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Abstract

Improving the training of Binarized Neural Networks (BNNs) is a longstanding
challenge whose outcome can significantly affect our ability to deploy deep learning
ubiquitously. Current methods heavily rely on latent weights and the heuristic
straight-through estimator (STE), which enable the application of SGD-based
optimizers to the combinatorial training problem, but remain theoretically poorly
understood. In this paper, we propose an optimization framework for BNN training
based on Gaussian variational inference. Our approach yields a non-convex linear
programming formulation that theoretically motivates the use of latent weights, STE
and weight clipping. More importantly, it allows us to go beyond latent weights
to formulate and solve low-rank semidefinite programming (SDP) relaxations
that explicitly model and learn pairwise correlations between weights during
training, resulting in improved accuracy. Our empirical evaluation on CIFAR-10,
CIFAR-100, Tiny-ImageNet and ImageNet datasets shows our method consistently
outperforms all state-of-the-art algorithms for training BNNs.

1 Introduction

The advent of deep learning has revolutionized the field of machine learning and enabled stunning
technological advances in numerous application areas, including computer vision [He et al., 2017],
speech recognition [Baevski et al., 2020] and natural language processing [Devlin et al., 2018].
Despite these achievements, the broader application of deep learning is impeded by high compu-
tational demands, requiring the advanced hardware and energy consumption typically reserved for
supercomputers [Thompson et al., 2022], both for training and inference. This barrier is particularly
formidable when deep learning is deployed on resource-constrained devices, like smartphones and
IoT devices, where limitations in memory, processing power and energy are critical [Sze et al., 2017].

To address these issues, Muller and Indiveri [2015] and Courbariaux et al. [2015b] noted that
neural networks could provide the same level of performance while restricting the precision of the
representation of parameters to a small number of bits, effectively quantizing the space of weights.
To reap the full benefits of quantization, Courbariaux et al. [2015b, 2016] and Kim and Smaragdis
[2016] independently introduced binarized neural networks (BNNs), which use 1-bit representations
for each weight, directly leading to a 32-fold reduction in model size compared to single-precision
weights. When activation is further binarized [Hubara et al., 2016], the multiplication and addition
operations can be replaced by much faster and cheaper XNOR and popcount operations, resulting in
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significant cost reduction in both memory and computation. Despite their compelling computational
advantages, the problem of constructing and training high-performing BNNs is still open, as current
approaches still yield severe accuracy loss compared to their high-precision counterparts [Rastegari
et al., 2016, Liu et al., 2018].

BNN training While substantial effort has been aimed at constructing larger and more effective
BNN architectures [Umuroglu et al., 2017, Tang et al., 2017, Liu et al., 2020, Martinez et al., 2020,
Shen et al., 2020], training BNNs has remained a significant challenge, as the binary constraints yield
an intrinsically combinatorial optimization problem, which is a poor fit for traditional continuous
optimizers like SGD and Adam. For a domain set X and a label set Y , let f : X ×Rn → Y represent
a neural network with an n-dimensional weight vector. Denote by yx the true label of instance x and
by L the smooth loss function. The BNN training problem can then be formulated as the following
stochastic optimization problem over the hypercube of binary weights ŵ:

min
ŵ∈{±1}n

Ex[L(f(x, ŵ), yx)], (1)

where Ex denotes the expectation over x uniformly distributed over X . This computational problem
adds to the challenge of non-convexity, the additional obstacle of a combinatorial feasible set, making
continuous gradient queries potentially uninformative. Moreover, as the training must be carried out
over a BNN architcture, we face the additional restriction that the gradient ∇ŵL(f(x, ŵ), yx) of
the loss can only be evaluated at binary weights ŵ ∈ {±1}n. This further limits our capability to
explore the loss landscape.

Latent Weights Currently, most BNN-training procedures make use of latent real weights w ∈ Rn

[Courbariaux et al., 2015a, 2016] to maintain the state of an iterative training algorithm and guide
the optimization process. Latent weights are rounded to binary weights ŵ = round(w) via a
potentially stochastic function round : Rn → {±1}n to compute forward and backward passes over
the BNN architecture. The most common choice of round function is simply the deterministic sign
function applied to each latent weight. Unfortunately, any non-trivial round function is discontinuous
and cannot be differentiable over Rn, so that it is not possible to evaluate the true gradient of the
loss function with respect to the latent weights w. The main practical solution to this problem
has been to simply ignore the round function in the back-propagation of the gradient, yielding the
straight-through estimator (STE) [Bengio et al., 2013, Le et al., 2022]:

∇wL(f(x, round(w)), yx) ≈ ∇ŵL(f(x, ŵ), yx)|ŵ=round(w) (STE)

While there is no theoretical assurance that the STE is a valid proxy for the gradient [Yin et al.,
2019], the STE and its variants [Le et al., 2022, Wu et al., 2023] have proved remarkably effective
in practice, particularly in combination with weight clipping [Alizadeh et al., 2018, Merolla et al.,
2016], by which latent weights are constrained to a fixed range around the origin.

Theoretical Interpretations of Latent-Weights Methods Latent weights have usually been in-
terpreted as fractional approximations of the true binary weights [Anderson and Berg, 2017]. The
influential work of Helwegen et al. [2019] instead proposes to view latent weights as a measurement of
the algorithm’s confidence in the binary weight taking on a certain sign. With this intuition, Ajanthan
et al. [2019] and Meng et al. [2020] have suggested a more formal interpretation of latent weights
based on the mean-field approximation from variational inference [Wainwright et al., 2008]. In this
setup, which we review in Section 3, the latent weights are the mean parameters of an exponential
family of probability distributions over binary weights. However, none of these works are able to
fully justify the use of the STE and weight clipping in latent-weights methods.

