
Under review as submission to TMLR

Combining Tree-Search, Generative Models, and Nash Bar-
gaining Concepts in Game-Theoretic Reinforcement Learn-
ing

Anonymous authors
Paper under double-blind review

Abstract

Algorithms that combine deep reinforcement learning and search to train agents, such as
AlphaZero, have demonstrated remarkable success in producing human-level game-playing
AIs for large adversarial domains. We propose a like combination that can be applied to
general-sum, imperfect information games, by integrating a novel search procedure with a
population-based deep RL training framework. The outer loop of our algorithm is imple-
mented by Policy Space Response Oracles (PSRO), which generates a diverse population
of rationalizable policies by interleaving game-theoretic analysis and deep RL. We train
each policy using an Information-Set Monte-Carlo Tree Search (IS-MCTS) procedure, with
concurrent learning of a deep generative model for handling imperfect information during
search. We furthermore propose two new meta-strategy solvers for PSRO based on the
Nash bargaining solution. Our approach thus combines planning, inferring environmental
state, and predicting opponents’ strategies during online decision-making. To demonstrate
the efficacy of this training framework, we evaluate PSRO’s ability to compute approximate
Nash equilibria in benchmark games. We further explore its performance on two negotiation
games: Colored Trails, and Deal-or-No-Deal. Employing our integrated search method, we
conduct behavioral studies where human participants negotiate with our agents (N = 346).
We find that search with generative modeling finds stronger policies during both training
time and test time, enables online Bayesian co-player prediction, and can produce agents
that achieve comparable social welfare negotiating with humans as humans trading among
themselves.

1 Introduction

Computer game research has witnessed tremendous progress over the past decade, marked prominently by
the development of human-level game-playing bots in the games of Go (Silver et al., 2018), Poker (Brown
et al., 2020; Schmid et al., 2021b), and Diplomacy (Bakhtin et al., 2023). Two broad algorithmic tech-
niques are primarily responsible for this success: (1) deep reinforcement learning (RL) and (2) game-tree
search. Deep RL methods are capable of training quality value functions or policies represented by neural
nets which generalize well across large state spaces. Search techniques such as Monte-Carlo Tree Search
(MCTS) (Browne et al., 2012) leverage computational resources at decision time to improve the strength of
a strategy. AlphaZero (Silver et al., 2018) provides an elegant framework that coherently combines the power
of both methods: a deep policy-and-value network (PVN) is trained using self-play trajectories generated by
MCTS, and the updated PVN further guides the search procedure and improves the quality of the trajectory
data. By iteratively training the PVN and simulating self-play matches, AlphaZero produces progressively
stronger play, which eventually surpass professional human players without any human data. Outside recre-
ational game domains, AlphaZero-style methods also achieved remarkable successes in discovering faster
matrix completion methods (Fawzi et al., 2022) and sorting algorithms (Mankowitz et al., 2023).

AlphaZero was originally designed to master large, adversarial, perfect-information games. There are several
barriers to generalization of this approach to general-sum, imperfect information domains. First, self-play

1

Under review as submission to TMLR

training is specifically geared to two-player zero-sum domains and implicitly depends on transitivity of the
game (Balduzzi et al., 2019). For games that are not purely adversarial, issues like equilibrium selection
appear: agents trained entirely through self-play optimize to their opponents at training time, thus may
not perform well to opponents at test time, which may correspond to alternative equilibria. In cooperative
settings like coordination or common-interest games, this issue can be alleviated by publishing the algorithms
and random seeds as mutual knowledge among players (Foerster et al., 2019; Lerer et al., 2020). However, this
is generally an unreasonable assumption for games involving mixed cooperative and competitive elements.
Population-based training methods provide one approach to dealing with this issue. By training against a
diverse population of opponents, the agent optimizes against a variety of opponent strategies. Population-
based training has shown success in pure coordination settings (Lupu et al., 2021) as well as completely
adversarial games (Vinyals et al., 2019).

A second major barrier is reasoning with imperfect information. In partially observable environments (e.g.,
Poker), an agent needs to maintain its belief over world states (e.g., the hands of the opponents) during
a planning procedure. Specific techniques such as counterfactual regret minimization (CFR) were devel-
oped (Zinkevich et al., 2008; Brown et al., 2020; Schmid et al., 2021b) for computer poker, where belief
states can be characterized exactly (Moravčík et al., 2017). Exact reasoning about belief states can be
intractable for domains with more complex forms of imperfect information, such as Stratego (Perolat et al.,
2022). Approaches such as particle filtering may be applicable (Silver & Veness, 2010), but are also subject
to scaling challenges.

We propose a general-purpose multiagent RL training regime to address the above issues, and extend
AlphaZero-style RL and MCTS methods to large general-sum, imperfect information domains. The outer
loop adopts a population-based training framework instantiated by Policy Space Response Oracles (PSRO)
(Lanctot et al., 2017). PSRO incrementally generates a set of diverse opponents by repeating the following
two steps: the i) meta-strategy solver (MSS) step, which computes a distribution over existing strategies via
empirical game-theoretic analysis (EGTA) (Wellman, 2006), and ii) the best response (BR) step, which com-
putes approximate best response policies using deep RL against the MSS distribution, adding them to the
pool. This procedure effectively builds a belief hierarchy consisting of game-theoretic rationalizable strate-
gies (Bernheim, 1984), bearing some resemblance to the K-level cognitive hierarchy (Camerer et al., 2004; Cui
et al., 2021) of behavioral game theory and recursive reasoning in multiagent applications (Gmytrasiewicz
& Durfee, 2000).

We employ an enhanced version of AlphaZero-style MCTS to train each best response strategy, thereby
equipping our agent with the capability to both plan and infer the environmental state as well as opponents’
strategic choices during online decision-making. This novel search method integrates deep RL with Infor-
mation Set MCTS (IS-MCTS). To handle large imperfect information, we augment a deep generative model
that samples world states at the root of the search tree, and iteratively refine its quality together with a
PVN using RL trajectory data during the training loop. On each simulation step, a world state is sampled,
and posterior mixed strategies of the opponents are updated, given the history implied by this world state.
Then the opponent nodes are replaced with a sampled pure strategies from this distribution. Each pure
strategy in the opponent pool serves as a “type” (Harsanyi, 1967) of play by viewing the environment as a
Bayesian game. This type-based reasoning is also reflected by a recent work on Diplomacy (Bakhtin et al.,
2023). While their work generates different types by sampling different regularization parameters of human
policies, our approach automates the generations of types during the best response step, and calibrates the
type distribution during the MSS step. Therefore, our agent is capable of performing test-time search while
automatically inferring opponents’ types given an observation history.

Experimentally, we first assess the capacity of PSRO to compute a Nash equilibrium across various benchmark
games. We then test on two negotiation game domains: colored-trails and deal-or-no-deal. Our negotiation-
based PSRO agents, selected using fairness criteria, reach Pareto frontier and achieve and a social welfare
when negotiating with humans that is comparable to humans trading among themselves. Importantly, as was
recently demonstrated in the cooperative game Overcooked (Strouse et al., 2021), this is achieved without
using any human data in the training procedure.

2

Under review as submission to TMLR

…

Player 1 Player 2

Figure 1: Example negotiation game in extensive-form. In “Deal or No Deal”, the game starts at the empty
history (∅), chance samples a public pool of resources and private preferences for each player, then players
alternate proposals for how to split the resources.

Our Contributions: We propose a general-purpose training regime for multiagent (partially observable)
general sum, n-player, and negotiation games using game-theoretic RL. We make the following key extensions
to AlphaZero and the PSRO framework:

• We integrate an AlphaZero-style Monte Carlo tree search (MCTS) approximate best response into
the best-response step in PSRO. We further enhance this by incorporating deep-generative models
into the best-response step training loop, which allows us to tractably represent belief-states during
search in large imperfect information games (Section 3).

• We introduce and evaluate several new meta-strategy solvers, including those based on bargaining
theory, which are particularly well suited for negotiation games (Section 4).

• We conduct an extensive evaluation across a variety of benchmark games (Appendix 5.1) and in two
negotiation games, including one with human participants (Section 5).

2 Background and Related Work

An n-player normal-form game consists of a set of players N = {1, 2, . . . , n}, n finite pure strategy sets
Πi (one per player) with joint strategy set Π = Π1 × Π2 × · · ·Πn, and a utility tensor (one per player),
ui : Π → R, and we denote player i’s utility as ui(π). Two-player (2P) normal-form games are called
matrix games. A two-player zero-sum (purely adversarial) game is such that, n = 2 and for all joint
strategies π ∈ Π :

∑
i∈N ui(π) = 0, whereas a common-payoff (purely cooperative) game: ∀π ∈ Π ,∀i, j ∈

N : ui(π) = uj(π). A general-sum game is one without any restrictions on the utilities. A mixed strategy
for player i is a probability distribution over Πi denoted σi ∈ ∆(Πi), and a strategy profile σ = σ1×· · ·×σn,
and for convenience we denote ui(σ) = Eπ∼σ[ui(π)]. By convention, −i refers to player i’s opponents. A
best response is a strategy bi(σ−i) ∈ BR(σ−i) ⊆ ∆(Πi), that maximizes the utility against a specific
opponent strategy: for example, σ1 = b1(σ−1) is a best response to σ−1 if u1(σ1, σ−1) = maxσ′

1
u1(σ′

1, σ−1).
An approximate ϵ-Nash equilibrium is a profile σ such that for all i ∈ N , ui(bi(σ−i), σ−i) − ui(σ) ≤ ϵ,
with ϵ = 0 corresponding to an exact Nash equilibrium.

A “correlation device”, µ ∈ ∆(Π), is a distribution over the joint strategy space, which secretly recommends
strategies to each player. Define ui(π′

i, µ) to be the expected utility of i when it deviates to π′
i given that other

players follow their recommendations from µ. Then, µ is coarse-correlated equilibrium (CCE) when no
player i has an incentive to unilaterally deviate before receiving their recommendation: ui(π′

i, µ)−ui(µ) ≤ 0
for all i ∈ N , π′

i ∈ Πi. Similarly, define ui(π′
i, µ|π′′

i) to be the expected utility of deviating to π′
i given

that other players follow µ and player i has received recommendation π′′
i from the correlation device. A

correlated equilibrium (CE) is a correlation device µ where no player has an incentive to unilaterally
deviate after receiving their recommendation: ui(π′

i, µ|π′′
i)− ui(µ|π′′

i) ≤ 0 for all i ∈ N , π′
i ∈ Πi, π

′′
i ∈ Πi.

3

Under review as submission to TMLR

Algorithm 1 Policy-Space Response Oracles (PSRO)
Input: Game G, Meta Strat. Solver MSS, oracle BR.
function PSRO(G, MSS, BR)

Initialize strategy sets ∀n,Πi = {π0
i }. Initialize mixed strategies σi(π0

i) = 1,∀i, payoff tensor U0.
for t ∈ {0, 1, 2 · · · , T} do

for i ∈ N do
Πi ← Πi

⋃
{BR(i, σ, num_eps)}

end for
Update missing entries in U t via simulations
σ ←MSS(U t)

end for
return Π = (Π1,Π2, · · · ,Πn), σ

end function

In an extensive-form game, play takes place over a sequence of actions a ∈ A. Examples of such games
include chess, Go, and poker. An illustrative example of interaction in an extensive-form game is shown in
Figure 1. A history h ∈ H is a sequence of actions from the start of the game taken by all players. Legal
actions are at h are denoted A(h) and the player to act at h as τ(h). Players only partially observe the
state and hence have imperfect information. There is a special player called chance that plays with a fixed
stochastic policy (selecting outcomes that represent dice rolls or private preferences). Policies πi (also called
behavioral strategies) is a collection of distributions over legal actions, one for each player’s information
state, s ∈ Si, which is a set of histories consistent with what the player knows at decision point s (e.g. all
the possible private preferences of other players), and πi(s) ∈ ∆(A(s)).

There is a subset of the histories Z ⊂ H called terminal histories, and utilities are defined over terminal
histories, e.g. ui(z) for z ∈ Z could be –1 or 1 in Go (representing a loss and a win for player i, respectively).
As before, expected utilities of a joint profile π = π1×· · ·×πn is defined as an expectation over the terminal
histories, ui(π) = Ez∼π[ui(z)], and best response and Nash equilibria are defined with respect to a player’s
full policy space.

2.1 EGTA and Policy-Space Response Oracles

Empirical game-theoretic analysis (EGTA) (Wellman, 2006) is an approach to reasoning about large sequen-
tial games through normal-form empirical game models, induced by simulating enumerated subsets of the
players’ full policies in the sequential game. Policy-Space Response Oracles (PSRO) (Lanctot et al., 2017)
uses EGTA to incrementally build up each player’s set of policies (“oracles”) through repeated applications of
approximate best response using RL. Each player’s initial set contains a single policy (e.g. uniform random)
resulting in a trivial empirical game U0 containing one cell. On epoch t, given n sets of policies Π t

i for i ∈ N ,
utility tensors for the empirical game U t are estimated via simulation. A meta-strategy solver (MSS)
derives a profile σt, generally mixed, over the empirical game strategy space. A new best response oracle, say
bti(σt−i), is then computed for each player i by training against opponent policies sampled from σt−i. These
are added to strategy sets for the next epoch: Π t+1

i = Π t
i ∪{bti(σt−i)}. Since the opponent policies are fixed,

the oracle response step is a single-agent problem (Oliehoek & Amato, 2014), and (deep) RL can feasibly
handle large state and policy spaces.

2.1.1 Algorithms for Meta-Strategy Solvers

A key motivation for introducing the MSS abstraction in PSRO (Lanctot et al., 2017) was the observation
that best-responding to exact Nash equilibrium tended to produce new policies overfit to the current solu-
tion. Abstracting the solver allows for consideration of alternative response targets, for example those that
ensure continual training against a broader range of past opponents, and those that keep some lower bound
probability γ/|Πi| of being selected.

4

Under review as submission to TMLR

The current work considers a variety of previously proposed MSSs: uniform (corresponding to fictitious
play (Brown, 1951)), projected replicator dynamics (PRD), a variant of replicator dynamics with directed
exploration (Lanctot et al., 2017), α-rank (Omidshafiei et al., 2019; Muller et al., 2019), maximum Gini
(coarse) correlated equilibrium (MGCE and MGCCE) solvers (Marris et al., 2021), and exploratory
regret-matching (RM) (Hart & Mas-Colell, 2000), a parameter-free regret minimization algorithm com-
monly used in extensive-form imperfect information games (Zinkevich et al., 2008; Moravčík et al., 2017;
Brown et al., 2020; Schmid et al., 2021a). We also use and evaluate ADIDAS (Gemp et al., 2021) as an
MSS for the first time. ADIDAS is a recently proposed general approximate Nash equilibrium (limiting logit
equilibrium / QRE) solver.

2.2 Combining MCTS and RL for Best Response

The performance of EGTA and PSRO depend critically on the quality of policies found in the best-response
steps; to produce stronger policies and enable test-time search, AlphaZero-style combined RL+MCTS (Silver
et al., 2018) can be used in place of the RL alone. This has been applied recently to find exploits of opponent
policies in Approximate Best Response (ABR) (Timbers et al., 2022; Wang et al., 2023) and also combined
with auxiliary tasks for opponent prediction in BRExIt (Hernandez et al., 2023). This combination can be
particularly powerful; for instance, ABR found an exploit in a human-level Go playing agent trained with
significant computational resources using AlphaZero.

When computing an approximate best response in imperfect information games, ABR uses a variant of
Information Set Monte Carlo tree search (Cowling et al., 2012) called IS-MCTS-BR. At the root of the IS-
MCTS-BR search (starting at information set s), the posterior distribution over world states, Pr(h | s, π−i) is
computed explicitly, which requires both (i) enumerating every history in s, and (ii) computing the opponents’
reach probabilities for each history in s. Then, during each search round, a world state is sampled from this
belief distribution, then the game-tree regions are explored in a similar way as in the vanilla MCTS, and
finally the statistics are aggregated on the information-set level. Steps (i) and (ii) are prohibitively expensive
in games with large belief spaces. Hence, we propose learning a generative model online during the BR step;
world states are sampled directly from the model given only their information state descriptions, leading to
a succinct representation of the posterior capable of generalizing to large state spaces.

