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Abstract

Large language models (LLMs), such as Chat-001
GPT, have risen to prominence in text sum-002
marization tasks, primarily due to the advent003
of in-context learning. This paper delves into004
how in-context learning steers the outputs of005
LLMs based on different data demonstration006
configurations. Our pivotal findings reveal that007
ChatGPT’s adaptability to target summariza-008
tion tasks is enhanced when provided with009
paired text and summaries, compared to when010
provided in isolation. Furthermore, the struc-011
tured presentation of these pairs proves more012
influential than their precise content alignment.013
However, there are observable limitations: in-014
creasing the number of demonstrations yields015
diminishing returns, and the improvement of016
adaptability declines when tasked with more017
intricate news texts as opposed to simpler dia-018
logues. This study comprehensively explains019
in-context learning’s nuances in text summa-020
rization, highlighting its merits and demerits021
for future researchers.022

1 Introduction023

The burgeoning role of LLMs in text summariza-024

tion underscores their growing significance in natu-025

ral language processing. Pivotal to this surge is the026

advent of in-context learning (Brown et al., 2020),027

a technique that allows LLMs to adapt their out-028

puts based on a handful of example demonstrations,029

thus obviating the need for extensive fine-tuning on030

specialized datasets. Recent studies (Zhang et al.,031

2023b; Yang et al., 2023; Zhang et al., 2023a; Wang032

et al., 2023) have highlighted its widespread use033

in text summarization. However, despite its suc-034

cess, a comprehensive exploration is still required035

to discern its influence on the generated summaries.036

In-context learning involves crafting a prompt037

that directs the LLM toward a specific target task.038

The prompt initiates with an instruction defining039

the intended task and is followed by examples that040

guide the LLM in recognizing the task’s structure.041

Once the foundation is set, the target input is in- 042

corporated into the prompt and fed into the LLM. 043

Finally, the LLM endeavors to generate responses 044

that address the target input and resonate with both 045

the instructions and the provided examples. Refer 046

to Table 1 for a showcase of prompts created for the 047

summarization task with or without text-summary 048

examples 049

In this study, we investigate the effects of in- 050

context learning on the text summarization adapt- 051

ability of LLMs, using ChatGPT as our primary 052

model. We introduce four unique prompts, vary- 053

ing based on the inclusion or omission of text and 054

summary, to determine their impact on ChatGPT’s 055

summarization performance. In a supplementary 056

experiment, we manipulated text-summary align- 057

ments through text shuffling and replacement to 058

explore the influence of content consistency on in- 059

context learning. Our key findings include: 060

• Providing both texts and summaries to Chat- 061

GPT leads to better adaptation to summariza- 062

tion tasks than using either alone. 063

• The structured presentation of texts and sum- 064

maries has a more pronounced impact than 065

their exact content alignment. 066

• Increasing text-summary demonstrations 067

show diminishing returns, highlighting the 068

limitations of in-context learning. 069

• The efficacy of in-context learning decreases 070

when summarizing complex text, as demon- 071

strated by its greater effectiveness for dialogue 072

than news summarization. 073

Our findings contribute to the broader under- 074

standing of in-context learning’s role in text 075

summarization, offering valuable insights for re- 076

searchers and practitioners. 077
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2 Related Work078

