Under review as a conference paper at ICLR 2023

GCINT:DYNAMIC QUANTIZATION ALGORITHM FOR
TRAINING GRAPH CONVOLUTION NEURAL
NETWORKS USING ONLY INTEGERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Quantization approaches can minimize storage costs while decreasing the compu-
tational complexity of a model, although there is minimal study in the GNN field
on quantization networks. We studied the four primary reasons why existing quan-
tization approaches cannot be employed extensively with GNNs: (1)Quantifying
the distinctions between data sources; (2)Quantifying the distinctions between
data streams; (3)Quantifying the distinctions between concentrations; (4)QAT’s
Limitations. Based on this, we propose GCINT, which is an efficient quantization
framework prepared for GNN training. The entire forward, backward, optimizer,
and loss functions are calculated using integer data. We achieved a training ac-
celeration ratio of nearly 10x compared to FP32 Cuda Core in RTX 2080TI INTS
Tensor Core. Our quantization is independent of the dataset and weight distribu-
tion, and more than 2,000 randomized trials have been undertaken on the 8 popular
GNN benchmark datasets, with all achieving errors within 1% of the FP32.

1 INTRODUCTION

There is an abundance of graph-structured data in the natural and social sciences. In fields such as
social networks (Fan et al., 2019), recommender systems (Wu et al.|[2020), traffic networks (Jiang &
Luo} 2022)), molecular prediction (Mansimov et al., 2019), and drug discovery (Zhang et al.,|2022),
Graph Neural Networks (GNNs) representative deep learning systems for graph data learning, infer-
ence, and generalization have produced superior outcomes. As graph learning applications increase
and graph data expands, the training of GNNs becomes inefficient due to two significant obstacles:
(1) Storage expenses. Since training needs recording the outputs of several layers in forward prop-
agation for backward propagation calculation, extremely large scale graph data is frequently saved
utilizing distributed CPU-centric memory storage by distributed GPU clusters employing a mini-
batch training technique. Common acceleration devices such as GPUs and FPGAs with on-chip
storage and bandwidth can no longer match the demand for training large GNNs and are too depen-
dent on sampling techniques to train on a device with a limited batch size for each training session
(Yang, 2019). (2) Calculated expenses. Training a single epoch on the Reddit dataset generally
requires tens of TFLOPS, even for KB-sized GNN models.

Quantization (Yang et al.| 2019) can lower storage costs while decreasing the model’s computa-
tional complexity (Nagel et al., [2021). Although quantization is widely used in CNNs, research
on quantized networks for GNNs is scarce, we believe the following factors primarily restrict the
applicability of quantization approaches in GNNs: (1) Quantifying the distinctions between data
sources. During CNN training, the RGB images of UINT8 are normalized and sent to the net-
work. In contrast, when using GNN models, the node features of the network are frequently not the
consequence of normalization, and the distribution of node features will shift as the graph changes
and embedding methods are employed. The information contained in the image could have been
represented by UINTS, whereas the embedding vectors of graph nodes are typically in FP32 data
format, which contains significantly more information than UINTS. Therefore, it is essential for
GNN to quantize the dataset, which must represent a large amount of information in the dataset with
a limited number of bits. (2) Quantifying the distinctions between data streams. The calculation
in each layer of CNN that maps to the GPU is typically General Matrix Multiplication (GEMM),
and the activation distribution in each layer of GNN is strongly tied to the graph topology, when the

Under review as a conference paper at ICLR 2023

average degree of the graph is high, the aggregation process of the integer domain is more suscep-
tible to data overflow. Conversely, when the average degree of the graph is low, the distribution of
activation in each layer of the network will be focused in the low bit data range. This brings uncer-
tainty into quantitative training, and typical quantization approaches for CNN will not be employed
directly in GNN models. (3) Quantifying the distinctions between concentrations. Due to the
fact that DNN models generally include millions of parameters, it is required to decrease the com-
plexity of storage and processing by quantizing and compressing the weights, such as BNN (Tang
et al.,[2017) and XNOR-Net (Rastegari et al.,|2016) quantize the weights to binary. However, GNN
models are typically in the KB order of magnitude, and the gains from compressing the weights
are not substantial. (4) QAT’s Limitations. The majority of CNN quantization is based on the re-
search of QAT (Wang et al.,|2019) quantization operators, and this design strategy has evolved into
a robust, low-error quantization model. QAT conducts low-bit quantization of weights and activa-
tion during forward propagation, then reduces the noise and loss induced by forward quantization
using FP32 back propagation, and lastly dequantizes the model to integer for inference accelera-
tion during model deployment (Krishnamoorthil 2018])). The restriction of the QAT is that it cannot
be utilized for accelerated training since the data format after quantization is still FP32 during the
training process. After training a CNN model for a certain class of tasks with a significant quantity
of data, they seldom need to be retrained after deployment, hence QAT provides CNN models with
extraordinarily high advantages. GNNs tend to be dynamic graphs in the real world and require fine-
tuning or retraining of the model; hence, speeding the training process of GNNs is more relevant
than accelerating the inference process, which QAT cannot perform for accelerated training.

This work considers the motivations and problems associated with quantization of graph architec-
tures, and provides the following contributions:

* We employ a top-down quantification study methodology. The vast majority of prior quan-
tization investigations have been bottom-up procedures, i.e., beginning with the FP32 ten-
sor, quantizing to the FP32 tensor that can be mapped by integers one by one, and then
dequantizing to the integer, which we consider a superfluous operation. Consequently, we
investigate the quantization strategy for integer tensor computation directly from a differ-
ent angle, which has the advantage that a shaping model can be obtained directly without
dequantization and can be used directly for inference and training speedup in fixed-point
hardware, such as GPU INT Tensor Core.

