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Abstract

Predicting the 3D conformation of small molecules within protein binding sites is
a key challenge in drug design. When a crystallized reference ligand (template)
is available, it provides geometric priors that can guide 3D pose prediction. We
present a two-stage method for ligand conformation generation guided by such
templates. In the first stage, we introduce a molecular alignment approach based
on flow-matching to generate 3D coordinates for the ligand, using the template
structure as a reference. In the second stage, a differentiable pose optimization
procedure refines this conformation based on shape and pharmacophore similarities,
internal energy, and, optionally, the protein binding pocket. We introduce a new
benchmark of ligand pairs co-crystallized with the same target to evaluate our
approach and show that it outperforms standard docking tools and open-access
alignment methods, especially in cases involving low similarity to the template or
high ligand flexibility.

1 Introduction

Drug design is a complex and resource-intensive process, with timelines that can span a decade and
development costs estimated to be on the order of one billion dollars per approved drug [Wouters et al.,
2020]. To address these challenges, computational approaches have emerged to accelerate early-stage
drug discovery and reduce associated costs. In particular, 3D-based methods show great promise
by enabling in silico screening and optimization of candidate molecules, thereby reducing reliance
on expensive and time-consuming experimental assays. Two major 3D computational approaches
are widely used: 3D Ligand-Based (LB) and 3D Structure-Based (SB). LB methods leverage the
3D structure of known active compounds to identify or design structurally and functionally similar
molecules [Acharya et al., 2011, Petrovic et al., 2022, Bolcato et al., 2022], whereas SB methods use
the 3D structure of the target receptor to predict ligand binding modes or affinities [Anderson, 2003].
Popular examples include LB virtual screening tools such as Rapid Overlay of Chemical Structures
(ROCS) [Hawkins et al., 2007], and SB molecular docking tools like AutoDock Vina [Trott and
Olson, 2010] and Glide [Friesner et al., 2004].

Small molecule 3D alignment, or superposition, is an LB approach that aims to spatially align
a molecule with a known 3D template. A variety of methods have been developed for this task,
reflecting the diverse ways in which molecular similarity can be defined and assessed. In their
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comprehensive review, Hönig et al. [Hönig et al., 2023] categorize six major classes of alignment
strategies: Gaussian volume overlap, field-based, graph-based, volume overlap optimization, distance-
based, and shape-based methods. Despite these advances, accurately aligning molecules remains
challenging, particularly when the template and query share limited structural or chemical features.
Additionally, small molecule superposition is inherently an LB approach [Hönig et al., 2023], meaning
it does not incorporate any structural information from the target protein, potentially overlooking
critical receptor-ligand interactions that can drive binding. Given that many drug discovery projects
benefit from the availability of experimentally resolved receptor-ligand complexes [Hubbard, 2005,
Congreve et al., 2014], there is an opportunity to develop hybrid methods that jointly leverage both
ligand and receptor information to enhance the accuracy of molecular pose prediction.

This work introduces Flow Molecular Alignment with Pose Optimization (FMA-PO), a template-
guided method for 3D molecular pose generation, which combines LB alignment with structure-
aware refinement. FMA-PO employs a Flow Matching (FM) model conditioned on a 3D template
molecule. The model generates 3D conformers for a query molecule from its 2D structure, aligning
them spatially with the template. The poses are then refined via a coordinate-level differentiable
optimization procedure integrating constraints based on shape alignment, pharmacophore similarity,
binding pocket complementarity, and internal energy. To evaluate the performance of our method, we
introduce AlignDockBench, a new benchmark comprising 369 protein-ligand (PL) template–query
pairs. Unlike existing cross-docking benchmarks such as the one proposed by FitDock [Yang et al.,
2022]— which focuses on ligand pairs with high chemical similarity—AlignDockBench also includes
pairs with lower similarity. This enables a more challenging and realistic assessment of LB alignment
and docking methods.

The main contributions of this work are as follows:

- A template-guided 3D molecular pose generation model with FM, capable of producing
accurate ligand conformations even in cases of low template similarity.

- A pose refinement protocol operating directly on all atomic coordinates, improving pose
accuracy and quality.

- AlignDockBench, a benchmark for evaluating template-based docking accuracy.

2 Related Work

3D Alignment Methods. In recent years, various advanced methods have been developed to
improve the accuracy and efficiency of PL docking and virtual screening, including approaches based
on 3D molecular alignment. One of the earliest and most widely adopted tools in this area is ROCS,
which performs molecular alignment based on the overlap of Gaussian functions that represent
molecular shape and, optionally, pharmacophoric features such as hydrogen bond donors, acceptors,
and hydrophobic regions [Hawkins et al., 2007]. More recently, LS-align [Hu et al., 2018] introduced
a fast atom-level alignment algorithm that integrates interatomic distances, atomic mass, and chemical
bond information, enabling both rigid and flexible alignments. Another notable method, FitDock
[Yang et al., 2022], improves docking accuracy by using template fitting to guide initial ligand
conformations, followed by refinement with a scoring function derived from AutoDock Vina [Trott
and Olson, 2010]. ROSHAMBO [Atwi et al., 2024] is another recent method that combines shape
and pharmacophore similarity using Gaussian volume overlap to perform 3D molecular alignment
and similarity scoring.

Flow Matching for Biomolecular Applications. FM is an emerging generative modeling frame-
work that learns a continuous flow, mapping from a source distribution to a target distribution. Its
adaptability has led to increasing adoption in biomolecular applications, including 3D conformer
generation from 2D molecular graph [Hassan et al., 2025]. FM has also been applied to molecular
docking, with methods such as Harmonic Flow [Stark et al., 2024] and FlowDock [Morehead and
Cheng, 2024], generating ligand conformations within protein binding pockets. AlphaFlow [Jing
et al., 2024] extends FM techniques to protein structure prediction, demonstrating their applicability
to macromolecular modeling. Recently, FM has been applied to Molecular Dynamics (MD) through
MD-GEN [Jing et al., 2025], a method that learns to generate physically realistic MD trajecto-
ries. These advances underscore the growing potential of FM to support a wide range of tasks in
computational chemistry and structural biology.
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3 Method

3.1 Overview

The present work introduces a Flow-Matching Molecular Alignment model followed by a Pose
Optimization protocol (FMA-PO), a novel method for generating 3D molecular poses within a protein
binding site from a 2D graph representation. FMA-PO uses a 3D reference ligand as a structural
template (e.g., a crystallized ligand bound to the target protein), which serves as a spatial guide for
predicting the pose of a query compound. The method consists of two main stages, as illustrated in
Figure 1:

1. Flow Molecular Alignment (FMA): an initial 3D conformation of the ligand is generated
using an FM model trained to produce a conformer aligned with the reference ligand
(template), given a 2D molecular graph as input.