The rise of LLMs has revolutionized the domain079

of natural language processing, particularly in the080

realm of text summarization. Historically, text sum-081

marization strategies leaned heavily on pre-trained082

models such as BART (Lewis et al., 2020), T5083

(Raffel et al., 2023), and PEGASUS (Zhang et al.,084

2020). These models demanded resource-intensive085

fine-tuning to achieve optimal summary alignment086

with reference texts.087

However, the advent of LLMs, including GPT-088

3 (Brown et al., 2020), PaLM (Chowdhery et al.,089

2022), and LLaMA (Touvron et al., 2023), has in-090

troduced a paradigm shift. Instead of traditional091

fine-tuning, these models capitalize on their inher-092

ent capabilities, achieving remarkable results in093

zero-shot settings using well-crafted prompts with094

a few example demonstrations. This innovative ap-095

proach, termed "In-context Learning" (Brown et al.,096

2020), has garnered significant attention recently.097

Several studies have delved into the intricacies098

of in-context learning across diverse tasks. For099

instance, Xie et al. (2022) provides a theoretical100

perspective, suggesting that in-context learning can101

be conceptualized as Bayesian inference. From a102

practical standpoint, the work of Liu et al. (2022)103

emphasizes the pivotal role of example selection,104

illustrating that performance can be significantly105

enhanced when examples resonate closely with the106

target input. Furthermore, the research by Min et al.107

(2022a) highlights the importance of the structural108

integrity of examples, indicating that even flawed109

examples can bolster accuracy if presented struc-110

turally. On the other hand, Wei et al. (2023) delves111

into the nuances of model size, revealing that the112

effects of errors in examples can vary based on the113

dimensions of the model.114

While in-context learning has seen widespread115

application in text summarization, notably in the116

news (Zhang et al., 2023b) and medical domains117

(Yang et al., 2023), as well as in extractive summa-118

rization (Zhang et al., 2023a), its specific impact on119

text summarization within LLMs requires deeper120

exploration. To the best of our knowledge, our121

study is the first to delve into how in-context learn-122

ing influences LLMs in text summarization, aiming123

to bridge the existing research gap and offer crucial124

insights for subsequent investigations in the field.125

3 Experimental Setup 126

3.1 Prompt Design 127

Prompt
Name

Prompt Structure

No-Demo Please provide a summary of the following
text:
{target_text}
Summary:

Text-
Summary

For reference on the desired summary style,
here are separate texts and summaries:
Texts:
Example 1: {text_1}
...
Summaries:
Example 1: {summary_1}
...
Given the reference examples, please pro-
vide a summary of the following text:
{target_text}
Summary:

Text-Only For reference on text style:
Example 1: {text_1}
...
Given the reference examples, please pro-
vide a summary of the following text:
{target_text}
Summary:

Summary-
Only

For reference on the desired summary style:
Example 1: {summary_1}
...
Given the reference examples, please pro-
vide a summary of the following text:
{target_text}
Summary:

Table 1: Detailed Prompt Structures. {target_text} is
the target to be summarized. {text_*} and {summary_*}
are the example texts and summaries.

Our experiment differentiates itself through spe- 128

cialized prompt designs when instructing ChatGPT. 129

These designs include: 130

• No-Demonstration (No-Demo), a direct 131

prompt asking the model to summarize a pro- 132

vided text; 133

• Text-Summary, where a list of texts and a list 134

of summaries are presented; 135

• Text-Only, offering only the example texts to 136

hint at content style; 137

• Summary-Only, inverting the Text-Only by 138

showcasing just the summaries, emphasizing 139

the desired summary writing style. 140

Please refer to Table 1 for a clear representation of 141

each prompt. 142
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Figure 1: ROUGE-2 scores for the proposed prompts across four datasets, using one to five in-context examples.
For each experiment, three separate trials are conducted using different sets of example data demonstrations. The
results of these trials are then averaged. Note that Text-Summary prompt consistently achieves the highest scores.
The value of Rouge-1, Rouge-2, and Rouge-L scores can be found in Table 4 in Appendix.

Dataset Domain #samples Text Summ.
#words #words

SAMSum Dialogue 819 94.6 20.0
DialogSum Dialogue 1500 133.9 18.7
CNN/DM News 1000 619.0 32.1
XSum News 1000 388.7 21.2

Table 2: Overview of the datasets used for dialogue and
news summarization, detailing the domain, sample sizes,
and average word counts for the text and summary.