* We propose a novel quantization training algorithm for graphs as an alternative to the tradi-
tional QAT method to accelerate the GNN training process. This algorithm can adaptively
adjust the quantization range according to the sparsity of the graph data and can accom-
modate unevenly distributed data during training. The entire training forward, backward,
optimizer, and loss functions are calculated using integer data, which can be directly ac-
celerated by using the INT Tensor Core of GPU for GNN training. We achieved a training
acceleration ratio of nearly 10x compared to FP32 Cuda Core in RTX 2080TT INT8 Tensor
Core, and can train a larger subgraph than the original one with limited memory.

* Our quantization is independent of the dataset and weight distribution, and more than 2,000
randomized trials have been undertaken on the 8 popular GNN benchmark datasets, with all
achieving errors within 1% of the FP32 baseline, and without fine-tuning hyperparameters.

2 BACKGROUND AND RELATED WORK

Table[T] presents the quantitative studies published in recent years. WAGE (Wu et al.| 2018) provides
a low-bit quantization approach for weight, activation, gradient, and error in CNN training. Data is
linearly mapped using integers to FP32, and all training data must be dequantized to the integer
domain before being utilized for training acceleration. The authors believe that following matrix
multiplication of the bita tensor with the bitw tensor, an bit[a + w — 1] tensor is formed, which
is then quantized to the bita tensor and sent to the next network layer. We feel that basing the
quantization approach on this assumption is not rigorous since it disregards the dimensionality of
the tensor. Assuming that the dimensionality of the tensor is n, the data bit-width range of the output
tensor should be [a+w—1+logan]. However, because the GEMM and SPMM(Sparse-Dense Matrix
Multiplication) dimensions in GNN are typically large, the output data bit-width range will overflow
to varying degrees, rendering the method inapplicable to the training speedup of GNN.

Under review as a conference paper at ICLR 2023

Table 1: Comparing the quantization precision of several methods. PUB indicates the origin of the
algorithm and the date of its publication. Following is the number of W(Weight), A(Activation),
G(Gradient), E(Error) and OPTIM(Optimizer) bits after the respective quantization. SFB(Save For
Backward) is the number of bits of the forward that are saved to compute the back propagation during
training. Where 32(n) represents a floating-point number quantized to bitn(stored and calculated in
FP32 format, the number will be dequantized to yield INT n integers). TRAIN shows if training
may be expedited (forward and backward). INFER specifies whether or not inference may be
accelerated. DEQ(Dequantization, FP to INT) specifies whether dequantization is required by the
algorithm. DOMALIN specifies the algorithm’s application space and the scope of the experiment.

METHOD PUB w A G E SFB LOSS OPTIM DEQ TRAIN INFER DOMAIN
WAGE ICLR2018 32(2) 32(8) 32(8) 32(8) 32(8) FP32 FpP32 v v v CNN
DOREFA CORR2018 32(1) 32(4) FP32 FP32 FP32 FP32 FpP32 v X v CNN
DFP ICLR2018 16 16 16 16 16 FP32 FP32 v 4 v CNN
DQ ICLR2021 32(8) 32(8) FP32 FP32 FP32 FP32 FpP32 v X v GNN
EXACT ICLR2022 FP32 FP32 FP32 FP32 2 FP32 FP32 v X X GNN
GCINT THIS WORK 8 8 8 8 8 8 8 X v v GNN

DoReFa-Net (Zhou et al., 2016) proposes a lower-bit weight, activation quantization scheme, which
introduces a nonlinear activation function in the computation to improve the state representation of
the network for overflow data. However, the process is still presented in FP32, and dequantization
becomes more complex due to nonlinear activation. In general, it is difficult to directly implement
DoReFa-Net training on integer-based hardware, although it has the potential to be utilized in the
exploration of high-dimensional discrete spaces with discrete gradient descent directions.

DFP (Das et al.||2018)) proposes the method of employing mixed precision training with integers in
CNN s so that precision-critical operations (such as the optimizer, normalization, and loss function)
are maintained at FP32 while computationally intensive processes are maintained at INT16. Since
the result of the multiplier output of INT16 will create up to 30 bits of data with 1 bit of sign, at the
time of MAC, at least the accumulation unit of INT32 is necessary to prevent data overflow. The
computation result is transformed into an FP32 tensor output in the DFP. Before the next layer of
input, the FP32 tensor must be dequantized into an INT16 tensor. This ensures that the accumulation
of data will not result in a massive excess of integers. To participate in the subsequent phase of train-
ing, the output of the loss calculation and optimizer parameter update phase must be dequantized
from the FP32 tensor to the INT16 data format. DFP investigates the concept of integer training,
which enables intense computing to be directly utilized in integer-based hardware. The training is
still comprised of a substantial number of FP32 dequantization and is not an entirely integer training
stream.