2. Pose Optimization (PO): the initial pose is refined through differentiable optimization on
all coordinates using the following objectives:

- Shape and pharmacophore-based alignment optimization: the pose is optimized to
maximize alignment with the reference ligand using shape and pharmacophore scoring
functions. Pharmacophore is defined as a 3D arrangement of features (hydrogen bond
donors/acceptors, hydrophobic groups, aromatic rings, etc.) for a molecule using the
RDKit chemoinformatics library [Landrum].

- Internal energy optimization: the ligand’s geometry is adjusted to minimize its internal
(strain) energy, producing chemically valid conformations.

- Protein pocket integration (optional): binding site information is incorporated to refine
the pose, improve pharmacophore complementarity, and prevent steric clashes.

Figure 1: Overview of the FMA-PO pipeline. The method comprises two stages: (1) 3D FMA of
the ligand to the template; and (2) Pose Optimization, including shape and pharmacophores scores,
energy minimization, and optional refinement based on protein pocket information.

3.2 Flow-Matching Molecular Alignment

The FMA module generates 3D conformations of a query ligand conditioned on the 3D structure
of a reference ligand. Starting from a random 3D conformation of the query 2D graph, the model
progressively denoises it to produce conformations that reproduce the ground-truth pose, spatially
aligned with the reference ligand. This alignment process is illustrated in Figure 2, which shows
the evolution of the query conformation in blue, from initial noise (t = 0) to final alignment with
the reference structure in pink (t = 1). Inspired by pocket-guided generative models like DiffDock
[Corso et al., 2022], which condition ligand generation on protein pocket geometry, our method
instead uses the 3D structure of a template ligand as the conditioning reference. An illustration of
FMA model pipeline is provided in Figure S1.

FM model. FM [Lipman et al., 2022] is a generative modeling approach that constructs a time-
continuous mapping ϕ : [0, 1]× Rd → Rd to transport a prior distribution ρ0 to a target distribution
ρ1. This transformation is learned through a vector field (or velocity field) v : [0, 1] × Rd → Rd

governing the sample evolution, described by the ordinary differential equation (ODE):
d

dt
ϕt(x) = vt(ϕt(x)), ϕ0(x) = x.
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(a) t = 0 (b) t = 0.5 (c) t = 0.75 (d) t = 1

Figure 2: Evolution of the query ligand’s conformation (in blue) during the FM-MA denoising
process. The template ligand is shown in pink. Starting from a noisy initial conformation (t = 0),
the model progressively refines the 3D coordinates to align the query ligand with the template pose
(t = 1).

That is, ϕt(x) represents the point x transported along the vector field v from time 0 to time t.
To construct a feasible transport trajectory, [Tong et al., 2023] [Albergo et al., 2023] introduces a
time-differentiable interpolant:

It : Rd × Rd → Rd such that I0(x0, x1) = x0 and I1(x0, x1) = x1.

Following [Hassan et al., 2025], we choose a linear interpolation between samples x0 ∼ ρ0 and
x1 ∼ ρ1:

It(x0,x1) = αtx1 + βtx0, where αt = t, βt = 1− t,

and similarly define the conditional probability path ρt(x|x0,x1) as a Gaussian distribution centered
on It(x0,x1) with variance σ2

t :

ρt(x|x0,x1) = N (x|It(x0,x1), σ
2
t I), where σt = σ

√
t(1− t).

The time-dependent velocity field governing sample evolution is then given by:

vt(x) =
d

dt
αtx1 +

d

dt
βtx0 +

d

dt
σtz, z ∼ N (0, I).

This results in the explicit formulation: vt(x) = x1 − x0 +
1−2t

2
√

t(1−t)
z.

Given the probability path ρt and the vector field vt, the FM training objective is defined as:

L = Et∼U(0,1),x∼ρt(x0,x1)||vθ(t,x)− vt(x)||2,

where vθ is the learned velocity field. The optimal solution ensures that vθ generates the probability
path flow ρt [Tong et al., 2023].

For inference, a sample is drawn from ρ0, and the final conformation x1 is obtained by numerically
integrating the ODE using the Euler method and the learned velocity field vθ:

xt+∆t = xt + vθ(t,xt)∆t.

More details on the training and sampling algorithms are provided in supplementary A.2.

Harmonic Prior. Unlike diffusion-based models that typically require a Gaussian prior, the FM
framework allows flexibility in choosing the initial distribution ρ0. To better capture the structural
properties of molecular graphs, a harmonic prior is used, following the formulations in [Jing et al.,
2023] and [Stark et al., 2024]. This prior ensures that atom positions in the initial conformation
reflect molecular connectivity by encouraging bonded atoms to remain close in sampled structures.
The harmonic prior is defined as:

ρ0(x0) ∝ exp

(
−1

2
xT
0 Lx0

)
.

where L is the laplacian of the molecular graph, and x0 ∈ R1×N representing one of the three
Cartesian coordinates (x, y, or z) of the N atoms in the molecule. This formulation ensures that the
sampled initial conformations maintain local structural coherence. The sampling algorithm is detailed
in supplementary A.2.
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Molecular Graph Construction. FMA is a molecular graph neural network that encodes a graph
comprising both query and template ligands. It jointly represents their structures to predict the
velocity field of the query ligand for conformation denoising. The graph representation is illustrated
in Appendix A.1, and is constructed as follows:

- Atomic-level nodes: Each heavy atom in both ligands is represented as a node with features
encoding atomic properties, including atomic number, total degree, formal charge, chiral
tag, total number of hydrogen atoms, and hybridization state.