Our contributions In this paper, we provide a general optimization framework for BNN training
based on Gaussian variational inference, a refinement of the mean-field approximation used by Ajan-
than et al. [2019] and Meng et al. [2020]. Our framework allows us to generalize the notion of latent
weights as mean parameters in order to introduce new variables modeling the covariances of the
weights. As a result, our optimization formulation is able to capture more intricate dependencies
among weights and exploit them to learn better solutions during the training phase. We believe the
mere statement of our formulation in Section 3.1 to be a significant contribution of our work, which
will hopefully lead to further study of Gaussian variational methods for neural network training.
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In Section 3.2, we show that the general case of our framework, i.e., the problem of learning an
optimal Gaussian distribution over weights in Rn, can be cast as a non-convex semi-definite program
(SDP) over the weights mean vector µ ∈ Rn and covariance matrix Σ ∈ Rn×n. Because of the
large number of weights n in typical applications, we do not attempt to maintain full-rank covariance
matrices, but only consider low-rank approximate SDP solutions, following the approach championed
by Burer and Monteiro [2005] for linear SDP programs. The resulting algorithm (Algorithm 1) is
the main contribution of this paper. We name our method the Variational Inference Semidefinite
Programming Algorithm (VISPA).

In Section 3.3, we demonstrate that a simpler instantiation of our framework yields a non-convex
program, whose solution by gradient descent naturally recovers the use of the STE and weight clipping
in latent-weights methods. Finally, in Section 4, we present a thorough experimental evaluation
of VISPA against a large number of BNN training procedures in the literature over four standard
benchmark datasets. We find that VISPA almost always improves the state-of-the-art accuracy of BNN
training, in some cases dramatically. For instance, Top-1 accuracy with AlexNet on ImageNet with
fully binarized weights and activations increases by more than 3% compared to the state-of-the-art
method (see Table 3). Through an ablation study, we also show that the SDP component of our
algorithm is crucial in realizing the observed empirical advantage. Code for our algorithm and
experimental evaluation can be found at https://github.com/snownus/bnn_vi.

Limitations and Open Problems We focus our first presentation of VISPA on vision-based applica-
tions because of the availability of well-studied binarized architectures and well-established baselines,
which isolate the performance of our method more closely. Indeed, in the case of transformers, there
is not yet agreement on the best binarized architecture, due to the difficulty of binarizing activations
in softmax layers. Only recently, researchers have made progress in bypassing this obstacle He et al.
[2023]. This also contributes to the scarcity of baselines and the absence of a standard benchmark. In
Section 5, we discuss other limitations of the current work and opportunities for future extensions.

2 Related Work

Courbariaux et al. [2015a] introduced the use of the STE for training BNNs. Since then, researchers
have put forward many variants to this idea, such as adaptive versions of the STE [Le et al., 2022, Wu
et al., 2023, Qin et al., 2023], and a number of extensions, e.g., to non-binary quantization [Huh et al.,
2023, Liu et al., 2024] and sparsity-driven network designs [Vanderschueren and De Vleeschouwer,
2023]. All of these variations are in principle applicable within our optimization framework.

A different line of work investigates alternatives to the STE, with two approaches standing out.
Modifications to the gradient estimator include using piecewise polynomial functions (BiRealnet [Liu
et al., 2018]) and dynamic gradient estimators (IR-Net [Qin et al., 2020], RBNN [Lin et al., 2020]).
The other approach designs separate frameworks for discrete back-propagation (PCNN [Gu et al.,
2019a], BiPer [Vargas et al., 2024], ReCU [Xu et al., 2021b], ReActNet [Liu et al., 2020]). Among this
latter class, the aforementioned work of Helwegen et al. [2019], followed by several variants [Suarez-
Ramirez et al., 2021, Shan et al., 2023], proposes a novel Binary Optimizer (Bop) that maintains a
binary solution and accumulates gradients to determine when to flip a bit. The only BNN-training
method based on variational inference, BayesBiNN by Meng et al. [2020], effectively combines
the STE and Bop in a principled way. The work of Ajanthan et al. [2019], which is also based on
variational inference, only deals with network quantization and does not perform training over a
BNN architecture. Of particular relevance to this paper is the LNS algorithm of Han et al. [2020],
who also notice that simply binarizing each latent weight independently does not fully explore the
relationship between neurons and may not lead to the optimal solution. They propose to train a
custom binarization function via supervision noise learning, but do not explicitly model correlations
between weights via new variables. Our experimental evaluation compares our algorithm with all the
methods just described, showing the superior accuracy of our technique in practice.

Since the seminal work of Goemans and Williamson [1995], semidefinite programming [Vanden-
berghe and Boyd, 1996] has become a fundamental tool in the design of approximation algorithms
for combinatorial optimization problems. Recently, its application to network quantization has been
studied by Bartan and Pilanci [2021]. They construct a tight SDP relaxation for training a two-layer
quantized neural network. Crucially, their method does not run the training on the quantized archi-
tecture, i.e., network gradients are evaluated at non-quantized weight settings, and are limited to
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small-scale, shallow networks. However, we believe their idea provides valuable theoretical evidence
in favor of the deployment of SDP techniques at a larger scale, as is done in our work.

