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Abstract. Leveraging a few labeled images and a large number of un-
labeled images is crucial for medical image segmentation since labeling
the medical data can be very expensive and time-consumed. Therefore
we introduce a naïve but simple method to utilize the massive unlabeled
medical images for better training. We first use all the labeled data to
train a basic model, then use this pre-trained model to infer the unlabeled
images to get pseudo-labels, and finally use all the obtained pseudo-labels
and the original labels as the ground truth of all images, and retrain the
model from scratch to acquire the final model. We believe this is a simple
but effective way to utilize the massive number of unlabeled images and
experiments were performed to evaluate such method.
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1 Introduction

Leveraging a few labeled images and a large number of unlabeled images is
crucial for medical image segmentation since labeling the medical data can be
very expensive and time-consumed. Motivated by this, many semi-supervised
segmentation methods [6] were developed to exploit the information contained
in unlabeled images.

Recent semi-supervised approaches in medical image segmentation are mainly
relied on pseudo-labeling, contrastive learning and consistency regularization
[11,12,10,13]. In [13], a cross-level contrastive algorithm is developed to enhance
the representation capacity for local features in semi-supervised semantic seg-
mentation. A self-prototype alignment is proposed to learn more stable region-
wise features within unlabeled images, which can optimize the classification mar-
gin by boosting in intra-class compactness and inter-class separation on the
feature space [12]. Moreover, a framework improve the accuracy of the pseudo
labels using the features and edges of the superpixel maps, and achieve great
performance in brain tumor region segmentation [10].

Rather than using complicated and well-designed methods, we proposed a
simple strategy to use a well-trained model to generate pseudo labels for a large
number of unlabeled images, and finally use all of them to retrain the model
from scratch. It is a easy way to utilize the unlabeled images and achieve better
performance than only using limited labeled images.
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The remainder of this paper is organized as follows. We introduce the detail
of the preprocessing and proposed method in Section 2. Then, the experiment
details are presented in Section 3 and finally the results and discussion comes in
section 4.

2 Method

Fig. 1. Training strategy

The proposed method is illustrated in Figure 1.

2.1 Preprocessing

For data preprocessing, we followed the work in [3]. Considering the character-
istics of CT images, each 3D image top 5% of its intensity histogram was cut
off for alleviating artifacts. Then each 3D image was standardized and sliced to
2D images to suit the base network setup. The standardization equation can be
formulated as:

image = (image− image.mean())/image.std() (1)

2.2 Proposed Method

In this paper, we proposed a simple but effective method based on the 2D Swin-
Unet, where a U-Net architecture is adopted. Motivated by the Swin Trans-
former’s success, the Swin-Unet leverage the power of Transformer for 2D medi-
cal image segmentation and achieve great performance.In this task, we use Swin-
Unet as our basic network for semi-supervised segmentation. The network archi-
tecture is depicted in Figure 2.

Swin-Unet is a end-to-end training frameworka and is first introduced Transformer-
based U-shaped architecture that consists of encoder, bottleneck, decoder, and
skip connections. The input medical 2D slices are split into non-overlapping
patches and each patch is treated as a token and fed into the Swin-Transformer-
base encoder to acquire deep feature representations. This extracted features will
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be up-sampled by the decoder and finally fused with the multi-scale features from
the encoder via skip connections.

The Swin-Unet was first trained with only labeled images. The iterative pro-
cess may go on until the convergence is met. Then this well-trained model is
used for generating pseudo labels for the corresponding unlabeled images. Af-
ter the pseudo labels are acquired, both labeled and unlabeled images are used
for training from scratch, and the original and pseudo labels are served as the
ground truth. In this way, we are able to take full advantage of the large number
of unlabeled data.

Fig. 2. Network architecture

The loss function we use is the summation between Dice loss and cross en-
tropy loss, it is believed that the compound loss functions are robust in various
medical image segmentation tasks [7].

3 Experiments

3.1 Dataset and evaluation measures

The FLARE2022 dataset is curated from more than 20 medical groups under
the license permission, including MSD [9], KiTS [4,5], AbdomenCT-1K [8], and



4 Ye Zhu and Hanlin Tian

TCIA [2]. The training set includes 50 labelled CT scans with pancreas disease
and 2000 unlabelled CT scans with liver, kidney, spleen, or pancreas diseases.
The validation set includes 50 CT scans with liver, kidney, spleen, or pancreas
diseases. The testing set includes 200 CT scans where 100 cases has liver, kidney,
spleen, or pancreas diseases and the other 100 cases has uterine corpus endome-
trial, urothelial bladder, stomach, sarcomas, or ovarian diseases. All the CT scans
only have image information and the center information is not available.

The evaluation measures consist of two accuracy measures: Dice Similarity
Coefficient (DSC) and Normalized Surface Dice (NSD), and three running effi-
ciency measures: running time, area under GPU memory-time curve, and area
under CPU utilization-time curve. All measures will be used to compute the
ranking. Moreover, the GPU memory consumption has a 2 GB tolerance.

3.2 Implementation details

Environment settings The development environments and requirements are
presented in Table 1.

Table 1. Development environments and requirements.

Windows/Ubuntu version Red Hat 8.5.0-10
CPU Intel(R) Xeon(R) Silver 4210R CPU @ 2.40GHz
RAM 16×4GB; 2.67MT/s
GPU (number and type) One NVIDIA V100 16G
CUDA version 11.0
Programming language Python 3.7
Deep learning framework Pytorch (Torch 1.6.0, torchvision 0.7.0)

Training protocols For data augmentation, we applied the simple operation
such as random rotate and random flip. In the training phase, we randomly select
20 cases from all training cases to train our model, and the rest 30 cases are served
as our validation set. The first basic model was trained for 1000 epochs, then
with the massive generated pseudo labels, the second training phase was set to
50 epochs. The model was validated every epoch, then the model which has the
highest DSC and NSD value is selected as the best model to inference the test
set.

4 Results and discussion

In Table. 4 and Table. 5, the results show the effect of using unlabelled cases.
The value of DSC improved from 73.9% to 79.1% and NSD improved from
80.2% to 86.0% which indicates that our method has taken advantages of using
a large number of unlabeled images. But we also noticed that our method did
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Table 2. Training protocols.

Network initialization Truncated normal initialization
Batch size 18
Image size 3×224×224
Total epochs 1000
Optimizer Adam optimizer
Initial learning rate (lr) 0.001
Lr decay schedule LR = baseLR*(1.0-NumOfIter/MaxIterations)**0.9
Training time 39 hours
Number of model parameters 27.17M
Number of flops 6.19G1

Table 3. Training protocols for the refine model

Network initialization Truncated normal initialization
Batch size 18
Patch size 3×224×224
Total epochs 100
Optimizer Adam optimizer
Lr decay schedule LR = baseLR*(1.0-NumOfIter/MaxIterations)**0.9
Training time 60 hours
Number of model parameters 27.17M
Number of flops 6.19G2
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not performed well in the official test set from FLARE22 challenge. We believed
that the main reason is because our model was trained with a small amount of
labeled data causing overfitting to training set.

4.1 Segmentation efficiency results

(a) View1 (b) View2

(c) View3 (d) View4

Fig. 3. Different views of pseudo labels

5 Conclusion

In this paper, we introduce a naïve but simple method to utilize the massive
unlabeled medical images for better training. From the experiments results we
found that this simple but effective method can improve the performance com-
pared with using only labeled images. However, this method highly relies on the
quality of the pseudo labels, and it is difficult for this self-labeling strategy to
rectify the incorrect predictions. In the future work, we will focus on generating
more accurate pseudo label for retraining the model.
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