3 Search-Improved Generative PSRO

Our main algorithm has three components: the main driver (PSRO) (Lanctot et al., 2017), a search-enhanced
BR step that concurrently learns a generative model, and the search with generative world state sampling
itself. The main driver (Algorithm 1) operates as described in Subsection 2.1. In classical PSRO, the
best response oracle is trained entirely via standard RL. For the first time, we introduce Approximate Best
Response (ABR) as a search-based oracle in PSRO with a generative model for sampling world states.

The approximate best response step (Algorithm 2) proceeds analogously to AlphaZero’s self-play based
training, which trains a value net v, a policy net p, along with a generative network g using trajectories
generated by search. There are some important differences from AlphaZero. Only one player is learning
(e.g. player i). The (set of) opponents are fixed, sampled at the start of each episode from the opponent’s
meta-distribution σ−i. Whenever it is player i’s turn to play, since we are considering imperfect information
games, it runs a POMDP search procedure based on IS-MCTS (Algorithm 3) from its current information
state si. The search procedure produces a policy target π∗, and an action choice a∗ that will be taken at si
at that episode. Data about the final outcome and policy targets for player i are stored in data sets Dv and
Dp, which are used to improve the value net and policy net that guide the search. Data about the history,
h, in each information set, s(h), reached is stored in a data set Dg, which is used to train the generative
network g by supervised learning.

The MCTS search we use (Algorithm 3) is based on IS-MCTS-BR in (Timbers et al., 2022) (described in
Section 2.2) and POMCP (Silver & Veness, 2010). Here it utilizes value net v to truncate the search at
an unexpanded node and policy net p for action selection at an expanded node s using the PUCT (Silver
et al., 2018) formula: MaxPUCT(s,p) = arg maxa∈A(s)

s.child(a).value
s.child(a).visits + cuct ·p(s, a) ·

√
s.total_visits

s.child(a).visits+1 , for some

5

Under review as submission to TMLR

Algorithm 2 ABR with generative model learning
function ABR(i, σ, num_eps)

Initialize value nets v,v′, policy nets p,p′, generative nets g, g′, data buffers Dv, Dp, Dg

for eps = 1, . . . , num_eps do
h← initial state. T = {si(h)}
Sample opponents π−i ∼ σ−i.
while h not terminal do

if τ(h) = chance then
Sample chance event a ∼ πc

else if τ(h) ̸= i then
Sample a ∼ πτ(h)

else
a, π ← Search(si(h), σ,v′,p′, g′)
Dp ← Dp

⋃
{(si(h), π)}

Dg ← Dg

⋃
{(si(h), h)}

end if
h← h.apply(a), T ← T

⋃
{si(h)}

end while
Dv ← Dv

⋃
{(s, r) | s ∈ T }, where r is the payoff of i in this trajectory

v,p, g ← Update(v,p, g, Dv, Dp, Dg)
Replace parameters of v′,p′, g′ by the latest parameters of v,p, g periodically.

end for
return Search(·, σ,v,p, g), or policy network p, or greedy policy towards v

end function

constant cuct. Then at the end of the search call, it returns an action a∗ which receives the most visits at
the root node, and a policy π∗ representing the action distribution of the search at the root node.

Algorithm 3 has two important differences from previous methods. Firstly, rather than computing exact
posteriors, we use the deep generative model g learned in Algorithm 2 to sample world states. As such,
this approach may be capable of scaling to large domains where previous approaches such as particle fil-
tering (Silver & Veness, 2010; Somani et al., 2013) fail. Secondly, in the context of PSRO the imperfect
information of the underlying POMDP consists of both (i) the actual world state h and (ii) opponents’ pure-
strategy commitment π−i. We make use of the fact Pr(h, π−i | s, σ−i) = Pr(h | s, σ−i) Pr(π−i | h, σ−i) such
that we approximate Pr(h | s, σ−i) by g and compute Pr(π−i | h, σ−i) exactly via Bayes’ rule. Computing
Pr(π−i | h, σ−i) can be interpreted as doing inference over opponents’ types (Albrecht et al., 2016; Kreps
& Wilson, 1982; Hernandez-Leal & Kaisers, 2017; Kalai & Lehrer, 1993) or styles during play (Synnaeve &
Bessiere, 2011; Ponsen et al., 2010).

3.1 Extracting a Final Agent at Test Time

How can a single decision-making agent be extracted from Π? The naive method samples πi ∼ σi at the start
of each episode, then follows σi for the episode. The self-posterior method resamples a new oracle πi ∈ ΠT

i

at information states each time an action or decision is requested at s. At information state s, the agent
samples an oracle πi from the posterior over its own oracles: πi ∼ Pr(πi | s, σi), using reach probabilities of
its own actions along the information states leading to s where i acted, and then follows πi. The self-posterior
method is based on the equivalent behavior strategy distribution that Kuhn’s theorem (Kuhn, 1953) derives
from the mixed strategy distribution over policies. The aggregate policy method takes this a step further
and computes the average (expected self-posterior) policy played at each information state, π̄Ti (s), exactly
(rather than via samples); it is described in detail in (Lanctot et al., 2017, Section E.3). The rational
planning method enables decision-time search instantiated with the final oracles: it assumes the opponents
at test time exactly match the σ−i of training time, and keeps updating the posterior Pr(h, π−i | s, σ−i)
during an online play. Whenever it needs to take an action at state s at test time, it employs Algorithm 3 to

6

Under review as submission to TMLR

Algorithm 3 IS-MCTS-BR with generative sampling
function Search(s, σ, v,p, g)

for iter = 1, . . . , num_sim do
T = {}
Sample a world state (gen. model): h ∼ g(h | s)
Sample an opponent profile using Bayes’ rule: π′

−i ∼ Pr(π−i | h, σ−i). Replace opponent nodes with
chance events according to π′

−i
while do

if h is terminal then
r ← payoff of i. Break

else if τ(h) = chance then
a← sample according to chance

else if si(h) not in search tree then
Add si(h) to search tree.
r ← v(si(h))

else
a← MaxPUCT(si(h),p)
T ← T ∪ {(si(h), a)}

end if
h.apply(a)

end while
for (s, a) ∈ T do
s.child(a).visits← s.child(a).visits+ 1
s.child(a).value← s.child(a).value+ r
s.total_visits← s.total_visits+ 1

end for
end for
return action a∗ that receives max visits among children of s, and a policy π∗ that represents the visit
frequency of children of s

end function

search against this posterior. This method combines online Bayesian opponent modeling and search-based
best response, which resembles the rational learning process (Kalai & Lehrer, 1993).

4 New Meta-Strategy Solvers

Recall from Section 2 that a meta-strategy solver (MSS) selects a strategy profile from the current empirical
game for use as best-response target. This target can take the form of either: (i) µ, a joint distribution
over Π, or (ii) (σ1, σ2, . . . , σn), a set of (independent) distributions over Πi, respectively. These distributions
(µ−i or σ−i) are used to sample opponents when player i is computing an approximate best response. We
use many MSSs: several new and from previous work, summarized in Appendix A and Table 1. We present
several new MSSs for general-sum games inspired by bargaining theory, which we now introduce.

4.1 Bargaining Theory and Solution Concepts

The Nash Bargaining solution (NBS) selects a Pareto-optimal payoff profile that uniquely satisfies axioms
specifying desirable properties of invariance, symmetry, and independence of irrelevant alternatives (Nash,
1950; Ponsati & Watson, 1997). The axiomatic characterization of NBS abstracts away the process by which
said outcomes are obtained through strategic interaction. However, Nash showed that it corresponds to a
strategic equilibrium if threats are credible (Nash, 1953), and in fact, in bargaining games where agents take
turns, under certain conditions the perfect equilibrium corresponds to the NBS (Binmore et al., 1986).

7

Under review as submission to TMLR

Algorithm Abbreviation Independent/Joint Solution Concepts Description
α-Rank — Joint MCC (Omidshafiei et al., 2019; Muller et al., 2019)
ADIDAS — Independent LLE/QRE (Gemp et al., 2021)
Max Entropy (C)CE ME(C)CE Joint (C)CE (Ortiz et al., 2007)
Max Gini (C)CE MG(C)CE Joint (C)CE (Marris et al., 2021)
Max NBS (C)CE MN(C)CE Joint (C)CE Sec 4.3
Max Welfare (C)CE MW(C)CE Joint (C)CE (Marris et al., 2021)
Nash Bargaining Solution (NBS) NBS Independent P-E Sec 4.2
NBS Joint NBS_joint Joint P-E Sec 4.2
Projected Replicator Dynamics PRD Independent ? (Lanctot et al., 2017; Muller et al., 2019)
Regret Matching RM Independent CCE (Lanctot et al., 2017)
Social Welfare SW Joint MW Sec 4
Uniform — Independent ? (Brown, 1951; Shoham & Leyton-Brown, 2009)

Table 1: Meta-strategy solvers. For each MSS, we indicate whether its output is over joint or individual
strategy spaces, and the solution concept it captures. P-E stands for Pareto efficiency.

Algorithm 4 NBS by projected gradient ascent
Input: Initial iterate x, payoff tensor U .
function NBS(x0, U)

Let g(x) be the log Nash product defined in eqn (2)
for t = 0, 1, 2 · · · , T do

yt+1 ← xt + αt∇g(xt)
xt+1 ← Proj(yt+1)

end for
Return arg maxxt=0:T g(xt)

end function

Define the set of achievable payoffs as all expected utilities ui(µ) under a joint-policy profile µ (Harsanyi &
Selten, 1972; Morris, 2012). Denote the disagreement outcome of player i, which is the payoff it gets if no
agreement is achieved, as di. The NBS is the set of policies that maximizes the Nash bargaining score
(A.K.A. Nash product):

max
µ∈∆(Π)

Πi∈N (ui(µ)− di) , (1)

which, when n = 2, leads to a quadratic program (QP) with the constraints derived from the policy space
structure (Griffin, 2010). However, even in this simplest case of two-player matrix games, the objective is
non-concave posing a problem for most QP solvers. Furthermore, scaling to n players requires higher-order
polynomial solvers.

4.2 Empirical Game Nash Bargaining Solution

Instead of using higher-order polynomial solvers, we propose an algorithm based on (projected) gradient
ascent (Singh et al., 2000; Boyd & Vandenberghe, 2004). Let x ∈ ∆(Π) represent a distribution over joint
strategies in an empirical game. Let ui(x) = Eπ∼x[ui(π)] be the expected utility for player i under the joint
distribution x. Let Πi∈N (ui(x) − di) be the Nash product defined in Equation 1. In practice, di is either
clearly defined from the context, or is set as a value that is lower than the minimum achievable payoff of i
in ∆(Π). We restrict ui(x) − di > 0 for all i,x. Note that the Nash product is non-concave, so instead of
maximizing it, we maximize the log Nash product g(x) =

log (Πi∈N (ui(x)− di)) =
∑
i∈N

log(ui(x)− di), (2)

which has the same maximizers as equation 1, and is a sum of concave functions, hence concave. The process
is depicted in Algorithm 4; Proj is the ℓ2 projection onto the simplex.
Theorem 4.1. Assume any deal is better than no deal by κ > 0, i.e., ui(x) − di ≥ κ > 0 for all i,x.
Let {xt} be the sequence generated by Algorithm 4 with starting point x0 = |Π |−11 and step size sequence

8

Under review as submission to TMLR

C S
C -5,-5 +1,-1
S -1,+1 -1,-1

B S
B 3,2 0,0
S 0,0 2,3

CC

CS

SC

SS

NBS
Pure NEs
Mixed NEs

BB

BS

SB

SS

Figure 2: (C)CE polytopes in Chicken (left) and Bach-or-Stravinsky (right) showing NBS equilibrium selec-
tion.

αt = κ
√

(|Π|−1)/|Π|
umaxn (t+ 1)−1/2. Then, for all t > 0 one has

max
x∈∆|Π|−1

g(x)− max
0≤s≤t

g(xs) ≤ umaxn
√
|Π |

κ
√
t+ 1

(3)

where umax = maxi,x ui(x), |Π | is the number of possible pure joint strategies, and x is assumed to be a joint
correlation device (µ).

For a proof, see Appendix B.

4.3 Max-NBS (Coarse) Correlated Equilibria

The second new MSS we propose uses NBS to select a (C)CE. For all normal-form games, valid (C)CEs
are a convex polytope of joint distributions in the simplex defined by the linear constraints. Therefore,
maximizing any strictly concave function can uniquely select an equilibrium from this space (for example
Maximum Entropy (Ortiz et al., 2007), or Maximum Gini (Marris et al., 2021)). The log Nash product
(Equation equation 2) is concave but not, in general, strictly concave. Therefore to perform unique equilib-
rium selection, a small additional strictly concave regularizer (such as maximum entropy) may be needed
to select a uniform mixture over distributions with equal log Nash product. We use existing off-the-shelf
exponential cone constraints solvers (e.g., ECOS (Domahidi et al., 2013), SCS (O’Donoghue et al., 2021))
which are available in simple frameworks (CVXPY (Diamond & Boyd, 2016; Agrawal et al., 2018)) to solve
this optimization problem.

NBS is a particularly interesting selection criterion. Consider the game of chicken in where players are
driving head-on; each may continue (C), which may lead to a crash, or swerve (S), which may make them
look cowardly. Many joint distributions in this game are valid (C)CE equilibria (Figure 2). The optimal
outcome in terms of both welfare and fairness is to play SC and CS each 50% of the time. NBS selects this
equilibrium. Similarly in Bach-or-Stravinsky where players coordinate but have different preferences over
events: the fairest maximal social welfare outcome is a compromise, mixing equally between BB and SS.

4.4 Social Welfare

This MSS selects the pure joint strategy of the empirical game that maximizes the estimated social welfare.

5 Experiments

We initially assessed PSRO as a general approximate Nash equilibrium solver and collection of MSSs over 12
benchmark games commonly used throughout the literature. The full results are presented in Appendix 5.1.

9

Under review as submission to TMLR

100 101

Iteration

101

2 × 100

3 × 100

4 × 100

6 × 100

Na
sh

Co
nv

Three player Leduc poker. DQN BR Log-Log adidas
uniform
prd
max_gini_ce
max_gini_cce
alpharank
nbs
nbs_joint
social_welfare
regret_matching
max_nbs_ce
max_nbs_cce
max_welfare_ce
max_welfare_cce
max_ent_ce
max_ent_cce 100 101 102

Iteration

100

101

Na
sh

Co
nv

Sheriff. DQN BR. Log-Log adidas
uniform
prd
max_gini_ce
max_gini_cce
alpharank
nbs
nbs_joint
social_welfare
regret_matching
max_nbs_ce
max_nbs_cce
max_welfare_ce
max_welfare_cce
max_ent_ce
max_ent_cce

100 101 102

Iteration

101

Na
sh

Co
nv

Two player tiny bridge. DQN BR. Log-Log adidas
uniform
prd
max_gini_ce
max_gini_cce
alpharank
nbs
nbs_joint
social_welfare
regret_matching
max_nbs_ce
max_nbs_cce
max_welfare_ce
max_welfare_cce
max_ent_ce
max_ent_cce

(a) (b) (c)

100 101 102

Iteration

100

101

Na
sh

Co
nv

Three player Leduc poker. Exact BR Log-Log adidas
uniform
prd
max_gini_ce
max_gini_cce
alpharank
nbs
nbs_joint
social_welfare
regret_matching
max_nbs_ce
max_nbs_cce
max_welfare_ce
max_welfare_cce
max_ent_ce
max_ent_cce

0 50 100 150 200
Iteration

0

10

20

30

40

So
cia

l w
el

fa
re

Sheriff. DQN BR. Linear-Linear adidas
uniform
prd
max_gini_ce
max_gini_cce
alpharank
nbs
nbs_joint
social_welfare
regret_matching
max_nbs_ce
max_nbs_cce
max_welfare_ce
max_welfare_cce
max_ent_ce
max_ent_cce

0 50 100 150
Iteration

20

10

0

10

20

30

40

So
cia

l w
el

fa
re

Two player tiny bridge. DQN BR. Linear-Linear adidas
uniform
prd
max_gini_ce
max_gini_cce
alpharank
nbs
nbs_joint
social_welfare
regret_matching
max_nbs_ce
max_nbs_cce
max_welfare_ce
max_welfare_cce
max_ent_ce
max_ent_cce

(d) (e) (f)

Figure 3: NashConv and social welfare along PSRO iterations across game types. NashConv in 3P
Leduc poker using (a) DQN oracles vs. (d) exact oracles. NashConv (b) and (e) social welfare in Sheriff.
NashConv (c) and social welfare (f) in 2P Tiny Bridge.