3 Variational Inference Approach to BNN Training

We start by quickly reviewing the variational inference approach to BNN training before introducing
our novel contribution in Section 3.1. A common approach to the construction of approximation
algorithms for intractable combinatorial optimization tasks [Vazirani, 2010, Barak and Steurer, 2024]
is to consider relaxed, regularized formulations over a subset P of the simplex ∆n = {p : {±1}n →
R≥0,

∑
ŵ∈{±1}n pŵ = 1} of probability distributions over the hypercube {±1}n:

OPTP = min
p∈P

Eŵ∼p,x[L(f(x, ŵ), yx)]− λ ·H(p), (2)

where ŵ ∼ p indicates that the random variable ŵ is distributed according to the distribution p
and H denotes the entropy function. When the regularization parameter λ ≥ 0 is strictly positive,
the regularization term −λ ·H is known to encourage generalization. When P equals the set of all
probability distributions over {±1}n, this relaxation renders the loss term linear in the distribution
p, but requires an exponential-size representation, hence maintaining the computational hardness
of the problem. However, this formulation allows us to reason more directly about stochastic
approaches, such as Monte Carlo Markov Chain [Gamerman and Lopes, 2006] and variational
inference methods [Wainwright et al., 2008]. In particular, the latter approach suggests restricting
the feasible space of Problem 2 to a computationally tractable class of distributions P , such as an
exponential family, in order to obtain a more compact parametrization of a space of probabilities. We
can then attempt to find an approximately optimal solution to the resulting non-convex optimization
problem via gradient descent over the distribution parameters.

Previous works by Ajanthan et al. [2019] and Meng et al. [2020] provide a more rigorous justification
for the STE step by deploying this variational inference blueprint in the form of the well-known
mean-field approximation [Friedli and Velenik, 2017, Sayama, 2015]. Specifically, they restrict P to
a product of {±1}-Bernoulli distributions, one for each coordinate, where pi equals the probability
that ŵi equals 1. The distribution of the variable ŵi can then be re-parametrized in terms of its mean
µi as, for all i,

ŵi ∼ Bernoulli(pi), pi =
1 + µi

2
, µi ∈ [−1, 1]. (PBernoulli)

Notice that Problem 2 with P = PBernoulli is still a relaxation to the original Problem 1, as the
extreme values of µ yield deterministic weight choices. At this point, Ajanthan et al. [2019] and
Meng et al. [2020] then argue that the vector of mean parameter µ constitutes the right choice of
latent weights for the BNN training problem. In this way, the fixed range [−1,+1]n of µ explains
the use of weight clipping. However, the main challenge with this approach is the estimation of the
gradient ∇µEw∼p(µ),x[L(f(x,w), yx)] of the expected loss with respect to the mean parameters µ.
In their case, one can only establish the following general form [Williams, 1992]:

∇µEw∼p(µ),x[L(f(x,w), yx)] = Ew∼p(µ),x[L(f(x,w), yx)∇µ log p(w)].

This expression leads to estimating the gradient via sampling from p and evaluating the loss function,
but fails to take advantage of the differentiability of L and fails to reproduce the STE. Indeed,
this setback forces Meng et al. [2020] to use a smooth proxy to the sign function to recover an
approximation of the STE. The work of Ajanthan et al. [2019] only performs binary compression and
does not rely on the STE.

3.1 BNN Training via Gaussian Variational Inference

In this section, we describe our novel application of Gaussian variational inference, which has
long been recognized as the most practical refinement of the mean-field approach [Giordano et al.,
2015], to BNN training. Specifically, we consider optimizing Problem 2 over the class Pcorr of
correlated multivariate Gaussian distributions over Rn, including degenerate Gaussian distributions
with rank-deficient covariance matrices:

w ∼ N (µ,Σ), µ ∈ [−1, 1]n, Σ ⪰ 0, (Pcorr)

∀i ∈ [n],Σii + µ2
i = 1.
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Algorithm 1 BNN Training Algorithm VISPA
Input: Loss Function L(f(x,w), yx), Batch Size M
Parameter: Embedding Dimension K, Weight Mean Vector Initialization µ ∈ Rn, Weight Deviation
Matrix Z ∈ Rn×K , Step Length α, Momentum Coefficient β, Number of Epochs T
Output: Learned Weight Mean Vectors µ ∈ Rn and Weight Deviation Matrix Z ∈ Rn×K

1: while number of epochs less than T do
2: Sample r ∈ RK from N(0, I); ▷ Sample rounding vector
3: Sample mini-batch (x1, yx1

), . . . , (xM , yxM
);

4: w = µ+Zr; ▷ Sample Gaussian weights
5: ŵ = sign(w); ▷ Round to binary
6:

g =
1

M

M∑
m=1

∇wL(f(xm,w), yxm
)|w=ŵ; (▷ Estimate gradient of vector embedding)

7: µv = βµv + (1− β)g; ▷ Update velocity for µ
8: Zv = βZv + (1− β)(grT ); ▷ Update velocity for Z
9: µ = µ− αµv; ▷ Update weight mean vector with momentum

10: Z = Z − αZv; ▷ Update weight deviation vector with momentum
11: For all i ∈ [n],γi = µ2

i + (ZZT )ii; ▷ Compute normalization factor
12: For all i ∈ [n],µi =

1√
γi
µi; ▷ Normalize weight mean vector

13: For all i ∈ [n], zi =
1√
γi
zi; ▷ Normalize weight variance vector

14: end while
15: return µ,Z

The joint constraints on mean and covariance ensure that the second moments E[w2
i ] equal 1,

matching those of a distribution over {±1}n. The resulting non-convex semidefinite program is also
a valid relaxation of Problem 1, as setting Σ = 0 yields µ ∈ {±1}n.

At first, the relaxation of the sample space of Pcorr from {±1} to Rn may seem problematic, as
sampling now fails to yield the desired binary weights. However, the use of multivariate Gaussians as
tractable proxies for the discrete probability distributions in PBernoulli has a long history in approxi-
mation algorithms, particularly in the context of semidefinite programming relaxations [Goemans
and Williamson, 1995, Alon and Naor, 2006]. Indeed, the celebrated Grothendieck’s inequal-
ity [Grothendieck, 1953] shows that PBernoulli can be effectively relaxed to Pcorr, with only a
multiplicative constant loss, when optimizing the expectation of a quadratic polynomial. Unfortu-
nately, the corresponding rounding procedure from a sample w ∼ p,p ∈ Pcorr to a binary vector ŵ
is fairly complex, as it requires taking large tensor powers of the entries of the covariance of p [Alon
and Naor, 2006]. We opt instead for the more straightforward hyperplane rounding [Goemans and
Williamson, 1995], which takes the simple form ŵ = sign(w), recovering the standard sign-based
rounding. In this case, the approximation guarantee only holds for quadratic polynomials with
non-negative coefficients. This still provides sufficient theoretical motivation for our method and
enables the higher performance of our algorithms, as practical results in Section 4 demonstrate.

