
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ADAPTIVE GRADUATED NON-CONVEXITY FOR POINT
CLOUD REGISTRATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Point cloud registration is a critical and challenging task in computer vision. It is
difficult to avoid poor local minima since the cost function is significantly non-
convex. Correspondences tainted by significant or unknown outliers may cause
the probability of finding a close-to-true transformation to drop rapidly, leading to
point cloud registration failure. Many registration methods avoid local minima by
updating the scale parameter of the cost function using graduated non-convexity
(GNC). However, the update is usually performed in a fixed manner, resulting in
limited accuracy and robustness of registration, and failure to reliably converge to
the global minimum. Therefore, we present a novel method to robust point cloud
registration based on Adaptive Graduated Non-Convexity (AGNC). By monitor-
ing the positive definiteness of the Hessian of the cost function, the scale in grad-
uated non-convexity is adaptively reduced without the need for a fixed optimiza-
tion schedule. In addition, a multi-task knowledge sharing mechanism is used to
achieve collaborative optimization of non-convex cost functions at different levels
to further improve the success rate of point cloud registration under challenging
high outlier conditions. Experimental results on simulated and real point cloud
registration datasets show that AGNC far outperforms state-of-the-art methods in
terms of robustness and accuracy, and can obtain promising registration results
even in the case of extreme 99% outlier rates. To the best of our knowledge, this
is the first study that explores point cloud registration considering adaptive gradu-
ated non-convexity.

1 INTRODUCTION

Point cloud registration is a critical and challenging task in computer vision. Its goal is to transform
point clouds with arbitrary coordinate systems into a common coordinate system to obtain full cov-
erage of an object or scene. Point cloud registration can be used for scene reconstruction (Yu et al.,
2023; Mei et al., 2023), object recognition (Jiang et al., 2023; Yuan et al., 2024; Nie et al., 2024),
autonomous driving (Lu et al., 2019; Liu et al., 2024), and medical imaging processing (Chen et al.,
2022c; Ginzburg & Raviv, 2022; Ma et al., 2023).

The point cloud registration problem can be easily solved when the true correspondences between
point clouds are known. But in reality, solvers yield subpar estimates since the correspondences are
either uncertain or include a large number of outliers (Bustos & Chin, 2017; Chen et al., 2022b;
Jiang et al., 2023). High outlier rates (sometimes exceeding 99%) are a typical feature of point
cloud keypoint detection and registration, which poses a great challenge to point cloud registration
(Huang et al., 2020; Qin et al., 2022; Yuan et al., 2023). This challenge is common, where matching
often produces false correspondences due to noise, occlusions, and sensor errors. For example,
in autonomous driving, LiDAR scanning is often interfered by dynamic objects such as cars and
pedestrians and contain a lot of background noise (Bogdoll et al., 2022). Registration methods must
effectively handle these outliers to ensure proper functioning of safety systems. Given the inherent
ambiguity in point cloud data association and the potential measurement errors that may produce
outliers, the performance of point cloud registration depends on how well it handles these outliers.

Over the past few decades, a lot of research has been done on point cloud registration with cor-
respondences tainted by outliers. Typical methods are iteratively reweighted least squares (IRLS)
(Wang et al., 2023; Huang et al., 2024), random sample consensus (RANSAC) (Fischler & Bolles,
1981; Barath & Matas, 2021), and M-estimators (Le & Zach, 2020; Li et al., 2023; Sidhartha et al.,
2023). When the percentage of outliers in the input is low, a set of optimal parameters can be easily
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obtained by minimizing the residual sum of squares, and the cost can be optimized using popular
IRLS solvers. However, in the presence of a large number of outliers, standard IRLS with a fixed
threshold often produces results that are biased toward the outliers. As a result, the transformation
estimates are far from the ground truth transformation.

For outliers, RANSAC has been widely used for registration problems. The main reasons are its
algorithmic simplicity and its ability to handle contaminated data containing more than 50% outliers.
But there are still a few issues that need to be fixed. On the one hand, the random sampling has a
slow convergence speed. On the other hand, the predefined inlier threshold leads to low accuracy in
registering high proportion outlier point clouds. To address these issues, many variants have been
proposed to speed up the computation time (Yang et al., 2021; Chen et al., 2022b), improve the
solution stability (Zhang et al., 2023), and automatically determine the threshold (Wei et al., 2023).

