poorly, and are more computationally intensive to
train in comparison to black-box approaches. In this work, we introduce Component Features
(ComFe), a highly scalable interpretable-by-design image classification head for pretrained
Vision Transformers (ViTs) that can obtain competitive performance in comparison to
comparable non-interpretable methods. To our knowledge, ComFe is the first interpretable
head and unlike other interpretable approaches can be readily applied to large-scale datasets
such as ImageNet-1K. Additionally, ComFe provides improved robustness and outperforms
previous interpretable approaches on key benchmark datasets while using a consistent
set of hyperparameters and without finetuning the pretrained ViT backbone. With only
global image labels and no segmentation or part annotations, ComFe can identify consistent
component features within an image and determine which of these features are informative
in making a prediction. Code is available at github.com /XXX /comfe-component-features.

1 Introduction

Deep learning is applied in numerous contexts to solve challenging computer vision problems, from identifying
disease in medical imaging (Zhou et all 2023)), to species identification (Beloiu et al. 2023)) and even in
self-driving cars . However, standard deep learning approaches are black boxes ,
and it can be challenging to determine whether a prediction is being made based on the most relevant features
in an image. For example, neural networks can often learn spurious correlations from image backgrounds
(Yang et al., 2022).
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Figure 1: Illustration of ComFe. The image is first clustered into component features, which are then
compared to class prototypes. This comparison between component features and class prototypes is used to
identify the salient parts of the image for predicting the class Osteospermum, as shown by the class confidence
heatmap in the final image.
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Post-hoc interpretability techniques, such as Class Activation Maps (CAM) (Zhou et al., 2016), can uncover
this behaviour. However, these approaches can be misleading and cannot be used to understand which parts
of the training dataset led to a particular classification (Rudinj 2019). Interpretable models that are designed
to reason in a logical fashion, can achieve this goal by identifying prototypical parts within the training
dataset that provide evidence for a particular category (Chen et all [2019; Nauta et al., 2023} |Xue et al.|
2024]).

Nevertheless, interpretable models can have a poor semantic correspondence between the embeddings of
prototypes and their visual characteristics (Kim et al.l |2022; Hoffmann et al.| |2021]). Current interpretable
approaches are also less accessible in comparison to standard black-box approaches: they add new hyper-
parameters which need to be tuned for each dataset, and scale poorly to larger networks or datasets with
a large number of classes. Current approaches do not report performance on large scale datasets, such
as ImageNet-1K, and doing so would require significant compute and hyperparameter tuning to produce
meaningful results. Foundation models trained on large datasets using self-supervised learning and a Vision
Transformer (ViT) architecture, such as the DINOv2 family (Oquab et al., 2024), could help solve these
challenges. These models produce embeddings across a range of vision contexts that faithfully reflects semantic
similarity (Oquab et all|2024)), and a classifier that can explain predictions using this latent space has the
potential to be easy to train, highly scalable and provide good semantic correspondence.

This paper presents Component Features (ComFe), a modular and efficient interpretable-by-design image
classification head that addresses these challenges. To the best of our knowledge, ComFe is the first classifier
head for downstream prediction that provides interpretability intrinsically, rather than being a post-hoc
technique to explain a model’s behaviour. ComFe is designed to be used with a pretrained ViT network,
and employs a transformer decoder (Vaswani et al., 2017 architecture and a hierarchical mixture modelling
framework to make explainable predictions. As shown in Fig. [I, ComFe identifies a set of component features
within an image and compares them to a library of class prototypes learned from the training data which can
be used to answer why a particular prediction is made. This approach is inspired by Detection Transformer
(Carion et al., 2020), Mask2Former (Cheng et all 2022) and PlainSeg (Hong et al., [2023), in addition to
recent advances in semi-supervised learning (Assran et al., [2021; Mo et al.| [2023; |Mannix & Bondell, [2023)).
In this work, we:

e Present ComFe, the first interpretable image classification head, and the first interpretable method
that is sufficiently scalable to report results on the ImageNet-1K dataset. ComFe achieves competitive
results with comparable non-interpretable approaches, and provides improved performance on a
range of ImageNet-1K generalisability and robustness benchmarks.

e Demonstrate the competitive performance of ComFe on a range of datasets using a consistent set
of hyperparameters in comparison to other interpretable approaches that finetune the backbone
networks and tune the hyperparameters for each dataset.

o Highlight how ComFe can consistently detect particular regions of an image (e.g. a bird’s head, body
and wings), identify informative versus non-informative (i.e. background) regions, and explain why
particular predictions are made on the basis of similarity to class prototypes that are representative
of the training data.

2 Related Work

Interpretable computer vision models. ProtoPNet (Chen et al.| 2019) was the first method to show
that deep learning based computer vision models could be designed to explain their predictions and obtain
performance similar to non-interpretable approaches. They introduced prototypes for interpretability—visual
representations of concepts from the training data that can be used to explain why a model makes a particular
prediction. This allowed for classification to be based on the distance between image patch embeddings
and these prototypes within the latent space (Chen et al., 2019). To ensure the interpretability of these
prototypes, they constrained them to the embeddings of a patch within the training dataset.
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A number of further works, including ProtoTree (Nauta et al., 2021)), ProtoPShare (Rymarczyk et al., |2021)),
ProtoPool (Rymarczyk et al., 2022), ProtoPFormer (Xue et al., |2024) and PIP-Net (Nauta et al., |2023)) are
derived from this approach. ProtoTree incorporates a decision tree into the reasoning process, while the other
approaches focus on addressing a key weakness of ProtoPNet—the learned prototypes are often background
features in the training data, and these need to be pruned to obtain good interpretability. ProtoPShare,
PIP-Net and ProtoPool take different approaches to achieve this, through encouraging prototypes to be
shared between classes to improving their sparsity. ProtoPFormer improves the application of ProtoPNet
to Vision Transformers (ViT) (Dosovitskiy et al., [2021} [Touvron et all |[2021) and presents a new loss that
further encourages learned prototypes to attend to foreground rather than background features.

In contrast, the INTR (Paul et al., |2024)) approach uses the cross-attention layer from a transformer decoder
head to produce explanations of image classifications. While elegant, this moves away from prototypes being
associated with the training data, making these models less transparent than the ProtoP family. It is also
noted that later works, such as PIP-Net, move away from the inflexibility of the prototypes being determined
by the training data, and instead interpret and visualise prototypes by using the closest training example
within the latent space, or the one with the highest probability under the model (Nauta et al., 2023).

Nevertheless, these methods can be challenging to adapt to new datasets as they introduce a number of
additional hyperparameters to the training process. This is highlighted by most papers in this field only
using three benchmarks—CUB200 (Wah et al.l |2011)), Oxford Pets (Parkhi et al., |2012)) and Stanford Cars
(Krause et al., [2013)—with hyperparameter tuning being undertaken for each dataset. They can also be
computationally expensive to fit in comparison to non-interpretable approaches and require large amounts of
GPU memory.

Self-supervised learning and foundation models. In computer vision, self-supervised approaches train
neural networks as functional mappings between the image domain and a representation or latent space that
captures the semantic information contained within the image with minimal loss (Chen et al.l 2020a; [2021;
2020b)). State-of-the-art self-supervised approaches can obtain competitive performance on downstream tasks
such as image classification, segmentation and object detection when compared to fully supervised approaches
without any further fine-tuning (Tukra et al., 2023} |Oquab et al., 2024). This is achieved by using techniques
such as bootstrapping (Grill et al., [2020), masked autoencoders (He et all [2022), or contrastive learning
(Chen et al., [2020a)), which use image augmentations to design losses that encourage a neural network to
project similar images into similar regions of the latent space. By combining these approaches on large scale
datasets, ViT foundation models such as DINOv2 (Oquab et al.l |2024) can be trained that perform well
across a range of visual contexts. Contrastive language-image pretraining (CLIP) can also be an effective
self-supervised approach, but it requires large image datasets with captions to train models (Radford et al.
2021; |Cherti et al., |2023)).