DQ (Tailor et al.,|2020) proposes QAT method for GNN. The authors believe that the largest source
of quantization error is the portion of the node with a higher degree, because the node degree in
the graph exhibits a power-law distribution, resulting in a larger output in the aggregation of the
portion of the node with a higher degree, which necessitates a larger bit width, leading to a greater
variance of the entire batch of data and a very large error when the bit width is converted downward.
DQ has effectively analyzed the issues that occur from quantizing GNN, assigning the high-degree
node to the FP32 Tensor Core and the low-degree node’s data to the INT Tensor Core, and the task
assignment of hardware resources will vary for different graph as memory management changes
with the degree, makes it challenging to deploy the actual solution to the GPU side for inference
acceleration. On the other hand, large graphs are frequently trained with a fixed node sampling
method for MiniBatch, in which case there is no variation in the degree of each node, rendering DQ
inapplicable; hence, DQ is incompatible with existing graph sampling algorithms.

EXACT (Liu et al.l 2021) provides a low-memory training approach for GNNs, and the author’s
concept is truly groundbreaking. EXACT utilize FP32 format for both forward and backward prop-
agation; however, a portion of the backward propagation computation must utilize some of the
activation saved in the forward pass. The authors quantize the data to a very low level of precision
and store it in the memory before dequantization to FP32 in order to perform the operation with the

Under review as a conference paper at ICLR 2023

error tensor in FP32 format. This drastically reduces the amount of space required for training, but
it cannot be utilized to speed up training.

We propose GCINT, a quantization approach that accelerates graph training and reduces memory
consumption. It may be utilized directly in the GPU’s INT Tensor Core to accelerate training without
the need for dequantization procedures.

o 1 2 3 [[ars=0.2283464567 | [bs=0.6062992126 | Software simulation
M Hardware computing
L l 2o l Real overflow region
Pseudo overflow region
c=agxbs Step3
+(27-1)7 |x(27-1)2
Step1 |$(x)| Non-linear activation 0 c=0.1384462769 ‘ 1 < Gi
X
0 e ! 1 leslessslailenlonloe ool o o) .
L .ee .ee i ¢ (x)
il 1 JELLB1 i - 11 12=0.1417322835
[=0.2283464567 | [br=0.6062092126] | izv 7 x127}f:127 ®@© Fle

[cns=2233] Q >>
+127| |x127 +127| |x127 Binary Binary
Step2 3=00010010 Co15=000100010111001 p ”

@ ©

Figure 1: (a) and (b) depict the fundamental quantization and dequantization procedures. The green
region represents the floating-point data stream for simulated quantization, the purple region repre-
sents the integer data stream for actual fixed-point hardware execution, the blue region represents
the real overflow, and the red region represents the pseudo overflow.

3 METHODOLOGY

3.1 THE IGNORED PSEUDO-OVERFLOW ISSUE

Before proposing the solution, we first generate the pseudo-overflow problem, which is not ac-
counted for in conventional quantization algorithms, and discuss how nonlinear activation influences
dequantization. We use x to represent any arbitrary scalar that is compatible with the FP32 data for-
mat. x s, represents the number of signed bitn to which x is quantized (as a floating-point value),
x;, represents the integer representation of bitn, and xy, represents the binary representation of
bitn. From Figure Eka) ayg, although it is a floating-point representation, that data falls squarely
on the data endpoint that divides the 0-1 interval into 127 copies, indicating that x;,, multiplied by
2™ — 1 must be an integer. Figure[T[a) depicts the typical scheme’s quantization and dequantization
data flows. The pre-computation quantization and post-computation quantization of a batch of data
typically need three phases, and INT8 quantization serves as an illustration. A nonlinear activation
function will first remap the data to the interval [-1,1], and the second step quantifies the x in the
interval to its nearest endpoint split by area 127, i.e., the x to wfg. In the third phase, all x5 are uti-
lized to do the necessary computation. If the computation involves vectors or matrices, the outcome
may be more than 1. So, following each calculation, stepl will be assigned a nonlinear mapping to
the interval [-1,1], and then re-quantized.

In conventional quantization, the x t,, (green region) is often employed for training or inference. To
really accomplish computational acceleration with fixed-point hardware, it is frequently essential
to dequantize the data in the green area to the integer domain in order to generate a data stream
consisting of just integers (the purple region is the data executed in the fixed-point hardware). In
Figure [T[a), step3 we require the following stage of input as cyg. Quantizing c to cyg corresponds
to shifting the binary field by 7 bits and then plus 1 (cp15 to cpg), regardless of the bit-width of the
accumulator, they will round off the lowest 7 bits of the result and keep the next lowest 7 bits to
form a new data (red portion of c¢y;5), plus a sign bit (orange portion of cp15) to form a new INTS
integer.

Real overflow: refers to the calculated data portions that exceed 1 (blue area in stepl). Existing
quantization often resolves the problem of genuine overflow using a variety of nonlinear activation
functions, such as clamp(X, —1,1) in the Google White Paper (Krishnamoorthi, 2018), tanh in

Under review as a conference paper at ICLR 2023

: T T xg" :

1 ranspose an i8 GEMM |<_ . '

' Save E® Gradient Stage !