M-estimators and IRLS are mathematically equivalent (He et al., 2013), and M-estimators are also
sensitive to the threshold. However, the threshold can be determined heuristically based on the prob-
lem. One approach is to add graduated non-convexity (GNC) (Nielsen, 1997; Zach & Bourmaud,
2018; Jin et al., 2024), which smooths the non-convex cost function by gradually reducing the scale
parameter. Because it eliminates the competition from subpar solutions, it has shown to be the most
promising strategy. In existing registration methods with GNC (Yang et al., 2020; Le & Zach, 2020;
Gold & Rangarajan, 1996), parameter updates follow a basic and straightforward rule, multiplying
by a given scaling factor constant during each iteration. The gradual optimization plan is carefully
designed, which requires prior knowledge of the problem. An incorrect plan may lead to unneces-
sary long invalid runs in the registration instance. On the other hand, little attention has been paid to
how the scaling factor is determined (Hazan et al., 2016; Le & Zach, 2020).

In this study, we introduce a robust point cloud registration method based on adaptive graduated
non-convexity (AGNC). Different from previous GNC-based methods that rely on a predetermined
update rule to adjust the shape of the cost function, we propose a new adaptive update rule to de-
termine the scaling factor. The update rule aims to effectively adjust the shape of the cost function
to minimize GNC iterations, thereby potentially improving the robustness of the method without
sacrificing accuracy. To overcome the severe failure cases caused by high outlier rates, we propose
a preventive measure. In the initial stage of AGNC, we achieve the co-optimization of non-convex
cost functions at different levels through a multi-task knowledge sharing mechanism to jump out
of the local minimum. This measure further reduces the failure rate of point cloud registration.
Through performance evaluation on multiple datasets, we demonstrate the accuracy and robustness
of AGNC to registration problems with outliers. Extremely high outlier percentages (such as 99%
of correspondences being outliers) are acceptable to AGNC. To the best of our knowledge, this is
the first study to explore point cloud registration considering adaptive graduated non-convexity.

The contributions of this work are as follows:

• We propose a novel approach to robust point cloud registration based on adaptive graduated
non-convexity. The adaptive reduction of the graduated non-convexity scale occurs through
monitoring the positive definiteness of the Hessian of the cost function.

• We achieve collaborative optimization of non-convex cost functions at different levels
through a multi-task knowledge sharing mechanism to further improve the success rate
of point cloud registration under challenging high outlier rates.

• Extensive experimental results on the different datasets demonstrate that our method can
achieve superior registration precision and is robust to 99% outliers.

2 RELATED WORK

2.1 POINT CLOUD REGISTRATION

Robust Methods. RANSAC, as a well-known robust method, is embedded in the point cloud reg-
istration problem. It attempts to find reasonable samples and correctly identify them via iterations.
Some methods perform preprocessing before RANSAC, considering the use of deterministic geo-
metric methods (Bustos & Chin, 2017) or random game theory methods (Tam et al., 2012) to remove
outliers. Potential outliers can also be selected for further processing, such as selecting potential in-
lier correspondences through geometric consistency checks (Barath & Matas, 2021). Some methods
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perform transformation parameter search based on consensus maximization (Campbell et al., 2017)
and Branch and Bound (BnB) techniques (Yang et al., 2021; Chen et al., 2022a). However, in the
case of high outlier rates, all of the aforementioned techniques become intractable and accuracy is
severely hampered.

M-estimators. The M-estimators method treats the point cloud registration problem as the mini-
mization of a robust cost function. Cost functions include Geman-McClure (GM), Huber, Cauchy,
Welsch, Tukey, etc. In the optimization, M-estimators give small weights (close to 0) to outliers
and large weights (close to 1) to inliers. Therefore, the impact of outliers on the cost is largely
discounted. (Zhou et al., 2016) proposed fast global registration (FGR), which uses the GM cost
function and introduces Black-Rangarajan duality and GNC to solve the non-convex optimization
problem. This duality provides a way to convert traditional line process methods and robust statis-
tical methods into each other (Black & Rangarajan, 1996). In fact, when the proportion of outliers
exceeds 80%, FGR tends to fail. (Enqvist et al., 2012) proposed sequential optimization of a range of
surrogate functions instead of directly optimizing non-convex functions. GNC has achieved success-
ful applications in computer vision (Black & Rangarajan, 1996; Nielsen, 1997; Zach & Bourmaud,
2018), and its wide applicability still needs to be explored.