3 Methodology

Motivation. Underlying the reasoning process of the ProtoP family of interpretable approaches is the
encoder network. If this network performs poorly, then the explanation provided by ProtoP approaches
will be nonsensical (Hoffmann et al., [2021; |Kim et al., [2022)). Computer vision foundation models, like the
DINOv2 family, provide highly informative patch features that produces an embedding space where the cosine
similarity between image patches describes their degree of semantic similarity (Oquab et al.l |2024). It has also
been found that particular directions within the latent space of these models will encode particular concepts
(Bhalla et al., [2024). This work addresses the challenge of leveraging these foundation model features to build
a modular interpretable image classification head that can be applied to a pretrained Vision Transformer
(ViT) (Dosovitskiy et al., 2021)) network.

Interpretability with component features. Similarly to the ProtoP methods, we aim to learn class
prototypes C, which are directions within this feature space that relate to a set of concepts of interest (e.g.
species of birds). In particular, we want to learn class prototypes in the latent space of the output patch
embeddings Z of the network, as this will allow the regions of an image that contribute to a particular
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Figure 2: The ComFe framework. A pretrained ViT network is applied to an input image X, to produce
patch embeddings Z and a class token. The ComFe clustering head gy is trained to cluster patch embeddings
and produce image prototypes P, which are compared to a set of learnt class prototypes C which represent
the training data to identify the informative image regions and make a prediction. In constrast, a standard
non-interpretable approach will train a linear head to make a prediction using the class token, and does not
provide insight into the informative image regions or which training images led to a particular prediction.

classification to be identified. Further, these class prototypes need to be learnt in a way that represents the
training data, so they can be used to answer why a particular prediction is made.

This can be posed as a clustering problem, where the goal is to use distributions centred on the class
prototypes C to cluster the patch embeddings Z into meaningful groups. Under this framework, the closest
training data patches to the centre of these clusters can function as exemplars, and can be used to visualise
each class prototype.

However, the output of a ViT network can have hundreds of patches per image, many of which will be similar,
particularly if they make up the same part of a particular object or scene. To reduce the complexity of solving
the class prototype clustering problem, image prototypes P are introduced. These represent component
features within an image, which can be used to consider a small set of image regions instead of a much larger
number of image patches. To learn the image prototypes themselves, a second, nested clustering problem is
introduced to learn a clustering head gy, that generates the image prototypes parametrically on the basis
of the patch embeddings Z. This facilitates interpretable inference that is more efficient than considering
individual patches, and this approach is illustrated in Fig. [I]

Notation. We refer to an RGB image as X € R3*"*% where w is the image width and h is the height.
Throughout this paper, we use bolded characters A to refer to matrices, and the notation A;. refers to the
i*™® row of a matrix while A.; refers to the 4t column. The respective lowercase letter with two subscripts
a;; refers to a specific element of the matrix A. We consider a frozen pretrained ViT encoder model f and a
clustering head gy, where 6 refers to the parameters of this network.

Modelling framework. To formalise the model, we consider three key components: (1) the patch
embeddings Z = f(X) € RV2*4 where d is the dimensionality of the latent space and N is the number
of patches created created by the pretrained model f; (2) the unknown patch class labels v, described by
the class prototypes C € RN >4 where we have N¢ class prototypes with a fixed association to each class
as defined by a smoothed one-hot encoded matrix ¢ € RNe*¢ with smoothing parameter a; and (3) image
prototypes P € RV7 X4 which represent component features within an image, where Np is the number of
desired image prototypes and is much smaller than the number of image patches N.

Prior works (ICaron et al. |2021t |Ayzenberg et al.|> |2024I) have found the ¢2 normalised form Z;, = II%ZH of the

outputs provide an effective measure of semantic similarity, through the cosine distance metric. This also
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Figure 3: Summary of the ComFe framework. Given an input image X, the patch embeddings Z are
obtained using a pretrained ViT backbone model, f(X) = Z. These patches are clustered into component
features using a set of image prototypes P, that are obtained from a transformer decoder clustering head
as described in Eq. . In producing a classification, the image prototypes P are compared to the class
prototypes C, as described in Eq. @ and Eq. . The variable v represents the class prediction of a local
patch, which is unknown as segmentation labels are assumed to not be available. The component features map
(image prototypes) are visualised based on the image prototype P with the greatest likelihood of generating a

particular patch in Eq. .

facilitates fitting distributions in the high dimensional space of these embeddings 2018). We consider
the following joint probability based on a hierarchical mixture modelling approach (Marin et al., 2005 Zhou

et ], 2020):

p(zi:a]-sj:al/) : :P(Zi:|15j:)P(pj:|V)P(V)» (1)

where p(v) is the prior distribution for the patch classes in the dataset. This joint probability describes a
generative model where the patch class v, parameterised by class prototypes C, describes the distribution of
the j* image prototype P;., which in turn describes the distribution of the i*® patch embedding Z;.. This
defines the image patches Z as independent of the patch class ¥ when conditioned on an image prototype P;..
We define these distributions in terms of the von-Mises Fisher distribution on the unit sphere in R? (denoted
S%) (Govindarajan et al 2023) with density

VMFg(x; o, 7) = Cy(t) exp(t 'z - p), xS (2)

with mean vector pu € S, concentration parameter 7, and normalizing constant Cy(7). The model becomes:

p(Z:.[P;.) == VMF4(Z;;; Py, m1) 3)
N¢o
p(Pji|v) == 1, VMF4(P;; Cr., 7). (4)

Parameterising the prototypes. The class prototypes C are parameterised as a matrix of learnable
parameters, while the image prototypes P are fit parametrically following an amortised-inspired approach
(Margossian & Bleil 2024)). To promote the efficiency of ComFe, we do not learn the full distribution of
each P;. and instead use a point Maximum Likelihood Estimate (MLE). For each image, this is done by
generating P ;. deterministically using a transformer decoder gy (Vaswani et al. [2017), which we refer to as
the clustering head

Pi.(Z;0,Q:) = 90(Z,Qu.), (5)

where Q € RV7*? ig a learnable query matrix, that prompts the decoder to calculate the image prototypes
by considering the entire patch representation of the image Z. For clarity, we leave the arguments 0, Q;. and
Z of P;.(-) as implied, and simply write P;..
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Deriving a likelihood. To predict the class that a patch belongs to, Bayes’ rule is used and the image
prototypes are marginalised out to obtain

Np
p(”lzl) ~ U(f)j: ' C/T2)¢:UU(Zi: . f)/Tl)j (6)

<.
Il
N

where o(+) is the softmax function and the approximation arises from using a MLE point estimate for
P;.. Uniform categorical prior distributions are assumed, and further details are given in Section |A|in the
supporting information.

The main challenge here is that v is unknown. We only assume access to image classification annotations y,
which describe the global image label as a one-hot encoded class vector. To connect the unknown v class of
the image patches to the global annotation y, a vector of binary probabilities is constructed using max-pooling

p(ui|Z) = maxp(v = 1|Z;), (7)

which describes the maximum probability given by a patch that class [ is present in the image. This provides
the likelihood

—logp(Z,y) = —logp(Z) + BCE(y, p(ui|Z)), (8)

where the first term describes how well the image prototypes are clustered, and BCE(y, p(yl|Z)) =
> yilogp(wlZ) — Y 7_ (1 — yi) log(1 — p(w|Z)) denotes the binary cross-entropy loss for a multi-label
classification problem.