' i8 9
(0] h i =

Figure 2: GCINT’s network layer. For the sake of clarity, the ReLU and Dropout layers are omit-
ted from the figure. xO wh gO GO 4D F# are tensors in which features, weights, er-

wm wm wmn m? m? m
rors, gradients, and normalized adjacency matrices are represented as INT n signed integers. Fz(”)
denotes the tensor representation inside the [** layer. At the moment of initialization, the inte-

gerized embedding tensor X Z-(S) and A) (dataset) are kept in memory. The mode of initiation:

0 (0) (1 n
X5 = [% @ = D). AD'Z A0 @)]

DoreFa-Net (Zhou et al.,[2016)) , etc. The primary issues are as follows: (1) Universal. Quantiza-
tion is optimal when the majority of the data distribution is concentrated in the area with the highest
activation function derivative, as there are more state representations at this point. No totally univer-
sal nonlinear activation function exists to handle the actual overflow problem for diverse data sets or
even for data streams from different network tiers. (2) Whether the dequantization function has
a solution is an open question. After computing c in step3, as seen in Figure[I(b), the algorithm
will employ nonlinear activation to remap the data to ¢(c) and then quantize it. Since the hardware
output is ¢;;,, the dequantization function F'(x) of ¢(z) must satisfy the following conditions, ¢(c)
is equal to the quotient of F'(c) and another integer, and the computation in F'(x) cannot contain
a floating-point operation; otherwise, the one-to-one mapping between cy,, and c;,, is not satisfied
after the quantization or shift operation. Therefore, when the quantization interval is nonlinear, it
is frequently challenging to directly dequantize to an integer, and low-bit computational speedup
cannot be achieved because the dequantization of ¢(x) does not necessarily have a solution to prove
the existence or nonexistence of F'(x).

Pseudo overflow: Here, we define pseudo-overflow as the occurrence in which the result of mul-
tiplying and adding the x s, cannot be stated using 2™ — 1 (Figure Eka) red area). As for ayg and
bys, the result ¢ does not fall on the endpoints divided into 127 copies with a 0-1 interval, indicating
that a finer division of the 0-1 interval (more data blocks larger than 127) is required to express c
directly, such that ¢ needs to divide 0-1 into 16129 (2!3 — 1 < 16129 < 2% — 1) parts, it requires
at least 14 bits. Therefore, despite the fact that the data do not exceed the 0-1 interval, a severe
overflow has occurred. Pseudo-overflow in the floating-point is not as intuitive as actual overflow
and is frequently overlooked by algorithm researchers. However, since a substantial quantity of data
is frequently concentrated in the 0-1 calculation interval, pseudo-overflow can introduce extremely
large errors to quantization.

3.2 INT8 DYNAMIC AND STATIC QUANTIZATION OPERATORS

Our works is based on the basic GCN (Kipf & Welling, 2016) layer, X @ s the node embedding
matrix at the [layer, W () is the weight matrix of the [*" layer, A = D~2 AD™ 2 is the normalized
adjacency matrix, where D is the degree matrix of A + I, Since A is often sparse and feature X ()

Under review as a conference paper at ICLR 2023

is typically dense, the GCN layer is expressed as the expression of GEMM and SPMM (Fey &
Lenssen, 2019) , see Equation.

XY = ReLU (SPMM (A“), GEMM (X(l), W(l))>> (1)

We define the dynamic quantization (DyQ), static quantization (StQ), and weight quantization (Q,,)
operators. GCINT’s network layer is shown in Figure [2] The distinction between DyQ and StQ is
that DyQ modifies the quantization interval based on the distribution of matrix, whereas StQ dis-
regards. An all-integer network exhibits a pseudo-overflow phenomena, according to our findings.
Multiplication of two x g integers requires at least 15 bits (14 data and 1 sign) to completely de-
scribe the result without degradation, the result is deemed to have pseudo overflow. From Figure 3]
clearly, when matrix multiplication is conducted using integers, the results(absolute value) in the
region [27,2'3] correspond to the floating point pseudo overflow, whilst the real overflow occurs
in the region beyond 2'4, which corresponds to the portion of the data where the floating point is
beyond than 1.

StQ area

ot [31]30] .. [ee[werfiaisfifi] - ¢ [s]2] 1] o] ‘7‘5‘;‘1‘ 3‘2‘1‘0‘
After

INT8

INT32

Accumulate o
1lof.|1]ofof1]|of1|1|.|of1][1]0f1 1l1fofo|1]o|1|1

wr [31 3] .. [- [<]:]2]]] [PTes]e]s]2]1]e]
After

i
i
i
i
i
i
i
i
i
i
H

1 H
=231 .. 2ks6 2k, -213,.27..0...27...213... 2k ... 2k+6 = 231

Figure 3: histogram of the output tensor of the matrix multiplication of two INT8s, where f(2%)
represents the number of data in [2%,2271). The process of converting INT32 accumulation to INT8
under DyQ and StQ is seen on the right one.

We utilize Kullback-Leibler divergence (Joycel 2011)) to prove that when g(k) in Equation 2] gets
the maximum, we may derive a 7-bit([k, k + 6]) expression for this data set with reduced Kullback-
Leibler divergence and more Shannon Entropy (Bromiley et al.,[2004). From Figure[3] when quanti-
fying to INTS, two windows of length 7 are required. Each time, they take one step in the other way.
Before each step, the region encompassed by the window and the current step value are recorded.
When the slide traverses each of the 25 steps, the step with the biggest area is selected as the k. Large
area equals more data, therefore the 7 bits from the [k, k& 4 6] may effectively represent the major-
ity of the matrix’s data and can harvest more expressive status and distinction. If the conventional
direct quantification method outlined in Figure|l| by default, the corresponding integers use the 7th
to 13th bits as the expression of the whole batch of data. During the training process of GNN, the
sparsity of the graph and the initialization of the weights are different, causing GEMM and SPMM
to be heavily distributed between the real overflow region (> 2'*) and the pseudo overflow region
(< 2), or between the real and pseudo, and if a fixed truncation pattern is adopted (> 2'takes
127, < 27 takes 0), resulting in a poor quantization effect when the data is unevenly distributed.