- Functional group nodes: To capture higher-level chemical structures, ligands are decom-
posed into functional groups using the BRICS fragmentation method [Degen et al., 2008].
Each resulting fragment is treated as a distinct node in the graph, with a scalar feature
encoding the fragment size (number of atoms) assigned to each functional group node.

- Covalent edges: Covalent bonds within each ligand are represented as graph edges, with
associated edge features encoding bond type (e.g. single, double, triple, or aromatic),
conjugation status, ring membership, and bond stereochemistry.

- Functional group connections: Functional group nodes are connected to their correspond-
ing constituent atoms, enabling feature aggregation from atomic-level representations. The
edge features for these connections are scalar values set to zero.

- Dense edges: Functional groups within and across the query and template ligands are fully
connected. Distances between functional groups are encoded using a radial basis function
(RBF), following [Unke and Meuwly, 2019] and [Hassan et al., 2025].

Model Architecture. The constructed molecular graph, which includes both the query and template
ligands, is first processed by a multilayer perceptron (MLP) to embed node and edge features.
Next, a Multi-Head Attention with Edge Bias (MHAwithEdgeBias) encoder [Qiao et al., 2024] is
applied to extract topological and contextual information from the molecular graph. The attention
mechanism facilitates effective information exchange between the two ligands, ensuring that the query
ligand remains informed by the reference ligand. Finally, a time-dependent Vector Field Network
(VFN), inspired by [Qiao et al., 2024], predicts the velocity field of the query ligand, based on the
molecular graph, the positions of the reference ligand, and positions of the query ligand at time t.
Further architectural and algorithmic details are provided in Appendix A.3, and training details and
hyperparameters in Appendix A.4.

3.3 Pose Optimization

The initial pose of the query molecule, predicted by FMA, is refined by directly optimizing its
atomic coordinates. This process is formulated as a differentiable optimization problem, where
gradient descent minimizes a weighted sum of scoring functions. These functions include ligand-
based terms comparing the query ligandMquery to the reference ligandMtemplate, and optionally,
receptor-based terms involving the template pocket Ptemplate. Unlike traditional methods that optimize
rigid-body transformations or torsion angles, PO updates atomic positions directly, enabling flexible
and fine-grained conformation refinement.

Shape-based Tanimoto Score (STS). Each heavy atom in the molecular structure is modeled as
a spherical Gaussian function, following the molecular volume representation introduced by Grant
and Pickup [1995], Grant et al. [1996]. This formulation enables the computation of the molecular
volume VA, and the overlapping volume VAB of two molecules A and B, as detailed in Appendix
B.1. Tanimoto (or Jaccard) score based on atoms Gaussian volumes provides a normalized measure
of shape similarity:

Tanimotoa(A,B) =
V a
AB

V a
A + V a

B − V a
AB

,

where a refers to atom-based volumes. The STS between the templateMtemplate and the query
Mquery is defined as the Tanimotoa similarity between atoms:

SSTS(Mquery,Mref ) = Tanimotos(Mquery,Mref ),

and is differentiable with respect to the query ligand coordinates.
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Pharmacophore-based Tanimoto Score (PTS). Pharmacophoric features are represented using
spherical Gaussian functions in a similar fashion. Each pharmacophoric feature type (e.g., hydro-
gen bond donor, acceptor, aromatic) is treated independently in the similarity computation. We
define a pharmacophore-based alignment score that quantifies the degree of overlap between the
pharmacophoric volumes of two ligands—higher values indicate that ligands share similar 3D phar-
macophoric profile. This approach does not require explicit matching or pairing of features between
the template and query molecules. Instead, the overlap between Gaussian spheres with the same
pharmacophoric label is directly accumulated into the final pharmacophoric overlapping volume
score. The PTS computed on the pharmacophoric volumes between the query Mquery and the
referenceMref is then defined as:

SPTS(Mquery,Mtemplate) = Tanimotop(Mquery,Mtemplate),

where p refers to pharmacophore-based volumes with details provided in Appendix B.2.

Protein Pocket Score (Optional). Receptor-based terms are optionally included in optimization.
Both atoms and pharmacophoric features of the template pocket Ptemplate are modeled using Gaussian
functions. Two scores are computed between the query ligand and the template pocket:

- A shape clash penalty based on atomic overlap, using STS to measure overlap between
Ptemplate andMquery.

- A pharmacophoric complementarity, using PTS to evaluate the alignment between the query
ligand and template pocket pharmacophores. For pocket pharmacophore types, an inversion
is applied to model complementary interactions. More details are provided in Appendix B.2.

The resulting receptor-based pocket score is defined as:

Spocket = SPTS(Mquery,Ptemplate)− SSTS(Mquery,Ptemplate).

This formulation encourages pharmacophoric alignment while penalizing steric clashes between the
ligand and the template binding pocket.

Internal Energy. Optimizing atomic coordinates directly, rather than restricting moves to transla-
tions, rotations, and torsions, offers greater flexibility but can easily lead to physically unrealistic
molecular conformations. To ensure physically plausible structures, we incorporate the ligand’s inter-
nal energy into the optimization process, thereby mitigating artifacts such as unrealistic bond lengths
and angles that can arise from other scoring terms. The internal energy, Einternal, is computed using
molecular force fields, specifically General Amber Force Field 2 (GAFF2) [Wang et al., 2004], which
defines energy functions based on atomic types and spatial configurations. The detailed formulation
is provided in Appendix B.3.

Optimization Objective. The optimization objective combines all scores into a weighted loss
function defined as follows:

Loptim = − α SSTS(Mquery,Mtemplate)− β SPTS(Mquery,Mtemplate)

− ω Spocket(Mquery,Ptemplate) + γ Einternal(Mquery).

Further details on the optimization algorithm and hyperparameters are provided in Appendix B.