Training objective. Based on the likelihood above, the training objective for ComFe is given by

E(Zay795ch) = Ediscrim(zay;eraC) (9)
+ ‘Ccluster(z; 97 Q) + Eaux(zv Y; 97 Q7 C)a

which is separated into the discriminative term Lgjscrim that uses a binary cross entropy loss and a clustering
term Lcuster- Additional auxiliary objectives L,ux are also specified which ensure the consistency of image
prototypes, the uniqueness of class prototypes and improve the fitting process. The discriminative and
clustering term are given by

Nz Np

1 PN
Lonster(Z:6,Q) = =5~ > logy VMF4(Zi, Pji;71) (10)
i=1 j=1
Ediscrim(zvy;ngac) = BCE(yap(yl|Z)) (11)

A more detailed description of the derivation and motivation of the clustering, discriminative and auxiliary
terms is provided in Section [A]in the supporting information.

Class prototype exemplars. The class prototypes C represent the centres of von-Mises Fisher distributions.
The image prototypes P from the training dataset with greatest cosine similarity to each class prototype can
be used as representatives, to visualise the concept each one describes. These particular image prototypes are
called class prototype exemplars, and are used to visualise the class prototypes in Fig. [[and Fig. 2] Further
examples are also shown in Fig. [4 and Fig. and Fig. [S6] in the supporting information. This reflects
Eq. @, where the cosine similarity of an image prototype to each class prototypes is used in the term

Sim(P;.) = o(P;. - C/72) (12)

for classifying an image. This measure in Eq. was used to calculate the similarity values presented in
Fig. |I] and elsewhere within the paper. These exemplars are only used to interpret the class prototypes
post-training, similar to the prototypes in PIP-Net (Nauta et al., 2023)), and are not used during the training
process.
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Background classes. To allow the model to learn which regions of an image are informative, an additional
background class is added and it is assumed that each image has one or more background patches. This turns
the multi-class image classification problem into a multi-label one, where the background class is added to the
label for each image. Further, Ny additional background class prototypes are added to C and ¢. This can
be done without changing the form of the discriminative loss terms in Eq. as the binary cross-entropy
loss naturally extends to multi-label classification problems. Further details are provided in Section [A]in the
supporting information.

Comparison to closely related work. The ComFe head shares a similar architecture to the INTR (Paul
et al. 2024)) approach, in that they both use a transformer decoder on the outputs of a backbone network to
make a prediction. However, INTR uses the query Q to define classes — using one query vector per class —
and relies on cross-attention within the decoder heads to interpret why the model is making a particular
prediction. For ComFe, the query has a fixed size that depends on the number of image prototypes Np, and
the similarity of the image P to the class C prototypes is used to explain the model outputs. This makes
ComFe much more scalable to datasets such as ImageNet, as the number of image prototypes Np is much
smaller than the number of classes. This allows for models to be easily trained with large batch sizes on a
single GPU.

Recently, |Zhu et al.| (2025) introduced a new ProtoP inspired method, which we refer to as ProtoNonParam,
designed for use with foundation models. ProtoNonParam consists of three key steps; (i) foreground extraction,
using a PCA based approach (Oquab et al.| [2024)) to identify the objects of interest for classification, (ii)
non-parametric prototype learning, where the challenge of identifying foreground patches of a known class with
part-prototypes is posed as an optimal transport problem and solved using the Sinkhorn-Knopp algorithm,
and (iii) feature space finetuning. In this last step, the part-prototype vectors and foundation model weights
are frozen, and additional transformer encoder blocks are interleaved through the original layers and finetuned
(Zhu et al. |2025). While this approach is able to effectively exclude backgrounds features from becoming
part prototypes through the foreground extraction step, this limits the flexibility of the approach in cases
where there are multiple possible foreground objects present.

4 Experiments

4.1 Implementation details

The weights of the pretrained ViT network f are frozen during training, and the parameters of the clustering
head gy are randomly initialised using a Xavier normal distribution (Glorot & Bengio, 2010). The class
prototypes C are randomly initialised from a uniform distribution on the unit sphere, and the initial queries
Q are sampled from a standard normal distribution. Standard choices for training transformers are used,
such as the AdamW optimiser (Loshchilov & Hutter) |2017b)), cosine learning rate decay with linear warmup
(Loshchilov & Hutter], 2017a; |Gotmare et al., 2019)) and gradient clipping (Pascanu et al.| [2013). For image
augmentations, we follow DINOv2 and other works, including random cropping, flipping, color distortion and
random greyscale (Chen et al 2020a; |[Oquab et al., 2024)). For the architecture of the clustering head gg, two
transformer decoder layers with eight attention heads are used, and following PlainSeg (Hong et al.l [2023)
the loss is calculated after each decoder layer and averaged.

For each dataset, a total of five image prototypes P—giving Q five rows—and 6¢ class prototypes C are used,
where ¢ is the number of classes in the dataset. The first 3¢ class prototypes are assigned to each class (for
three per class), while the remaining 3c are assigned to the background class. Similar temperature parameters
are used to previous works (Assran et al., [2021)), with 7 = 0.1, 75 = 0.02 and 7. = 0.02. An ablation study
on these hyperparameters is undertaken in Section [D] of the supporting information.

The same set of hyperparameters are used across all of the training runs, with the exception of the batch size
which is increased from 64 image to 1024 for only the ImageNet dataset. The number of epochs for ImageNet
(Russakovsky et al.l [2015]) is also reduced, from 50 epochs per training run to 20 epochs. All results use
an input resolution of 224 x 224 pixels, with outputs upsampled using bilinear interpolation to generate
pixel-level results from patch-level predictions.
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4.2 Datasets

Finegrained image benchmarking datasets including Oxford Pets (37 classes) (Parkhi et al., 2012)), FGVC
Aireraft (100 classes) (Maji et all [2013), Stanford Cars (196 classes) (Krause et al., [2013) and CUB200 (200
classes) (Wah et al., 2011)) have all previously been used to benchmark interpretable computer vision models.
These are used to test the performance of ComFe, in addition to other datasets including ImageNet-1K (1000
classes) (Russakovsky et al.,[2015), CIFAR-10 (10 classes), CIFAR-100 (100 classes) (Krizhevsky et al., [2009),
Flowers-102 (102 classes) (Nilsback & Zisserman), [2008) and Food-101 (101 classes) (Bossard et al., 2014]).
These cover a range of different domains and have been previously used to evaluate the linear fine-tuning
performance of the DINOv2 models (Oquab et al. [2024)).

Further test datasets are considered for ImageNet that are designed to measure model generalisability and
robustness. ImageNet-V2 (Recht et al., [2019) follows the original data distribution but contains harder
examples, Sketch (Wang et al., 2019) tests if models generalise to sketches of the ImageNet class and
ImageNet-R (Hendrycks et al.| 2021a)) tests if models generalise to art, cartoons, graphics and other renditions.
Finally, the ImageNet-A (Hendrycks et al.,[2021Db)) test dataset consists of real-world, unmodified and naturally
occurring images of the ImageNet classes that are often misclassified by ResNet models. While ImageNet-V2
and Sketch contain all of the ImageNet classes, ImageNet-A and ImageNet-R only provide images for a 200
class subset.

4.3 Main results

Table 1: Interpretable performance comparison. Performance (top-1 accuracy) of ComFe and other
interpretable image classification approaches on several benchmarking datasets. INTR and ComFe use
transformer decoder heads, which adds additional model parameters (#P), while the benchmarks reported by
|Zhu et al.| (2025)) introduce K additional transformer blocks to the DINOv2 backbone to support feature
space finetuning,.