6
g(k) =3 (25F%) + £ (2" k=0,1,...,25 @)

=0

In Equation[3Jand Equationf4] we display both the binary and decimal representations of the dynamic
quantization function. Since computers utilize binary storage and processing, our GPU implementa-
tion utilizes Equation [3['s operations mostly in the form of bitwise operations. Where 7°b represents
7-bit binary and ”|” represents the bit-by-bit "OR” operation on consecutive binary. The StQ func-
tion is equivalent to the case where k equals 7 in DyQ. Algorithm [If's code demonstrates the GPU
computation of k, whose time complexity is significantly less than that of matrix multiplication
(O(logn) < O (n3)), and whose high parallelism facilitates parallel processing in the GPU.

-

e ® N A v & W N

Under review as a conference paper at ICLR 2023

. concat(Xp32[31],7'61111111) | Xp32[30: k+ 7] =1
B : D X =
inary : DYQ(Xesz) {concat(Xb32[31], Xbps2[k + 6 : k]) otherwise
3)
1 Xigg, —20+7, 26+7
Decimal : DyQ(Xsz) = [P (Xis2, , 277) @)

2k

Algorithm 1: Calculate Parameter k£ of DyQ on GPU. Maxbit(X}32): Remove the sign bit and
return the location of the first occurrence of 1 from the high bit to the low bit for each element.
ThreadGroup[32,n2]: Allocate 32xn? threads on the GPU.

Input: X3, € R™*"™

Output: &

InitializeMatrix (Ays € R, Bygy € RV3L, Oy € RlX%)
A + Maxbit(X,3,).flatten() then LoadAtoeachThreadGroup()
for i=0 to 31 each ThreadGroup[i] Parallel do

if ThreadGroupl[:][j]=: then ThreadGroup[][j]<— 1 else ThreadGroup[¢][7]< O
B[:]<— AdderTree(HEIGHT=2log>n)

end
for q=0 to 25 Parallel do
for g=01t0 6 do
| Clgl+ CIgl +B[v + ¢]
end

end
k <Argmax(C)
return k

3.3 QUANTIZATION OF ACTIVATIONS

In forward propagation, each matrix multiplication is followed by a dynamic quantization using
Equation [5]s computing process. In contrast to back propagation, the output tensor of each layer
in the forward direction must ensure a high degree of discrimination and Shannon Entropy, and the
data quantization interval should fall as close as possible to a position with a higher derivative of the
quantization function so that the data can acquire more state bits. Stability is the greatest challenge
of quantitative training, which is mostly caused by the disparity between graph distributions and
weight initialization. DyQ can resolve this issue by using the findings of GEMM and SPMM to
alter the quantization interval. As seen in Table [2| we initialize the matrices to be quantized by
INTS of the two quantization techniques with different distributions and determine the Shannon
Entropy of the output matrix. We can see that DyQ handles uneven distributions effectively, achieves
greater Shannon Entropy than classical(Figure[I)) direct quantization for nearly all distributions, and
achieves nearly the maximum amount of information that can be conveyed by 8-bit state bits under
uniform distribution.

Forward : Xgé"'l) = DyQ <SPMM (KEQ,DyQ (GEMM (ng)’ WE?)))) ®)

3.4 QUANTIZATION OF WEIGHTS

To assure the integerization of the complete stage, the computational portion of the optimizer must
be as basic as feasible, and it must not contain any additional nonlinear functions; hence, we choose
SGD (Bottou, 2012) as our optimizer(Equation[6). We must employ integer weights and a gradient
tensor throughout the calculation of the optimizer. We continue to compute the difference between
the weights and the gradient using the cumulative unit of INT32. After obtaining an updated weight,
we normalize a new set of weights using an unsaturated quantization approach(Equation 7).

Optimize: WS =Qu (W —nxGY) (6)

Under review as a conference paper at ICLR 2023

Table 2: N(A,B) denotes a normal distribution with mean A and standard deviation B, U(+T)
denotes a uniform distribution in the interval [-T,T], and H(x) is the Shannon Entropy where

H(X)=-%7,p(z:)logp(x;).

Matrix Distrubution N(0,2'%) N(0,27) N(2°,27) N(27,27) N(2'2,2%) N@2'3,2%) N@2',2'%) N@2'°, 2'%) N@2'6, 2

H(DyQ(X)) 6.993 7.007 6.991 6.992 7.046 7.053 7.033 6.053 5.048

H(Trad(X)) 6.647 2.114 2.098 2.106 6.525 6.162 4.289 1.826 0.023

Matrix Distrubution U(£27) U(£2%) U2'%) U2'?) U2t u2'%) o220 u2?®) v

H(DyQ(X)) 7.997 7.813 7.990 8.000 8.000 8.000 8.000 8.000 8.000
H(Trad(X)) 1.498 2.252 4.064 6.015 8.000 3.564 1.228 1.008 1.004
Q)

1)

3.5 QUANTIZATION OF ERROR

In contrast to forward propagation, all errors are quantized statically, as seen by the Equation [§]
The error often does not require as much differentiation as the activation since the error tensor
represents the direction and magnitude of each layer’s offset. Even with minimal data bits, the
weights can be transferred in the direction of the gradient if the erroe is in the correct direction. The
error quantization is less intimately related to its own distribution than the activation value. Even
when the error surpasses the maximum number of bits that can be represented, the network is still
capable of learning; however, the gradient does not fall as rapidly as previously, therefore dynamic
quantization of the error is unnecessary.