3.4 Benchmark and training dataset construction

AlignDockBench. AlignDockBench is a curated benchmark designed to evaluate template-based
molecular docking and 3D molecular alignment methods. Unlike common docking benchmarks such
as PoseBusters [Buttenschoen et al., 2024], which do not include reference ligands, AlignDockBench
provides co-crystallized template ligands for each query. This enables the evaluation of methods
that leverage known references to guide 3D conformation prediction. The benchmark includes
369 PL query structures, each associated with a corresponding PL template structure. To construct
AlignDockBench, we selected 61 diverse PL templates from the DUD-E [Mysinger et al., 2012]
and DEKOIS [Bauer et al., 2013] datasets, spanning major target classes such as kinases, proteases,
nuclear receptors, and GPCRs. For each template, we searched the Protein Data Bank (PDB) for
query PL complexes whose binding pockets could be structurally aligned to the pocket template.
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Binding pockets were defined as all residues within 12Å of the ligand. Using TM-align [Zhang
and Skolnick], we rigidly aligned (via translation and rotation) query pocket to the pocket template
and retained only those with a backbone Root Mean Square Deviation (RMSD) below 1.2Å. To
ensure sufficient 3D structural similarity between ligands, we further filtered query-template pairs
with an STS score greater than 0.5. The mapping of queries and associated templates is provided in
Appendix C.1, along with PL complex preparation details in Appendix C.2. Protein class diversity is
summarized in Figure S6. The benchmark is available at Zenodo 2.

Training set. Training FMA requires a dataset of molecular pairs with ground-truth alignments.
Following the protocol used in AlignDockBench, we selected ligand pairs from the PDB that bind to
the same protein pocket, assuming that co-binding implies structural and functional similarity. We
further restricted to pairs in which both ligands have molecular weights above 170 Da. Additionally,
the training set was augmented with compounds from the ChEMBL database3, following a protocol
similar to that used for constructing the BindingNet and BindingNet2 datasets [Li et al., 2024, Zhu
et al., 2025]. To prevent train–test leakage, we excluded any training molecule with a Morgan finger-
print [Rogers and Hahn, 2010] Tanimoto similarity greater than 0.5 to any ligand in AlignDockBench
(Figure S7). The resulting training set contains 301, 348 complex pairs covering 111, 678 unique
molecules.

4 Experiments

Experimental Setup. We evaluate FMA-PO on AlignDockBench, comparing its performance to
both traditional docking tools and state-of-the-art open-access alignment methods. Docking baselines
include Vina (v1.2.5) [Trott and Olson, 2010] and rDock (v24.04.204-legacy) [Ruiz-Carmona et al.,
2014], while alignment baselines include FitDock (v1.0.9) [Yang et al., 2022], LS-align (Version
J201704171741) [Hu et al., 2018], and ROSHAMBO [Atwi et al., 2024]. Detailed configurations and
hyperparameters used for each method are provided in Appendix D.1. Alignment-based methods
receive the 2D graph of the query molecule along with the 3D structure of the template ligand and,
optionally, the protein. In contrast, in our experiments, docking methods do not use the template
ligand information. For each method, we generate 10 candidate poses and evaluate the top-ranked
one using the scoring function originally designed for that method. The selected pose is then assessed
by computing the RMSD to the experimental ligand structure. Pose selection of our method is guided
by a scoring function defined as:

Sscore = SSTS(Mquery,Mtemplate) + SPTS(Mquery,Mtemplate)− SVina(Mquery,Ptemplate),

where SVina represents the Vina docking score [Trott and Olson, 2010], rescaled to [0, 1] interval
using Min-Max normalization across the samples. Two pose selection strategies are explored:

- FMA-PO: The top-ranked pose predicted by FMA, according to Sscore, is selected and
subsequently refined via PO.

- FMA-PO+: All sampled poses are first refined through PO, and the final pose is selected
according to Sscore.

Results. Table 1 summarizes the performance of each method in terms of mean RMSD, the
proportion of molecules with RMSD below 2Å, and the average runtime per molecule. Both FMA-
PO and FMA-PO+ outperform competing methods, achieving the lowest mean RMSD and the highest
proportion of alignments with RMSD below 2Å. Examples of poses generated with each method are
provided in Figure S13.

To assess the effect of template similarity on alignment performance, AlignDockBench was divided
into two similarity bins ([0, 0.5[ and [0.5, 1.0]), based on Tanimoto similarity between the query
and template compounds. The similarity was computed using two approaches: first, with standard
Morgan fingerprints [Rogers and Hahn, 2010] derived from the complete molecular structures (Figure
3a); and second, with Morgan fingerprints computed on the molecules’ Generic Murcko scaffolds
[Bemis and Murcko, 1996], which capture the core chemical framework by removing side chains and

2https://anonymous.4open.science/r/AlignDockBench-6756/
3https://www.ebi.ac.uk/chembl/
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Table 1: Performance comparison of 3D molecular alignment and docking methods on AlignDock-
Bench in a crossdocking scenario. Methods marked with an (*) use GPU. For methods that did not
align all 369 molecules, percentages are reported as X/Y, where the first value is calculated over
aligned molecules only, and the second over the total set of 369 molecules.

Method # of Molecules
Aligned

Mean RMSD
(Å ↓)

% of Molecules
with RMSD < 2Å (↑)

Average
Runtime (s)

FMA∗ 369/369 1.97 ± 1.36 64.77 0.83
FMA-PO∗ 369/369 1.86 ± 1.42 69.38 3.66
FMA-PO+∗ 369/369 1.62 ± 1.33 77.78 27.96
FitDock 313/369 2.93 ± 3.73 53.67 / 45.53 19.71
LSalign 368/369 2.54 ± 2.00 54.35 / 54.2 5.67
ROSHAMBO∗ 369/369 2.87 ± 2.09 30.35 4.90
rDock 369/369 4.52 ± 3.28 34.42 20.68
Vina 368/369 3.39 ± 2.81 47.28 / 47.15 72.98

replacing all atoms with carbons (Figure 3b). We further analyzed how molecular complexity affects
performance by evaluating results with respect to the number of atoms (Figure 3c) and the number of
rotatable bonds (Figure 3d) in the query molecules. For each bin and each method, we plotted the
fraction of molecules achieving RMSD below 2Å (Figure 3).

As expected, alignment accuracy generally declines with decreasing molecular similarity to the
template or increasing structural complexity. Nonetheless, FMA-PO and FMA-PO+ consistently
outperform all baselines across all similarity and complexity bins, demonstrating their robustness in
challenging scenarios. Indeed, FMA generates poses without relying on explicit structural similarity,
instead leveraging global spatial priors derived from the reference conformation. When the query
molecule shares high similarity with the template, 3D LB alignment methods such as LS-align and
FitDock tend to outperform Vina and rDock SB approaches, highlighting the value of exploiting
reference ligand information to guide pose generation in these scenarios.