Then we focus our evaluation on negotiation, a common human interaction and important class of general-
sum games with a tension between incentives (competing versus cooperating).

5.1 Approximate Nash Equilibrium Solving on Benchmark Games

Here we evaluate the capacity of PSRO with different meta-strategy solvers 1 to act as a general Nash
equilibrium solver for sequential n-player games. For these initial experiments, we run PSRO on its own
without search. Since these are benchmark games, they are small enough to compute exact exploitability, or
the Nash gap (called NashConv by Lanctot et al. (2017; 2019)), and search is not necessary. We run PSRO
using 16 different meta-strategy solvers across 12 different benchmark games (three 2P zero-sum games, three
n-player zero-sum games, two common-payoff games, and four general-sum games): instances of Kuhn and
Leduc poker, Liar’s dice, Trade Comm, Tiny Bridge, Battleship, Goofspiel, and Sheriff. These games have
recurred throughout previous work, so we describe them in Appendix C; they are all partially-observable
and span a range of different types of games.

A representative sample of the results is shown in Figure 3, whereas all the results are shown below.
NashConv(π̄) =

∑
i∈N ui(bi(π̄−i), π̄−i) − ui(π̄), where bi is an exact best response, and π̄ is the exact

average policy using the aggregator method described in Section 3.1. A value of zero means π̄ is Nash equi-
librium, and values greater than zero correspond to an gap from Nash equilibrium. Social welfare is defined
as SW(π̄) =

∑
i ui(π̄).

Most of the meta-strategy solvers seem to reduce NashConv faster than a completely uninformed meta-
strategy solver (uniform) corresponding to fictitious play, validating the EGTA approach taken in PSRO. In
three-player (3P) Leduc, the NashConv achieved for the exact best response is an order of magnitude smaller
than when using DQN. ADIDAS, regret-matching, and PRD are a good default choice of MSS in competitive
games. The correlated equilibrium meta-strategy solvers are surprisingly good at reducing NashConv in
the competitive setting, but can become unstable and even fail when the empirical game becomes large in
the exact case. In the general-sum game Sheriff, the reduction of NashConv is noisy, with several of the

1For simplicity we use the same MSS for both guiding the BR step (strategy exploration) and evaluating NashConv at
each iteration. Firmer conclusions about relative effectiveness for strategy exploration would require defining a fixed solver for
evaluation purposes (Wang et al., 2022).

10

Under review as submission to TMLR

Figure 4: Three-Player Colored Trails.

2 4 6 8 10 12 14
iterations

22

24

26

28

30

av
g_

pa
re

to
_g

ap
_t

es
t

Dist. to Pareto front in Colored Trails

Boltz_DQN+adidas
Boltz_DQN+uniform
Boltz_DQN+prd
Boltz_DQN+max_gini_ce
Boltz_DQN+max_gini_cce
Boltz_DQN+alpharank
Boltz_DQN+nbs
Boltz_DQN+nbs_joint
Boltz_DQN+social_welfare
Boltz_DQN+regret_matching
Boltz_DQN+max_nbs_ce
Boltz_DQN+max_nbs_cce
Boltz_DQN+max_welfare_ce
Boltz_DQN+max_welfare_cce

0 10 20 30 40
Proposer gain

0

20

40

60

80

Re
sp

on
de

r g
ai

n

Figure 5: Empirical reduction in Pareto Gap on test
game configurations, and example evolution toward
Pareto front (right).

meta-strategy solvers having erratic graphs, with RM and PRD performing best. Also in Sheriff, the Nash
bargaining (and social welfare) meta-strategy solvers achieve significantly higher social welfare than most
meta-strategy solvers. Similarly in the cooperative game of Tiny Bridge, the MSSs that reach closest to
optimal are NBS (independent and joint), social welfare, RM, PRD, and Max-NBS-(C)CE. Many of these
meta-strategy solvers are not guaranteed to compute an approximate Nash equilibrium (even in the empirical
game), but any limiting logit equilibrium (QRE) solver can get arbitrarily close. ADIDAS does not require
the storage of the meta-tensor U t, only samples from it. So, as the number of iterations grow ADIDAS might
be one of the safest and most memory-efficient choice for reducing NashConv long-term.

5.2 Negotiation Game: Colored Trails

We start with a highly configurable negotiation game played on a grid (Gal et al., 2010a) of colored tiles,
which has been actively studied by the AI community (Grosz et al., 2004; Ficici & Pfeffer, 2008b; Gal et al.,
2010b). Colored Trails does not require search since the number of moves is small, so we use classical RL based
oracles (DQN and Boltzmann DQN) to isolate the effects of the new meta-strategy solvers. Furthermore,
it has a property that most benchmark games do not: it is parameterized by a board (tile layout and
resource) configuration, which allows for a training/testing set split to evaluate the capacity to generalize
across different instances of similar games.

We use a three-player variant (Ficici & Pfeffer, 2008a; de Jong et al., 2011) depicted in Figure 4. At the
start of each episode, an instance (a board and colored chip allocation per player) is randomly sampled from
a database of strategically interesting and balanced configurations (de Jong et al., 2011, Section 5.1). There
are two proposers (P1 and P2) and a responder (R). R can see all players’ chips, both P1 and P2 can see R’s
chips; however, proposers cannot see each other’s chips. Each proposer, makes an offer to the receiver. The
receiver than decides to accept one offer and trades chips with that player, or passes. Then, players spend
chips to get as close to the flag as possible (each chip allows a player to move to an adjacent tile if it is the
same color as the chip). For any configuration (player i at position p), define Score(p, i) = (−25)d + 10t,
where d is the Manhattan distance between p and the flag, and t is the number of player i’s chips. The
utility for player i is their gain: score at the end of the game minus the score at the start.

This game has been decomposed into specific hand-crafted meta-strategies for both proposers and re-
ceiver (de Jong et al., 2011). These meta-strategies cover the Pareto-frontier of the payoff space by con-
struction. Rather than relying on domain knowledge, we evaluate the extent to which PSRO can learn such
a subset of representative meta-strategies. To quantify this, we compute the Pareto frontier for a subset of
configurations, and define the Pareto Gap (P-Gap) as the minimal ℓ2 distance from the outcomes to the
outer surfaces of the convex hull of the Pareto front, which is then averaged over the set of configurations in
the database.

11

Under review as submission to TMLR

102 103 104 105 106

Training Episodes

5 × 100

6 × 100

7 × 100

8 × 100

Ex
pe

ct
ed

 R
et

ur
n

Against Random Opponent

uniform
bad1
bad2
cheat
exact
simple_learn
DQN

102 103 104 105 106

Training Episodes

101

6 × 100

7 × 100

8 × 100

9 × 100

Ex
pe

ct
ed

 R
et

ur
n

Against DQN-Random-BR Opponent

uniform
bad1
bad2
cheat
exact
simple_learn
DQN

102 103 104 105

Training Episodes

100

101

2 × 100

3 × 100

4 × 100

6 × 100

Ex
pe

ct
ed

 R
et

ur
n

Against DQN-Self-play Opponent

uniform
bad1
bad2
cheat
exact
simple_learn
DQN

Figure 6: Best response performance using different generative models, against (left) uniform random op-
ponent, (middle) DQN response to uniform random, (right) self-play DQN opponent. Uniform samples a
legal preference vector uniformly at random, bad1 always samples the first legal instance in the database,
bad2 always samples the last legal instance in the database, cheat always samples the actual underlying
world state, exact samples from the exact posterior, simple learn is the method described in Algorithm 2
(detailed in Appendix D.1), and DQN is a simple DQN responder that does not use a generative model nor
search.

Figure 5 shows representative results of PSRO agents on Colored Trails (for full graphs, and evolution of
score diagrams, see Appendix E.1). The best-performing MSS is NBS-joint, beating the next best by a full 3
points. The NBS meta-strategy solvers comprise five of the six best MSSs under this evaluation. An example
of the evolution of the expected score over PSRO iterations is also shown, moving toward the Pareto front,
though not via a direct path.

5.3 Negotiation Game: Deal or No Deal

“Deal or No Deal” (DoND) is a simple alternating-offer bargaining game with incomplete information, which
has been used in many AI studies (DeVault et al., 2015; Lewis et al., 2017; Cao et al., 2018; Kwon et al.,
2021). Our focus is to train RL agents to play against humans without human data, similar to previous
work (Strouse et al., 2021). An example game of DoND is shown in Figure 1. Two players are assigned
private preferences v1 ≥ 0,v2 ≥ 0 for three different items (books, hats, and basketballs). At the start of the
game, there is a pool p of 5 to 7 items drawn randomly such that: (i) the total value for a player of all items
is 10: v1 · p = v2 · p = 10, (ii) each item has non-zero value for at least one player: v1 + v2 > 0, (iii) some
items have non-zero value for both players, v1 ⊙ v2 ̸= 0, where ⊙ represents element-wise multiplication.

The players take turns proposing how to split the pool of items, for up to 10 turns (5 turns each). If
an agreement is not reached, the negotiation ends and players both receive 0. Otherwise, the agreement
represents a split of the items to each player, p1 + p2 = p, and player i receives a utility of vi · pi. DoND
is an imperfect information game because the other player’s preferences are private. We use a database of
6796 bargaining instances made publicly available in (Lewis et al., 2017). Deal or No Deal is a significantly
large game, with an estimated 1.32 · 1013 information states for player 1 and 5.69 · 1011 information states
for player 2 (see Appendix C.2 for details).

5.3.1 Generative World State Sampling

We now show that both the search and the generative model contribute to achieving higher reward (in the
BR step of PSRO) than RL alone. The input of our deep generative model is one’s private values vi and
public observations, and the output is a distribution over v−i (detailed in the Appendix). We compute
approximate best responses to three opponents: uniform random, a DQN agent trained against uniform
random, and a DQN agent trained in self-play. We compare different world state sampling models as well
to DQN in Figure 6, where the deep generative model approach is denoted as simple_learn.

The benefit of search is clear: the search methods achieve a high value in a few episodes, a level that takes
DQN many more episodes to reach (against random and DQN response to random) and a value that is not
reached by DQN against the self-play opponent. The best generative models are the true posterior (exact)
and the actual underlying world state (cheat). However, the exact posterior is generally intractable and the

12

Under review as submission to TMLR

Name Values
Individual return (IR) ri
Inequity aversion (Fehr & Schmidt, 1999) (IE) ri − 0.5 ·max{r−i − ri, 0} (Gal et al., 2010a)
Social welfare (SW) ri + r−i
Nash bargaining score (NBS) ri · r−i

Table 2: Different tree back-propagation value types. ri is the return for player i.

underlying world state is not accessible to the agent at test-time, so these serve as idealistic upper-bounds.
Uniform seems to be a compromise between the bad and ideal models. The deep generative model approach
is roughly comparable to uniform at first, but learns to approximate the posterior as well as the ideal models
as data is collected. In contrast, DQN eventually reaches the performance of the uniform model against the
weaker opponent but not against the stronger opponent even after 20000 episodes.

5.3.2 Studies with Human Participants

We recruited participants from Prolific (Pe’er et al., 2021; Peer et al., 2017) to evaluate the performance
of our agents in DoND (overall N = 346; 41.4% female, 56.9% male, 0.9% trans or nonbinary; median age
range: 30–40). Crucially, participants played DoND for real monetary stakes, with an additional payout for
each point earned in the game.

Participants first read game instructions and completed a short comprehension test to ensure they understood
key aspects of DoND’s rules (see Appendix F for instruction text and study screenshots). Participants then
played five episodes of DoND with a randomized sequence of opponents. Episodes terminated after players
reached a deal, after 10 moves without reaching a deal, or after 120 seconds elapsed. After playing all five
episodes, participants completed a debrief questionnaire collecting standard demographic information and
open-ended feedback on the study. See Appendix F for additional details.

Training Details Our infrastructure restricts that each human participant can only play five matches
with our bots. Therefore we decided to select five different agents so every participant can play each of these
once. For comparison, we decided to include one independent RL agent and four search-improved PSRO
agents of different playing styles.

For the independent RL agent, we trained two classes of independent RL agents in selfplay: (1) DQN (Mnih
et al., 2015) and Boltzmann DQN (Cui & Koeppl, 2021), and (2) policy gradient algorithms such as A2C,
QPG, RPG and RMPG (Srinivasan et al., 2018). For DQN and Boltzmann DQN, we used replay buffer
sizes of 105, ϵ decayed from 0.9 → 0.1 over 106 steps, a batch size of 128, and swept over learning rates of
{0.01, 0.02, 0.005}. For Boltzmann DQN, we varied the temperature η ∈ 0.25, 0.5, 1. For all self-play policy
gradient methods we used a batch size of 128, and swept over critic learning rate in {0.01, 0.001}, policy
learning rate in {.001, 0.0005, 0.0001}, number of updates to the critic before updating the policy in {1, 4, 8},
and entropy cost in {0.01, 0.001}. DQN trained with the settings above and a learning rate of 0.005 was the
agent we found to achieve highest individual returns (and social welfare, and Nash bargaining score), so we
select it as the representative agent for the independent RL category.

For PSRO agents, we consider 16 different meta-strategy solvers, and 4 different back-propagating value
types during the tree search procedure, making it 64 different combination in total. Notice that the original
MCTS algorithm (Algorithm 3) back-propagates individual rewards during each simulation phase for the
search agent. We also explore other choices such as social welfare and inequity aversion in our DoND human
behavioral studies, as listed in Table 2.

We consider self-posterior (SP) and rational planning (RP) methods described in Section 3.1 to extract a
final decision agent, as the other approaches are either infeasible computationally or is subsumed by the
current methods. That makes it 128 agents totally in principle. We train the neural networks for 3 days,
and screen out those combination that cannot make it to the 3rd PSRO iteration (due to break of the
MSS optimizer). We eventually have 112 different PSRO agents at hand. As detailed in App. E.2, we
apply empirical game-theoretic analysis on the resulting 112× 112 meta-game and using different categories

13

Under review as submission to TMLR

Agent ūHumans ūAgent ūComb NBS
IndRL 5.86 [5.37, 6.40] 6.50 [5.93,7.06] 6.18 [5.82, 6.56] 38.12
Comp1 5.14 [4.56, 5.63] 5.49 [4.87, 6.11] 5.30 [4.93, 5.76] 28.10
Comp2 6.00 [5.49, 6.55] 5.54 [4.96, 6.10] 5.76 [5.33, 6.12] 33.13

Coop 6.71 [6.23, 7.20] 6.17 [5.66, 6.64] 6.44 [6.11, 6.75] 41.35
Fair 7.39 [6.89,7.87] 5.98 [5.44, 6.49] 6.69 [6.34,7.01] 44.23

Table 3: Humans vs. agents performance with N = 129 human participants, 547 games total. ūX refers
to the average utility to group X (for the humans when playing the agent, or for the agent when playing the
humans), Comb refers to Combined (human and agent). Square brackets indicate 95% confidence intervals.
IndRL refers to Independent RL (DQN), Comp1 and Comp2 are the two top-performing competitive agents,
Coop is the most cooperative agent, and Fair is fairest agent. NBS is the Nash bargaining score (Eq 1).

to select the final four PSRO agents. We eventually selected: (i) two most competitive agents (Comp1,
Comp2) (maximizing utility), (ii) the most cooperative agents (Coop) (maximizing social welfare), the (iii)
the fairest agent (Fair) (minimizing social inequity (Fehr & Schmidt, 1999)); (iv) a separate top-performing
independent RL agent (IndRL) trained in self-play (DQN). Here Comp1, Comp2 are extracted using SP
while Coop and Fair are using RP. Both Coop and Fair are using Nash product as the back-propagating
values during tree search, while Comp1 uses inequity aversion and Comp2 uses individual rewards. Comp1,
Comp2 and Fair are trained using Max-Gini CE or CCE MSS, while Coop uses uniform distribution as the
MSS.