3.2 Solving the SDP over Low-Rank Covariances

In this subsection, we describe VISPA, our algorithm for solving the SDP formulation of Problem 2
over P = Pcorr. Inspired by the previous discussion on hyperplane rounding, we let λ go to 0,
so that no entropy regularization is performed, but the SDP formulation captures more closely the
original Problem 2. It is crucial to notice that we cannot hope to maintain a general covariance matrix
Σ ∈ Rn×n,Σ ⪰ 0, as this requires storing Ω(n2) matrix entries, which is infeasible for the large
number of weights (n >> 106) in practical BNN architectures. Fortunately, this is a typical issue
with large-scale SDPs [Yurtsever et al., 2021], which can be tackled by restricting our attention to
low-rank covariance solutions, as first suggested by Burer and Monteiro [2005]. Following this setup,
for a rank parameter K ∈ N, our algorithm maintains a vector of means µ ∈ Rn and a square root
Z ∈ Rn×K of the covariance Σ = ZZT , which is now of rank at most K. We call Z a weight
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deviation matrix, as it describes the typical deviation from the mean µ along the subspace identified
by the image of Σ. Pseudocode for the resulting algorithm VISPA is given in Algorithm 1. Here, we
immediately see an advantage of the parametrization by the square root Z of Σ rather than by Σ
itself: it facilitates sampling from the underlying Gaussian distribution, as a sample w can be easily
taken by rescaling a standard K-dimensional Gaussian r (line 4 of Algorithm 1).

In contrast with classical applications of semidefinite programming, the objective function for the
SDP of interest is nonlinear and non-convex, so that we must rely on gradient descent to solve the
program to local optimality. The following theorem, proved in the Appendix, shows that the gradients
of the expected loss with respect to the parameters µ and Z take on a particularly simple form, which
is easy to estimate stochastically. This result, which heavily relies on the Gaussianity of the weights
w, implicitly solves the challenge encountered by Meng et al. [2020] in previous work.

Theorem 1. For a random variable w ∼ N (µ,ZZT ), with µ ∈ Rn and Z ∈ Rn×K , we have:

∇µEw,x[L(f(x,w), yx)] = Ew,x[∇wL(f(x,w), yx)];

∇ZEw,x[L(f(x,w), yx)] = Er,x[∇w[L(f(x,w), yx)r
T ]|w=Zr+µ],

where r ∼ N (0, IK).

The approximation provided by hyperplane rounding justifies replacing w with sign(w) in the
right-hand side of the gradient expressions in the theorem. The mini-batch stochastic gradient descent
step with momentum then takes the form of lines 6-10 in Algorithm 1, with lines 7-8 regulating the
momentum. The moment-matching constraints are enforced by the projection steps of lines 11-13.
Finally, at the inference stage, the output mean vector µ and deviation matrix Z are used to sample
binary weights via sign rounding. In Section 4, we carry out a comprehensive evaluation of the
accuracy of Algorithm 1 against state-of-the-art methods for BNN training.

Running Time of VISPA As in Algorithm 1, we let n be the number of weight parameters and
K the embedding dimension. Additionally, denote by M the batch size. The running time of one
iteration of VISPA is O(Mn + nK), where the first term stems from propagating each example
through the neural network and the second term comes from updating the weight mean vector µ
and the weight deviation matrix Z.. In comparison, other state-of-the-art BNN training approaches
typically just require O(Mn) time. In most cases, we have that K << M , so that the increased cost
due to the nK term is a negligible fraction of the total running time, as most time is spent performing
forward- and back-propagation through the neural network.

Memory consumption of VISPA The main potential limitation of VISPA on resource-constrained
devices is the increase in memory usage due to having to maintain the covariance variable Z. Indeed,
VISPA requires n · (K + 1) memory for storing relevant variables, compared to just n for other
methods. The total significance of this increase depends on the batch size and the size of the examples.
For instance, in the case of ResNet18, there are roughly n = 9 · 106 weights while, for batch size
100, the total size of a data batch is 15 · 106. Hence, standard methods yield a total memory usage of
24 · 106. In contrast, choosing K = 1 in VISPA will lead to a usage of 33 · 106, a 37.5% increase.
This increase will typically get smaller as we consider models trained on larger images. In practice,
we often observe even smaller increases, as our estimate does not include memory usage due to
back-propagation, which can be very large, e.g., in the case of residual connections. A possible
mitigation strategy is to store our variable at a lower precision. Given that this variable is only
accessed via multiplication with Gaussian noise, we believe that this will not change the behavior of
our algorithm.

3.3 Diagonal Covariances and New Interpretation of Latent-Weights Methods

Now, we consider the simple case in which the covariance matrix Σ is a multiple σ2I of the identity,
so that the underlying weights w are independent Gaussian random variables with mean µ. We
denote the associated class of distributions by Pindep:

w ∼ N (µ, σ2I), µ ∈ [−1, 1]n (Pindep)
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By applying Theorem 1 in conjunction with hyperplane rounding, the mini-batch stochastic gradient
descent step for Problem 2 with P = Pindep takes the following form:

∀t ∈ N, g(t) =
1

M

M∑
m=1

∇L(f(xm, sign(w(t))), yxm
), µ(t+1) = clip(µ(t) − αg(t)), (3)

for a choice of step length α > 0, sample mini-batch (x1, yx1), . . . , (xM , yxM
) and a sample w(t)

from Pindep with mean parameter µ(t). The clip function restricts the argument to the range [−1,+1].
Surprisingly, this derivation recovers both the use of the STE and weight clipping, as well as that of
the sign function for rounding. In Section 4.1, we compare the deterministic version of this algorithm
(σ = 0) with Algorithm 1 to show the accuracy gain due to the use of the deviation matrix Z.