3.2 Datasets143

We utilized four benchmark datasets: SAMSum144

(Gliwa et al., 2019) and DialogSum (Chen et al.,145

2021) for dialogue summarization, and CNN/Dai-146

lyMail (Hermann et al., 2015) and XSum (Narayan147

et al., 2018) for news summarization. We fully148

utilized the available samples for testing, with 819149

from SAMSum and 1500 from DialogSum. Mean-150

while, we chose the first 1000 entries from XSum151

and CNN/DailyMail for our experiments. Table 2152

provides an overview of the datasets.153

3.3 ChatGPT154

We used the gpt-3.5-turbo-16k version of the Chat-155

GPT API from OpenAI for our experimental imple-156

mentation. This version was chosen due to its ca-157

pacity to handle up to 16000 tokens, making it suit-158

able for the XSum and CNN/DailyMail datasets,159

which contain longer articles. Throughout our ex-160

periments, we adhered to the default parameter161

settings provided by ChatGPT to maintain consis-162

tency and to ensure that any observed behavior was163

attributable to the in-context learning and not to164

any custom configurations.165

4 Experiment Results 166

4.1 Efficacy of Data Demonstrations 167

We initiated our empirical analysis by directing 168

ChatGPT to perform a series of tests using the 169

four prompts introduced in section 3.1 across the 170

datasets. As depicted in Figure 1, the summariza- 171

tion performance, as measured by the Rouge-2 172

score, varied significantly based on the prompt 173

format. Text-Summary demonstrated superior per- 174

formance compared to No-Demo, highlighting the 175

benefits of in-context learning to improve Chat- 176

GPT’s adaptability to the target summarization task. 177

While the Summary-Only showcased an improve- 178

ment by adapting to reference summary styles, it 179

did not match the efficacy of prompts integrating 180

text and summary. On the other hand, the Text- 181

Only presented only slight advancements over the 182

No-Demo, emphasizing the importance of the text- 183

summary relationship for optimal performance. 184

Upon further analysis of the datasets, we ob- 185

served non-uniform improvements in summariza- 186

tion performance. The dialogue datasets, SAMSum 187

and DialogSum, which are generally less intricate, 188

experienced larger gains of 4.83% and 3.72%, re- 189

spectively. In contrast, the more complex news 190

datasets, CNN/DailyMail and XSum, displayed 191

restrained advancements of 1.04% and 1.22%, re- 192

spectively. This differential performance across 193

datasets hints at the potential influences of text 194

complexity on in-context learning efficacy. 195

Additionally, our experiments revealed a trend 196

of diminishing returns from in-context learning: 197

while 1-2 examples led to remarkable improve- 198

ment, adding more examples resulted in a perfor- 199
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Dataset No-Demo Original Shuffled-Text Replaced-Text
SAMSum 12.59 17.15 17.45 15.54
DialogSum 8.39 11.63 11.44 11.42
CNN/DailyMail 9.24 10.20 10.34 10.14
XSum 5.63 6.67 6.81 6.26

Table 3: Comparison of Rouge-2 scores for the No-Demo baseline and perturbed configurations, Shuffled-Text
and Replaced-Text in Text-Summary prompts. Experiments are conducted with three to five provided examples,
and the scores are averaged for each configuration. Across all datasets, each perturbed configuration consistently
outperforms the No-Demo baseline, and their performances remain relatively close to the Original setup. The
only noticeable deviation is observed in the SAMSum dataset with the Replaced-Text configuration, which, while
showing a drop compared to the Original, still significantly surpasses the No-Demo scores.