Method Backbone Dataset
#P #P CUB Pets Cars Aircr
Interpretable ProtoPNet (Chen et al. ResNet-34 22M  79.2 86.1
(Finetuned backbones) ProtoTree (Nauta et al.| [2021) ResNet-34 22M 822 86.6
ProtoPShare (Rymarczyk et al.| 2021 ResNet-34 22M 747 86.4
ProtoPool (Rymarczyk et al.| 2022 ResNet-50 26M  85.5 88.9
ProtoPFormer (Xue et al.|[2024 CaiT-XXS-24 12M 849 90.9
ProtoPFormer (Xue et al.|[2024 DeiT-S 22M  84.8 91.0
PIP-Net (Nauta et al.| 2023 ConvNeXt-tiny 29M 843  92.0 88.2
PIP-Net (Nauta et al.| 2023 ResNet-50 26M 82.0 885 86.5
INTR (Paul et al.[|2024 10M  ResNet-50 26M 71.8 904 86.8 76.1
ProtoPNet (Zhu et al.[|2025 DINOv2 ViT-S/14 (K =5) 21M+9M  85.5 79.5
TesNet (Zhu et al.||2025 DINOv2 ViT-S/14 (K =5) 2IM+9M 89.0 82.6
EvalProtoPNet (Zhu et al.|[2025 DINOv2 ViT-S/14 (K =5) 21M+9M  88.2 87.1
ProtoNonParam (Zhu et al.||2025 DINOv2 ViT-S/14 (K =5) 2IM+9M  88.2 86.1
(Frozen backbones) ComFe 8M  DINOv2 ViT-S/14 (f) 21M 876 94.6 91.1 77.5
ProtoNonParam* (Zhu et al. DINOv2 ViT-S/14 (f) 21M 780

ComFe obtains competitive performance in comparison to previous interpretable approaches.
Table [I] shows that ComFe heads obtain competitive performance with previous interpretable models of
similar sizes. We note that in some cases this is an imperfect comparison, with ComFe using the strong
DINOv2 backbones, and prior works using networks initialized with ImageNet weights. We further include
the benchmarks published by (2025), that train interpretable models with the DINOv2 backbone
by adding additional transformer blocks, which are finetuned while the original weights are kept frozen. When
these additional blocks are finetuned, methods such as TesNet (Wang et al., 2021), EvalProtoPNet
and ProtoNonParam can slightly outperform ComFe on CUB200, while ComFe still performs
strongly in comparison on Stanford Cars. Without this finetuning step, the ProtoNonParam
2025) approach performs very poorly in comparison to ComFe.
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To our knowledge ComPFe is the first interpretable head, and while not all benchmarks in Table [I] are directly
comparable, we present them to highlight the utility of this approach. We also note that where ComFe uses
the same set of hyperparameters for all datasets in Table [I} other works undertake hyperparameter tuning
for each task (Paul et all|2024; [Nauta et al., 2023; [Xue et al., [2024)).

Table 2: Non-interpretable performance comparison. Performance (top-1 accuracy) of ComFe versus a
linear head (Oquab et all 2024) with frozen features on several benchmarking datasets.

Method Backbone Dataset
#P  DINOv2 #P IN-1IK C10 C100 Food CUB Pets Cars Aircr Flowers

Linear (Oquab et al.|[2024) <IM ViT-S/14 (f) 21M 81.1 977 875 891 8.1 951 816 74.0 99.6
Linear (Oquab et al.|[2024) <1IM ViT-B/14 (f) 86M  84.5 98.7 913 928 89.6 962 882 794 99.6
Linear (Oquab et al.||2024) <1M ViT-L/14 (f) 300M  86.3 99.3 934 943 90.5 96.6 90.1 81.5 99.7

(
ComFe 8M  ViT-S/14 (f) 2IM 830 983 892 921 876 946 91.1 775 99.0
ComFe 32M  ViT-B/14 (f) 86M  85.6 99.1 922 942 8.3 953 926 81.1 99.3
ComFe 57M  ViT-L/14 (f) 300M 86.7 99.4 93.6 94.6 892 959 93.6 83.9 99.4

ComFe obtains competitive performance compared to a non-interpretable linear head. Table 2]
shows that ComFe is competitive with a linear head, the standard approach of training non-interpretable
models with a frozen backbone. ComFe achieves improved performance on a number of datasets, including
ImageNet, CIFAR-10, CIFAR-100, Food-101, StanfordCars and FGVC Aircraft. For smaller models, we
observe that ComFe outperforms the linear head by a larger margin. For species identification datasets, such
as CUB200, Oxford Pets and Flowers-102, ComFe results in slightly lower performance compared to the linear
head. Further investigations into the CUB200 dataset suggest that this may be due to incorrect annotations
in the training data, as explored in Section [B]

Table 3: Generalisation and robustness benchmarks. Performance (top-1 accuracy) of ComFe versus a
linear head with frozen features on ImageNet-1K generalisation and robustness benchmarks. For IN-R and
IN-A accuracy is reported across all classes rather than restricting to the subset of classes included in these
datasets. The accuracy only considering these classes is provided in Table @

Method Backbone Test Dataset
#P  DINOv2 #P IN-V2 Sketch IN-R IN-A

Linear (Oquab et al.|[2024) <IM ViT-S/14 (f) 21M 70.9 41.2 37.5 189

Linear (Oquab et al.|[2024) <1M ViT-B/14 (f) 8M  75.1 50.6 473 373

Linear (Oquab et al.|[2024) <1IM ViT-L/14 (f) 300M  78.0 59.3 579  52.0
(f)

ComFe 8M  ViT-S/14 (f 2IM 734 45.3 42.1  26.4
ComFe 32M  ViT-B/14 (f) 86M  77.3 54.8 51.9  43.2
ComFe 57M  ViT-L/14 (f) 300M  78.7 59.5 58.8 55.0

ComFe improves generalisability and robustness. Table [3| shows that ComFe is able to improve
performance on the ImageNet-V2 test set while also improving on generalisability and robustness benchmarks
in comparison to a linear head. Previous work has shown that while self-supervised learning approaches such
as CLIP can improve their performance on ImageNet and ImageNet-V2 by fine-tuning the model backbone,
doing so can reduce performance on Sketch, ImageNet-A and ImageNet-R (Radford et all 2021). This
suggests that ComFe may be a viable option to improve model performance with a pretrained ViT network,
without compromising on the generalisability and robustness of the model.

Table 4: Training efficiency. Comparison of timings and GPU memory requirements for interpretable
approaches trained on the CUB200 dataset using an NVIDIA 80GB A100 GPU and a batch size of 64.

Method Backbone Epoch time GPU mem Epochs
ProtoPFormer ViT-L/16 300M 42s 28GB 200
PIP-Net ConvNeXt-tiny 29M 121s 42GB 60
ComFe 57M DINOv2 ViT-L/14 (f) 300M 34s 5GB 50
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CompFe is efficient. Table [4] shows that ComFe is efficient to train in comparison to other interpretable
approaches. For the CUB200 dataset, ComFe can train a ViT-L/14 model in thirty minutes on one 80GB
NVIDIA A100 GPU, and has a sufficiently small memory footprint that it could be trained on most mid-range
consumer graphics cards.
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Figure 4: Visualizing ComFe explanations. Example ComFe predictions showcasing explainability,
sampled from the validation images from the FGVC Aircraft, Stanford Cars and CUB200 datasets. The rows
show the input images, component features (image prototypes), class prototype similarity and exemplars,
and the class confidence heatmap for the final classification.

The image prototypes learnt by ComFe identify visual components across classes. In Fig. |4]it
can be seen that the image prototypes P partition images containing different classes in a consistent manner.
On the CUB200 dataset, the first image prototype (red) identifies the head of birds, while the second image
prototype (yellow) identifies the wings and tail feathers. The third image prototype (green) identifies the
body, and the final two image prototypes (blue and cyan) are always associated with the background. Similar
patterns are observed across the other datasets, with particular image prototypes identifying the front, side
and upper cabin and roof of the car for Stanford Cars, and image prototypes locating the wings, tail and the
body of a plane for the FGVC Aircraft dataset.