4 Experiments

Datasets We evaluate the performance of various methods on four datasets: CIFAR-10 [Krizhevsky
et al., 2009], CIFAR-100 [Krizhevsky et al., 2009], Tiny-ImageNet [Le and Yang, 2015] and Im-
ageNet [Deng et al., 2009]. CIFAR-10 consists of 50k training samples and 10k testing images
with 10 classes, while CIFAR-100 consists of 50k training samples and 10k testing images with 100
non-overlapping classes. Tiny-ImageNet is a subset of ImageNet with 100k images and 200 classes.
ImageNet contains 1.28 million training samples and 50k testing images for 1000 classes.

Implementation Details We implement VISPA using PyTorch [Paszke et al., 2019] and run on a
single NVIDIA A100 with 40GB GPU memory per GPU card. On CIFAR-10, CIFAR-100 and
Tiny-ImageNet, models with only binarized weights (denoted as 1W32A) are trained for 500 epochs
following [Le et al., 2022], using a batch size of 256, an initial learning rate of 0.1, and a weight decay
of 5e− 4, with covariance rank K set to 8. For models with both binarized weights and activations
(denoted as 1W1A), the training epochs is 600 following [Xu et al., 2021b] , the initial learning rate
is set to 0.5, and the weight decay is reduced to 1e− 5, with K set to 4. We run 5 runs to report the
mean and standard deviation. All experiments are conducted on a single GPU card.

On ImageNet, we train AlexNet [Krizhevsky et al., 2012] for 100 epochs, and ResNet18 [He et al.,
2016] for 200 epochs following [Xu et al., 2021b], with a batch size of 1024, and standard pre-
processing with random flips and resize in [He et al., 2016]. Models with 1W32A are trained using
an initial learning rate of 0.1, and a weight decay of 5e− 5, with K set at 4. For models with 1W1A,
the initial learning rate is set at 0.5, and the weight decay is reduced to 1e− 5, with K set at 2. All
experiments are conducted on four GPU cards.

All runs utilize a cosine annealing learning rate schedule with a 5-epoch warm-up to optimize training.
To accelerate convergence, we employ the momentum technique [Sutskever et al., 2013], setting the
momentum coefficient to β = 0.9. To capture the correlation among weights, at the inference stage,
we perform 40 samples and average the results to obtain the final prediction. The mean weights µ
and the deviation matrix Z are initialized using a Xavier normal distribution [Glorot and Bengio,

2010] with a mean of 0 and a standard deviation as s ∗
√

2
fan_in+fan_out , where fan_in is the number

of input units, fan_out is the number of output units and s is the scaling factor. We empirically set
s = 10 for Z and s = 1 for u. For a detailed study of the impact of the initialization of Z, please
refer to the Appendix A.2.

Comparison on CIFAR-10, CIFAR-100 and Tiny-ImageNet We evaluate the performance of the
1W1A and 1W32A settings on CIFAR-10, CIFAR-100 and Tiny-ImageNet. For the 1W1A setting,
we compare various methods, including ReSTE [Wu et al., 2023] and DIR-Net [Qin et al., 2023],
using the commonly employed VGG-Small [Zhang et al., 2018] and ResNet18 [He et al., 2016]
architectures in [Qin et al., 2020, Wu et al., 2023, Xu et al., 2021b, Lin et al., 2022]. Table 1 shows
the result. Our method achieves the highest accuracy with 92.7% on VGG-Small and matches the top
performance of 92.8% on ResNet18. While our approach only shows marginal improvements over
recent methods like ReSTE, the results demonstrates its efficiency in optimizing binarized neural
networks. For the 1W32A setting, we compare various approaches, including AdaSTE [Le et al.,
2022] and BayesBiNN [Meng et al., 2020], using the commonly employed VGG16 [Simonyan and
Zisserman, 2014] and ResNet18 [He et al., 2016] architectures in [Le et al., 2022, Ajanthan et al.,
2019]. Table 2 presents the result. Our proposed method achieves the highest accuracy across all
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Table 1: Performance comparison by testing accuracy (%) on CIFAR-10 using VGG-Small and
ResNet18 architectures with binarized activations and weights.

Methods VGG-Small ResNet18
IR-Net Qin et al. [2020] 90.4 91.5
SD-BNN Xue et al. [2022] 90.8 92.5
RBNN Lin et al. [2020] 91.3 92.2
ReCU Xu et al. [2021b] 92.2 92.8
LCR-BNN Shang et al. [2022a] – 91.8
FDA-BNN Xu et al. [2021a] 92.5 –
RBNN + CMIM Shang et al. [2022b] 92.2 92.8
SiMaN Lin et al. [2022] 92.5 92.5
ReSTE Wu et al. [2023] 92.6 92.6
DIR-Net Qin et al. [2023] 91.1± 0.1 92.8± 0.1
VISPA (Ours) 92.7± 0.1 92.8± 0.2

Table 2: Performance comparison by testing accuracy (%) of various approaches on CIFAR-10,
CIFAR-100, and Tiny-ImageNet across VGG16 and ResNet18 architectures with binarized weights
only. (†) indicates that results are obtained from the numbers reported by Ajanthan et al. [2021]. (*)
indicates that results are obtained from the numbers reported by Le et al. [2022].