Results We collect data under two conditions: human vs. human (HvH), and human vs. agent (HvA).
In the HvH condition, we collect 483 games: 482 end in deals made (99.8%), and achieve a return of 6.93
(95% c.i. [6.72, 7.14]), on expectation. We collect 547 games in the HvA condition: 526 end in deals made
(96.2%; see Table 3). DQN achieves the highest individual return. By looking at the combined reward, it
achieves this by aggressively reducing the human reward (down to 5.86)–possibly by playing a policy that is
less human-compatible. The competitive PSRO agents seem to do the same, but without overly exploiting
the humans, resulting in the lowest social welfare overall. The cooperative agent achieves significantly higher
combined utility playing with humans. Better yet is Human vs. Fair, the only Human vs. Agent combination
to achieve social welfare comparable to the Human vs. Human social welfare.

Another metric is the objective value of the empirical NBS from Eq. 1, over the symmetric game (randomizing
the starting player) played between the different agent types. This metric favors Pareto-efficient outcomes,
balancing between the improvement obtained by both sides. From App E.2, the NBS of Coop decreases
when playing humans, from 44.51 → 41.35– perhaps due to overfitting to agent-learned conventions. Fair
increases slightly (42.56→ 44.23). The NBS of DQN rises from 23.48→ 38.12. The NBS of the competitive
agents also rises playing against humans (24.70 → 28.10, and 25.44 → 28.10), and also when playing with
Fair (24.70→ 29.63, 25.44→ 28.73).

The fair agent is both adaptive to many different types of agents, and cooperative, increasing the social
welfare in all groups it negotiated with. This could be due to its MSS (MGCE) putting significant weight on
many policies leading to Bayesian prior with high support, or its backpropagation of the product of utilities
rather than individual return.

6 Conclusion and Future Work

We proposed a general-purpose multiagent training regime that combines the power of MCTS search and a
population-based training framework, for general-sum imperfect information domains. We developed a novel
search technique that combines IS-MCTS with a deep belief learning module coupled with the RL training
loop, which scale to large belief and state spaces. The outer loop of our algorithm is implemented by PSRO,
which iteratively trains and adds search strategies guided by game-theoretic analysis. On one hand, search
serves as a strong best response method within the PSRO loop, which provides an instance of the framework
of its own interests. On the other hand, PSRO automatically produces a belief hierarchy over the opponents’

14

Under review as submission to TMLR

strategies, which endows the search with the capability of inferring opponent types during online decision
makings. This dual view of the whole training architecture illustrates its effectiveness in producing agents
that are capable of opponent modeling through game-theoretic analysis and planning forward at test-time.

Our experimental results found that ADIDAS, regret-matching, and PRD MSSs work well generally and
even better in competitive games. In cooperative, general-sum games and negotiation games, NBS-based
meta-strategy solvers can increase social welfare and find solutions closer to the Pareto frontier. In our
human-agent study of a negotiation game, self-play DQN exploits humans most, and agents trained with
PSRO (selected using fairness criteria) adapt and cooperate well with humans.

Future work could further enhance the best response by predictive losses (Hernandez et al., 2023), scale
to even larger domains, and convergence to other solution concepts such as self-confirming or correlated
equilibria.

7 Broader Impact

We believe our search-improved PSRO method advances the general equilibrium solving and planning tech-
niques in multi-agent systems with little domain knowledge. Our methods can be potentially deployed in
a variety of applications, including automated bidding in auctions, negotiation, cybersecurity, warehouse
robotics, and autonomous vehicle systems. All of these are multi-agent scenarios that involve general-sum,
imperfect information elements.

One of the potential risks is value misalignment in negotiation. The method can produce strategies that are
unpredictable and not easily explained, which could lead to exploitative behaviors in negotiation that are
misaligned with the users’ intents. This could potentially cause harm in the economic system and reduce
market efficiency. Any deployed use of artificial agents built using our algorithm would need to first be
thoroughly tested, ideally by third party, and undergo a controlled private study with humans to identify
any potentially harmful behavior.

References
Akshay Agrawal, Robin Verschueren, Steven Diamond, and Stephen Boyd. A rewriting system for convex

optimization problems. Journal of Control and Decision, 5(1):42–60, 2018.

Stefano V. Albrecht, Jacob W. Crandall, and Subramanian Ramamoorthy. Belief and truth in hypothesised
behaviours. Artificial Intelligence, 235:63–94, 2016.

Anton Bakhtin, David J Wu, Adam Lerer, Jonathan Gray, Athul Paul Jacob, Gabriele Farina, Alexander H
Miller, and Noam Brown. Mastering the game of no-press diplomacy via human-regularized reinforcement
learning and planning. In Eleventh International Conference on Learning Representation, 2023.

David Balduzzi, Karl Tuyls, Julien Perolat, and Thore Graepel. Re-evaluating evaluation. In Thirty-Second
International Conference on Neural Information Processing Systems, pp. 3272–3283, 2018.

David Balduzzi, Marta Garnelo, Yoram Bachrach, Wojciech M. Czarnecki, Julien Perolat, Max Jaderberg,
and Thore Graepel. Open-ended learning in symmetric zero-sum games. In Thirty-sixth International
Conference on Machine Learning, 2019.

Amir Beck and Marc Teboulle. Mirror descent and nonlinear projected subgradient methods for convex
optimization. Operations Research Letters, 31(3):167–175, 2003.

B. Douglas Bernheim. Rationalizable strategic behavior. Econometrica, 52:1007–1028, 1984.

Ken Binmore, Ariel Rubinstein, and Asher Wolinksy. The nash bargaining solution in economic modelling.
Rand Journal of Economics, 17(2):176–188, 1986.

Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

15

Under review as submission to TMLR

George W Brown. Iterative solution of games by fictitious play. Activity Analysis of Production and Alloca-
tion., 13(1):374, 1951.

Noam Brown, Anton Bakhtin, Adam Lerer, and Qucheng Gong. Combining deep reinforcement learning and
search for imperfect-information games. In Thirty-Fourth International Conference on Neural Information
Processing Systems, pp. 17057–17069, 2020.

Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M Lucas, Peter I Cowling, Philipp Rohlf-
shagen, Stephen Tavener, Diego Perez, Spyridon Samothrakis, and Simon Colton. A survey of monte carlo
tree search methods. IEEE Transactions on Computational Intelligence and AI in games, 4(1):1–43, 2012.

Colin F. Camerer, Teck-Hua Ho, and Juin-Kuan Chong. A cognitive hierarchy model of games. Quarterly
Journal of Economics, 119(3):861–898, 2004.

Kris Cao, Angeliki Lazaridou, Marc Lanctot, Joel Z. Leibo, Karl Tuyls, and Stephen Clark. Emergent
communication through negotiation. In Sixth International Conference on Learning Representations, 2018.

Peter I. Cowling, Edward J. Powley, and Daniel Whitehouse. Information set Monte Carlo tree search. IEEE
Transactions on Computational Intelligence and AI in Games, 4:120–143, 2012.

Brandon Cui, Hengyuan Hu, Luis Pineda, and Jakob Foerster. k-level reasoning for zero-shot coordination in
hanabi. Thirty-Fifth International Conference on Neural Information Processing Systems, 34:8215–8228,
2021.

Kai Cui and Heinz Koeppl. Approximately solving mean field games via entropy-regularized deep rein-
forcement learning. In Twenty-Fourth International Conference on Artificial Intelligence and Statistics,
2021.

Steven de Jong, Daniel Hennes, Karl Tuyls, and Ya’akov Gal. Metastrategies in the colored trails game. In
Tenth International Conference on Autonomous Agents and Multi-Agent Systems, pp. 551–558, 2011.

David DeVault, Johnathan Mell, and Jonathan Gratch. Toward natural turn-taking in a virtual human
negotiation agent. In AAAI Spring Symposium on Turn-taking and Coordination in Human-Machine
Interaction, 2015.

Steven Diamond and Stephen Boyd. CVXPY: A Python-embedded modeling language for convex optimiza-
tion. Journal of Machine Learning Research, 17(83):1–5, 2016.

A. Domahidi, E. Chu, and S. Boyd. ECOS: An SOCP solver for embedded systems. In European Control
Conference, pp. 3071–3076, 2013.

Gabriele Farina, Chun Kai Ling, Fei Fang, and Tuomas Sandholm. Correlation in extensive-form games:
Saddle-point formulation and benchmarks. In Conference on Neural Information Processing Systems
(NeurIPS), 2019.

Alhussein Fawzi, Matej Balog, Aja Huang, Thomas Hubert, Bernardino Romera-Paredes, Mohammadamin
Barekatain, Alexander Novikov, Francisco J R Ruiz, Julian Schrittwieser, Grzegorz Swirszcz, David Silver,
Demis Hassabis, and Pushmeet Kohli. Discovering faster matrix multiplication algorithms with reinforce-
ment learning. Nature, 610(7930):47–53, 2022.

E. Fehr and K. Schmidt. A theory of fairness, competition and cooperation. Quarterly Journal of Economics,
114:817–868, 1999.

S. G. Ficici and A. Pfeffer. Modeling how humans reason about others with partial information. In Seventh
International Conference on Autonomous Agents and Multi-Agent Systems, 2008a.

Sevan G Ficici and Avi Pfeffer. Modeling how humans reason about others with partial information. In
Seventh International Joint Conference on Autonomous Agents and Multi-Agent Systems, pp. 315–322,
2008b.

16

Under review as submission to TMLR

Jakob Foerster, Francis Song, Edward Hughes, Neil Burch, Iain Dunning, Shimon Whiteson, Matthew
Botvinick, and Michael Bowling. Bayesian action decoder for deep multi-agent reinforcement learning. In
Thirty-Sixth International Conference on Machine Learning, pp. 1942–1951, 2019.

Y. Gal, B. Grosz, S. Kraus, A. Pfeffer, and S. Shieber. Agent decision-making in open-mixed networks.
Artificial Intelligence, 174:1460–1480, 2010a.

Ya’akov Gal, Barbara Grosz, Sarit Kraus, Avi Pfeffer, and Stuart Shieber. Agent decision-making in open
mixed networks. Artificial Intelligence, 174(18):1460–1480, 2010b.

Ian M. Gemp, Rahul Savani, Marc Lanctot, Yoram Bachrach, Thomas W. Anthony, Richard Everett, Andrea
Tacchetti, Tom Eccles, and János Kramár. Sample-based approximation of nash in large many-player
games via gradient descent. In Twenty-First International Conference on Autonomous Agents and Multi-
Agent Systems, 2021.

Piotr J. Gmytrasiewicz and Edmund H. Durfee. Rational coordination in multi-agent environments. Au-
tonomous Agents and Multi-Agent Systems, 3:319–350, 2000.

Christopher Griffin. Quadratic programs and general-sum games. In Game Theory: Penn State Math 486
Lecture Notes, pp. 138–144. Online note., 2010. https://docs.ufpr.br/~volmir/Math486.pdf.

Barbara J Grosz, Sarit Kraus, Shavit Talman, Boaz Stossel, and Moti Havlin. The influence of social
dependencies on decision-making: Initial investigations with a new game. In Third International Joint
Conference on Autonomous Agents and Multi-Agent Systems, pp. 782–789, 2004.

John C. Harsanyi. Games with incomplete information played by “Bayesian” players, I–III Part I. The basic
model. Management Science, 14(3):159–182, 1967.

John C. Harsanyi and Reinhard Selten. A generalized Nash solution for two-person bargaining games with
incomplete information. Management Science, 18:80–106, 1972.

S. Hart and A. Mas-Colell. A simple adaptive procedure leading to correlated equilibrium. Econometrica,
68(5):1127–1150, 2000.

Daniel Hernandez, Hendrik Baier, and Michael Kaisers. Brexit: On opponent modelling in expert iteration.
In Thirty-Second International Joint Conference on Artificial Intelligence, 2023.

Pablo Hernandez-Leal and Michael Kaisers. Learning against sequential opponents in repeated stochastic
games. In Third Multi-disciplinary Conference on Reinforcement Learning and Decision Making, vol-
ume 25, 2017.

Patrick R. Jordan, Christopher Kiekintveld, and Michael P. Wellman. Empirical game-theoretic analysis of
the TAC supply chain game. In Sixth International Joint Conference on Autonomous agents and Multi-
Agent Systems, pp. 1–8, 2007.

Ehud Kalai and Ehud Lehrer. Rational learning leads to nash equilibrium. Econometrica: Journal of the
Econometric Society, pp. 1019–1045, 1993.

David M. Kreps and Robert Wilson. Reputation and imperfect information. Journal of Economic Theory,
27(2):253–279, 1982.

H. W. Kuhn. Extensive games and the problem of information. Annals of Mathematics Studies, 28:193–216,
1953.

Minae Kwon, Siddharth Karamcheti, Mariano-Florentino Cuellar, and Dorsa Sadigh. Targeted data acqui-
sition for evolving negotiation agents. In Thirty-Eighth International Conference on Machine Learning,
volume 139, pp. 5894–5904, 2021.

Marc Lanctot, Vinicius Zambaldi, Audrunas Gruslys, Angeliki Lazaridou, Karl Tuyls, Julien Perolat, David
Silver, and Thore Graepel. A unified game-theoretic approach to multiagent reinforcement learning. In
Thirtieth International Conference on Neural Information Processing Systems, 2017.

17

https://docs.ufpr.br/~volmir/Math486.pdf

Under review as submission to TMLR

Marc Lanctot, Edward Lockhart, Jean-Baptiste Lespiau, Vinicius Zambaldi, Satyaki Upadhyay, Julien Péro-
lat, Sriram Srinivasan, Finbarr Timbers, Karl Tuyls, Shayegan Omidshafiei, Daniel Hennes, Dustin Morrill,
Paul Muller, Timo Ewalds, Ryan Faulkner, János Kramár, Bart De Vylder, Brennan Saeta, James Brad-
bury, David Ding, Sebastian Borgeaud, Matthew Lai, Julian Schrittwieser, Thomas Anthony, Edward
Hughes, Ivo Danihelka, and Jonah Ryan-Davis. OpenSpiel: A framework for reinforcement learning in
games. CoRR, abs/1908.09453, 2019. URL http://arxiv.org/abs/1908.09453.

Adam Lerer, Hengyuan Hu, Jakob Foerster, and Noam Brown. Improving policies via search in cooperative
partially observable games. In Thirty-Fourth AAAI Conference on Artificial Intelligence, volume 34, pp.
7187–7194, 2020.

Mike Lewis, Denis Yarats, Yann N. Dauphin, Devi Parikh, and Dhruv Batra. Deal or no deal? end-to-end
learning for negotiation dialogues. In Conference on Empirical Methods in Natural Language Processing,
2017.

Edward Lockhart, Marc Lanctot, Julien Pérolat, Jean-Baptiste Lespiau, Dustin Morrill, Finbarr Timbers,
and Karl Tuyls. Computing approximate equilibria in sequential adversarial games by exploitability
descent. In Twenty-Eighth International Joint Conference on Artificial Intelligence, 2019.

Andrei Lupu, Brandon Cui, Hengyuan Hu, and Jakob Foerster. Trajectory diversity for zero-shot coordina-
tion. In Thirty-Eighth International Conference on Machine Learning, pp. 7204–7213, 2021.

Daniel J. Mankowitz, Andrea Michi, Anton Zhernov, Marco Gelmi, Marco Selvi, Cosmin Paduraru, Edouard
Leurent, Shariq Iqbal, Jean-Baptiste Lespiau, Alex Ahern, Thomas Köppe, Kevin Millikin, Stephen
Gaffney, Sophie Elster, Jackson Broshear, Chris Gamble, Kieran Milan, Robert Tung, Minjae Hwang,
Taylan Cemgil, Mohammadamin Barekatain, Yujia Li, Amol Mandhane, Thomas Hubert, Julian Schrit-
twieser, Demis Hassabis, Pushmeet Kohli, Martin Riedmiller, Oriol Vinyals, and David Silver. Faster
sorting algorithms discovered using deep reinforcement learning. Nature, 618:257–263, 2023.

Luke Marris, Paul Muller, Marc Lanctot, Karl Tuyls, and Thore Graepel. Multi-agent training beyond zero-
sum with correlated equilibrium meta-solvers. In Twenty-Eighth International Conference on Machine
Learning, 2021.