The class prototypes learned by ComFe identify the category which image prototypes belong
to. Fig. |4 also shows how the image prototypes P are classified as informative (belonging to a specific class)
or non-informative by the class prototypes C. We observe that when identifying birds the head appears to be
non-informative on the CUB200 dataset, which reflects that a background class prototype has been found
by ComFe on the ViT-S DINOv2 backbone that relates to a bird’s head across different species. A similar
phenomenon occurs in Stanford Cars, where two background class prototypes have been found that describe

10



Under review as submission to TMLR

the upper vehicle cabin and roof of particular types of cars. Further visualisations of these class prototypes
are shown in Fig. in the supporting information.

Like other clustering algorithms (Al-Daoud & Roberts| [1996)), ComFe is sensitive to the initialisation of
the algorithm, and different features may be found to be informative with different seeds. This is further
addressed in the discussion and Section [C] in the supporting information, where the features found to be
informative can also be seen to reflect the chosen pretrained backbone Fig.

Table 5: Quantifying interpretabilty using FunnyBirds. Performance of methods trained on FunnyBirds
(Hesse et al, 2023)) under accuracy, correctness, completeness, distractability and contrastivity and background
independence measures, and example attribution maps.

Method Backbone Measure
Acc.  Cor. | Com. Dist. | Con. B.L

ProtoPNet (Hesse et al.l 2023) ResNet-50 094 0.24 ‘ 0.92  0.58 ‘ 0.46 1.00

ComFe ViT-B/14 w/reg 0.98 0.74 | 0.86 0.80 | 0.61 0.98
(DINOv2) ViT-S/14 w/reg  0.97 0.67 | 0.88 0.60 | 0.54 0.96
ViT-B/14 097 0.57 | 0.01 1.00 | 0.51 0.98
ViT-S/14 096 049 | 0.96 0.73 | 0.51 0.98
ProtoPNet ComPFe ComFe ComPFe ComPFe

ResNet-50

ViT-B/14 w/reg ViT-S/14 w/reg ViT-B/14

ComPFe can be used to evaluate the interpretability of a pretrained ViT network. We employ the
FunnyBirds framework (Hesse et al., 2023)) to quantify the interpretability of ViT backbones using a ComFe
head. FunnyBirds builds a dataset of cartoonish birds, which are constructed from various discrete parts.
This allows the framework to define and calculate a number of different measures directly, such as correctness
(correlation between model outputs and the reported importance of particular regions), contrastivity (degree
to which explanations are different for similar classes) and completeness (degree to which an explanation
describes all aspects of the model’s decision), which trades off against distractability (degree to which
an explanation ignores irrelevant features in the image) (Hesse et all [2023]). Classification accuracy and
background independence (the sensitivity of the output to removal of background objects) are also reported,
and all scores range from 0-1 where 1 is perfect performance. To provide context, we compare the results of
ComFe heads to ProtoPNet, noting that this comparison uses different backbones and metric interfaces. The
FunnyBirds measures are more indicative than comprehensive, given the limitations of the artificial dataset,
particularly when comparing across different types of explanations (Hesse et al., 2023)).

Table[f]shows the results for ProtoPNet and ComFe heads using DINOv2 backbones with and without registers.
ViT models larger than ViT-S/14 without registers have been observed to learn artefact patches—background
patches that store global information—whereas the introduction of registers mitigates this effect and improves
performance in larger models (Darcet et al.| 2024). ComFe heads on frozen DINOv2 backbones provide
stronger results than ProtoPNet on accuracy, correctness, contrastivity and distractability. With the exception
of the DINOv2 ViT-B/14 model, competitive completeness is also achieved. Background independence is also
similar between all of the models. While ViT patch embeddings can contain global information, when they are
trained suitably, like the small DINOv2 foundation models and variants with registers (Darcet et al., 2024),
the kernels that are learnt generally preserve local information. This is supported by the strong performance
of a ComFe head with the DINOv2 ViT-B/14 w/reg backbone across these interpretability measures.

However, this is not the case for all ViT networks. The figures below Table [5| shows that the ComFe head for
the DINOv2 ViT-B/14 network learns to classify using artefact patches—background patches contaminated
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with global information (Darcet et al., [2024). This is highlighted by the abysmal completeness score for
this model in Table [5] which by finding no parts to be informative allows for a perfect distractability score.
Contrastivity and correctness are more similar between the DINOv2 ViT-S/14 and ViT-B/14 models, as all
bird parts (eyes, beak, legs, tail and wings) are given mostly equal weight—maximum confidence, or very
little at all. This is not the case for the DINOv2 variants with registers, where the ComFe heads in the
example images both identify that the eyes are not informative.

Other interpretability metrics designed for ProtoP approaches, such as the purity measure introduced with
PIP-Net (Nauta et al. 2023), are based on the definition of ProtoP prototypes. This is not directly applicable
to ComFe, as the measures would need to be reworked for image and class prototypes, preventing clear
comparisons. Further results for ComFe using DINOv2 backbones with registers and other pretrained ViT
models are included in Section

5 Discussion

Comparison to ProtoP approaches. The ProtoP family considers the relationship between prototypes
and classes to be represented by a learnable linear layer, whose weights describe the relationship between
prototypes and classes (Chen et al., 2019; [Nauta et al.,2023)). This layer is key to making the final class
prediction, as inference is generally done by max-pooling the prototype activations and passing them through
this matrix. The ComFe approach deviates from this by using two sets of prototypes, image prototypes
P that describe particular components of an image, and class prototypes C which represent directions in
the latent space that describe a particular concept (e.g. a type of car). In a sense, the class prototypes of
ComPFe are similar to the prototypes considered by ProtoPNet and related approaches, as they represent
key directions within the embedding space that describe particular concepts. However, in ComFe these are
preassigned to classes, and the similarity between these class prototypes and the image prototypes for a
particular image determines the predicted class of an image.

Limitations. ComFe is designed to be used in conjunction with a high quality foundation model backbone.
While these models, like DINOv2 (Oquab et al., 2024)), can perform well in many contexts, they can still
perform poorly on images that are very different from their training set (Zhang et all, 2024)). As ComFe is
not designed to fine-tune the foundation model backbone, it may struggle to perform well in these settings.
However, it is expected that in future these vision foundation models will continue to improve in performance,
as they are used as visual encoders in multimodal LLMs, such as LLaVA and GPT-4
(OpenAl et al. [2024). For example, it has been recently shown that foundation models can be improved
through combining CLIP pre-training objectives with dense self-supervised tasks, such as those used in
DINOv2 (Tschannen et al. [2025)).

It is further noted that ComFe may identify different features as informative within an image, depending
on the algorithm’s initialisation. Such variability is common in clustering methods (Al-Daoud & Roberts
and is explored further in Section |C| of the supporting information. In practice, this variability can be
addressed by training multiple heads, whose outputs can either be combined in an ensemble or evaluated
individually to select the best-performing head 2010). In our experiments (Fig. and Fig. [S12)), the
best-performing head typically yields a semantically meaningful confidence map. Ensembling is not explored
further, as interpreting the results would be more complex. The features deemed informative also vary across
backbones, reflecting differences in their embedding spaces (Fig. [S14]).

ComFe, as presented in this work, is designed for image-level classification, where global labels guide the
learning of informative regions. As a result, not all parts of an object may be deemed informative, and
some regions can be classified as background, leading to incomplete confidence maps. Extending ComFe to
semantic segmentation, where supervision is provided by segmentation masks, could address this limitation by
encouraging prototypes to capture the full extent of an object. Related approaches, such as ProtoNonParam

(Zhu et al.l 2025)), employ foreground extraction to obtain more spatially complete confidence maps, and a
similar strategy could also be used with ComFe if required.