Methods CIFAR-10 CIFAR-100 Tiny-ImageNet

VGG16 ResNet18 VGG16 ResNet18 ResNet18
BinaryConnect (†) Courbariaux et al. [2015a] 89.04 91.64 59.13 72.14 49.65
ProxQuant (†) Bai et al. [2018] 90.11 92.32 55.10 68.35 49.97
MDS-softmax-s (†) Ajanthan et al. [2021] 91.30 93.28 63.97 72.18 51.81
MDS-tanh-s (†) Ajanthan et al. [2021] 91.53 93.18 61.69 72.18 52.32
PMF (†) Ajanthan et al. [2019] 91.40 93.24 64.71 71.56 51.52
BayesBiNN (*) Meng et al. [2020] 90.68± 0.07 92.28± 0.09 65.92± 0.18 70.33± 0.25 54.22
AdaSTE (*) Le et al. [2022] 92.37± 0.09 94.11± 0.08 69.28± 0.17 75.03± 0.35 54.92
VISPA (Ours) 93.25± 0.11 95.05± 0.10 72.09± 0.17 77.05± 0.41 58.98± 0.28

datasets and architectures, outperforming existing state-of-the-art techniques. Specifically, on more
complex datasets, our method shows significant improvements. For CIFAR-100, our method reaches
72.09% on VGG16, outperforming the best baseline, AdaSTE, by 2.81%. For Tiny-ImageNet, our
approach achieves 58.98% on ResNet18, which is 4.06% higher than AdaSTE. These results highlight
the effectiveness of our method in handling more complex datasets.

Table 3: Performance comparison by testing accuracy of various methods on ImageNet dataset at
AlexNet. W/A denotes the bit-width of weights and activations.

Methods W/A AlexNet

Top1 (%) Top5 (%)
BinaryNet Hubara et al. [2016] 1/1 41.2 65.6
XNOR-Net Rastegari et al. [2016] 1/1 44.2 69.2
Bop Helwegen et al. [2019] 1/1 45.9 70.0
Bop2ndOrder Suarez-Ramirez et al. [2021] 1/1 46.9 70.9
LNS Han et al. [2020] 1/1 44.4 -
FDA-BNN Xu et al. [2021a] 1/1 46.2 69.7
Quantization networks Yang et al. [2019] 1/1 47.9 72.5
BNN-DL Ding et al. [2019] 1/1 47.8 71.5
VISPA (Ours) 1/1 51.1 75.0
BinaryConnect Courbariaux et al. [2015a] 1/32 35.4 61.0
DoReFa Zhu et al. [2016] 1/32 53.9 76.3
XNOR-Net Rastegari et al. [2016] 1/32 56.8 79.4
ADMM Leng et al. [2018] 1/32 57.0 79.7
Quantization networks Yang et al. [2019] 1/32 58.8 81.7
VISPA (Ours) 1/32 59.4 81.1

Comparison on ImageNet To evaluate the performance of our proposed binarized neural network
method, we compare a list of SOTA methods including ReBNN [Xu et al., 2023], ReSTE [Wu
et al., 2023], DIR-Net [Qin et al., 2023] and BiPer [Vargas et al., 2024] on the ImageNet dataset
using AlexNet and ResNet18 architectures. For AlexNet, we used the standard architecture without
binarizing the first and last layers, adapting it for 1W1A and 1W32A configurations. For ResNet18,
we employed the BiRealNet architecture for 1W1A, as described in [Xu et al., 2021b, Qin et al.,
2020]. For 1W32A, we used the original ResNet18 architecture, following common practices in
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Table 4: Performance comparison by testing accuracy of optimizers on ImageNet dataset across
ResNet18 architectures. W/A denotes the bit-width of weights and activations.

Methods W/A ResNet18

Top1 (%) Top5 (%)
Bop Helwegen et al. [2019] 1/1 54.2 77.2
Bi-RealNet Liu et al. [2018] 1/1 56.4 79.5
IR-Net Qin et al. [2020] 1/1 58.1 80.0
BONN Gu et al. [2019b] 1/1 59.3 81.6
LCR-BNN Shang et al. [2022a] 1/1 59.6 81.6
SiBNN Wang et al. [2020] 1/1 59.7 81.8
SiMaN Lin et al. [2022] 1/1 60.1 82.3
md-tanh-s Ajanthan et al. [2021] 1/1 60.3 82.3
EqualBits Li et al. [2022] 1/1 60.4 82.9
DIR-Net Qin et al. [2023] 1/1 60.4 81.9
ReSTE Wu et al. [2023] 1/1 60.9 82.6
ReCU Xu et al. [2021b] 1/1 61.0 82.6
BiPer Vargas et al. [2024] 1/1 61.4 83.1
ReBNN Xu et al. [2023] 1/1 61.6 83.4
VISPA (Ours) 1/1 63.9 84.8
XNOR-Net Rastegari et al. [2016] 1/32 60.8 83.0
HWGQ Cai et al. [2017] 1/32 61.3 83.2
ADMM Leng et al. [2018] 1/32 64.8 86.2
IR-Net Qin et al. [2020] 1/32 66.5 86.8
Quantization networks Yang et al. [2019] 1/32 66.5 87.3
LCR-BNN Shang et al. [2022a] 1/32 66.9 86.4
ReSTE Wu et al. [2023] 1/32 67.4 87.2
DIR-Net Qin et al. [2023] 1/32 67.5 87.9
VISPA (Ours) 1/32 68.2 87.8

Table 5: Performance comparison by testing accuracy (%) with and without Z across CIFAR-10,
CIFAR-100, and Tiny-ImageNet on VGG16 and ResNet18.