Luke Marris, Marc Lanctot, Ian Gemp, Shayegan Omidshafiei, Stephen McAleer, Jerome Connor, Karl Tuyls,
and Thore Graepel. Game theoretic rating in n-player general-sum games with equilibria. arXiv preprint
arXiv:2210.02205, 2022.

Richard D. McKelvey and Thomas R. Palfrey. Quantal response equilibria for normal form games. Games
and Economic Behavior, 10(1):6–38, 1995.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Bellemare, Alex
Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir
Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis
Hassabis. Human-level control through deep reinforcement learning. Nature, 518(7540):529–533, 2015.
doi: 10.1038/nature14236. URL https://doi.org/10.1038/nature14236.

Matej Moravčík, Martin Schmid, Neil Burch, Viliam Lisý, Dustin Morrill, Nolan Bard, Trevor Davis, Kevin
Waugh, Michael Johanson, and Michael Bowling. Deepstack: Expert-level artificial intelligence in heads-up
no-limit poker. Science, 358(6362), 2017.

Peter Morris. Introduction to game theory. Springer Science & Business Media, 2012.

Paul Muller, Shayegan Omidshafiei, Mark Rowland, Karl Tuyls, Julien Pérolat, Siqi Liu, Daniel Hennes,
Luke Marris, Marc Lanctot, Edward Hughes, Zhe Wang, Guy Lever, Nicolas Heess, Thore Graepel, and
Rémi Munos. A generalized training approach for multiagent learning. In Eighth International Conference
on Learning Representations, 2019.

Ryan O Murphy, Kurt A Ackermann, and Michel Handgraaf. Measuring social value orientation. Judgment
and Decision making, 6(8):771–781, 2011.

18

http://arxiv.org/abs/1908.09453
https://doi.org/10.1038/nature14236

Under review as submission to TMLR

John Nash. The bargaining problem. Econometrica, 18(2):155–162, 1950.

John Nash. Two-person cooperative games. Econometrica, 21(1):128–140, 1953.

Brendan O’Donoghue, Eric Chu, Neal Parikh, and Stephen Boyd. SCS: Splitting conic solver, version 3.2.1.
https://github.com/cvxgrp/scs, November 2021.

Frans A Oliehoek and Christopher Amato. Best response bayesian reinforcement learning for multiagent
systems with state uncertainty. In Ninth AAMAS Workshop on Multi-Agent Sequential Decision Making
in Uncertain Domains, 2014.

Shayegan Omidshafiei, Christos Papadimitriou, Georgios Piliouras, Karl Tuyls, Mark Rowland, Jean-
Baptiste Lespiau, Wojciech M. Czarnecki, Marc Lanctot, Julien Perolat, and Remi Munos. α-rank:
Multi-agent evaluation by evolution. Scientific Reports, 9(1):9937, 2019.

Luis E. Ortiz, Robert E. Schapire, and Sham M. Kakade. Maximum entropy correlated equilibria. In
Eleventh International Conference on Artificial Intelligence and Statistics, pp. 347–354, 2007.

Eyal Peer, Laura Brandimarte, Sonam Samat, and Alessandro Acquisti. Beyond the Turk: Alternative
platforms for crowdsourcing behavioral research. Journal of Experimental Social Psychology, 70:153–163,
2017.

Eyal Pe’er, David Rothschild, Andrew Gordon, Zak Evernden, and Ekaterina Damer. Data quality of
platforms and panels for online behavioral research. Behavior Research Methods, pp. 1–20, 2021.

Julien Perolat, Bart De Vylder, Daniel Hennes, Eugene Tarassov, Florian Strub, Vincent de Boer, Paul
Muller, Jerome T Connor, Neil Burch, Thomas Anthony, et al. Mastering the game of Stratego with
model-free multiagent reinforcement learning. Science, 378(6623):990–996, 2022.

Clara Ponsati and Joel Watson. Multiple-issue bargaining and axiomatic solutions. International Journal of
Game Theory, 62:501–524, 1997.

Marc Ponsen, Geert Gerritsen, and Guillaume Chaslot. Integrating opponent models with monte-carlo tree
search in poker. In Workshops at the Twenty-Fourth AAAI Conference on Artificial Intelligence, 2010.

Martin Schmid, Matej Moravcik, Neil Burch, Rudolf Kadlec, Josh Davidson, Kevin Waugh, Nolan Bard,
Finbarr Timbers, Marc Lanctot, Zach Holland, Elnaz Davoodi, Alden Christianson, and Michael Bowling.
Player of games, 2021a.

Martin Schmid, Matej Moravcik, Neil Burch, Rudolf Kadlec, Joshua Davidson, Kevin Waugh, Nolan Bard,
Finbarr Timbers, Marc Lanctot, Zach Holland, Elnaz Davoodi, Alden Christianson, and Michael Bowling.
Player of games. CoRR, abs/2112.03178, 2021b. URL https://arxiv.org/abs/2112.03178.

Y. Shoham and K. Leyton-Brown. Multiagent Systems: Algorithmic, Game-Theoretic, and Logical Founda-
tions. Cambridge University Press, 2009.

David Silver and Joel Veness. Monte-carlo planning in large pomdps. Twenty-Fourth International Confer-
ence on Neural Information Processing Systems, 23, 2010.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez, Marc
Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy Lillicrap, Karen Simonyan, and
Demis Hassabis. A general reinforcement learning algorithm that masters chess, shogi, and Go through
self-play. Science, 632(6419):1140–1144, 2018.

Satinder Singh, Michael Kearns, and Yishay Mansour. Nash convergence of gradient dynamics in general-sum
games. In Sixteenth Conference on Uncertainty in Artificial Intelligence, 2000.

Samuel Sokota, Edward Lockhart, Finbarr Timbers, Elnaz Davoodi, Ryan D’Orazio, Neil Burch, Martin
Schmid, Michael Bowling, and Marc Lanctot. Solving common-payoff games with approximate policy
iteration. In Thirty-Fifth AAAI Conference on Artificial Intelligence, 2021.

19

https://github.com/cvxgrp/scs
https://arxiv.org/abs/2112.03178

Under review as submission to TMLR

Adhiraj Somani, Nan Ye, David Hsu, and Wee Sun Lee. Despot: Online pomdp planning with regularization.
Twenty-Seventh International Conference on Neural Information Processing Systems, 26, 2013.

Sriram Srinivasan, Marc Lanctot, Vinicius Zambaldi, Julien Pérolat, Karl Tuyls, Rémi Munos, and Michael
Bowling. Actor-critic policy optimization in partially observable multiagent environments. In Thirty-First
International Conference on Neural Information Processing Systems, 2018.

DJ Strouse, Kevin McKee, Matt Botvinick, Edward Hughes, and Richard Everett. Collaborating with
humans without human data. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman
Vaughan (eds.), Thirty-Fifth Neural Information Processing Systems, volume 34, pp. 14502–14515, 2021.

Gabriel Synnaeve and Pierre Bessiere. A bayesian model for opening prediction in rts games with application
to starcraft. In 2011 IEEE Conference on Computational Intelligence and Games (CIG’11), pp. 281–288.
IEEE, 2011.

Finbarr Timbers, Nolan Bard, Edward Lockhart, Marc Lanctot, Martin Schmid, Neil Burch, Julian Schrit-
twieser, Thomas Hubert, and Michael Bowling. Approximate exploitability: Learning a best response
in large games. In Thirty-First International Joint Conference on Artificial Intelligence, pp. 3487–3493,
2022.

Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki, Michaël Mathieu, Andrew Dudzik, Junyoung Chung,
David H. Choi, Richard Powell, Timo Ewalds, Petko Georgiev, Junhyuk Oh, Dan Horgan, Manuel Kroiss,
Ivo Danihelka, Aja Huang, Laurent Sifre, Trevor Cai, John P. Agapiou, Max Jaderberg, Alexander S.
Vezhnevets, Rémi Leblond, Tobias Pohlen, Valentin Dalibard, David Budden, Yury Sulsky, James Molloy,
Tom L. Paine, Caglar Gulcehre, Ziyu Wang, Tobias Pfaff, Yuhuai Wu, Roman Ring, Dani Yogatama,
Dario Wünsch, Katrina McKinney, Oliver Smith, Tom Schaul, Timothy Lillicrap, Koray Kavukcuoglu,
Demis Hassabis, Chris Apps, and David Silver. Grandmaster level in StarCraft II using multi-agent
reinforcement learning. Nature, 575(7782):350–354, 2019. doi: 10.1038/s41586-019-1724-z. URL https:
//doi.org/10.1038/s41586-019-1724-z.

Tony Tong Wang, Adam Gleave, Nora Belrose, Tom Tseng, Joseph Miller, Kellin Pelrine, Michael D Dennis,
Yawen Duan, Viktor Pogrebniak, Sergey Levine, and Stuart Russell. Adversarial policies beat superhuman
Go AIs. In Fortieth International Conference on Machine Learning, 2023.

Yongzhao Wang, Qiurui Ma, and Michael P. Wellman. Evaluating strategy exploration in empirical game-
theoretic analysis. In Twenty-First International Conference on Autonomous Agents and Multi-Agent
Systems, pp. 1346–1354, 2022.

Michael P. Wellman. Methods for empirical game-theoretic analysis (extended abstract). In Twenty-First
National Conference on Artificial Intelligence, 2006.

Martin Zinkevich, Michael Johanson, Michael Bowling, and Carmelo Piccione. Regret minimization in
games with incomplete information. In Twentieth Conference on Neural Information Processing Systems,
pp. 905–912, 2008.

20

https://doi.org/10.1038/s41586-019-1724-z
https://doi.org/10.1038/s41586-019-1724-z

Under review as submission to TMLR

A Meta-Strategy Solvers

In this section, we describe the algorithms used for the MSS step of PSRO, which computes a set of meta-
strategies σi or a correlation device µ for the normal-form empirical game.

A.1 Classic PSRO Meta-Strategy Solvers

A.1.1 Projected Replicator Dynamics (PRD)

In the replicator dynamics, each player i used by mixed strategy σti , often interpreted as a distribution over
population members using pure strategies. The continuous-time dynamic then describes a change in weight
on strategy πk ∈ Πi as a time derivative:

dσti(πk)
dt

= σti(πk)[ui(πk, σ−i)− ui(σ)].

The projected variant ensures that the strategies stay within the exploratory simplex such σti remains a
probability distribution, and that every elements is subject to a lower-bound γ

|Πi| . In practice, this is
simulated by small discrete steps in the direction of the time derivatives, and then projecting σti back to the
nearest point in the exploratory simplex.

A.1.2 Exploratory Regret-Matching

Regret-Matching is based on the algorithm described in (Hart & Mas-Colell, 2000) and used in extensive-form
games for regret minimization (Zinkevich et al., 2008). Regret-matching is an iterative solver that tabulates
cumulative regrets RTi (π), which initially start at zero. At each trial t, player i would receive ui(σti , σt−i) by
playing their strategy σti . The instantaneous regret of not playing pure strategy πk ∈ Πi is

rt(πk) = ui(πk, σt−i)− ui(σti , σt−i).

The cumulative regret over T trials for the pure strategy is then defined to be:

RTi (πk) =
T∑
t=1

rt(πk).

Define (x)+ = max(0, x). The policy at time t+ 1 is derived entirely by these regrets:

σt+1
i,RM (πk) = RT,+i (πk)∑

π′
k

∈Πi
RT,+i (π′

k)
,

if the denominator is positive, or 1
|Πi| otherwise. As in original PSRO, in this paper we also add exploration:

σt+1
i = γUniform(Πi) + (1− γ)σt+1

i,RM .

Finally, the meta-strategy returned for all players at time t is their average strategy σ̄T .

A.2 Joint and Correlated Meta-Strategy Solvers

The jointly correlated meta-strategy solvers were introduced in (Marris et al., 2021), which was the first to
propose computing equilibria in the joint space of the empirical game. In general, a correlated equilibrium
(and coarse-correlated equilibrium) can be found by satisfying a number of constraints, on the correlation
device, so the question is what to use as the optimization criterion, which effectively selects the equilibrium.

One that maximizes Shannon entropy (ME(C)CE) seems like a good choice as it places maximal weight on
all strategies, which could benefit PSRO due to added exploration among alternatives. However it was found

21

Under review as submission to TMLR

to be slow on large games. Hence, Marris et al. (Marris et al., 2021) propose to use a different but related
measure, the Gini impurity, for correlation device µ,

GiniImpurity(µ) = 1− µTµ,

which is a form of Tsallis entropy. The resulting equilibria Maximum Gini (Coarse) Correlated Equilibria
(MG(C)CE) have linear constraints and can be computed by solving a quadratic program. Also, Gini impu-
rity has similar properties to Shannon entropy: it is maximized at the uniform distribution and minimized
when all the weight is placed on a single element.

In the Deal-or-no-Deal experiments, 4 of 5 selected winners of tournaments used MG(C)CE (see Section E.2,
including the one that cooperated best with human players, and the other used uniform. Hence, it is possible
that the exploration motivated my high-support meta-strategies indeed does help when playing against a
population of agents, possibly benefiting the Bayesian inference implied by the generative model and resulting
search.

A.3 ADIDAS

Average Deviation Incentive with Adaptive Sampling (ADIDAS) (Gemp et al., 2021) is an algorithm designed
to approximate a particular Nash equilibrium concept called the limiting logit equilibrium (LLE). The LLE
is unique in almost all n-player, general-sum, normal-form games and is defined via a homotopy (McKelvey
& Palfrey, 1995). Beginning with a quantal response (logit) equilibrium (QRE) under infinite temperature
(known to be the uniform distribution), a continuum of QREs is then traced out by annealing the tempera-
ture. The LLE, aptly named, is the QRE defined in the limit of zero temperature. ADIDAS approximates
this path in a way that avoids observing or storing the entire payoff tensor. Instead, it intelligently queries
specific entries from the payoff tensor by leveraging techniques from stochastic optimization.

B Nash Bargaining Solution of Normal-form games via Projected Gradient Ascent

In this section, we elaborate on the method proposed in Section 4.2. As an abuse of notation, let ui denote
the payoff tensor for player i flattened into a vector; similarly, let x be a vector as well. Let d be the number
of possible joint strategies, e.g., mn for a game with n agents, each with m pure strategies. Let ∆d−1 denote
the (d− 1)-simplex, i.e.,

∑d
k=1 xk = 1 and xk ≥ 0 for all k ∈ {1, . . . , d}. We first make an assumption.

Assumption B.1. Any agreement is better than no agreement by a positive constant κ, i.e.,

u⊤
i x− di ≥ κ > 0 ∀ i ∈ {1, . . . , n},x ∈ ∆d−1. (4)

Lemma B.2. Given Assumption B.1, the negative log-Nash product, f(x) = −
∑
i log(u⊤

i x− di), is convex
with respect to the joint distribution x.

Proof. We prove f(x) is convex by showing its Hessian is positive semi-definite. First, we derive the gradient:

∇f(x) = −
∑
i

ui
u⊤
i x− di

. (5)

We then derive the Jacobian of the gradient to compute the Hessian. The kl-th entry of the Hessian is

Hkl =
∑
i

uikuil
(u⊤
i x− di)2 . (6)

We can write the full Hessian succinctly as

H =
∑
i

uiu
⊤
i

(u⊤
i x− di)2 =

∑
i

uiu
⊤
i

γ2
i

. (7)

Each outer product uiu⊤
i is positive semi-definite with eigenvalues ||ui|| (with multiplicity 1) and 0 (with

multiplicity mn − 1).

22

Under review as submission to TMLR

Each γi is positive by Assumption B.1, therefore, H, which is the weighted sum of uiu⊤
i is positive semi-

definite as well.

We also know the following.
Lemma B.3. Given Assumption B.1, the infinity norm of the gradients of the negative log-Nash product
are bounded by umaxn

κ where umax = maxi,k[uik].

Proof. As derived in Lemma B.2, the gradient of f(x) is

∇f(x) = −
∑
i

ui
u⊤
i x− di

. (8)

Using triangle inequality, we can upper bound the infinity (max) norm of the gradient as

||∇f(x)||∞ = ||
∑
i

ui
u⊤
i x− di

||∞ (9)

≤
∑
i

|| ui
u⊤
i x− di

||∞ (10)

=
∑
i

||ui||∞
γi

(11)

≤ umaxn

κ
(12)

where umax = maxi,k[uik].