mance plateau. This observation highlights the200

inherent limitation of in-context learning, where201

adding more examples does not necessarily yield202

further improvements in performance.203

4.2 Probing the Impact of Text-Summary204

Content Alignment205

We introduced controlled perturbations to the exam-206

ples in Text-Summary prompt to probe the efficacy207

of the content alignment between text and summary.208

We adopted three distinct experimental setups:209

• Original: Pairs are taken from the training210

set, maintaining correct associations. (e.g.211

Text1 → Summ1, Text2 → Summ2, Text3 →212

Summ3)213

• Shuffled-Text: The same texts and summaries214

are retained, but the order of the texts is shuf-215

fled, leading to incorrect associations. (e.g.216

Text2 → Summ1, Text3 → Summ2, Text1 →217

Summ3)218

• Replaced-Text: Only the same summaries are219

retained. The texts are randomly taken from220

the training set, making non-related associ-221

ations. (e.g. Text4 → Summ1, Text5 →222

Summ2, Text6 → Summ3)223

Table 3 unveils some unexpected patterns in the224

behavior of the perturbations. In the Shuffled-Text225

setup, while the order of texts is rearranged, the226

associations between texts and summaries are still227

present, even if they are jumbled. This suggests that228

if ChatGPT can recognize and realign these associa-229

tions autonomously, then the perturbation’s impact230

might be minimal. This hypothesis is supported by231

the observed performance, which remains closely232

aligned with that of the Original setup.233

On the other hand, the Replaced-Text perturba-234

tion presents a more challenging test. It should235

lead to a significant improvement drop because it 236

involves texts and summaries that are entirely mis- 237

matched. However, despite this stark mismatch, 238

performance levels remain comparable to the Orig- 239

inal setup. The simultaneous presentation of texts 240

and summaries is more critical in ChatGPT’s sum- 241

marization adaptability than the exact content align- 242

ment between individual texts and their correspond- 243

ing summaries. This finding is consistent with the 244

insights provided by Min et al. (2022b), empha- 245

sizing the importance of demonstrations’ general 246

structure and format over exact input-label align- 247

ments in in-context learning. 248

5 Conclusion 249

In our exploration of in-context learning, we dis- 250

cerned its profound impact on the text summariza- 251

tion capabilities of ChatGPT. Our findings high- 252

lighted that structured demonstrations, pairing texts 253

with summaries, significantly enhance ChatGPT’s 254

adaptability, with the structure being more impor- 255

tant than exact text-summary content alignment. 256

Nevertheless, our research also unveils the inherent 257

limitations of in-context learning, as evidenced by 258

diminishing improvement with increasing demon- 259

stration examples and reduced efficacy in summa- 260

rizing intricate news texts compared to dialogue 261

summarization. Overall, our research underscores 262

both the potential and the challenges of in-context 263

learning in natural language processing, laying a 264

foundation for future endeavors in text summariza- 265

tion using large language models. 266

Limitations 267

While our study offers significant insights into the 268

efficacy of in-context learning for text summariza- 269

tion using ChatGPT, several limitations warrant 270

consideration. Primarily, the exclusive focus on 271

ChatGPT means that the findings may only be par- 272
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tially transferable to other LLMs. Even within the273

LLM category, each model has unique architec-274

ture, training data, and nuances. Thus, generalizing275

our findings across the board would be premature.276

Additionally, while we incorporated four datasets277

from the dialogue and news domains, the absence278

of datasets from other critical domains means that279

our findings may need to be more comprehensive280

for general summarization tasks. Real-world ap-281

plications often require summarizations of a wide282

array of text types, including scientific articles, le-283

gal documents, and social media posts, to name284

a few. Our study may need to accurately capture285

the adaptability of in-context learning for these286

diverse domains. Future research should expand287

the scope by integrating more diverse LLMs and288

datasets from various domains to ensure broader289

applicability and generalizability of the findings.290
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#Exp. Prompt Type SAMSum DialogSum CNN/DailyMail XSum
R1 R2 RL R1 R2 RL R1 R2 RL R1 R2 RL

0 No-Demo 33.31 12.59 25.60 23.95 8.39 18.62 24.02 9.24 16.65 18.72 5.63 13.04

1
T-S 38.63 15.49 30.18 31.63 11.07 24.75 26.45 9.91 18.36 21.48 6.63 15.34

T-Only 33.64 12.75 25.99 25.63 9.09 20.02 24.56 9.43 17.06 18.75 5.46 13.05
S-Only 37.09 13.94 28.82 30.82 10.75 24.19 25.57 9.63 17.74 19.65 5.65 13.85

2
T-S 40.34 16.95 31.72 31.40 11.08 24.60 27.19 10.20 18.86 21.36 6.71 15.25

T-Only 33.44 12.93 25.81 25.94 9.17 20.24 24.50 9.42 17.09 19.03 5.70 13.29
S-Only 38.43 14.92 30.16 30.90 10.83 24.28 25.97 9.80 17.97 19.66 5.48 13.77

3
T-S 40.50 17.05 31.86 31.83 11.57 24.98 26.85 10.22 18.72 21.52 6.85 15.38

T-Only 33.36 12.86 25.72 26.37 9.45 20.66 25.06 9.61 17.36 19.45 6.00 13.69
S-Only 38.76 15.25 30.42 30.95 11.00 24.36 25.77 9.76 17.88 19.89 5.60 13.96

4
T-S 40.70 17.17 32.07 32.52 11.76 25.67 26.64 10.10 18.62 20.87 6.62 14.88

T-Only 33.91 13.33 26.22 26.53 9.39 20.71 25.15 9.73 17.56 19.49 5.95 13.65
S-Only 38.82 15.41 30.39 30.83 10.97 24.25 25.69 9.75 17.77 19.75 5.49 13.83

5
T-S 41.05 17.42 32.40 32.96 12.11 25.93 26.74 10.28 18.65 20.53 6.52 14.59

T-Only 33.68 13.13 25.82 26.57 9.50 20.77 24.88 9.44 17.28 19.34 6.01 13.58
S-Only 38.96 15.61 30.64 31.22 11.13 24.55 26.13 9.86 17.91 19.97 5.76 14.10

Table 4: The performance of various summarization prompts on four datasets, categorized by the number of
examples (#Exp.) and the type of prompt, including Text-Summary (T-S), Text-Only (T-Only), and Summary-Only
(S-Only). The evaluation is based on Rouge scores (Rouge-1 (R1), Rouge-2 (R2), Rouge-L(RL)) provided by
HuggingFace.
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