Methods CIFAR-10 CIFAR-100 Tiny-ImageNet

VGG16 ResNet18 VGG16 ResNet18 ResNet18
VISPA wo Z (Ours) 92.85± 0.09 95.03± 0.08 70.12± 0.10 76.23± 0.36 56.73± 0.33
VISPA (Ours) 93.25± 0.11 95.05± 0.10 72.09± 0.17 77.05± 0.41 58.98± 0.28

related literature [Qin et al., 2020, Shang et al., 2022a]. Additionally, for ResNet18, we kept the first,
last, and down-sampling layers in full precision.

Table 3 and Table 4 present a performance comparison of various binarized neural network methods
on the ImageNet dataset using AlexNet and ResNet18 architectures separately. For AlexNet, our
method achieves state-of-the-art performance with a Top-1 accuracy of 51.1%, surpassing previous
best results from Quantization Networks [Yang et al., 2019] by 3.2% in Top-1 accuracy. Similarly,
in the 1W32A configuration, our method outperforms all others with a Top-1 accuracy of 59.4%
and a Top-5 accuracy of 81.1%, demonstrating a significant improvement over the next best method,
Quantization Networks [Yang et al., 2019].

For ResNet18, our method again sets new benchmarks with a Top-1 accuracy of 63.9% and a Top-5
accuracy of 84.8%, which is 2.5% higher in Top-1 accuracy compared to the best previous method,
ReBNN [Xu et al., 2023]. In the 1W32A configuration, our method achieves the highest Top-1
accuracy of 68.2% and a Top-5 accuracy of 87.8%, indicating its robustness and superior performance.
These results highlight once again the effectiveness of our approach in improving the accuracy of
BNNs across different architectures and configurations on complex datasets like ImageNet.

4.1 Ablation Studies

Impact of Deviation Matrix Z To investigate the significance of maintaining the correlation
between weights, we compare VISPA with the simpler, correlation-free algorithm of Equation 3 with
σ = 0 on CIFAR-10, CIFAR-100, and Tiny-ImageNet with the 1W32A setting. Table 5 provides the
experimental results. It can be seen that VISPA consistently performs better across all configurations,
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Figure 1: Impact of K on model accuracy. The table shows the mean of testing accuracy and
standard deviation for different K across models and datasets. Darker colors indicate higher accuracy.
Configurations K=1 K=2 K=4 K=6 K=8 K=10
ResNet18 + CIFAR-10 (1W1A) 92.53 ± 0.11 92.62 ± 0.13 92.77 ± 0.17 92.86 ± 0.07 92.83 ± 0.19 93.01 ± 0.07
VGG-Small + CIFAR-10 (1W1A) 92.72 ± 0.09 92.73 ± 0.13 92.67 ± 0.14 92.62 ± 0.12 92.55 ± 0.05 92.23 ± 0.09
ResNet18 + CIFAR-10 (1W32A) 95.01 ± 0.13 95.03 ± 0.18 95.02 ± 0.10 95.06 ± 0.12 95.05 ± 0.10 95.00 ± 0.14
ResNet18 + CIFAR-100 (1W32A) 76.45 ± 0.15 76.62 ± 0.12 77.04 ± 0.34 76.66 ± 0.24 77.05 ± 0.41 76.87 ± 0.40
VGG16 + CIFAR-10 (1W32A) 93.02 ± 0.20 93.21 ± 0.14 93.24 ± 0.09 93.34 ± 0.19 93.25 ± 0.11 93.30 ± 0.10
VGG16 + CIFAR-100 (1W32A) 71.09 ± 0.27 71.18 ± 0.11 71.83 ± 0.32 72.16 ± 0.10 72.09 ± 0.17 72.26 ± 0.18

especially on the more complex dataset Tiny-ImageNet, where the accuracy increases from 56.73 %
to 58.89% for ResNet18. This suggests that the deviation matrix Z might be particularly useful in
scenarios with a higher number of classes and potentially more complex patterns.

Impact of Covariance Rank K We investigate the impact of the covariance rank K on the accuracy
of various datasets and models. Experiments are conducted on CIFAR-10 and CIFAR-100 datasets
using configurations of 1W32A and 1W1A across architectures including VGG16, VGG-Small, and
ResNet18, by setting different values of K and performing 5 runs. Figure 1 presents the results. The
data reveals that ResNet18 and VGG16 generally benefit from increasing K values, with ResNet18
+ CIFAR-10 (1W1A) and VGG16 + CIFAR-100 (1W32A) peaking at K = 10. The accuracy of
ResNet18 on CIFAR-10 (1W1A) increases with higher K values, from 92.53 ± 0.11% at K = 1
to 93.01 ± 0.07% at K = 10, indicating improved performance and stability. Conversely, VGG-
Small on CIFAR-10 (1W1A) experiences a slight decline in accuracy with higher K. ResNet18
on CIFAR-100 (1W32A) shows the most variability, with accuracy peaking at 77.05 ± 0.41% for
K = 8, suggesting an unpredictable impact of K. These results highlight that higher K values
generally improve accuracy and stability for most models, particularly for ResNet18 and VGG16,
but the benefits may vary depending on the specific model and dataset configuration. We have two
hypotheses for this lack of conclusive evidence: i) higher values of K yield a larger feasible space
and require a longer time to converge; ii) higher values of yield a more complex distribution from
which it is more expensive to sample good weights at the inference stage.

5 Limitations and Open Problems

Our contributions naturally open a number of directions for further research. On the theoretical side,
it would be interesting to efficiently implement the rounding suggested by Grothendieck’s inequality.
Similarly, we believe that the gradient descent approach of Burer-Monteiro can be formally analyzed
as a gradient flow over the Bures-Wasserstein (BW) manifold of Gaussian distributions, which has
recently been applied successfully in the context of variational inference [Lambert et al., 2022], to
show that our method, with a proper choice of step size, converges to a stationary point of Problem 2
in the BW geometry.