~ T
Backward: EY = 5tQ <GEMM (StQ (SPMM (AEQ, Egg+1>)> (W)))
®)

3.6 QUANTIZATION OF GRADIENTS

Before entering the optimizer, the results of the most recent GEMM computation of radients are sub-
jected to a dynamic quantization technique. As the gradient reduces during training, the error tensor
eventually approaches the lower integer region, causing the estimated gradient after quantization
to converge on 0. This phenomenon is especially evident in the backpropagation of the first layer,
where the error of the first layer is always smaller in magnitude than the error of the second layer,
and the transmission of the error in the first layer results in a very severe gradient disappearance as
training continues. Consequently, we employ DyQ for the final GEMM of the calculated gradient
to invert the offset of the error distribution throughout the training phase, as given in the Equation[9]
and this alteration yields excellent results.

T
cY = DyQ (GEMM ((Xi(é))T, 5tQ (SPMM ((2&5’;) ,Efé*”)))) ©)

3.7 Loss FUNCTION

The Softmax layer and cross-entropy criteria are extensively used in classification tasks, although
the computation of e® cannot be utilized in instances of low-bitwidth linear mapping. We omit the
Softmax layer and use the mean-square-error criteria instead (MSE), The back propagation of the
loss function layer is shown in the Equation[I0]

oL
Backward : Ei(éaSt) = ety = Xi(é“t) —Yis (Yis = Yonehot X 127) (10
i8

Under review as a conference paper at ICLR 2023

4 EXPERIMENTS

Table 3: Comparison on the test accuracy/F1-micro, memory saving and training time.

Node 89K 232K 716K 1.5M
Edge 899K 114M 13M 264M
Dataset Flickr Reddit Yelp Amazon
Model Minibatch-GCN
Method FP32 GCINT FP32 GCINT FP32 GCINT FP32 GCINT
Acc(%) 50.10+0.22 49.98+0.34 93.06+0.08 92.9140.12 38.14+£0.46 38.09+0.37 29.34£0.03 29.68+0.07
Mem 1.52GB 0.39GB 6.93GB 1.79GB 2.75GB 0.70GB 5.57GB 1.48GB
Time/ep 1.99s 0.08s 18.40s 2.12s 27.90s 1.93s 70.09s 5.11s
Speedup 1x 24.87 x 1x 8.68 x 1x 14.45 % 1x 13.70 x
Node 2.7K 33K 19K 1.8K
Edge 10K 9K 88K 163K
Dataset Cora Citeseer Pubmed CS
Model Fullbatch-GCN
Method FP32 GCINT FP32 GCINT FP32 GCINT FP32 GCINT
Acc(%) 81.50+0.13 83.16+0.37 71.26+0.14 71.68+0.43 79.02+0.17 78.86+0.39 91.10£0.25 91.50+0.67
Mem 0.08GB 0.02GB 0.83GB 0.23GB 0.82GB 0.21GB 1.36GB 0.35GB
Time/ep 13.10ms 0.32ms 12.20ms 0.379ms 63.80ms 3.69ms 104ms 3.62ms
Speedup 1x 40.94 x 1x 32.19% 1x 17.29 % 1x 28.73x

Table [3] Comparison on the test accuracy/F1-micro, memory saving and training time for a single
epoch on the 8 popular GNN benchmark datasets, more than 2,000 randomized trials have been
undertaken. For the large graph, we employ the sampling-based mini-batch training method, where
Flickr, Reddit, Yelp, and Amazon all use the hidden layer with 256 dimensions, 2 GCN layers
and the GraphSage Hamilton et al.| (2017) sampling method to fix 25 first-order neighbors and 10
second-order neighbors, and each dataset is randomly tested 50 times to determine the mean and
standard deviation. Cora, Citeseer, Pubmed, and CS employ the full-batch training technique with a
16-dimensional hidden layer, 2 GCN layers and 500 random trials are conducted for each dataset to
determine the mean and standard deviation. On the CUDA C++ side, the training time of GCINT is
measured by invoking INT8 Tensor Core. Our method enables the GNN training process to take use
of the GPU INT Tensor Core’s considerable computational capacity, enabling relatively large-scale
GNN models to be trained fast and affordably. Our code segment is in the Appendix.

5 CONCLUSION AND FUTURE WORK

In this work, we propose GCINT, a dynamic quantization training approach that adjusts the quanti-
zation range based on the sparsity of the graph. It can be employed in the GPU’s INT Tensor Core
to accelerate GCN training and reduce memory consumption without dequantization procedures.
Meanwhile, GCINT is independent of the dataset and weight distribution. Experiments show that
GCINT has at least 10x speedup and 4x memory consumption reduction with negligible accuracy
loss compared with training in FP32 Cuda Core. Future work includes (1) implementing GCINT
in existing framework; (2) combing GCINT with other memory-efficient training frameworks; (3)
evaluating GCINT under other hardware accelerators; (4) evaluating GCINT under other neural
networks.

REFERENCES

Léon Bottou. Stochastic gradient descent tricks. In Neural networks: Tricks of the trade, pp. 421—
436. Springer, 2012.

Under review as a conference paper at ICLR 2023

PA Bromiley, NA Thacker, and E Bouhova-Thacker. Shannon entropy, renyi entropy, and informa-
tion. Statistics and Inf. Series (2004-004), 9:10—42, 2004.