Theorem B.4. Let {xt} be the sequence generated by Algorithm 4 with starting point x0 = d−11 and step
size sequence αt =

√
(d−1)/d

||g′(xs)||2
(t+ 1)−1/2. Then, for all t > 0 one has

max
x∈∆d−1

g(x)− max
0≤s≤t

g(xs) ≤
√

2Bψ(x∗,x0)||g′(xs)||2√
t+ 1

(13)

≤

√
d−1
d ||g

′(xs)||2
√
t+ 1

(14)

≤
√
d||g′(xs)||∞√

t+ 1
. (15)

where g(x) = −f(x) is the log-Nash product defined in Sec 4.2.

Proof. Given Assumption B.1, f(x) is convex (Lemma B.2) and its gradients are bounded in norm
(Lemma B.3). We then apply Theorem 4.2 of (Beck & Teboulle, 2003) with f(x) = −g(x), ψ(x) = 1

2 ||x||
2
2

and note that Bψ(x∗,x0) ≤ 1
2 (d− 1)/d to achieve the desired result.

Theorem B.5. Let {xt} be the sequence generated by EMDA (Beck & Teboulle, 2003) with starting point
x0 = d−11 and step size sequence αt =

√
2 log(d)

||g′(xs)||∞
(t+ 1)−1/2. Then, for all t > 0 one has

max
x∈X

g(x)− max
0≤s≤t

g(xs) ≤
√

2 log d||g′(xs)||∞√
t+ 1

(16)

where g(x) = −f(x) is the log-Nash product defined in Sec 4.2.

Proof. Given Assumption B.1, f(x) is convex (Lemma B.2) and its gradients are bounded in norm
(Lemma B.3). We then apply Theorem 5.1 of (Beck & Teboulle, 2003) with f(x) = −g(x).

23

Under review as submission to TMLR

Game n Type Description From
Kuhn poker (2P) 2 2P Zero-sum (Lockhart et al., 2019)
Leduc poker (2P) 2 2P Zero-sum (Lockhart et al., 2019)
Liar’s dice 2 2P Zero-sum (Lockhart et al., 2019)
Kuhn poker (3P) 3 nP Zero-sum (Lockhart et al., 2019)
Kuhn poker (4P) 4 nP Zero-sum (Lockhart et al., 2019)
Leduc poker (3P) 3 nP Zero-sum (Lockhart et al., 2019)
Trade Comm 2 Common-payoff (Sokota et al., 2021; Lanctot et al., 2019)
Tiny Bridge (2P) 2 Common-payoff (Sokota et al., 2021; Lanctot et al., 2019)
Battleship 2 General-sum (Farina et al., 2019)
Goofspiel (2P) 2 General-sum (Lockhart et al., 2019)
Goofspiel (3P) 3 General-sum (Lockhart et al., 2019)
Sheriff 2 General-Sum (Farina et al., 2019)

Table 4: Benchmark games. n is the number of players. All games are available in OpenSpiel (Lanctot et al.,
2019).

This argument concerns the regret of the joint version of the NBS where x is a correlation device. However,
it also makes sense to try compute a Nash bargaining solution where players use independent strategy
profiles (without any possibility of correlation across players), σ = (σ1 × · · ·σn). In this case, x represents a
concatenation of the individual strategies σi and the projection back to the simplex is applied to each player
separately. Ensuring convergence is trickier in this case, because the expected utility may not be a linear
function of the parameters which may mean the function is nonconcave.

C Game Domain Descriptions and Details

This section contains descriptions of the benchmark games and a size estimate for Deal-or-no-Deal.

C.1 Benchmark Games

In this section, we describe the benchmark games used in this paper. The game list is show in Table 4. As
they have been used in several previous works, and are openly available, we simply copy the descriptions
here citing the sources in the table.

C.1.1 Kuhn Poker

Kuhn poker is a simplified poker game first proposed by Harold Kuhn. Each player antes a single chip, and
gets a single private card from a totally-ordered (n + 1)-card deck, e.g. J, Q, K for the (n = 2) two-player
case. There is a single betting round limited to one raise of 1 chip, and two actions: pass (check/fold) or
bet (raise/call). If a player folds, they lose their commitment (2 if the player made a bet, otherwise 1). If
no player folds, the player with the higher card wins the pot. The utility for each player is defined as the
number of chips after playing minus the number of chips before playing.

C.1.2 Leduc Poker

Leduc poker is significantly larger game with two rounds and a two suits with (n + 1) cards each, e.g.
JS,QS,KS, JH,QH,KH in the (n = 2) two-player case. Like Kuhn, each player initially antes a single chip
to play and obtains a single private card and there are three actions: fold, call, raise. There is a fixed bet
amount of 2 chips in the first round and 4 chips in the second round, and a limit of two raises per round.
After the first round, a single public card is revealed. A pair is the best hand, otherwise hands are ordered
by their high card (suit is irrelevant). Utilities are defined similarly to Kuhn poker.

24

Under review as submission to TMLR

C.1.3 Liar’s Dice

Liar’s Dice(1,1) is dice game where each player gets a single private die in {1, · · · , 6}, rolled at the beginning
of the game. The players then take turns bidding on the outcomes of both dice, i.e. with bids of the form
q-f referring to quantity and face, or calling “Liar”. The bids represent a claim that there are at least q dice
with face value f among both players. The highest die value, 6, counts as a wild card matching any value.
Calling “Liar” ends the game, then both players reveal their dice. If the last bid is not satisfied, then the
player who called “Liar” wins. Otherwise, the other player wins. The winner receives +1 and loser -1.

C.1.4 Trade Comm

Trade Comm is a common-payoff game about communication and trading of a hidden item. It proceeds as
follows.

1. Each player is independently dealt one of num items with uniform chance.

2. Player 1 makes one of num utterances utterances, which is observed by player 2.

3. Player 2 makes one of num utterances utterances, which is observed by player 1.

4. Both players privately request one of the num items × num items possible trades.

The trade is successful if and only if both player 1 asks to trade its item for player 2’s item and player 2
asks to trade its item for player 1’s item. Both players receive a reward of 1 if the trade is successful and 0
otherwise. We use num items = num utterances = 10.

C.1.5 Tiny Bridge

A very small version of bridge, with 8 cards in total, created by Edward Lockhart, inspired by a research
project at University of Alberta by Michael Bowling, Kate Davison, and Nathan Sturtevant.

This smaller game has two suits (hearts and spades), each with four cards (Jack, Queen, King, Ace). Each
of the four players gets two cards each.

The game comprises a bidding phase, in which the players bid for the right to choose the trump suit (or for
there not to be a trump suit), and perhaps also to bid a ’slam’ contract which scores bonus points.

The play phase is not very interesting with only two tricks being played, so it is replaced with a perfect-
information result, which is computed using minimax on a two-player perfect-information game representing
the play phase.

The game comes in two varieties - the full four-player version, and a simplified two-player version in which
one partnership does not make any bids in the auction phase.

Scoring is as follows, for the declaring partnership:

• +10 for making 1H/S/NT (+10 extra if overtrick)

• +30 for making 2H/S

• +35 for making 2NT

• -20 per undertrick

Doubling (only in the 4p game) multiplies all scores by 2. Redoubling by a further factor of 2.

An abstracted version of the game is supported, where the 28 possible hands are grouped into 12 buckets,
using the following abstractions:

• When holding only one card in a suit, we consider J/Q/K equivalent

25

Under review as submission to TMLR

• We consider KQ and KJ in a single suit equivalent

• We consider AK and AQ in a single suit equivalent (but not AJ)

C.1.6 Battleship

Sheriff is a general-sum variant of the classic game Battleship. Each player takes turns to secretly place a
set of ships S (of varying sizes and value) on separate grids of size H ×W . After placement, players take
turns firing at their opponent—ships which have been hit at all the tiles they lie on are considered destroyed.
The game continues until either one player has lost all of their ships, or each player has completed r shots.
At the end of the game, the payoff of each player is computed as the sum of the values of the opponent’s
ships that were destroyed, minus γ times the value of ships which they lost, where γ ≥ 1 is called the loss
multiplier of the game.

In this paper we use γ = 2, H = 2,W = 2, and r = 3. The OpenSpiel game string is:

battleship(board_width=2,board_height=2,
ship_sizes=[1;2], ship_values=[1.0;1.0],
num_shots=3,loss_multiplier=2.0)

C.1.7 Goofspiel

Goofspiel or the Game of Pure Strategy, is a bidding card game where players are trying to obtain the most
points. shuffled and set face-down. Each turn, the top point card is revealed, and players simultaneously
play a bid card; the point card is given to the highest bidder or discarded if the bids are equal. In this
implementation, we use a fixed deck of decreasing points. In this paper, we an imperfect information variant
where players are only told whether they have won or lost the bid, but not what the other player played.
The utility is defined as the total value of the point cards achieved.

In this paper we use K = 4 card decks. So, e.g. the OpenSpiel game string for the three-player game is:

goofspiel(imp_info=True,returns_type=total_points,
players=3,num_cards=4)

C.1.8 Sheriff

Sheriff is a simplified version of the Sheriff of Nottingham board game. The game models the interaction
of two players: the Smuggler—who is trying to smuggle illegal items in their cargo– and the Sheriff– who
is trying to stop the Smuggler. At the beginning of the game, the Smuggler secretly loads his cargo with
n ∈ {0, ..., nmax} illegal items. At the end of the game, the Sheriff decides whether to inspect the cargo. If
the Sheriff chooses to inspect the cargo and finds illegal goods, the Smuggler must pay a fine worth p · n to
the Sheriff. On the other hand, the Sheriff has to compensate the Smuggler with a utility if no illegal goods
are found. Finally, if the Sheriff decides not to inspect the cargo, the Smuggler’s utility is v · n whereas the
Sheriff’s utility is 0. The game is made interesting by two additional elements (which are also present in the
board game): bribery and bargaining. After the Smuggler has loaded the cargo and before the Sheriff chooses
whether or not to inspect, they engage in r rounds of bargaining. At each round i = 1, ..., r, the Smuggler
tries to tempt the Sheriff into not inspecting the cargo by proposing a bribe bi ∈ {0, ...bmax}, and the Sheriff
responds whether or not they would accept the proposed bribe. Only the proposal and response from round
r will be executed and have an impact on the final payoffs—that is, all but the rth round of bargaining are
non-consequential and their purpose is for the two players to settle on a suitable bribe amount. If the Sheriff
accepts bribe br, then the Smuggler gets p · n− br, while the Sheriff gets br.

In this paper we use values of nmax = 10, bmax = 2, p = 1, v = 5, and r = 2. The OpenSpiel game string is:

sheriff(item_penalty=1.0,item_value=5.0,
max_bribe=2,max_items=2,num_rounds=2,
sheriff_penalty=1.0)

26

Under review as submission to TMLR

Hyperparameter Name Values in DoND Values in CT (PSRO w/ DQN BR)
AlphaZero training episodes num_eps 104 104

Network input representation an infoset vector ∈ R309 implemented in (Lanctot et al., 2019) an infoset vector ∈ R463

Network size for policy & value nets [256, 256] for the shared torso [1024, 512, 256]
Network optimizer SGD SGD
UCT constant cuct 20 for IR and IE, 40 for SW, 100 for NP
Returned policy type greedy towards v argmax over learned q-net
simulations in search 300
Learning rate for policy & value net 2e-3 for IR and IE, 1e-3 for SW, 5e-4 for NP 1e-3
Delayed # episodes for replacing v,p, g 200 200
Replay buffer size |D| 216

Batch size 64 128
PSRO empirical game entries # simulation 200 2000
L2 coefficient in evaluator c1 1e-3
Network size for generator net [300, 100] MLP
Learning rate for generator net 1e-3
L2 coefficient in generator net c2 1e-3
PSRO minimum pure-strategy mass lower bound 0.005 0.005

Table 5: Hyper-parameters.

C.2 Approximate Size of Deal or No Deal

To estimate the size of Deal or No Deal described in Section 5.3, we first verified that there are 142 unique
preference vectors per player. Then, we generated 10,000 simulations of trajectories using uniform random
policy computing the average branching factor (number of legal actions per player at each state) as b ≈ 23.5.

Since there are 142 different information states for player 1’s first decision, about 142bb player 1’s second
decision, etc. leading to 142(1+b2 +b4 +b8) ≈ 13.2×1012 information states. Similarly, player 2 has roughly
142(1 + b1 + b3 + b5 + b7) = 5.63× 1011 information states.

D Hyper-parameters and Algorithm Settings

We provide detailed description of our algorithm in this section. Our implementation differs from the original
ABR (Timbers et al., 2022) and AlphaZero (Silver et al., 2018) in a few places. First, instead of using the
whole trajectory as a unit of data for training, we use per-state pair data. We maintain separate data
buffers for policy net, value net, and generate net, and collect corresponding (si, r), (si, p), (si, h) to them
respectively. On each gradient step we will sample a batch from each of these data buffer respectively. The
policy net and value net shared a torso part, while we keep a separate generative net (detailed in Section D.1).
The policy net and value net are trained by minimizing loss (r − v)2 − π∗T log p+ c1∥θ∥2

2, where (1) π∗ are
the policy targets output by the MCTS search, (2) p are the output by the policy net, (3) v are the output
by the value net, (4) r are the outcome value for the trajectories (5) θ are the neural parameters. During
selection phase the algorithm select the child that maximize the following PUCT (Silver et al., 2018) term:
MaxPUCT(s,p) = arg maxa∈A(s)

s.child(a).value
s.child(a).visits + cuctc · p(s)a ·

√
s.total_visits

s.child(a).visits+1 . Other hyperparameters are
listed in Table 5.

D.1 Generative Models

D.1.1 Deal or No Deal

In DoND given an information state, the thing we only need to learn is the opponent’s hidden utilities. And
since the utilities are integers from 0 to 10, we design our generative model as a supervised classification task.
Specifically, we use the 309-dimensional state si as input and output three heads. Each head corresponds
to one item of the game. each head consists of 11 logits corresponding to each of 11 different utility values.
Then each gradient step we sample a batch of (si, h) from the data buffer. And then do one step of gradient
descent to minimize the cross-entropy loss −hT log g(s) + c2∥θ′∥2

2, where here we overload h to represent a
one-hot encoding of the actual opponent utility vectors. And each time we need to generate a new state at
information state si, we just feed forward si and sample the utilities according to the output logits. But
since we have a constraints v1 · p = v2 · p = 10, the sampled utilities may not always be feasible under this

27

Under review as submission to TMLR

100 101 102

Iteration

10 3

10 2

10 1

100

Na
sh

Co
nv

Two player Kuhn poker. Exact BR Log-Log adidas
uniform
prd
max_gini_ce
max_gini_cce
alpharank
nbs
nbs_joint
social_welfare
regret_matching
max_nbs_ce
max_nbs_cce
max_welfare_ce
max_welfare_cce
max_ent_ce
max_ent_cce

100 101 102

Iteration

10 1

100

Na
sh

Co
nv

Two player Leduc poker. Exact BR Log-Log adidas
uniform
prd
max_gini_ce
max_gini_cce
alpharank
nbs
nbs_joint
social_welfare
regret_matching
max_nbs_ce
max_nbs_cce
max_welfare_ce
max_welfare_cce
max_ent_ce
max_ent_cce

100 101 102

Iteration

100

Na
sh

Co
nv

Liar's dice. Exact BR Log-Log adidas
uniform
prd
max_gini_ce
max_gini_cce
alpharank
nbs
nbs_joint
social_welfare
regret_matching
max_nbs_ce
max_nbs_cce
max_welfare_ce
max_welfare_cce
max_ent_ce
max_ent_cce

100 101 102

Iteration

10 1

100

Na
sh

Co
nv

Two player Kuhn poker. DQN BR Log-Log adidas
uniform
prd
max_gini_ce
max_gini_cce
alpharank
nbs
nbs_joint
social_welfare
regret_matching
max_nbs_ce
max_nbs_cce
max_welfare_ce
max_welfare_cce
max_ent_ce
max_ent_cce

100 101 102

Iteration

100

2 × 100

3 × 100

4 × 100

6 × 100

Na
sh

Co
nv

Two player Leduc poker. DQN BR Log-Log adidas
uniform
prd
max_gini_ce
max_gini_cce
alpharank
nbs
nbs_joint
social_welfare
regret_matching
max_nbs_ce
max_nbs_cce
max_welfare_ce
max_welfare_cce
max_ent_ce
max_ent_cce

100 101 102

Iteration

1.3 × 100

1.35 × 100

1.4 × 100

1.45 × 100

1.5 × 100

1.55 × 100

1.6 × 100

1.65 × 100

Na
sh

Co
nv

Liar's dice. DQN BR Log-Log adidas
uniform
prd
max_gini_ce
max_gini_cce
alpharank
nbs
nbs_joint
social_welfare
regret_matching
max_nbs_ce
max_nbs_cce
max_welfare_ce
max_welfare_cce
max_ent_ce
max_ent_cce

Figure 7: Empirical Convergence to Nash Equilibria using Exact vs. DQN Best Response versus in Two-
Player Zero-Sum Benchmark Games.

constraint. Then we will do an additional L2 projection on to all feasible utility vector space and then get
the final results.