Deep Learning Methods. The deep learning method first learns a high-dimensional feature space
representation of the point cloud, then matches key points to generate hypothetical correspondences,
and finally uses a differentiable registration module to obtain the best alignment (Wang et al., 2022;
Yu et al., 2024; Liu et al., 2024; Wang et al., 2024). Many deep learning-based point cloud regis-
tration methods have been proposed, such as PointNetLK (Aoki et al., 2019), SpinNet (Ao et al.,
2021) and FINet (Xu et al., 2022). The assumed correspondence can be obtained based on the fea-
tures extracted from feature descriptors such as fully convolutional geometric features descriptor
(FCGF) (Choy et al., 2019). For outliers in the hypothesized correspondences, some methods (Yu
et al., 2021; Chen et al., 2022b; Qin et al., 2023; Mei et al., 2023) use spatial consistency metrics to
eliminate outliers. Deep learning methods often have problems with generalization ability and the
requirement for a large amount of training data.

2.2 GRADUATED NON-CONVEXITY

GNC is a commonly used method for optimizing non-convex cost functions and has been success-
fully applied in a variety of fields such as computer vision and machine learning (Black & Rangara-
jan, 1996; Nielsen, 1997). The fundamental idea of GNC is to continuously replace the original
non-convex cost function with simpler functions, which leads to fewer local minima (Hazan et al.,
2016; Yang et al., 2020). First, a simpler coarse-grained version of the objective is generated and
minimized. Then, the version of the objective is gradually refined in stages, and the solution of the
previous stage is used as the starting point for the optimization of the next stage. It eliminates the
need for an initial guess and increases the probability of converging to the global minimum.

Let us explain GNC with an example. The GM function is a popular cost because of its robustness.
The GM function and the surrogate function containing the scale parameter µ are as follows:

ρ(r) =
c̄2r2

2 (c̄2 + r2)
=⇒ ρµ(r) =

µc̄2r2

2 (µc̄2 + r2)
, (1)

where the parameter c is assumed to be fixed, which controls the shape of ρ(r). µ represents the
scale of the noise, which distinguishes inliers and outliers. r is the residual of the correspondence.

r

ρ μ
(r
)

μ

μ fin
al

μk

μk+1

Figure 1: Cost function of ρµ(r) for differ-
ent µ in GNC.

Fig. 1 shows a graphical representation of the cost
function of ρµ(r) for different µ in GNC. The surro-
gate function ρµ(r) has the following characteristics:
(i) ρµ(r) becomes convex for large µ. (ii) ρµ(r) re-
covers ρ(r) when µ = 1. As the value of µ decreases,
the cost function ρµ(r) starts to become non-convex
and the number of local minima in the cost function
landscape increases. GNC reduces µ to its final value
µfinal by moving r along the smooth red curve, which
is the trajectory of the cost function minimum. At
stage k, we estimate the minimum value rk at µk.
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Then update the scale µk to µk+1 and use rk as ini-
tialization to get the updated estimate rk+1. The goal of the GNC technique is to guarantee that at
each stage (k+1), rk falls within the convergence region of the global minimum of the current cost
function µk+1. The ideal solution obtains the global minimum at the final µfinal.

3 THE PROPOSED METHOD AGNC

3.1 PROBLEM FORMULATION

Finding a rotation matrix R ∈ SO(3) and a translation vector t ∈ R3 that align a source point cloud
X to a target point cloud Y is the aim of the point cloud registration. Given a set of correspondences
H = {(xi, yi)}N1 with outliers, the problem of point cloud registration can be formulated as:

min
R∈SO(3),t∈R3

N∑
i=1

ρµ (∥Rxi + t− yi∥) , (2)

where the notation ∥ · ∥ represents the l2-norm, and ρµ is a robust cost function. When µ → ∞, the
registration problem can be estimated by the least squares method, that is,

min
R∈SO(3),t∈R3

1

2

N∑
i=1

∥Rxi + t− yi∥2 . (3)

It can find the global minimum by Umeyama method (Umeyama, 1991). For other values of µ, it
will lead to a weighted least squares problem:

min
R∈SO(3),t∈R3

1

2

N∑
i=1

wi ∥Rxi + t− yi∥2 . (4)

It can also be solved by the weighted Umeyama method (Umeyama, 1991).