12



Under review as submission to TMLR

6 Conclusion

This work presents ComFe, a modular interpretable-by-design image classification head that uses a transformer
decoder architecture and a hierarchical mixture modelling approach to build classification models using
a pretrained ViT backbone. ComFe learns to identify directions within the latent space defined by this
pretrained network that relate to particular concepts. This allows for the model to explain how an image is
classified, by examining the similarity between component features of the image and these class prototypes.
ComFe is fast to train and has low GPU memory requirements, in addition to providing improved performance
across a range of benchmarking datasets in comparison to other interpretable methods.
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Supplementary Material

A Further derivations for the learning objective

Predicting patch class membership. Bayes’ rule can be used to obtain the probability that a patch
belongs to a particular patch class v under this model, assuming that the prior distributions for the image
prototypes p(j) and the patch classes p(v) are uniform categorical distributions. This assumes, in the first
instance, that each patch is equally likely to be generated by each image prototype, and each image prototype
is equally likely to be generated by each patch class. First, the probability that an image prototype P;. is
generated by a particular patch class v can be computed using Bayes rule, where Eq. can be inserted to
obtain

ploly) =P L (13)
P )
> p(Pj:v)p(1)
=0 (B)-C/n2) b, (15)

where o(+) is the softmax function, and f’j; is the L2 normalised form of P;..

Then, consider the probability that a patch Z;, was generated by a specific image prototype P;., where Eq.
can be inserted to obtain

N p(Za P )p(P)) (17)
~ p(zz‘ls])
TSN (2P (18)

- (z .fr/ﬁ) . (19)

To facilitate the calculation of p(P;.|Z;.) we treat p(P;.) as prior with a uniform distribution over the sphere
to obtain the approximation in Eq. .

This gives the probability that a patch Z;. belongs to a particular patch class v, through

Np
o Z) =3 / o | 5390 p(py: | Z) dpy; (20)
=1+ p5: €57
Np
~ ZP(V ‘ f)ji)p(lsji | Zi:)? (21)

where we approximate the intractable integral by using a point estimate, inserting the p;. = P ;. direction that
maximises the likelihood of the model, generated using Eq. while optimising for 6. The image prototypes
P;. are treated like a latent variable relating a patch Z;. to its patch class v, that are marginalised from the
expression.

Deriving the likelihood. We do not have data to directly train a model on the patch classes v, as they are
unknown. Instead, we use the global image class labels y as a one-hot encoded class vector. The probability
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of a class being present within an image can be defined as the maximum class probability over all image
patches, creating a vector of Bernoulli distributions, of which the I*" element is given by

p(u|Z) : = max p(n|Zy). (22)
Using this approach, the negative log likelihood of the model for a single image is

—logp(Z,y) = —logp(Z) — <Z wlog p(w|Z) + (1= ) log (1 - p(yzlz))> : (23)

=1

where the discriminative portion of the loss is given by the following binary cross entropy loss

Laiserim(Z,y30,Q, C) (Z yilog p(yi|Z) + (1 — 1) log(1 —p(yzz))> ; (24)
1=1
and the clustering portion of the loss is given by the marginal distribution
logp Z logp (25)
NZ
) 1ogz / 2l 0 r) i (26)
€

~N, Zlogzp (Zi|Pj)p(7)p(Py.). (27)

Here the same MLE point approximation p;. = f)J is introduced as in Eq. to avoid the intractable

integral. However, it is found that including the marginal term p(P .) in this 1055 functlon hurts performance,
so instead the following is used as the clustering loss

ﬁcluster(z 9 Q Z logzp (28)

NZ Np
ZlogZVMFd Z..,Pj;m). (29)
= j=1

This is due to the marginal term p(f’j:) including the class prototypes C. Removing this term from the
clustering loss ensures that the prototypes C are primarily learnt to discriminate classes.

Auxilary loss: Image prototype classes. Three additional constraints are added to the model to improve
quality using an auxilary loss term L,,.y. For the first constraint, we observe that through Eq. there is a
relationship between the class prediction of the image prototypes and patches

p(wi|Z) < p(y|P) (30)
where

p(ylP) = mjaxp(wlf’j:) (31)

If there are no image prototypes associated with a class, the patches will also not be associated with that
class. As a result, adding an additional discriminative loss term to ensure that at least one image prototypes
reflects the global image label

Ep—discrim(zvy; 97 Qa C) = (Z Y1 1ng(yl‘].5) + (1 - yl) log(l p(yl|p))> ’ (32)

=1

could result in a small performance improvement.
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Auxilary loss: Image and class prototype diversity. To ensure that the image and class prototypes
have no redundancy, a second term is added to penalise duplicate image prototype vectors and class prototype
vectors. This is achieved by using a contrastive loss term (Chen et al.l |2020al)

£contrast(z 9 Q C Zl eXp i: : (33)

o % exp(pi: : Pi:/Tc)
i Zjvi exp(P ]-Sj:/TC)

with the temperature parameter 7.. We note that this constraint is not memory intensive, as the contrastive
loss is defined only between the prototypes that belong to a particular image.

Auxilary loss: Image prototype consistency. The third constraint encourages consistency in the
prototypes assigned to particular patches when the image is augmented. We use a loss term inspired by
Consistent Assignment for Representation Learning (Nauta et al., 2023} [Silva & Riveral [2022) (CARL)

Nz Np

Lcarn(Z:6,Q) = ZZlogp (P;.|Z:)p(P}.|Z7,) (34)

where Z* and P* are the patch embeddings and image prototypes from an augmented view X* of the image
X. This loss term is minimised when the softmax vectors given by Eq. from different views are consistent
and confident. To create the augmented views we apply the same cropping and flipping augmentations, so
that the patches cover the same image region, but different color and blur augmentations.

Final training objective. The total auxiliary loss term is given by adding these three component terms.

Eaux(zv Y3 9, Q7 C) = ['p—discrim(z7 Y 9, Q; C) + Econtrast(z; 97 Qa C) + ECARL(Z; 07 Q) (35)

which fully specifies the complete training objective for a single image, given by
’C(Zv Y3 0; Qv C) - Lcluster(z; 9, Q) + »Cdiscrim(zv Y3 07 Qv C) + »Caux(zv Y3 03 Qa C) (36)

When fitting the loss over more than one image, we using a mini-batching approach and use the average over
the batch as the final optimisation loss.

Further details on label smoothing and background classes. Label smoothing is utilised for the
associations of the class prototypes C to the classes, as described by the matrix ¢. Formally, we can write
this matrix as

(37)

1—a+°‘ if (I mod fe)=y
¢ly - .
otherwise

C

where « is the smoothing parameter and c is the number of classes.

When including background classes, the single class label y is extended into a multiclass image label by
appending a 1 as the final element, meaning each image is assigned both its original class and the background
class. The associations matrix is extended accordingly using the same label smoothing strategy described
above, with additional entries incorporated to handle the expanded class prototypes C,,/;, € RWNo+Nn)xd
where N¢ represents the original number of classes, Ny is the number of additional background class
prototypes, and d is the feature dimension.
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Algorithm 1 Algorithm for training ComFe.

Input: Training set T, Ng number of epochs, f backbone model, Aug(.) augmentation strategy that
creates two augmentations per image with the same cropping and flipping operations
Randomly initialise transformer decoder head gy, input queries Q, class prototypes C and generate class
assignment matrix ¢;
1= 0;
while i < Ng do
Randomly split 7" into B mini-batches;
for (xp,ys) € {T, ..., Tp, ..., T5} do
X = Aug(zy)
v = OneHot(ys)
if using background class prototypes then

v={v[1,..,1,...,1]}; > Add the background class to all images.
end if
Z= f(X);
P= 99(Za Q)7

vP) = o (P-C/m) ¢
P|Z)=0 (Z . f’/ﬁ);

)= E;'Vzpl p(”lﬁj:)?(f’j:|z)§
) = MaxPool(p(v|P));

ComPUte aux loss £aux = Ep—discrim + Econtrast + ECARL;
ComPUte final loss £ = Leiuster + Ldiscrim + ﬁaux;
Minimise loss £ by updating 6, C and Q;
end for
1 =1+ 1;
end while
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B Visualising class prototypes with exemplars

(a) FGVC Aircraft.