On the experimental side, at the inference stage, our method currently draws and rounds 40 samples
from the computed Gaussian distribution and averages the results. It is an active area of focus to
further reduce the impact of this procedure on inference time. In preliminary results, we find that the
process may be sped by using a smaller number of correlated samples via Gaussian quadrature. In
this case, 2K + 1 samples would suffice, which is as small as 3 for the K = 1 version of our method.
Here we note that the prime runtime concern is to reduce the cost of training, which we achieve by
binarizing both weights and activations while outperforming competitors.

Finally, we believe that the application of our method to the binarization of transformer architec-
tures [He et al., 2023, Zhang et al., 2024] and to the general quantization settings, where the weights
can take on more than two values, could have substantial practical consequences.
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A Appendix

A.1 Proofs

Proof of Theorem 1. Both proofs are based on the change of variable:

w = µ+Zr

where r ∼ N (0, IK). For the gradient with respect to the mean vector µ, we have:

∇µEw,x[L(f(x,w), yx)] = Ex

 ∫
RK

(2π)−K/2 ∇µL(f(x,µ+Zr),yx) e
−∥r∥2/2dr


= Ew,x[∇wL(f(x,w), yx)]

For the gradient with respect to the deviation matrix Z, we have:

∇ZEw,x[L(f(x,w), yx)] = Ex

 ∫
RK

(2π)−K/2 ∇ZL(f(x,µ+Zr),yx) e
−∥r∥2/2dr


= Ex

 ∫
RK

(2π)−K/2 ∇w[L(f(x,w),yx) r
T ]|w=Z+r e−∥r∥2/2dr


= Er,x[∇w[L(f(x,w), yx)r

T ]|w=Zr+µ],

A.2 Impact of the Initialization of Z on the Performance

We draw Z from the Xavier Normal Initialization [Glorot and Bengio, 2010] using a normal distribu-
tion with a mean of 0 and a standard deviation given by

σ = s ∗
√

2

fan_in + fan_out
. (4)

where fan_in is the number of input units, fan_out is the number of output units and s is the
scaling factor. To investigate the impact of s to the accuracy, we conduct experiments on CIFAR-
10 and CIFAR-100 dataset with the commonly deployed architectures VGG-17 and ResNet18 for
the 1W32A setting by setting the covariance rank K at 8 with various s values, specifically at
s = 1, 5, 10, 15, 20, 25 by five runs. Figure 2 shows the result. We observe that the accuracy of the
models typically peaks at s = 5 or s = 10. Besides, the standard deviation is relatively low across
all s values, indicating consistent performance. Finally, we set s = 10 across all experiments in
Section 4.

Figure 2: Impact of the initailization of Z on model accuracy in terms of the hyper-parameter s .
The table shows the mean accuracy and standard deviation for different values of s across models
and datasets. Darker colors indicate higher accuracy values. To help reviewers easily see differences
and peak values, we prefer visualizing in table rather than in figure. On small datasets like CIFAR,
visualizing differences in figures is difficult due to minimal differences. For example, the experimental
results of CIFAR-10 + VGG-16 (1W32A) only has 0.1% difference between s = 5 and s = 25.

Configurations s=1 s=5 s=10 s=15 s=20 s=25
VGG-16 + CIFAR-100 (1W32A) 1.48 ± 0.08 72.27 ± 0.17 72.09 ± 0.17 71.96 ± 0.14 71.62 ± 0.29 71.28 ± 0.22
ResNet18 + CIFAR-100 (1W32A) 70.93 ± 0.14 76.64 ± 0.15 77.05 ± 0.41 76.92 ± 0.13 76.40 ± 0.42 76.63 ± 0.25
VGG-16 + CIFAR-10 (1W32A) 87.94 ± 0.21 93.23 ± 0.09 93.25 ± 0.11 93.23 ± 0.02 93.22 ± 0.08 93.13 ± 0.08
ResNet18 + CIFAR-10 (1W32A) 91.95 ± 0.03 94.78 ± 0.08 95.05 ± 0.10 95.06 ± 0.07 95.06 ± 0.09 95.04 ± 0.15
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and the “Our contributions” paragraph of the introduction clearly
state the claims of the paper and the context to which they apply.
Guidelines:
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model well-specification, asymptotic approximations only holding locally). The authors
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depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
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• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
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Answer: [Yes] ,
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Justification: Proofs appear in the Appendix.
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• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.
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4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have provided all implementation details in Section 4. We have released
a limited version of the code in the supplementary material, including training code and
pre-trained models. A full version will be released upon acceptance.
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: For reviewers to verify our results, we have released a limited version of the
code in the supplementary material, including training code and pre-trained models. A full
version will be released upon acceptance.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We have provided all implementation details in Section 4. The full code for
our algorithm and the experimental evaluation will be released upon acceptance.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: For the small datasets CIFAR-10, CIFAR-100, and Tiny-ImageNet, we con-
ducted 5 runs to report the mean and standard deviation. For the very large-scale dataset
ImageNet, following common practice in the literature, we performed a single run to report
the result.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have included all pertinent information on the computer resources in the
experimental section, Section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We follow the NeurIPS code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our work consists of foundational research with no direct societal impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper focuses on fundamental research without posing such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have cited the original papers that produced the codes.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

23


	Introduction
	Related Work
	Variational Inference Approach to BNN Training
	BNN Training via Gaussian Variational Inference
	Solving the SDP over Low-Rank Covariances
	Diagonal Covariances and New Interpretation of Latent-Weights Methods

	Experiments
	Ablation Studies

	Limitations and Open Problems
	Acknowledgments
	Appendix
	Proofs
	Impact of the Initialization of Z on the Performance