3.2 ADAPTIVE GRADUATED NON-CONVEXITY

Although GNC has been successful in early computer vision applications, most of them use a simple
fixed update rule (Nielsen, 1997; Ochs et al., 2013; Hazan et al., 2016; Yang et al., 2020). The scale
µ is decreased by a predetermined step size at each iteration, that is, µk+1 = µk

ζ , where ζ > 1.
The performance of GNC depends critically on the update method used for the scale parameter µ.
Imagine that if ζ is close to 1, the movement in the cost function landscape becomes slow. This
conservative strategy ensures that each step in the optimization process moves firmly along the red
curve and finally reaches the global minimum at µfinal. However, this method requires a large
number of update stages to gradually reduce µ, which undoubtedly increases the computational cost
of the entire optimization process. In contrast, if we choose a larger value of µ, the movement in the
cost function landscape becomes very fast. But this fast-moving strategy also brings the risk that the
algorithm may not fully explore all areas in the cost landscape and get stuck in a local minimum.

In this paper, we propose a robust point cloud registration method with adaptive graduated non-
convexity. At each stage, we seek to use the largest µ possible while ensuring that each step update
of the algorithm lies within the expected convergence range of the global minimum, significantly
improving the accuracy and reliability of point cloud registration. To accomplish this, we look at the
Hessian of the cost function Eq. 2.

[Hi](r,s) =
∂2ρµ (∥ri(z)∥)

∂zr∂zs

∣∣∣∣
zk

, (5)

where z is the estimated parameter R and t, ri(z) is the i-th corresponding residual value. The
partial derivatives of zr and zs are with respect to the two components of rotation and translation.

Since zk is the minimum of the cost function evaluated for µk in Eq. 2, H is locally convex, i.e.
positive definite. In the k+1 stage, when the scale is updated to µk+1, if the corresponding Hessian
H in Eq. 2 obtained at µk+1 is ensured to remain positive definite, then the new estimate zk+1 is
guaranteed to be in the same convergence domain as the previous iteration (Andrew & Gao, 2007;
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Koh et al., 2007; Ochs et al., 2013). The solution zfinal obtained in this way is likely to be the global
minimum at µfinal.

H is positively definite with all positive eigenvalues, and its positive definiteness can be ensured by
keeping track of the sign of the smallest eigenvalue λmin of H. The condition for preserving local
convexity translates to finding the minimum µk+1 while keeping λmin(H) > 0 at each iteration.
We exclusively determine µk+1 based on the criterion of λmin(H) > 0, and we never employ
H in the estimating process, despite the fact that λmin(H) close to zero renders H exceedingly
ill-conditioned. In addition, we have the option to stop the search when λmin(H) gets close to a
threshold, ensuring that H is never ill-conditioned. We emphasize again that H is only used to
find µk+1 and not in the optimization step. This adaptive update step of µ not only improves the
optimization efficiency but also has no detrimental effects on solution accuracy.

At the point (R, t), the Hessian H of the Eq. 2 is

H =

N∑
i=1

Hi =

N∑
i=1

(
−li

gLSQ,ig
⊤
LSQ,i

∥ri∥2
+miHLSQ,i

)
, (6)

gLSQ,i =

[
− [xi]× R⊤ri

−ri

]
, (7)

HLSQ,i =

[ (
p⊤
i Rxi

)
I− xip

⊤
i R
2 − R⊤pix

⊤
i

2 [xi]× R⊤

−R [xi]× I

]
, (8)

where the residual of the i-th correspondence ri = Rxi + t − yi and pi = yi − t. I is the 3 × 3
identity matrix. gLSQ,i is the gradient and HLSQ,i is the Hessian of the least squares cost at the i-th
residual. li and mi are factors for weight adjustment based on the residuals, which are used to modify
the gradient and Hessian. xi is the coordinate of the i-th point in the source point cloud X. [ ]× is a
skew-symmetric matrix operation, which converts a coordinate vector into a skew-symmetric matrix
form for cross-multiplication with the rotation vector. ⊤ is the transpose of a matrix.

This principle scheme is universal, and we still take the GM cost function as an example. We have

li =
4 ∥ri∥2

µ2
(
1 + ∥ri∥2

µ2

)3 , mi =
1(

1 + ∥ri∥2

µ2

)2 . (9)

Then, the Hessian H is

H =

N∑
i=1

−4gLSQ,ig
⊤
LSQ,i

µ2
(
1 + ∥ri∥2

µ2

)3 +
1(

1 + ∥ri∥2

µ2

)2HLSQ,i. (10)

In general, we usually cannot obtain a closed-form expression for λmin(H). Therefore, we use a
divide-and-conquer approach to estimate µk+1 based on the condition that λmin(H) > 0. We do
a binary search with a search interval defined below µk. The binary search strategy is based on
an implicit assumption that λmin will decrease monotonically as µ is gradually reduced. We can
further decrease the search interval to make sure this assumption is reliable. Since H is a small 6×6
matrix, so the cost of evaluating λmin(H) is low. Although the cost function of Eq. 2 is nonlinear,
it is smooth and differentiable.

x1 2 3 4 5 6 7 8 90

2

10

8

6

4

20

18

16

14

12

y

Inliers

Outliers

Fixed Small ζ

Fixed Large ζ

Ours Adaptive ζ

Figure 2: Example of adaptive GNC for a
line fitting problem with outliers present.