Dipankar Das, Naveen Mellempudi, Dheevatsa Mudigere, Dhiraj Kalamkar, Sasikanth Avancha,
Kunal Banerjee, Srinivas Sridharan, Karthik Vaidyanathan, Bharat Kaul, Evangelos Georganas,
et al. Mixed precision training of convolutional neural networks using integer operations. arXiv
preprint arXiv:1802.00930, 2018.

Wengqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin. Graph neural
networks for social recommendation. In The world wide web conference, pp. 417-426, 2019.

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric.
arXiv preprint arXiv:1903.02428, 2019.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

Weiwei Jiang and Jiayun Luo. Graph neural network for traffic forecasting: A survey. Expert
Systems with Applications, pp. 117921, 2022.

James M Joyce. Kullback-leibler divergence. In International encyclopedia of statistical science,
pp. 720-722. Springer, 2011.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016.

Raghuraman Krishnamoorthi. Quantizing deep convolutional networks for efficient inference: A
whitepaper. arXiv preprint arXiv:1806.08342, 2018.

Zirui Liu, Kaixiong Zhou, Fan Yang, Li Li, Rui Chen, and Xia Hu. Exact: Scalable graph neural
networks training via extreme activation compression. In International Conference on Learning
Representations, 2021.

Elman Mansimov, Omar Mahmood, Seokho Kang, and Kyunghyun Cho. Molecular geometry pre-
diction using a deep generative graph neural network. Scientific reports, 9(1):1-13, 2019.

Markus Nagel, Marios Fournarakis, Rana Ali Amjad, Yelysei Bondarenko, Mart van Baalen,
and Tijmen Blankevoort. @A white paper on neural network quantization. arXiv preprint
arXiv:2106.08295, 2021.

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: Imagenet
classification using binary convolutional neural networks. In European conference on computer
vision, pp. 525-542. Springer, 2016.

Shyam A Tailor, Javier Fernandez-Marques, and Nicholas D Lane. Degree-quant: Quantization-
aware training for graph neural networks. arXiv preprint arXiv:2008.05000, 2020.

Wei Tang, Gang Hua, and Liang Wang. How to train a compact binary neural network with high
accuracy? In Thirty-First AAAI conference on artificial intelligence, 2017.

Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, and Song Han. Haq: Hardware-aware automated quan-
tization with mixed precision. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 8612-8620, 2019.

Shiwen Wu, Fei Sun, Wentao Zhang, Xu Xie, and Bin Cui. Graph neural networks in recommender
systems: a survey. ACM Computing Surveys (CSUR), 2020.

Shuang Wu, Guogqi Li, Feng Chen, and Luping Shi. Training and inference with integers in deep
neural networks. arXiv preprint arXiv:1802.04680, 2018.

Hongxia Yang. Aligraph: A comprehensive graph neural network platform. In Proceedings of the
25th ACM SIGKDD international conference on knowledge discovery & data mining, pp. 3165—
3166, 2019.

10

Under review as a conference paper at ICLR 2023

Jiwei Yang, Xu Shen, Jun Xing, Xinmei Tian, Houqgiang Li, Bing Deng, Jianqiang Huang, and Xian-
sheng Hua. Quantization networks. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 7308-7316, 2019.

Zehong Zhang, Lifan Chen, Feisheng Zhong, Dingyan Wang, Jiaxin Jiang, Sulin Zhang, Hualiang
Jiang, Mingyue Zheng, and Xutong Li. Graph neural network approaches for drug-target interac-
tions. Current Opinion in Structural Biology, 73:102327, 2022.

Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou. Dorefa-net: Train-
ing low bitwidth convolutional neural networks with low bitwidth gradients. arXiv preprint
arXiv:1606.06160, 2016.

A APPENDIX

Iclass GCINT_LO_GEMM(torch,autograd.Function):

def forward(ctx, input, weight, nbit W, nbit_A, nbit_G, nbit_E, Int,nbit_aa,nbit_ww,q_kw) :
Weight = Q w(weight, nbit W)
output = torch.mm(input, Weight)
output = DyQ (output)
ctx.save_for_backward(Weight, input, nbit_G[0], nbit_E[0], Int[0],nbit_aa[0],nbit_ww[0])
. return output

=] def backward(ctx, grad output):
Weight , input, nbit_G, nbit_E ,Int, nbitA,nbitw= ctx.saved_tensors
nbitA = int(nbitA[0])
nbit W = int(nbitw[0]1)
IntPoint = int(Int[0])
nbit_G = int(nbit_G[0])
nbit E = int(nbit E[0])
input T = torch.transpose(input,0, 1)
Weight T = torch.transpose (Weight,0,1)
overall _grad = torch.mm(grad_output,Weight_T)
Diff W = torch.mm(input T, grad output) #0.35s
=] if IntPoint:
Diff W = DyQ(Diff W)
r overall grad = StQ(overall_grad, nbit_E, nbit_W)
- return overall grad, Diff W, None, None, None, None,6 None,None, None,None

Iclass GCINT_LO_AGGREGATE(torch.autograd.Function):

def forward(ctx, input_a, input_b, nbit A,nbit_E, Int, nbit_aa,nbit_G):
IntPoint = int(Int[0])
output = torch.mm(input a, input b)
=] if IntPoint:
F output = DyQ (output)
ctx.save for backward(input a, input b, nbit E[0],Int[0],nbit aal[0],nbit G[0])
F return output

& def backward({ctx, grad output):

input a,input b, nbit E,Int ,nbit aa,nbit G= ctx.saved tensors
nBit A = int(nbit_aal[0])