Figure S5: Class prototype exemplars. Image prototypes from the training data with smallest cosine
distance to the class prototypes associated with each label in the FGCV Aircraft, Stanford Cars and CUB200
datasets.

Visualisation of class prototypes. In Fig.[S5 we show the class prototype exemplars for all classes within
the FGCV Aircraft, Stanford Cars and CUB200 datasets. The class prototype exemplars are given by the
image prototypes from the training dataset with the smallest cosine distance to the class prototypes for each
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label. When visualising the class prototypes in this way, we observed that not all of them are used by ComFe
to make a prediction. For example, for the CUB200 dataset only one class prototype is used to learn most
bird species, and the other class prototypes are located in regions with a low cosine similarity to the rest of
the training dataset. For the CIFAR-10 dataset, which has a much larger number of images per class, we find
that two class prototypes per class are commonly used. When the number of class prototypes are reduced in
our ablation study in Section [D] this has minimal impacts on the accuracy of ComFe.

(a) Ovenbird (b) Tennessee warbler

Figure S6: Example visualizations of class prototypes and exemplars. Five exemplars are shown for
each class prototype.

Evaluating model reasoning. Visualising class prototypes and exemplars illuminates the model’s reasoning
process. As an example, Fig.[S6]shows the Tennessee warbler and Ovenbird class prototypes from the CUB-200
dataset using five exemplars. Although three class prototypes are fitted, two were relevant for classifying
images for these classes, unlike most others which only required one. For the Tennessee warbler class, the first
class prototype clearly relates to the chest and back plumage of a Tennessee warbler, while the second class
prototype is a Cedar wazwing. This shows the model is likely to misclassify the latter bird, and this stems
from the CUB-200 training dataset containing an image of a Cedar wazwing misclassified as a Tennessee
warbler. A similar phenomenon is observed for the Quenbird class, which has a spurious image in the training
data of a yellow-throated warbler. Cases where spurious background features are used to classify images

(Fig. and Fig. [S12)) are also observable in this way.
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C Additional results

(a) Example PIP-Net explanation repro-?
duced from (Nauta et al., [2023).
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Figure S7: Comparison of ComFe explanations versus other work. Example of ComFe classifying a
Lazuli bunting and Indigo bunting, alongside examples provided for PIP-Net and ProtoPFormer. It is also
shown how modifying a red winged black bird changes the predicted class, as expected (Paul et al., [2024)).

Visual comparisons to previous interpretable frameworks. Fig.[S7 compares ComFe explanations
to that produced by PIP-Net (Nauta et al., [2023), a key inspiration for the approach. The similarity score
that matches prototypes in PIP-Net is analogous to the similarity score between image prototypes and class
prototypes in ComFe. While PIP-Net learns the association between prototypes and classes through the
class weight matrix, ComFe assigns class prototypes to particular classes to simplify the fitting process.
ComFe further provides detailed segmentation masks for the image prototypes, class prototype exemplars
and prediction outputs, whereas PIP-Net is designed identify informative patches.

We also include an example for ProtoPFormer (Xue et al., 2024) in Fig. The explanation provided by

ProtoPFormer uses global and local branches, which are all summed together to provide an overall prediction.
With the hyperparameters selected for ComFe, the scale of the ComFe explanations most similarly matches
the global branch. However, finer grained explanations may be possible with ComFe by increasing the number
of image prototypes or training a finer-grained backbone.

In Fig. |S7| we further include an example considered in INTR (Paul et al., 2024]), where an image of a Red
winged black bird is altered to remove the red patch on the wings. In this case ComFe behaves as expected,
identifying the red patch as key to predicting the Red winged black bird class, as per the visualised exemplars,
and classifies the image as an American crow when the red patch is removed. This was also the behaviour
observed under the INTR approach (Paul et al.l [2024]).

CompFe is able to localise salient image features across a range of datasets. Fig.[S§ shows that
ComFe learns to identify relevant features for the classes of interest across a range of datasets, from small low
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(d) Flowers

Figure S8: Class confidence heatmaps. Informative regions for ComFe class predictions across randomly
selected validation images from ImageNet, CIFAR-10/100 and Flowers-102.

resolution datasets with few classes like CIFAR-10, to large high resolution datasets with a thousand classes
such as ImageNet.

Input Image

Image
Prototypes

Class
Confidence

Figure S9: Faithfulness. Example ComFe predictions using a DINOv2 ViT-S/14 backbone from the Oxford
Pets dataset that have been altered to remove the informative regions, or exclude other regions that potentially
might have been informative.

The predictions of salient image features provided by ComFe are faithful under image manip-
ulation. Fig. [S9 shows that when parts of an image are removed that are not identified as important to
classification, ComFe provides similar output. It also shows than when the regions of an image that are used
to make a prediction are removed, ComFe has a low confidence that any particular class is present and will
classify the image as the background class (i.e. predict that no class is present). This reflects the training
process of the DINOv2 backbones, which uses a self-supervised approach that encourages patches to have
similar embeddings even when other parts of the image were removed, and other ViT backbones may be less

faithful.

Table S6: Background class prototypes. Performance of ComFe with and without background class
prototypes versus a linear head.

Head Backbone Background Test Dataset
Prototypes IN-1K IN-V2 Sketch IN-R IN-A
Linear (Oquab et al.|[2024) DINOv2 ViT-S/14 (f) 81.1 70.9 412 375 189
Comfe DINOv2 ViT-S/14 (f) 3000 83.0 73.4 45.3 42.1 26.4
Comfe DINOv2 ViT-S/14 (f) 0 826 73.0 44.4 416 24.0
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Background class prototypes improve the generalisability and robustness of ComFe. Table [S0]
shows that with and without background classes, ComFe obtains better performance, generalisation and
robustness on ImageNet compared to a non-interpretable linear head. As shown in previous work (Jiang et al.,
2021} [Zhao et al., |2023)), the performance and robustness of ViT models can be improved by considering the
patch tokens as well as the class tokens. We also find that the use of background class prototypes slightly
improves the performance of ComFe, in addition to providing a mechanism for identifying the salient regions
of an image when making a prediction.

Table S7: Registers. Performance of ComFe on the DINOv2 backbones with (Darcet et al., |2024)) and
without (Oquab et al., |2024) registers.

Backbone Dataset
IN-1IK C10 C100 Food CUB Pets Cars Aircr Flowers

83.0 98.3 89.2 921 876 946 91.1 77.5 99.0
w/reg  82.9 98.2 89.0 91.6 87.8 94.9 90.5 76.5 98.8

86.7 994 936 946 89.2 959 93.6 839 99.4
w/reg 87.2 99.5 94.6 95.6 90.0 96.0 94.5 85.6 99.6

DINOv2 ViT-S/14 (f
DINOv2 ViT-S/14 (f

DINOv2 ViT-L/14 (
DINOv2 ViT-L/14 (

==

f
f

Nas N2

Including registers in the DINOv2 ViT model can improve the performance of ComFe for
large models. Further work on the ViT backbone has found that including register tokens (Darcet et al.
2024) can prevent embedding artefacts such as patch tokens with large norms, which improves results for
bigger models like the ViT-L and larger variants. In Table [S7]it is shown that the performance of ComFe is
improved for the ViT-L model with registers. Fig.[S10|shows that for the ViT-L backbone without registers,
the informative patches can be irregular and not contain the relevant object of interest in the image, and
the image prototypes can be less natural. However, when registers are used the image prototypes are more
descriptive and we were unable to find cases where relevant features from the image were not identified by
ComPFe.

For some initialisations, ComFe transparently classifies using background features. The features
that are found to be informative by ComFe can vary depending on the random seed chosen for the algorithm.
As shown in Fig. [ST]] for the Food-101 dataset, particular initialisation seeds result in ComFe finding
background features that can be used to accurately classify the training and validation data. However, there
appears to be a trend across both the Food-101 (Fig. and Oxford Pets (Fig. datasets that model
initialisations resulting in more salient image features being identified have better performance.