In Fig. 2, we show the effectiveness of adaptive GNC
in dealing with a simple 2D linear fitting problem with
outliers. Table 1 lists the comparison of the conver-
gence stages under different annealing strategies and
the quality of the final solution. It takes 16 stages for
GNC to converge to the global minimum when ζ is
set to a small value (ζ = 4). In contrast, if a larger
ζ is used (ζ = 20), the GNC optimization terminates
after only 6 stages but often falls into suboptimal lo-
cal minima. In sharp contrast, the proposed adaptive
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GNC successfully converges to the global minimum
after 8 stages, resulting in the correct fitting solution.
Ours achieves the highest accuracy with faster conver-
gence and less overhead. We also provide a comparison of AGNC with two scale adaptive schemes
GradOpt (Hazan et al., 2016) and ASKER (Le & Zach, 2020) in Table 2 of the supplementary
material.

Table 1: Comparison of different updating methods of ζ, time unit is in ms.

GNC strategy Stages Runtime Hessiantime Accuracy
Fixed small ζ 16 4.98 - Medium
Fixed large ζ 6 2.02 - Low

Ours adaptive ζ 8 3.61 1.08 High

3.3 MULTI-TASK KNOWLEDGE SHARING

To overcome the severe failure cases caused by high outliers, we propose a preventive measure. In-
spired by human learning, humans often use their experience of solving one problem to help solve
other problems (Chen et al., 2018; Xu et al., 2020). Improve the optimization performance of mul-
tiple related tasks by sharing knowledge between tasks (Gupta et al., 2015; Liao et al., 2023; Yang
et al., 2023). We regard the cost functions at different stages of the optimization process as different
tasks, whose function landscapes or optimal solutions have certain similarities. A promising candi-
date solution that helps on one task may also help on another task. Therefore, in the initial stage of
AGNC, we implement the collaborative optimization of non-convex cost functions at different levels
through a multi-task sharing mechanism to jump out of the local minimum. This measure further
improves the success rate of point cloud registration under challenging high outliers. The multiple
AGNC optimization problem can be expressed as:

argmin
{
fµk

(z), fµk−1
(z), . . . , fµk−j

(z)
}
. (11)

3.4 FRAMEWORK OF AGNC FOR POINT CLOUD REGISTRATION

The pseudo-code of the adaptive GNC for the point cloud registration problem is shown in Algorithm
1. The input point cloud correspondence includes outliers. Calculate the current residual ri based
on N sets of correspondences (line 2). According to the residual ri, calculate the weight wi (line
3). Using the weighted Umeyama method, the rotation matrix R and the translation vector t are
solved according to the weight wi (line 4). A multi-task knowledge sharing strategy is implemented
to achieve joint optimization of non-convex cost functions at different levels to prevent falling into
local minima (line 5). Calculate the Hessian matrix H and perform a binary search on the minimum
eigenvalue λmin (H) of H to obtain µk+1 (line 6-7). When µk reaches the threshold µfinal, the
iterative process ends. Compared to traditional fixed-step optimization plans, the scale of graduated
non-convexity is adaptively reduced by monitoring the positive definiteness of the Hessian of the
cost function.

Algorithm 1 Point cloud registration based on AGNC

Input: H = {(xi, yi)}N1 with outliers in the two point clouds, µfinal, k = 0, µ = µ0

Output: Rotation matrix R, translation vector t
1: while µk ≥ µfinal do
2: ri = Rxi + t− yi

3: wi =
1(

1+
∥ri∥2
µ2
k

)2

/* find R and t by weighted Umeyama method */
4: R, t = WeightedUmeyama

(
{(xi, yi, wi)}N1

)
5: Perform multi-tasking knowledge sharing
6: Calculate the H(µ) using Eq. 10
7: Run binary search on λmin (H) to obtain µk+1

8: k = k + 1
9: end while
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4 EXPERIMENTS