All results were obtained under a cross-docking setup, where the pocket structure of the template
ligand is used, simulating the realistic scenario in which the query ligand’s pocket structure is
unavailable. Additional experiments were conducted under a redocking setup, using the query
ligand’s own crystal pocket. Results are provided in the Table S4. We further assessed the quality of
generated poses using the PoseBusters test suite [Buttenschoen et al., 2024], with detailed results
available in Appendix D.3. Ablation studies are presented in Appendix D.4. Comparison to Harmonic
Flow Stark et al. [2024] is provided in D.2.3.

Runtime. In terms of computational efficiency, FMA-PO achieves a competitive average runtime of
3.66 seconds per molecule. As expected, FMA-PO+ incurs a higher runtime (27.96 s per molecule)
due to the additional PO steps involving all samples but resulting in improved alignment accuracy.
Both FMA-PO and FMA-PO+ benefit from GPU 4 acceleration during the FMA stage, whereas
conventional methods such as rDock and FitDock were executed using a single CPU core, and Vina
was run with four CPU cores. More details are provided in D.2.4.

5 Discussion

Ligand alignment methods followed by 3D LB similarity calculations are commonly used in virtual
screening for hit identification [Jiang et al., 2021]. FMA-PO+, combined with a scoring function
that integrates STS, PTS, and optionally Spocket, fits naturally within this framework. Furthermore,
the proposed method could be integrated into a de novo generative design workflow as a reward
signal, encouraging the generation of compounds that exhibit shape and pharmacophore similarity
to a reference ligand, as well as complementarity to the protein binding pocket. Indeed, biasing
molecular design towards compounds similar to known actives is particularly relevant during the hit
discovery and hit-to-lead optimization stages [Bolcato et al., 2022].

4Experiments were run on a single NVIDIA T4 Tensor Core GPU.
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(a) Stratified by the structure similarity between query and template. (b) Stratified by the Murcko scaffold similarity between query and
template.

(c) Stratified by the number of atoms in the query ligand. (d) Stratified by the number of rotatable bonds in the query ligand.

Figure 3: Performance of molecular alignment and docking methods on AlignDockBench in a
cross-docking scenario. Bar plots (left y-axis) indicate the percentage of molecules with RMSD
below 2Å, while the line plot (right y-axis) shows the number of molecules in each bin. Each figure
stratifies the results based on a different structural or chemical property of the query ligand.

FMA-PO+ is capable of generating 3D poses of candidate compounds that are directly suitable for
downstream activity prediction tasks. Indeed, both deep learning-based scoring functions [Shen
et al., 2023, Valsson et al., 2025] and physics-based approaches [Greenidge et al., 2013] rely on a 3D
representation of the receptor-ligand complex. In addition, using FMA-PO+ generated alignments to
augment training datasets represents a promising strategy to enhance the performance of predictive
or generative models. This aligns with recent efforts such as BindingNet V2 [Zhu et al., 2025],
which uses alignment-based data augmentation to boost the performance of deep learning models.
In particular, FMA itself could benefit from such augmented data to improve its performance in an
iterative training process. Future work could explore conditioning FMA on either a single or a set
of reference ligands, along with the protein binding pocket, thereby incorporating more structural
context into the pose generation process Guan et al. [2025]. Additionally, addressing flexible receptor
scenarios, where both the 3D receptor and ligand are predicted, could be interesting. It is worth noting
that, compared to non-deep learning methods, FMA-PO remains computationally more intensive,
suggesting a potential direction for efficiency improvements.

6 Conclusion

This work presents a template-guided framework for 3D molecular pose generation that combines the
strengths of FM generative models with differentiable optimization. By conditioning the model on a
reference ligand, the proposed FMA-PO approach achieves accurate molecular alignment, outper-
forming both classical docking tools and open-access alignment methods on the AlignDockBench
template-based cross-docking benchmark. It remains robust even in challenging scenarios with low
molecular similarity to the template and high ligand flexibility. These results highlight the potential
of integrating known ligand geometries into generative frameworks to enhance pose prediction in
structure-based drug design. Beyond performance gains, our framework enables sampling for data
augmentation and direct integration with downstream predictive models. Future directions include
incorporating receptor context into the generative process, extending the approach to flexible receptor
scenarios (e.g., induced-fit), and assessing its impact on molecular design applications.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract claims a two-stage approach for template-guided ligand pose
generation, including flow-matching-based alignment and differentiable pose optimization,
which are detailed in the section 3. The performance advantage over standard docking and
open-access alignment methods is demonstrated in the section 4.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss limitations and explore future work in section 5 and Apendix D.3.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: This paper relies on established theoretical frameworks, such as flow-matching
theory, with all relevant assumptions and proofs cited accordingly. No new theoretical
results are introduced.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Yes, the paper provides all the necessary details to reproduce the main experi-
mental results, including the description of the methods, benchmark data, and evaluation
protocols, ensuring reproducibility.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: No, we do not provide open access to the code, as it is proprietary and
developed within a commercial context. However, we will release the AlignDockBench
benchmark to support reproducibility and comparative evaluation.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Datasets are detailled in section 3.4 and models hyperparameters are provided
in Appendix A.4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Our results focus on the novel method introduced (first time applying deep
learning methods to perform molecular alignment), and the experiments were conducted
on a representative test set of data (n > 300). We did not feel necessary to report error bars
due to computational resource and time constraints, but we are open to provide them upon
request.
Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Details are provided in Appendix A.4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Yes, our research aligns with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [No]
Justification: This paper aims to advance the field of AI for health. While there are potential
societal implications, both positive (e.g., accelerating therapeutic development) and negative
(e.g., potential misuse for harmful compound design), none that we feel require specific
acknowledgment have been identified at this stage.
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Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [No]

Justification: This paper aims to advance the field of AI for health. While there are potential
risks of misuse, none that we feel require specific safeguards have been identified, given the
scientific focus of our work.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: : All creators and original owners of work are cited in the references of the
paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
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• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We will release the AlignDockBench benchmark, the details are provided in
section 3.4, along with an access link.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No crowdsourcing or research with human subjects is done in this work.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No IRB Approvals or equivalent for research with human subjects are done in
this work.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: No, LLMs were not used as an important, original, or non-standard component
of the core methods in this research, so no declaration is required.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Flow-Matching Molecular Alignment model details

Figure S1: Illustration of FMA model pipeline.