We observe that the DINOv2 patch embeddings are influenced by their context. For example, in Fig. [S13] we
use k-means clustering to visualise the DINOv2 patch embeddings of two images containing a white plate. We
find that the surface the plates rest on both fall in the background cluster (yellow), but the plate containing
churros is placed in the red cluster while the plate containing a burger is placed in the blue cluster. When
ComFe obtains good performance in cases the salient parts of an image are classified as the background, this
likely reflects this context leakage from the backbone model.

Prototypes being selected from the background of an image was a challenge in the original ProtoPNet
approach, where a pruning process was employed to remove most of the non-informative prototypes from the
reasoning process (Chen et all 2019), and this can still occur in more recent approaches such as PIP-Net
(Nauta et al.|, |2023]).

Table S8: Further results for alternate backbones Results for fitting ComFe on the CUB-200 dataset
with different frozen ViT-B backbones. Training approaches include supervised on IN-21K (AugReg),
self-supervised on IN-1K (DINO, MAE) and foundation models (CLIP, DINOv2 and DINOv2 w/reg).

CLIP DINO AugReg MAE DINOv2 DINOV2 w/reg
(Radford et al.|[2021)  (Caron et al.||2021) (Steiner et al.||2022) (He et al.|[2022) (Oquab et al.||2024) (Darcet et al.|[2024)
CUB-200 ‘ 834 80.2 85.6 76.9 88.8 89.4
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(a) Class confidence  (b) Image prototypes (c) Class confidence (d) Image prototypes
w/registers w /registers

Figure S10: Interpretability with registers. Example ComFe image prototypes and class predictions with
the DINOv2 ViT-L/14 backbone trained on ImageNet. The left two columns are obtained using the network
without registers, and the right two columns use the network that includes registers.

ComFe heads can provide interpretations for a range of different backbones. Table[S§ shows the
performance of ComFe with other pretrained ViT backbones. Higher quality backbones generally perform
better, and the image prototypes and features found to be informative vary between them (see Fig. [S14]). We
note that some backbones are more likely to see background features as informative (DINO and MAE) while
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(a) Seed 1: 92.1% (b) Seed 2: 92.2% (c) Seed 4: 92.3% (d) Seed 3: 92.4%

1.
|
Figure S11: Food-101 seeds. Class confidence maps using ComFe models initialised with different seeds for

an image from the Food-101 validation set.

(a) Seed 1: 94.6% (b) Seed 4: 94.8% (c) Seed 3: 94.8% (d) Seed 2: 95.3%

4

Figure S12: Oxford Pets seeds. Class predictions using ComFe models initialised with different seeds for
an image from the Oxford Pets validation set.

(a) Churros (b) Clustering with DINOv2

Figure S13: Example image of churros and a burger on a white plate from the Food-101 validation set. The
images in the middle are overlayed with a k-means clustering of the combined patch embeddings of the two
images.

the results for other backbones highlight artefact patches that may contain global information (Darcet et al.
2024) (AugReg and CLIP).
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Figure S14: Image prototypes and class confidence heatmaps. Visualizations of the outputs of ComFe
with different pretrained backbones.
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D Ablation studies

In this section we undertake an ablation study on the hyperparameters of ComFe using the FGVC Aircraft,
Oxford Pets and Stanford Cars datasets. For each set of parameters we consider five runs and report the
mean and standard deviation of the validation accuracy. The bolded set of parameters reported in the tables
is the default one used throughout this paper.

Table S9: Ablation: Transformer decoder layers. Performance of ComFe on the DINOv2 ViT-S/14
backbone with different numbers of transformer decoder layers.

Transformer Dataset

Layers Airer Pets Cars
1 75.3£1.3 94.5+0.4 90.3+0.4
2 77.240.9 94.74£0.4 91.14+0.1
4 77.1+0.6 94.840.4 91.6+0.2
6 77.940.7 94.440.3 91.240.2

Tranformer decoder layers. Table [S9 shows that for the Stanford Cars and the FGVC Aircraft datasets,
including more transformer decoder layers improves the average performance of ComFe across a number of
seeds. However, for the Oxford Pets dataset there appears to be no significant relationship between accuracy
and the size of the transformer decoder.

Table S10: Ablation: Auxilary loss. Performance of ComFe on the DINOv2 ViT-S/14 backbone with
elements of the loss removed. In the loss term columns, an N denotes when a term is removed and a Y
denotes when a term is kept.

Loss term Dataset

Lp-discrim LCARL Lcontrast Airer Pets Cars

75.5£1.3 94.1£0.8 90.3+0.5
76.4£2.2 94.7£0.6 90.5+0.7
76.8£1.0 94.8£0.6 90.940.5
76.7+£0.6 94.6+£0.3 90.8+0.3
76.8+£0.7 94.840.4 91.04+0.2

o 22
o <2 2
o2 2

Loss terms. In Table we explore the impact of removing loss terms on the performance of ComFe
across the Stanford Cars, FGVC Aircraft and Oxford Pets datasets. We find that that they have a marginal
impact on the performance of the ComFe models, but do provide a small performance improvement.

Table S11: Ablation: Temperature. Performance of ComFe on the DINOv2 ViT-S/14 backbone with
different 7y and 75 concentration parameters.

Concentration Dataset

1 To Aircr Pets Cars
0.05 0.02 76.8+1.5 94.9+0.4 90.5+0.5
0.10 0.01 76.5+0.9 95.0+0.3 90.6%+0.0
0.10 0.02 77.0+0.4 94.940.4 91.04+0.3
0.10 0.05 77.840.5 94.940.5 91.1+0.6
0.20 0.02 77.4+1.1  95.1+0.2 91.24+0.1
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Concentration parameters. In Table we explore the impact of the concentration parameters 7, and
7o on the performance of ComFe. While there is some scope for optimising the choice of these parameters
for particular datasets, the performance of ComFe does not appear to be particularly sensitive to these
parameters.

Table S12: Ablation: Label smoothing. Performance of ComFe on the DINOv2 ViT-S/14 backbone with
different amounts of label smoothing ().

Label smoothing Dataset

« Aircr Pets Cars
0.0 77.240.6 94.8+0.3 91.04+0.3
0.1 77.3+£0.7 94.8+0.4 91.04+0.2

Label smoothing. In Table we explore the impact of the label smoothing parameter a on the
performance of ComFe. We find that label smoothing has little impact on accuracy, and is not necessary for
the success of the method.

Table S13: Ablation: Number of prototypes. Performance of ComFe on the DINOv2 ViT-S/14 backbone
with different numbers of prototypes.

Number of prototypes Dataset

Np N¢/c Airer Pets Cars

5 1 76.7£0.7 94.6+0.4 91.0+0.4
5 3 77.6£0.8 94.840.2 91.0+£0.3
10 3 76.1£1.2 94.840.4 91.340.3

Number of prototypes. In Table we explore the impact of the number of image prototypes Np
and class prototypes per label N /¢ on the performance of ComFe. While there may be some marginal
performance gains for particular datasets for choosing a particular set of prototypes, overall these have only a
small impact on the accuracy of ComFe.

Table S14: Subsetted robustness. Performance of ComFe with and without background class prototypes
on ImageNet robustness and generalisation benchmarks. We report accuracy with a subset of the logits,
restricted to only the classes present in the ImageNet-R, (Hendrycks et al., 2021a)) and ImageNet-A (Hendrycks
et al.| [2021b) test sets.

Backbone Background Test Dataset
Prototypes IN-R  IN-A
DINOv2 ViT-S/14 (f) 3000 57.7 42.6
DINOv2 ViT-B/14 (f) 3000 67.1 61.7
DINOv2 ViT-L/14 (f) 3000 72.5 71.9
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