4.1 DATASETS AND COMPARING METHODS

The experiments consider four point cloud registration datasets. The Stanford repository (Curless &
Levoy, 1996) contains four object models, i.e., Bunny, Dragon, Armadillo, and Buddha, which are
used for simulation experiments. 3DMatch (Zeng et al., 2017) and 3DLoMatch (Huang et al., 2021)
are two indoor scene datasets. 3DLoMatch is a subset of 3DMatch, where the overlap rate of point
cloud pairs is between 10% and 30%. Registration under high outliers is very challenging. KITTI
(Geiger et al., 2012) is a large-scale outdoor scene dataset. More details of the datasets are reported
in Table 1 of the supplementary material.

We compare our method AGNC with eight representative point cloud registration methods, the clas-
sic RANSAC (Fischler & Bolles, 1981) and its variant GC-RANSAC (Barath & Matas, 2021),
the fast global registration method FGR (Zhou et al., 2016), TEASER++ (Yang et al., 2021) a
GNC-based method with a fixed update rule, SC2-PCR (Chen et al., 2022b), TR-DE (Chen et al.,
2022a) and HERE (Huang et al., 2024) through transformation parameter decomposition search, and
MAC(Zhang et al., 2023) using maximal cliques to prune outliers. The source code can be found in
their respective papers. For AGNC, we fix µfinal = 0.1 unless otherwise stated. All statistics are
calculated using 100 Monte Carlo runs.

4.2 EVALUATION METRICS

Following (Yang et al., 2021), we employ rotation error RE and translation error TE to evaluate the
registration performance, which are shown below:

RE = arccos

(
Tr(RT

gtR
∗)− 1

2

)
, (12)

TE = ∥tgt − t∗∥ , (13)

where Tr(·) is the trace of a matrix. R∗ and t∗ are estimated values. Rgt and tgt are ground truth
values. The lower the values of these two indicators, the better the method.

We also report the registration recall RR for real-world datasets, which refers to the proportion of
successful registrations with RE error and TE error falling within predetermined bounds.

RR =
# successful registration instance

# all registration instance
. (14)

4.3 COMPARISON ON SIMULATED DATASETS

We first conduct experiments on simulated data from the Stanford repository to validate our pro-
posed method. We create an outlier simulated dataset as suggested in TEASER++ (Yang et al.,
2021). Specifically, the input outlier contaminated correspondences H = {(xi, yi)}N1 are generated
as follows: First, the original point cloud is downsampled to N = 2000 points and resized to fit into
[0, 1]3 to create the source point cloud X. Then, the X is transformed to another local coordinate
system by transforming Rxi + t − yi to obtain the target point cloud Y, where the rotation matrix
R is a randomly generated 3×3 Rodrigues matrix (R ∈ SO(3)) and the translation t is a randomly
generated 3×1 vector (0 ≤ ∥t∥ ≤ 1). To simulate the noise present in real data, we add random
bounded noise ϵi ∼ N

(
0, η2I

)
to Y

(
∥ϵi∥2 ≤ βi

)
with βi = 5.54η, η = 0.01 as chosen in (Yang

et al., 2021). To generate outlier correspondences, a certain percentage of points Y are randomly
selected and replaced by vectors uniformly sampled within a sphere with a radius of 8 units. The
level of outliers is measured by the number of wrong correspondences and the ratio of all correspon-
dences. The outlier level is set to 0%, 20%, 40%, 60%, 80%, 90%, and 99%. Fig. 3 shows the
rotation error and translation error of compared methods at different outlier levels.

From the results, we can see that when the outlier level is low, all methods perform similarly. As
the outlier level increases, the errors of some methods (RANSAC, GC-RANSAC, and FGR) in-
crease significantly. RANSAC, GC-RANSAC, and FGR perform poorly at extreme outlier rates.
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Figure 3: Rotation and translation error with increasing outlier rates on the Stanford repository.

TEASER++, SC2-PCR, TR-DE, MAC, and AGNC are robust to outliers up to 99%. Although they
are all robust to 99% outliers, AGNC produces a lower estimation error. The experimental results
show that our method can effectively handle point cloud registration problems with different degrees
of outliers.