A.1 Molecular graph construction

The FMA model operates on a hybrid molecular graph G constructed from both the query and
template ligands. The total number of atoms is denoted as Natoms = N query

atoms +N template
atoms , where N query

atoms

and N template
atoms are the numbers of atoms in the query and template molecules, respectively. The graph

contains two types of nodes: atomic-level nodes and functional group nodes. Let Nnodes denote the
total number of nodes in the graph, including both atoms and functional groups. Edges include
covalent bonds, dense inter-ligand functional group connections, and hierarchical links between
atoms and their corresponding functional groups. The total number of edges is denoted by Nedges.

A.2 Flow-Matching Training and Inference Algorithms

The inference and training procedures of the FMA model are outlined in Algorithm S1 and
Algorithm S2, respectively. In addition, the harmonic sampling process used to generate
an initial random conformation from the reference structure is described in Algorithm S3.

Algorithm S1: INFERENCE

Input: Query 2D graph Gquery, template moleculeMtemplate, number of sampling steps N ,
number of samples K

G ← Construct graph with Gquery andMtemplate

for i← 1 to K do
Sample query positions Ci ∼ HARMONICSAMPLING(Gquery)
Center Ci onMtemplate

for n← 0 to N − 1 do
t← n

N

∆t← 1
N

Predict vector field v̂ ← FMA(G, t, Ci)
Update positions Ci ← Ci + v̂ ×∆t

return C1, ..., CK

A.3 FMA Molecular Alignment model

FMA (Algorithm S4) takes as input a molecular graph G representing both query and template ligands,
along with their atom coordinates. Positional features x concatenates the ground-truth positions of
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Figure S2: Molecular graph G with query and template ligand. Blue nodes represent atoms, while
orange nodes denote functional groups. The graph incorporates multiple edge types: purple edges for
covalent bonds, green edges for dense interconnections, and orange edges linking functional groups
to their constituent atoms.

Algorithm S2: TRAINING

Input: Query molecules with 2D graphs [G1
query, ..., G

K
query], true coordinates [C1, ..., CK ] and

associated template molecules [M1
template, ...,MK

template], number of epochs Nepochs,
learning rate α.

for n← 1 to Nepochs do
for i← 1 to K do

Sample time t ∼ U([0, 1])
Gi ← Construct graph with Gi

query andMi
template

Sample query positions Ci
0 ∼ HARMONICSAMPLING(Gi

query)

Center C0 onMi
template

Sample Ci
t = t× Ci + (1− t)× Ci

0 + σ2t(1− t)z, z ∼ N (0, I)
Compute vector field ut ← Ci − Ci

0 +
1−2t

2
√

t(1−t)
z

Predict vector field v̂θ ← FMA(Gi, t, Ci
t)

Compute loss L ← ||v̂θ − ut||2
Take gradient step θ ← θ − α×∆θL

return Trained vθ

Algorithm S3: HARMONICSAMPLING

Input: 2D Molecular graph G
L← Laplacian of G L ∈ RNatoms×Natoms

D,P← Diagonalize Laplacian L D,P ∈ RNatoms×Natoms

Sample x ∼ N (0, I) x ∈ RNatoms×3

x← PD− 1
2x

return x

the template atoms with the query atom coordinates at diffusion step t. The model outputs the vector
field vquery used for query pose prediction. Initially, node and edge features of G are independently
embedded into vectors of dimensions cn and ce, respectively, using separate MLPs. All node and
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edge embeddings are projected into a common feature space with identical dimensionality, thereby
transforming the heterogeneous graph into a homogeneous representation. To preserve type-specific
information, each node and edge is annotated with its corresponding type attribute. The resulting
representation is processed by a stack of NMHA

blocks MHAWITHEDGEBIAS layers (Algorithm S3 in
[Qiao et al., 2024]), jointly updating node and edge embeddings. The processed node embeddings are
then passed to the VECTORFIELDNETWORK model (Algorithm S5), which applies a stack of NV FN

blocks
layers of POINTSETATTENTIONWITHEDGEBIAS (Algorithm S8 in [Qiao et al., 2024]), followed
by a GATEDUPDATE layer (Algorithm S6), adapted from [Qiao et al., 2024]. These blocks operate
directly on scalar and vector node representations, denoted fs and fv respectively, incorporating
positional information x and diffusion time t to produce the final learned vector field vquery.

Algorithm S4: FMA
Input: Molecular graph G with adajency matrix X, nodes features fnode, edges features fedge,

time t, template-query positions x ∈ RNatoms×3 at time t,
NMHA

blocks , NMHA
heads , NV FN

blocks , N
V FN
heads .

for j in nodes types do
f j
node ← MLP(f j

node) f j
node ∈ RNj

nodes×cn

for j in edge types do
f j
edge ← MLP(f j

edge) f j
edge ∈ RNj

edges×ce

G ← TOHOMOGENEOUS(G) ; // Convert to Homogeneous Graph
for k = 1 to NMHA

blocks do
f ′
node, _, z ← MHAWITHEDGEBIASk(fnode, fnode, fedge,X, NMHA

heads )
f ′
node ∈ RNnodes×cn

fnode ← MLPk(fnode + f ′
node) + fnode fnode ∈ RNnodes×cn

fedge ← MLPk(fedge + LINEARNOBIASk(z)) + fedge fedge ∈ RNedges×cn

fv ← 0 ∈ RNnodes×3×cn ; // Initialize vector features as zero tensors
x← x−mean(x) ; // Center positions
v ← VECTORFIELDNETWORK(fnode, fv, fedge,x, t, NV FN

blocks , N
V FN
heads ) v ∈ RNnodes×3

v ← Extract atomic nodes from v v ∈ RNatoms×3

vquery ← Extract Query vector from v vquery ∈ RNquery
atoms×3

return vquery

Algorithm S5: VECTORFIELDNETWORK

Input: Scalar features fs ∈ RNnodes×cn , vector features fv ∈ RNnodes×3×cn , edges features
fe ∈ RNedges×ce , query-template positions x, time t, Nblocks, Nheads

fs← CONCAT(fs, t) fs ∈ RNnodes×(cn+1)

for k = 1 to Nblocks do
fs, fv ← POINTSETATTENTIONWITHEDGEBIASk(fs, fv, fe, x,Nheads)
fs ∈ RNnodes×(cn+1), fv ∈ RNnodes×3×(cn+1)

fs, fv ← GATEDUPDATEk(fs, fv, (cn + 1))
fs ∈ RNnodes×(cn+1), fv ∈ RNnodes×3×(cn+1)