IntPoint = int(Int[0])

nbit E = int(nbit E[0])

nbit G = int(nbit G[0])

input_T = torch.transpose(input_a, 0, 1)

overall grad = torch.mm{input T, grad output)

T if IntPoint:

overall grad = StQ(overall grad, nbit E, nBit A)
return None, overall grad, None, None, None,None, None,6 None

11

Under review as a conference paper at ICLR 2023

lelass GCINT_Ll_GEMM(torch.autograd,Function):

1 def forward(ctx, input, weight, nbit_W, nbit_ A, nbit_ G, nbit_E, Int,nbit aa,nbit_ww,qg_kw):

Weight = Q_w(weight, nbit_ W)
output = torch.mm(input, Weight)
output = DyQ (output)

ctx.save for backward(Weight, input, nbit G[0], nbit E[0], Int[0],nbit_aa[0],nbit ww[0])

return output

] def backward(ctx, grad output):

Weight , input, nbit G, nbit E ,Int, nbitA,nbitw= ctx.saved tensors

nbitA = int(nbitA[0])

nbit_W = int(nbitw[0])

IntPoint = int(Int[0])

nbit G = int(nbit G[0])

nbit E = int(nbit E[0])

input T = torch.transpose(input,0, 1)

Weight T = torch.transpose(Weight,0,1)

overall grad = torch.mm(grad output,Weigh

Diff W = torch.mm(input T, grad output)
1 if IntPoint:

Diff W = DyQ(Diff W)

overall grad = StQ(overall grad, nbit E, nbit W)

t.T)
#0.35s

return overall grad, Diff W, None, None, None, None,None, None, None,None

Eclass GCINT_LI_AGGREGATE(torch.autograd.Function):

IntPoint = int(Int[0])

output = torch.mm({input_a, input_b)
E| if IntPoint:

F output = DyQ (output)

F return output
| def backward(ctx, grad output):

nBit A = int(nbit aa[0])

IntPoint = int(Int[0])

nbit_E = int(nbit_E[0])

nbit G = int(nbit G[0])

input T = torch.transpose(input a, 0

def forward(ctx, input a, input b, nbit A,nbit E,

1)

overall grad = torch.mm(input T, grad output)

Int, nbit aa,nbit G):

ctx.save_for backward(input_a, input_b, nbit E[0],Int[0],nbit_aal[0],nbit_G[0])

input_a,input_b, nbit_E,Int ,nbit_aa,nbit_G= ctx.saved tensors

overall grad = StQ(overall grad, nbit E, nBit A)
return None, overall grad, None, None, None,None, None,None

F if IntPoint:

Jalass MyDropout (torch.autograd.Function)

B def forward(ctx,
Rate tensor =

input, rate):

ctx.save for backward(Mask tenso
F return output

bl def backward(ctx, grad output):
result = ctx.saved tensors
grad = result[0]

E return overall grad, None

(rate*torch.ones (input.shape[0],

r)

overall grad = torch.mul{grad output, grad)

12

input.shape[l])) .cuda()

random_tensor = torch.rand(input.shape[0], input.shapel[l]) .cuda()
Mask tensor = torch.ge(random tensor, Rate tensor) .cuda()
output = torch.mul (Mask tensor, input)

Under review as a conference paper at ICLR 2023

jelass MyReLu(torch.autograd.Function):

Idef

Idef

idef

idef

def forward(ctx, input, nbit E,Int):
output = F.relu(input)
ctx.save_ for backward(output, nbit E[0],Int[0])
return output

def backward(ctx, grad output):
output ,nbit E, Int= ctx.saved tensors
IntPoint = int(Int[0])
nbit E = int(nbit E[0])
data = output

grad = torch.zeros(data.shape[0],data.shape[l]) .cuda()

grad = torch.ne(grad,data) #not equal
overall grad = torch.mul (grad output,grad)
if IntPoint:

overall grad = overall grad
return overall grad , None,None

QO w(w, nbit):

w = torch.round((w*127) / (torch.max(torch.abs(w))))

return w

StQ(w, nbitA,nbitw):

A = ((2*% (nbitA+nbitW)))

w = torch.clamp{w,-A,6A)

w = torch.round(w/ (2** (nbitW)))
return w

DyQ (input) :

kw = check(input)

A = int((2 ** (kw)))

w = torch.clamp (input, -4, A)

w = torch.round(w / (2 ** (kw - 7)))
return w

check (input) :
reg = []
reg nub = []
input = abs (input)
for i in range(l,32):
temp = torch.ones (input.shape[0],input.shape[l])* (2%%*i)
temp = temp.to('cuda')
mid = torch.ge(temp,input)
reg.append(int(torch.sum(mid)))
if 1 ==
reg_nub.append(reg[i-11)
else:
reg nub.append(reg[i-1] - reg[i - Z2])
local pum = []
for k in range(7,32):
local_pum.append (sum(reg_nub[k-7:k]))
k = np.argmax(local_pum) + 7
return k

13

	INTRODUCTION
	BACKGROUND AND RELATED WORK
	METHODOLOGY
	The ignored pseudo-overflow issue
	INT8 Dynamic and static quantization operators
	Quantization OF ACTIVATIONS
	Quantization OF WEIGHTS
	Quantization OF Error
	Quantization OF Gradients
	Loss Function

	EXPERIMENTS
	CONCLUSION AND FUTURE WORK
	Appendix