Table 2 reports the quantitative results of all methods at 50% outlier rate. Our method achieves the
best performance on all models, i.e., the best RE, TE, and RR. The visual registration results of the
AGNC method at 50% outlier rate are shown in Fig. 4. The first, second, and third rows show the
input, the ground truth, and the AGNC registration results, respectively. For more visualizations
of comparisons, please see the supplementary material. From a visual perspective, our method
shows excellent registration performance on all models. It is close to the true value and no obvious
registration deviation is observed. This further verifies the accuracy and reliability of our method
on the registration problem with outliers. Please see Fig. 1 in the supplementary material for more
visual results.

Table 2: Registration results with 50% outliers rate on Stanford repository.

Method Bunny Dragon Armadillo Buddha Bunny Dragon Armadillo Buddha Avg.
Rotation Errors(deg)↓ Translation Errors(×10−3)↓ RR(%)↑

RANSAC 11.76 10.83 9.37 4.67 22.1 18.64 17.55 19.37 59.42
FGR 5.37 4.29 5.11 4.91 11.37 8.3 9.83 12.01 68.32
GC-RANSAC 3.16 2.38 3.55 3.37 8.61 8.44 9.08 13.50 75.19
TEASER++ 0.59 0.65 0.60 0.35 2.38 2.55 2.22 2.53 96.75
SC2-PCR 0.33 0.38 0.47 0.35 4.61 3.05 3.95 2.08 95.10
TR-DE 0.73 0.60 0.55 0.42 9.61 7.68 8.92 7.78 84.79
MAC 0.53 0.46 0.50 0.38 3.11 3.08 3.93 3.64 95.86
HERE 0.85 0.83 0.87 0.99 5.91 6.91 5.34 5.70 87.61
AGNC (Ours) 0.19 0.15 0.14 0.18 2.05 2.42 2.11 2.32 98.94

4.4 COMPARISON ON REAL-WORLD DATASETS

Evaluation on Indoor Scenes. First, we consider the 3DMatch dataset, which contains 62 real
indoor scenes. It is divided into 54 scenes for training and 8 scenes for testing. Features are ob-
tained from FCGF and FPFH descriptor (Chen et al., 2022b), then matched using nearest-neighbor
matching. In the correspondences, the outlier percentage varies from 0% to 99%. Therefore, some
registration instances are bound to fail. We use the same successful registration criteria defined in
(Zhang et al., 2023; Chen et al., 2022b; Huang et al., 2024), namely RE ≤ 15◦ and TE ≤ 30cm
relative to the ground truth. As can be seen from Table 3, AGNC has a lower rotation error and
translation error compared to other methods. In addition, the registration recall of AGNC is still
0.15 higher than the highest method MAC. More results with different ouliers can be found in Fig. 2
of the supplementary material. Next, we conducted experiments on the 3DLoMatch dataset. 3DLo-
Match has a lower overlap rate than 3DMatch point clouds. The experimental setting follows (Chen
et al., 2022b;a), using the Predator and FCGF descriptor to generate the initial correspondence set.
From the results in Table 4, it can be observed that our method achieves the highest successful
alignment percentage together with SC2-PCR. However, our method achieves better performance in
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Figure 4: Visualization results with 50% outliers rate on the Stanford repository.

Table 3: Registration results on the 3DMatch dataset.

Method FCGF Descriptor FPFH Descriptor
RR(%)↑ RE(°)↓ TE(cm)↓ RR(%)↑ RE(°)↓ TE(cm)↓

RANSAC 89.22 2.46 7.60 64.20 4.05 11.35
FGR 73.75 2.73 8.14 40.91 4.96 10.25

GC-RANSAC 89.65 2.36 7.23 67.65 2.33 6.87
TEASER++ 85.77 2.91 9.40 75.48 2.48 7.31
SC2-PCR 92.73 2.20 6.88 83.98 2.18 6.56

TR-DE 86.99 2.62 8.03 77.18 2.89 8.83
MAC 92.79 2.18 6.89 84.10 1.96 6.18
HERE 91.56 2.17 6.93 83.08 2.94 7.02
AGNC 92.94 2.03 6.56 84.12 1.94 6.18

terms of rotation error and translation error. This shows that the alignment of the AGNC method is
very accurate and can align low-overlapping data. Refer to Fig. 3 in the supplementary material for
visual results on the indoor scenes.

Evaluation on Outdoor Scenes. We complete outdoor scenes registration tests on the KITTI
dataset. Following (Chen et al., 2022b), we use the 8th to 10th scenes to evaluate all methods.
For the assumed correspondences, we use the FPFH descriptor (Rusu et al., 2009) and the FCGF
descriptor (Choy et al., 2019) to generate the initial correspondence set, respectively. We set the
thresholds to RE ≤ 5◦ and TE ≤ 60cm as the criteria for evaluating RR. The experimental re-

Table 4: Registration results on the 3DLoMatch dataset.