_ , v ← GATEDUPDATE(fs, fv, 1) v ∈ RNnodes×3

return v

A.4 Training Details and Hyperparameters

We trained FMA for 100 epochs with a batch size of 128 on a single NVIDIA GeForce RTX 2080 Ti
GPU. We used the AdamW optimizer with a learning rate of 3× 10−4 and a weight decay of 10−5.
Hyperparameters are detailed in Table S1.
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Algorithm S6: GATEDUPDATE

Input: Scalar features fs ∈ RNnodes×cn , vector features fv ∈ RNnodes×3×cn , output dimension
d

floc ← CONCAT(fs, ∥fv∥2) floc ∈ RNnodes×(cn+cn)

floc ← LAYERNORMMLP(floc) floc ∈ RNnodes×(cn+d)

fs, fgate ← SPLIT(floc) fs ∈ RNnodes×c, fgate ∈ RNnodes×1×d

fgate ← SIGMOID(fgate)
fv ← LINEARNOBIAS(fv) fv ∈ RNnodes×3×d

fv ← fv ⊙ fgate ; // Element wise multiplication
return fv

Table S1: Hyperparameters used for the training of FMA.

Hyperparameter

Nodes embedding dimension (cn) 128

Edges embedding dimension (ce) 32

MHAWITHEDGEBIAS heads (NMHA
heads ) 6

MHAWITHEDGEBIAS blocks (NMHA
blocks) 6

VECTORFIELDNETWORK heads (NVFN
heads) 6

VECTORFIELDNETWORK blocks (NVFN
blocks) 6

Noise scale (σ) 0.1

Total parameters 3.5M

B Pose Optimization details

B.1 Shape-based Tanimoto Score

Following the molecular volume representation proposed in [Grant and Pickup, 1995, Grant et al.,
1996], each atom in the molecular structure is modeled as a spherical Gaussian function. An atom
located at coordinates Ri = (xi, yi, zi) with a radius σi is represented by a Gaussian density function:

ρi(ri) = pi exp(−αir
2
i ) with αi =

ki
σ2
i

,

where ri = |r −Ri| is defined as a distance vector from the atomic center Ri, and parameters pi, ki
are atomic-type-specific chosen to ensure that the Gaussian atomic volume matches the van der Waals
hard-sphere volume: V a

i = 4π
3 σ3

i , where the exponent a refers to atom-based gaussian volumes.

According to the Gaussian product theorem, the product of two Gaussian spheres results in another
Gaussian function. Utilizing this property, explicit formulas can be derived to compute the intersection
volume between two atomic Gaussians, enabling the calculation of both molecular volumes and
overlapping volumes between molecules [Grant and Pickup, 1995, Grant et al., 1996]. The intersection
volume between atoms i and j is expressed as:

V a
ij = pipjKij(

π

αi + αj
)3/2 with Kij = exp(−

αiαjR
2
ij

αi + αj
),

where Rij is the distance between atoms i and j. The total volume of a molecule is expressed as:

V g =
∑
i

V a
i −

∑
i<j

V a
ij +

∑
i<j<k

V a
ijk − ...

Similarly, the overlapping volume between molecules A and B is given by:

V g
AB =

∑
i∈A,j∈B

V a
ij −

∑
i,j∈A,k∈B

V a
ijk −

∑
i∈A,j,k∈B

V a
ijk + ...
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For computational tractability, we approximate the overlapping volume by truncating this series at
second order, thus including only pairwise and triplet intersections.

B.2 Pharmacophore scoring

Pharmacophore-based Tanimoto Score. Pharmacophores of a molecule are 3D arrangements of
specific chemical features, such as hydrogen bond donors, hydrogen bond acceptors, hydrophobic
groups, and aromatic rings. These features are identified using RDKit. Each pharmacophore feature
is positioned at the barycenter of the corresponding atomic group and assigned a specific type (e.g.,
hydrogen donor, hydrogen acceptor, aromatic, etc.). Pharmacophores are modeled as spherical
Gaussian functions with a fixed radius of 1.7Å, comparable to the van der Waals radius of a carbon
atom. The overlapping pharmacophore volume between molecules A and B is given by:

V p
AB =

∑
i∈A, j∈B

V p
ij 1{T (i)=T (j)}

−
∑

i,j∈A, k∈B

V p
ijk 1{T (i)=T (j)=T (k)}

−
∑

i∈A, j,k∈B

V p
ijk 1{T (i)=T (j)=T (k)}

+ . . .

where V p
ij represents the intersection volume between two Gaussians pharmacophores of types

T (i) and T (j) from molecules A and B. The indicator function 1{T (i)=T (j)} ensures that only
pharmacophores of the same type are considered for overlapping volume calculations. In practice,
we approximated the overlapping pharmacophore volume by truncating this series at the first order,
including only pairwise interactions.

Figure S3: Aligned ligands with pharmacophores overlapping. Ligands carbons are shown in
grey. Gaussian pharmacophore spheres are depicted as sphere mesh. The color of each sphere
encodes a specific pharmacophoric feature: cyan for hydrogen bond donors, magenta for hydrogen
bond acceptors, red for negatively charged groups, blue for positively charged groups, and limon for
aromatic groups.

Pharmacophoric complementarity. The concept of pharmacophoric complementarity in our method
stems from Gaussian-based shape similarity modeling. Specifically, once a Gaussian sphere is labeled
with a pharmacophoric feature (e.g., hydrogen bond donor (HBD), hydrophobic, etc.), it becomes
possible to compute a pharmacophoric similarity between two ligands based on the overlap of these
labeled Gaussian volumes.