E Additional Results

The full analysis of empirical convergence to approximate Nash equilibrium and social welfare are shown for
various settings:

• Two-player Zero-Sum Games: Figure 7.

• n-player Zero-Sum Games: Figure 8.

• Common Payoff Games: Figure 9.

• General-Sum Games: Figure 10.

E.1 Colored Trails

The full Pareto gap graphs as a function of training time is shown in Figure 11. Some examples of the
evolution of expected outcomes over the course of PSRO training are shown in Figure 12.

E.2 Deal or No Deal

In this section, we described how we train and select the PSRO agents in DoND human behavioral studies.
Due the experimental limitation, we can only select 5 of our agents to human experiments. For convenience
from now on we label a PSRO agent as (MSS,BACKPROP_TYPE,FINAL_TYPE) if it is trained under
meta-strategy solver MSS, its back-propagation type is BACKPROP_TYPE and we use FINAL_TYPE as
its decision architecture. We apply standard empirical game theoretic analysis (Wellman, 2006; Jordan et al.,
2007) on our agent pool: we create a 113x113 symmetric empirical game by simulating head to head results
between every pair of our agents. During each simulation we toss a coin to assign the roles (first-mover or
second-mover in DoND) to our agents. Then we decide the selected agents based on this empirical game
matrix.

Specifically, we want to select: (1) the most competitive agents (2) the most collaborative agents and (3) the
fairest agent in our pool in a principled way. Now we explain how we approach these criterions one by one.

28

Under review as submission to TMLR

100 101 102

Iteraion

10 3

10 2

10 1

100

Na
sh

Co
nv

Three player Kuhn poker. Exact BR Log-Log
adidas
uniform
prd
max_gini_ce
max_gini_cce
alpharank
nbs
nbs_joint
social_welfare
regret_matching
max_nbs_ce
max_nbs_cce
max_welfare_ce
max_welfare_cce

100 101

Iteration

10 2

10 1

100

Na
sh

Co
nv

Four player Kuhn poker. Exact BR Log-Log adidas
uniform
prd
max_gini_ce
max_gini_cce
alpharank
nbs
nbs_joint
social_welfare
regret_matching
max_nbs_ce
max_nbs_cce
max_welfare_ce
max_welfare_cce
max_ent_ce
max_ent_cce

100 101 102

Iteration

100

101

Na
sh

Co
nv

Three player Leduc poker. Exact BR Log-Log adidas
uniform
prd
max_gini_ce
max_gini_cce
alpharank
nbs
nbs_joint
social_welfare
regret_matching
max_nbs_ce
max_nbs_cce
max_welfare_ce
max_welfare_cce
max_ent_ce
max_ent_cce

100 101 102

Iteraion

10 2

10 1

100

Na
sh

Co
nv

Three player Kuhn poker. DQN BR Log-Log
adidas
uniform
prd
max_gini_ce
max_gini_cce
alpharank
nbs
nbs_joint
social_welfare
regret_matching
max_nbs_ce
max_nbs_cce
max_welfare_ce
max_welfare_cce

100 101

Iteration

100

Na
sh

Co
nv

Four Player Kuhn poker. DQN BR Log-Log adidas
uniform
prd
max_gini_ce
max_gini_cce
alpharank
nbs
nbs_joint
social_welfare
regret_matching
max_nbs_ce
max_nbs_cce
max_welfare_ce
max_welfare_cce
max_ent_ce
max_ent_cce

100 101

Iteration

101

2 × 100

3 × 100

4 × 100

6 × 100

Na
sh

Co
nv

Three player Leduc poker. DQN BR Log-Log adidas
uniform
prd
max_gini_ce
max_gini_cce
alpharank
nbs
nbs_joint
social_welfare
regret_matching
max_nbs_ce
max_nbs_cce
max_welfare_ce
max_welfare_cce
max_ent_ce
max_ent_cce

Figure 8: Empirical Convergence to Nash Equilibria using Exact vs. DQN Best Response in n-Player
Zero-Sum Benchmark Games.

Agent \ Opponent IndRL Com1 Com2 Coop Fair
IndRL 4.85 4.98 5.02 7.05 6.96
Com1 3.75 4.97 4.66 7.19 6.70
Com2 3.20 5.30 5.04 6.84 6.86
Coop 5.63 4.43 4.32 6.67 6.64
Fair 5.47 4.43 4.19 6.59 6.52

Table 6: Head-to-head empirical game matrix among our selected agents . The (i, j)-th entry is the payoff
of the i-th agent when it is playing with the j-th agent.

For (1), we apply our competitive MSSs (e.g., ADIDAS, CE/CCE solvers) on this empirical game matrix
and solve for a symmetric equilibrium. Then we rank the agents according to their expected payoff when the
opponents are playing according to this equilibrium. This approach is inspired by Nash-response ranking
in (Jordan et al., 2007) and Nash averaging in (Balduzzi et al., 2018) which is recently generalized to any
N -player general-sum games (Marris et al., 2022). We found that Independent DQN, (MGCE, IA, SP)
(denoted as Comp1), (MGCCE, IR, SP) (denoted as Comp2) rank at the top under almost all competitive
MSS.

For (2), we create two collaborative games where the payoffs of agent1 v.s. agent2 are their social wel-
fare/Nash product. We conduct the same analysis as in (1), and found the agent (uniform, NP, RP)
normally ranks the first (thus we label it as Coop agent).

For (3), we create an empirical game where the payoffs of agent1 v.s. agent2 are the negative of their absolute
payoff difference, and apply the same analysis. We also conduct a Borda voting scheme: we rank the agent
pairs in increasing order of their absolute payoff difference. Each of these agent pairs will got a Borda voting
score. Then the score of an agent is the summation of the scores of agents pairs that this agent is involved
in. In both approaches, we find the agent (MGCE, NP, RP) ranks the top. Therefore we label it as Fair
agent.

To summary, the five agents we finally decided to conduct human experiments are (1) DQN trained through
self-play (IndRL) (2) (MGCE, IA, SP) (Comp1) (3) (MGCCE, IR, SP) (Comp2) (4) (uniform, NP, RP)
(Coop) (5) (MGCE, NP, RP) (Fair).

We show the head-to-head empirical game between these five agents in Table 6, social-welfare in Table 7,
empirical Nash product in Table 8.

29

Under review as submission to TMLR

100 101 102

Iteration

10 12

10 10

10 8

10 6

10 4

10 2

Na
sh

Co
nv

Trade comm. Exact BR Log-Log adidas
uniform
prd
max_gini_ce
max_gini_cce
alpharank
nbs
nbs_joint
social_welfare
regret_matching
max_nbs_ce
max_nbs_cce
max_welfare_ce
max_welfare_cce
max_ent_ce
max_ent_cce

0 50 100 150 200
Iteration

0.05

0.10

0.15

0.20

0.25

So
cia

l w
el

fa
re

Trade comm. Exact BR. Linear-Linear adidas
uniform
prd
max_gini_ce
max_gini_cce
alpharank
nbs
nbs_joint
social_welfare
regret_matching
max_nbs_ce
max_nbs_cce
max_welfare_ce
max_welfare_cce
max_ent_ce
max_ent_cce

100 101 102

Iteration

10 9

10 7

10 5

10 3

10 1

Na
sh

Co
nv

Trade comm. DQN BR Log-Log adidas
uniform
prd
max_gini_ce
max_gini_cce
alpharank
nbs
nbs_joint
social_welfare
regret_matching
max_nbs_ce
max_nbs_cce
max_welfare_ce
max_welfare_cce
max_ent_ce
max_ent_cce

0 50 100 150 200
Iteration

0.0

0.2

0.4

0.6

0.8

So
cia

l W
el

fa
re

Trade comm. DQN BR Linear-Linear adidas
uniform
prd
max_gini_ce
max_gini_cce
alpharank
nbs
nbs_joint
social_welfare
regret_matching
max_nbs_ce
max_nbs_cce
max_welfare_ce
max_welfare_cce
max_ent_ce
max_ent_cce

100 101 102

Iteration

10 7

10 5

10 3

10 1

101

Na
sh

Co
nv

Two player tiny bridge. Exact BR. Log-Log adidas
uniform
prd
max_gini_ce
max_gini_cce
alpharank
nbs
nbs_joint
social_welfare
regret_matching
max_nbs_ce
max_nbs_cce
max_welfare_ce
max_welfare_cce
max_ent_ce
max_ent_cce

0 50 100 150 200
Iteration

20

10

0

10

20

30

40

So
cia

l w
el

fa
re

Two player tiny bridge. Exact BR Linear-Linear adidas
uniform
prd
max_gini_ce
max_gini_cce
alpharank
nbs
nbs_joint
social_welfare
regret_matching
max_nbs_ce
max_nbs_cce
max_welfare_ce
max_welfare_cce
max_ent_ce
max_ent_cce

100 101 102

Iteration

101

Na
sh

Co
nv

Two player tiny bridge. DQN BR. Log-Log adidas
uniform
prd
max_gini_ce
max_gini_cce
alpharank
nbs
nbs_joint
social_welfare
regret_matching
max_nbs_ce
max_nbs_cce
max_welfare_ce
max_welfare_cce
max_ent_ce
max_ent_cce

0 50 100 150
Iteration

20

10

0

10

20

30

40

So
cia

l w
el

fa
re

Two player tiny bridge. DQN BR. Linear-Linear adidas
uniform
prd
max_gini_ce
max_gini_cce
alpharank
nbs
nbs_joint
social_welfare
regret_matching
max_nbs_ce
max_nbs_cce
max_welfare_ce
max_welfare_cce
max_ent_ce
max_ent_cce

Figure 9: Empirical Convergence to Nash Equilibria and Social Welfare in Common Payoff Benchmark
Games.

30

Under review as submission to TMLR

100 101 102

Iteration

10 8

10 6

10 4

10 2

100

Na
sh

Co
nv

Battleship. Exact BR. Log-Log adidas
uniform
prd
max_gini_ce
max_gini_cce
alpharank
nbs
nbs_joint
social_welfare
regret_matching
max_nbs_ce
max_nbs_cce
max_welfare_ce
max_welfare_cce
max_ent_ce
max_ent_cce

100 101 102

Iteration

2 × 100

3 × 100

4 × 100

Na
sh

Co
nv

Battleship. DQN BR. Log-Log adidas
uniform
prd
max_gini_ce
max_gini_cce
alpharank
nbs
nbs_joint
social_welfare
regret_matching
max_nbs_ce
max_nbs_cce
max_welfare_ce
max_welfare_cce
max_ent_ce
max_ent_cce

0 50 100 150 200
Iteration

2.4

2.2

2.0

1.8

So
cia

l w
el

fa
re

Battleship. Exact BR. Linear-Linear adidas
uniform
prd
max_gini_ce
max_gini_cce
alpharank
nbs
nbs_joint
social_welfare
regret_matching
max_nbs_ce
max_nbs_cce
max_welfare_ce
max_welfare_cce
max_ent_ce
max_ent_cce

0 20 40 60 80 100 120
Iteration

2.0

1.5

1.0

0.5

0.0

So
cia

l w
el

fa
re

Battleship. DQN BR. Linear-Linear adidas
uniform
prd
max_gini_ce
max_gini_cce
alpharank
nbs
nbs_joint
social_welfare
regret_matching
max_nbs_ce
max_nbs_cce
max_welfare_ce
max_welfare_cce
max_ent_ce
max_ent_cce

100 101 102

Iteration

10 1

100

Na
sh

Co
nv

Two player goofspiel. Exact BR. Log-Log adidas
uniform
prd
max_gini_ce
max_gini_cce
alpharank
nbs
nbs_joint
social_welfare
regret_matching
max_nbs_ce
max_nbs_cce
max_welfare_ce
max_welfare_cce
max_ent_ce
max_ent_cce

100 101 102

Iteration

2 × 100

3 × 100

4 × 100

Na
sh

Co
nv

Two player goofspiel. DQN BR. Log-Log adidas
uniform
prd
max_gini_ce
max_gini_cce
alpharank
nbs
nbs_joint
social_welfare
regret_matching
max_nbs_ce
max_nbs_cce
max_welfare_ce
max_welfare_cce
max_ent_ce
max_ent_cce

0 50 100 150 200
Iteration

5

6

7

8

9

10

So
cia

l w
el

fa
re

Two player goofspiel. Exact BR. Linear-Linear adidas
uniform
prd
max_gini_ce
max_gini_cce
alpharank
nbs
nbs_joint
social_welfare
regret_matching
max_nbs_ce
max_nbs_cce
max_welfare_ce
max_welfare_cce
max_ent_ce
max_ent_cce

0 50 100 150 200
Iteration

7.0

7.5

8.0

8.5

9.0

9.5

10.0

So
cia

l w
el

fa
re

Two player goofspiel. DQN BR. Linear-Linear adidas
uniform
prd
max_gini_ce
max_gini_cce
alpharank
nbs
nbs_joint
social_welfare
regret_matching
max_nbs_ce
max_nbs_cce
max_welfare_ce
max_welfare_cce
max_ent_ce
max_ent_cce

100 101 102

Iteration

10 1

100

Na
sh

Co
nv

Three player goofspiel. Exact BR. Log-Log adidas
uniform
prd
max_gini_ce
max_gini_cce
alpharank
nbs
nbs_joint
social_welfare
regret_matching
max_nbs_ce
max_nbs_cce
max_welfare_ce
max_welfare_cce
max_ent_ce
max_ent_cce

100 101

Iteration

100Na
sh

Co
nv

Three player goofspiel. DQN BR. Log-Log adidas
uniform
prd
max_gini_ce
max_gini_cce
alpharank
nbs
nbs_joint
social_welfare
regret_matching
max_nbs_ce
max_nbs_cce
max_welfare_ce
max_welfare_cce
max_ent_ce
max_ent_cce

0 50 100 150 200
Iteration

4

5

6

7

8

9

10

So
cia

l w
el

fa
re

Three player goofspiel. Exact BR. Linear-Linear adidas
uniform
prd
max_gini_ce
max_gini_cce
alpharank
nbs
nbs_joint
social_welfare
regret_matching
max_nbs_ce
max_nbs_cce
max_welfare_ce
max_welfare_cce
max_ent_ce
max_ent_cce

0 10 20 30 40 50 60 70
Iteration

6

7

8

9

10

So
cia

l w
el

fa
re

Three player goofspiel. DQN BR. Linear-Linear adidas
uniform
prd
max_gini_ce
max_gini_cce
alpharank
nbs
nbs_joint
social_welfare
regret_matching
max_nbs_ce
max_nbs_cce
max_welfare_ce
max_welfare_cce
max_ent_ce
max_ent_cce

100 101 102

Iteration

10 7

10 5

10 3

10 1

101

Na
sh

Co
nv

Sheriff. Exact BR. Log-Log adidas
uniform
prd
max_gini_ce
max_gini_cce
alpharank
nbs
nbs_joint
social_welfare
regret_matching
max_nbs_ce
max_nbs_cce
max_welfare_ce
max_welfare_cce
max_ent_ce
max_ent_cce

100 101 102

Iteration

100

101

Na
sh

Co
nv

Sheriff. DQN BR. Log-Log adidas
uniform
prd
max_gini_ce
max_gini_cce
alpharank
nbs
nbs_joint
social_welfare
regret_matching
max_nbs_ce
max_nbs_cce
max_welfare_ce
max_welfare_cce
max_ent_ce
max_ent_cce

0 50 100 150 200
Iteration

0

5

10

15

20

25

So
cia

l W
el

fa
re

Sheriff. Exact BR. Linear-Linear adidas
uniform
prd
max_gini_ce
max_gini_cce
alpharank
nbs
nbs_joint
social_welfare
regret_matching
max_nbs_ce
max_nbs_cce
max_welfare_ce
max_welfare_cce
max_ent_ce
max_ent_cce

0 50 100 150 200
Iteration

0

10

20

30

40

So
cia

l w
el

fa
re

Sheriff. DQN BR. Linear-Linear adidas
uniform
prd
max_gini_ce
max_gini_cce
alpharank
nbs
nbs_joint
social_welfare
regret_matching
max_nbs_ce
max_nbs_cce
max_welfare_ce
max_welfare_cce
max_ent_ce
max_ent_cce

Figure 10: Empirical Convergence to Nash Equilibria and Social Welfare in General-Sum Benchmark Games.