Method Predator Descriptor FCGF Descriptor
RR(%)↑ RE(°)↓ TE(cm)↓ RR(%)↑ RE(°)↓ TE(cm)↓

RANSAC 66.03 3.76 11.82 46.38 5.00 13.11
FGR 38.90 3.90 11.63 19.99 5.28 12.98

GC-RANSAC 64.18 3.39 11.21 48.62 4.21 10.72
TEASER++ 63.17 4.17 10.58 46.76 4.12 12.89
SC2-PCR 68.73 3.22 10.75 57.83 3.77 10.92

TR-DE 66.03 4.32 11.04 49.50 4.46 12.07
MAC 69.17 3.42 10.47 59.85 3.50 9.75
HERE 68.89 3.31 10.42 57.08 3.48 10.81
AGNC 69.17 3.19 9.98 59.89 3.45 9.73
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sults are listed in Tables 5. The RE and TE of AGNC are lower than those of the state-of-the-art
heuristic-guided parameter search method HERE. It can be concluded that AGNC outperforms all
the compared methods regardless of the descriptor used. AGNC achieves the best RR, RE, and TE
indicators, indicating its strong registration ability for outdoor scene point clouds. AGNC’s strong
generalization capacity across many application scenarios is confirmed by registration studies con-
ducted on object, indoor scene, and outdoor scene datasets. Refer to Fig. 4 in the supplementary
material for visual results on the outdoor scenes.

Table 5: Registration results on the KITTI dataset.

Method FPFH Descriptor FCGF Descriptor
RR(%)↑ RE(°)↓ TE(cm)↓ RR(%)↑ RE(°)↓ TE(cm)↓

RANSAC 95.67 1.06 23.19 98.01 0.39 21.73
FGR 9.73 0.58 27.84 97.47 0.34 19.86

GC-RANSAC 79.46 0.39 8.02 97.47 0.32 20.50
TEASER++ 97.84 0.43 8.39 98.02 0.34 20.74

SC2-PCR 99.64 0.39 8.29 97.66 0.31 20.21
TR-DE 98.91 0.92 15.63 97.11 0.83 24.33
MAC 99.10 0.51 10.17 97.66 0.45 23.40
HERE 99.10 0.42 7.90 98.02 0.32 20.73
AGNC 99.71 0.32 7.25 98.52 0.31 19.51

To verify the impact of the two key strategies, ablation studies are conducted following the experi-
mental design of simulated datasets. The fixed update scheme uses ζ = 1.5 and tests the effect of
no multi-task knowledge transfer. The results are shown in Table 6. For all four models, our overall
design produces lower rotation error and translation error. The reason is that tracking local minima
sometimes leads to solutions far away from the ground truth due to the challenge of high outliers. At
this time, multi-task sharing mechanisms are needed to learn other levels of non-convex cost func-
tion landscapes to jump out of local minima. Adaptive graduated non-convexity effectively adjusts
the shape of the cost function according to the optimization process to enhance the registration’s
accuracy and robustness.

Table 6: Ablation study of two key strategies. S/U are stages and runtime (ms) respectively.

Dataset Fixed w/ sharing Adaptive w/o sharing Fixed w/o sharing AGNC
RE TE S/U RE TE S/U RE TE S/U RE TE S/U

Bunny 0.88 2.53 12/13.68 2.34 5.85 5/5.23 3.33 6.01 12/12.34 0.19 2.05 6/7.32
Dragon 0.56 2.91 11/12.71 5.18 12.99 5/5.23 5.39 13.02 11/11.29 0.15 2.42 5/6.34

Armadillo 0.42 2.67 12/13.68 1.58 3.64 5/5.23 3.28 5.11 12/12.34 0.14 2.11 5/6.34
Buddha 0.49 3.01 10/11.64 2.93 4.08 6/6.26 3.64 5.83 10/10.21 0.18 2.32 6/7.32

5 CONCLUSION

We have proposed a novel robust point cloud registration approach based on adaptive graduated
non-convexity. Without requiring a set optimization plan, the scale of graduated non-convexity
is adaptively lowered by keeping an eye on the positive definiteness of the Hessian of the cost
function. Experimental results have shown that this method outperforms compared methods in terms
of robustness and accuracy, can obtain promising registration results even in 99% outlier rates.
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