Agent \ Opponent IndRL Com1 Com2 Coop Fair
IndRL 9.70 8.73 8.22 12.68 12.42
Com1 8.73 9.94 9.96 11.62 11.12
Com2 8.22 9.96 10.09 11.16 11.05
Coop 12.68 11.62 11.16 13.34 13.22
Fair 12.42 11.12 11.05 13.22 13.05

Table 7: Head-to-head empirical social welfare matrix among our selected agents . The (i, j)-th entry is the
social welfare of when i-th agent is playing with the j-th agent.

F Human Behavioral Studies

F.1 Study Design

The protocol for the human behavioral studies underwent independent ethical review and was approved by
the institutional review board at our institution. All participants provided informed consent before joining
the study.

We collected data through “tournaments” of Deal or No Deal games in two different conditions: Human vs.
Human (HvH) and Human vs. Agent (HvA). Upon joining the study, participants were randomly assigned
to one of the two conditions. Participants in both conditions proceeded through the following sequence of
steps:

1. Read study instructions and gameplay tutorial (Figures 14–18).

2. Take comprehension test (Figures 19 & 20).

31

Under review as submission to TMLR

0 5 10 15 20
iterations

23

24

25

26

27

28

av
g_

pa
re

to
_g

ap

Dist. to Pareto front in Colored Trails

DQN+adidas
DQN+uniform
DQN+prd
DQN+max_gini_ce
DQN+max_gini_cce
DQN+alpharank
DQN+nbs
DQN+nbs_joint
DQN+social_welfare
DQN+regret_matching
DQN+max_nbs_ce
DQN+max_nbs_cce
DQN+max_welfare_ce
DQN+max_welfare_cce

0 5 10 15 20
iterations

22

24

26

28

30

av
g_

pa
re

to
_g

ap
_t

es
t

Dist. to Pareto front in Colored Trails

DQN+adidas
DQN+uniform
DQN+prd
DQN+max_gini_ce
DQN+max_gini_cce
DQN+alpharank
DQN+nbs
DQN+nbs_joint
DQN+social_welfare
DQN+regret_matching
DQN+max_nbs_ce
DQN+max_nbs_cce
DQN+max_welfare_ce
DQN+max_welfare_cce

(a) (b)

2 4 6 8 10 12 14
iterations

22

24

26

28

av
g_

pa
re

to
_g

ap

Dist. to Pareto front in Colored Trails

Boltz_DQN+adidas
Boltz_DQN+uniform
Boltz_DQN+prd
Boltz_DQN+max_gini_ce
Boltz_DQN+max_gini_cce
Boltz_DQN+alpharank
Boltz_DQN+nbs
Boltz_DQN+nbs_joint
Boltz_DQN+social_welfare
Boltz_DQN+regret_matching
Boltz_DQN+max_nbs_ce
Boltz_DQN+max_nbs_cce
Boltz_DQN+max_welfare_ce
Boltz_DQN+max_welfare_cce

2 4 6 8 10 12 14
iterations

22

24

26

28

30

av
g_

pa
re

to
_g

ap
_t

es
t

Dist. to Pareto front in Colored Trails

Boltz_DQN+adidas
Boltz_DQN+uniform
Boltz_DQN+prd
Boltz_DQN+max_gini_ce
Boltz_DQN+max_gini_cce
Boltz_DQN+alpharank
Boltz_DQN+nbs
Boltz_DQN+nbs_joint
Boltz_DQN+social_welfare
Boltz_DQN+regret_matching
Boltz_DQN+max_nbs_ce
Boltz_DQN+max_nbs_cce
Boltz_DQN+max_welfare_ce
Boltz_DQN+max_welfare_cce

(c) (d)

Figure 11: Average Pareto gap using DQN best response (top: (a) and (b)) and Boltzmann DQN (bottom:
(c) and (d)), training gap (left: (a) and (c)) and gap on held-out test boards (right: (b) and (d)).

3. Wait for random assignment to a tournament with five other participants (HvH) or wait for agents
to load for a tournament (HvA; Figure 21).

4. Play episode of Deal or No Deal game (Figure 22).

32

Under review as submission to TMLR

Agent \ Opponent IndRL Com1 Com2 Coop Fair
IndRL 23.48 18.69 16.05 39.66 38.02
Com1 18.69 24.70 24.68 31.84 29.63
Com2 16.05 24.68 25.44 29.57 28.73
Coop 39.66 31.84 29.57 44.51 43.70
Fair 38.02 29.63 28.74 43.70 42.56

Table 8: Head-to-head empirical Nash product matrix among our selected agents . The (i, j)-th entry is the
Nash product when i-th agent is playing with the j-th agent.

5. See score confirmation for last episode and wait for next episode (Figure 23a).

6. Repeat steps 4 and 5 for four additional episodes.

7. Note total earnings and transition to post-game questionnaire (Figure 23b).

We required participants to answer all four questions in the comprehension test correctly to continue to
the rest of the study. The majority of participants (71.4%) passed the test and were randomly sorted into
tournaments in groups of n = 6 (for the HvH condition) or n = 1 (for the HvA condition). We provided the
remainder a show-up payment for the time they spent on the study tutorial and test.

The participants played DoND for real monetary stakes, receiving an additional $0.10 of bonus for each point
they earned in the study. To ensure that one non-responsive participant did not disrupt the study for any
other participants in their tournament, episodes had a strict time limit of 120 seconds. After the time limit
for a given episode elapsed, all uncompleted games were marked as “timed out” and any participants in the
tournament were moved to the next step of the study.

We apply two exclusion criteria to build our final datasets of game episodes: first, exclude all episodes
that timed out before reaching a deal or exhausting all turns; and second, exclude all episodes involving a
participant who was non-responsive during the tournament (i.e., did not take a single action in a episode).

In the HvH condition, 228 participants passed the comprehension test and were sorted into tournaments.
Eleven participants were non-responsive and an additional 6.3% of games timed out before reaching a deal
or exhausting all turns, resulting in a final sample of N = 217 participants (39.5% female, 59.1% male, 0.9%
trans or nonbinary; median age range: 30–40).

In HvH tournaments, each participant plays one episode against each of the five other participants in their
group. We use a round-robin structure to efficiently match participants for each episode, ensuring each game
involves two participants who have not interacted before. We randomize player order in each game. The
final HvH dataset contains k = 483 games.

In the HvA condition, 130 participants passed the comprehension test and were sorted into tournaments.
One participant was non-responsive and an additional 15.2% of games timed out before reaching a deal or
exhausting all turns, resulting in a final sample of N = 129 participants (44.5% female, 53.1% male, 0.8%
trans or nonbinary; median age range: 30–40).

In HvA tournaments, each participant plays one episode against each of the five agents evaluated in the
study. We randomize agent order in each tournament and player order in each game. The final HvA dataset
contains k = 547 games.

During each episode of the HvA tournaments, agent players waited a random amount of time after participant
actions to send their own actions. The agents randomly sampled their time delays from a normal distribution
with a mean of 10 seconds and a standard deviation of 3 seconds.

After completing all episodes in their tournament, participants proceeded to complete a post-task ques-
tionnaire that included the slider measure of Social Value Orientation (Murphy et al., 2011), demographic
questions, and open-ended questions soliciting feedback on the study.

33

Under review as submission to TMLR

Participants completed the study in an average of 18.2 minutes. The base pay for the study was $2.50, with
an average performance bonus of $3.70.

F.2 Analysis

We fit linear mixed- and random-effects models to estimate and compare the average returns generated by
our agents and by study participants.

We first fit a linear mixed-effects model using just the HvA data, predicting human return from each episode
with one fixed effect (a categorical variable representing each type of agent playing in the episode) and one
random effect (representing each participant in the HvA condition). The effect estimates (the mean points
earned by a human player against each agent) are shown in the ūHumans column of Table 3. We estimate
95% confidence intervals for the individual effects through bootstrapping with 500 resamples.

We next fit a linear mixed-effects model using just the HvA data, predicting agent return from each episode
with one fixed effect (a categorical variable representing each type of agent playing in the episode) and one
random effect (representing each participant in the HvA condition). The effect estimates (the mean points
earned by each agent) are shown in the ūAgent column of Table 3. We estimate 95% confidence intervals
for the individual effects through bootstrapping with 500 resamples.

We similarly fit a linear mixed-effects model using just the HvA data, predicting social welfare (average
return) from each episode with one fixed effect (a categorical variable representing each type of agent playing
in the episode) and one random effect (representing each participant in the HvA condition). The effect
estimates (the mean social welfare catalyzed by each agent) are shown in the ūComb column of Table 3. We
estimate 95% confidence intervals for the individual effects through bootstrapping with 500 resamples.

We then fit a linear random-effects model using just the HvH data, predicting the return for one player
(randomly selected) in each episode with one random effect (representing each participant in the HvH
condition). Participants in the HvH condition achieve an individual return of 6.93 [6.72, 7.14], on expectation.
We estimate the 95% confidence interval for this effect through bootstrapping with 500 resamples.

34

Under review as submission to TMLR

0 10 20 30 40
Proposer gain

0

20

40

60

80
Re

sp
on

de
r g

ai
n

0 10 20 30 40 50
Proposer gain

0

20

40

60

80

Re
sp

on
de

r g
ai

n

0 10 20 30 40 50 60
Proposer gain

0

20

40

60

80

Re
sp

on
de

r g
ai

n

0 10 20 30 40
Proposer gain

0

10

20

30

40

50

60

Re
sp

on
de

r g
ai

n

0 10 20 30 40 50 60
Proposer gain

0

20

40

60

80

100

Re
sp

on
de

r g
ai

n

0 10 20 30 40 50 60 70
Proposer gain

0

20

40

60

80

100

Re
sp

on
de

r g
ai

n

Figure 12: Evolution of the expected outcomes of the PSRO agents using the DQN best response type and
social welfare MSS. Each diagram depicts the outcome of the agent for a single configuration of Colored Trails:
circles represent the rational outcomes (pure joint strategies where players have non-negative gain). The
outer surface of the convex hull represents the Pareto front/envelope. To make a 2D image, the proposers’
gains are aggregated and only the winning proposer’s value is included in the outcome computation. The
blue directed path represents the PSRO agents’ expected outcomes at iterations t ∈ {0, 1, · · · , 15}, where
each point estimated from 100 samples. Note that values can be negative due to sampling approximation
but also due to choosing legal actions that result in negative gain.

35

Under review as submission to TMLR

Figure 13: Value of exploits found by ABR with uniform beliefs against search-enhanced PSRO agents. The
y-axis here is an approximation of NashConv in the same sense as used in (Timbers et al., 2022).

36

Under review as submission to TMLR

(a) Screen 1: Welcome participants to the experiment.

(b) Screen 2: Explain study length and player matching.

Figure 14: Screenshots of the participant interface for the “Deal or No Deal” study. (a) The participant
reads general study information. (b) The participant reads tutorial information about the game.

37

Under review as submission to TMLR

(a) Screen 3: Explain items.

(b) Screen 4: Explain the goal of item distribution.

Figure 15: Screenshots of the participant interface for the “Deal or No Deal” study. (a) The participant
reads tutorial information about the game. (b) The participant reads tutorial information about the game.

38

Under review as submission to TMLR

(a) Screen 5: Explain points.

(b) Screen 6: Explain other player’s points.

Figure 16: Screenshots of the participant interface for the “Deal or No Deal” study. (a) The participant
reads tutorial information about the game. (b) The participant reads tutorial information about the game.

39

Under review as submission to TMLR

(a) Screen 7: Explain actions.

(b) Screen 8: Explain communication.

Figure 17: Screenshots of the participant interface for the “Deal or No Deal” study. (a) The participant
reads tutorial information about the game. (b) The participant reads tutorial information about the game.

40

Under review as submission to TMLR

(a) Screen 9: Explain episode length.

(b) Screen 10: Introduce comprehension test.

Figure 18: Screenshots of the participant interface for the “Deal or No Deal” study. (a) The participant
reads tutorial information about the game. (b) The participant reads information about the comprehension
test.

41

Under review as submission to TMLR

(a) Screen 11: Test on player matching.

(b) Screen 12: Test on item distribution.

Figure 19: Screenshots of the participant interface for the “Deal or No Deal” study. (a) The participant
takes the comprehension test. (b) The participant takes the comprehension test.

42

Under review as submission to TMLR

(a) Screen 13: Test on general-sum nature of game.

(b) Screen 14: Test on conditions for deal success.

Figure 20: Screenshots of the participant interface for the “Deal or No Deal” study. (a) The participant
takes the comprehension test. (b) The participant takes the comprehension test.

43

Under review as submission to TMLR

Figure 21: Screenshots of the participant interface for the “Deal or No Deal” study. The participant sees
their results for the comprehension test. If they answered all four questions correctly, the participant waits
to be randomly assigned to a game session.

44

Under review as submission to TMLR

(a) Game screen: Prompt participant to take their turn.

(b) Game screen: Wait for other player to take their turn.

Figure 22: Screenshots of the participant interface for the “Deal or No Deal” study. (a) The participant
proposes a deal to the other player. (b) The other player chooses to confirm the deal or proposes a new deal.

45

Under review as submission to TMLR

(a) Game feedback screen: Show results from prior episode.

(b) Study feedback screen: Show bonus and introduce post-task questionnaire.

Figure 23: Screenshots of the participant interface for the “Deal or No Deal” study. (a) The participant
waits for the next game to start. (b) The participant sees their bonus and waits to begin the post-task
questionnaire.

46

	Introduction
	Background and Related Work
	EGTA and Policy-Space Response Oracles
	Algorithms for Meta-Strategy Solvers

	Combining MCTS and RL for Best Response

	Search-Improved Generative PSRO
	Extracting a Final Agent at Test Time

	New Meta-Strategy Solvers
	Bargaining Theory and Solution Concepts
	Empirical Game Nash Bargaining Solution
	Max-NBS (Coarse) Correlated Equilibria
	Social Welfare

	Experiments
	Approximate Nash Equilibrium Solving on Benchmark Games
	Negotiation Game: Colored Trails
	Negotiation Game: Deal or No Deal
	Generative World State Sampling
	Studies with Human Participants

	Conclusion and Future Work
	Broader Impact
	Meta-Strategy Solvers
	Classic PSRO Meta-Strategy Solvers
	Projected Replicator Dynamics (PRD)
	Exploratory Regret-Matching

	Joint and Correlated Meta-Strategy Solvers
	ADIDAS

	Nash Bargaining Solution of Normal-form games via Projected Gradient Ascent
	Game Domain Descriptions and Details
	Benchmark Games
	Kuhn Poker
	Leduc Poker
	Liar's Dice
	Trade Comm
	Tiny Bridge
	Battleship
	Goofspiel
	Sheriff

	Approximate Size of Deal or No Deal

	Hyper-parameters and Algorithm Settings
	Generative Models
	Deal or No Deal

	Additional Results
	Colored Trails
	Deal or No Deal

	Human Behavioral Studies
	Study Design
	Analysis