When introducing the protein pocket into the PO process, we extended this idea to model complemen-
tarity between ligand and pocket by maximizing the overlap between complementary pharmacophoric
Gaussians. For instance, Hydrogen Bond Donor (HBD) and Hydrogen Bond Acceptor (HBA) were
defined as complementary, as well as cationic and anionic features (Figure S4). During the PO, the
SPTS term of the objective function increases the overlap between such complementary features
from the ligand and the pocket, whereas the shape −SSTS term prevents steric clashes by penalizing
excessive overlap between atoms.
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Regarding hydrogen bonding in particular, we model the HBD pharmacophoric center as a Gaussian
sphere located at the position of the donor hydrogen atom. If this hydrogen atom (and thus its
associated Gaussian sphere) is positioned near an HBA-labeled Gaussian from the pocket, the overlap
between these spheres is maximized, effectively favoring geometries consistent with hydrogen bond
formation. The geometry naturally tends toward a favorable X−H · · ·X angle close to 180◦, since
this configuration maximizes Gaussian overlap. Simultaneously, the internal energy term in the PO
loss encourages the donor group (e.g., C−X−H) to remain in energetically favorable conformations.

Figure S4: Illustration of pharmacophoric complementarity within a PL binding site. 3D
structure of the human M2 muscarinic receptor in complex with the ligand QNB (PDB ID: 5ZK3)
[Suno et al., 2018], shown in grey. Gaussian pharmacophore spheres are depicted as sphere mesh to
illustrate key interaction features within the binding site. The color of each sphere encodes a specific
pharmacophoric feature: cyan for hydrogen bond donors, magenta for hydrogen bond acceptors, red
for negatively charged groups, and blue for positively charged groups.

As an illustrative example, consider the protein–ligand complex (PDB: 1NJS) shown in Fig. S5. The
ligand KEU (sequence number 510, chain A) contains two hydroxyl groups, C5-OA1 and C5-OA2,
both positioned near the carboxylate group of ASP 144 (chain A):

• The hydroxyl oxygen OA1 belongs to a donor group (C5-OA1-H1) and lies near the acceptor
OD1 of ASP 144.

• The second hydroxyl oxygen OA2 (in C5-OA2-H2) is close to the second acceptor OD2.

At the beginning of PO, hydrogen atoms H1 and H2 are added by RDKit without considering the
protein pocket. However, once optimization begins, complementary HBD Gaussians are assigned to
these hydrogens, and their overlap with HBA Gaussians on OD1 and OD2 is maximized.

B.3 Internal Energy components

Internal energy components are computed using GAFF2 [Wang et al., 2004] force field parame-
ters that depend on atomic and chemical bond properties. These parameters are parsed using the
OpenMM[Eastman et al., 2023] package and energy equations are implemented in PyTorch, ensuring
differentiability with respect to ligand coordinates. Following OpenMM formulation, the internal
energy is decomposed into two main components:

- Bonded forces: These include harmonic bond forces, harmonic angle forces, and periodic
torsion forces, which account for bond stretching, angle bending, and torsional rotations.

- Non-bonded interactions: These include Lennard-Jones interactions, modeling van der
Waals forces, and Coulomb interactions, which account for electrostatic forces between
partial atomic charges.

Hence, internal energy is computed as follows:
Einternal = Ebond + Eangle + Etorsion + Elj + Ecoulomb,
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Figure S5: Illustration of iterative optimization of hydrogen bonding interactions in a protein–
ligand complex. 3D structure of the human GAR Tfase (carbons in cyan) in complex with the
hydrolyzed form of 10-trifluoroacetyl-5,10-dideaza-acyclic-5,6,7,8-tetrahydrofolic acid Zhang et al.
[2003] (carbons in grey). (A) The protein–ligand binding site shows two HBD (Donor1, Donor2) and
two HBA (Acceptor1, Acceptor2). (B) Time evolution of donor–acceptor distances (H1–Acceptor1,
H2–Acceptor2) over the optimization iterations. (C) Time evolution of hydrogen-bond angles
(Donor1–H1–Acceptor1, Donor2–H2–Acceptor2). (D) Representative ligand conformations at
selected iterations (20, 40, 70, 113), illustrating the progressive stabilization of hydrogen bonds in
the binding pocket. (E) Evolution of the angles between the carbon atoms bound to hydrogen-bond
donors and their respective hydrogens (C–HDonor1–H1, C–HDonor2–H2). (F) GAFF2 energy profile
across iterations, showing convergence from initially high-energy conformations toward a stabilized
minimum.
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where each term is described below.

Harmonic Bond Energy models the interaction between two bonded atoms i, j using an harmonic
potential:

E ijbond =
1

2
k(dij − d0)

2,

where dij is the bond length between atoms i, j, d0 is the equilibrium bond length, and k is the bond
force constant.

Harmonic Angle Energy describes the energy cost of deviating from the equilibrium bond angle
between 3 atoms i, j, k:

E ijkangle =
1

2
k(θijk − θ0)

2,

where θijk is the bond angle between i, j, k, θ0 is the equilibrium bond angle, and k is the angle force
constant.

Periodic Torsion Energy accounts for dihedral interactions between four atoms i, j, k, l using a
periodic function:

E ijkltorsion = k(1 + cos(nϕijkl − γ)),

where ϕijkl is the dihedral angle between i, j, k, l, n is the periodicity, γ is the phase offset, and k is
the torsional force constant.

Lennard-Jones Energy models van der Waals interactions between atoms i, j using the Lennard-
Jones potential:

E ijlj = 4ϵij

[(
σij

dij

)12

−
(
σij

dij

)6
]
,

where ϵij defines the interaction strength, σij is the distance at which the potential is zero, and dij is
the distance between atoms i and j.

Coulomb Energy describes electrostatic interactions between atoms i, j using Coulomb’s law:

E ijcoulomb =
qiqj

4πε0dij
,

where qi, qj are the atomic charges, dij is the distance between atoms i and j, and ε0 is the permittivity
of vacuum (≈ 8.85× 10−12F/m).

B.4 Pose Optimization algorithm

The PO algorithm is described in Algorithm S7. We used the Adam optimizer with a learning rate
of 0.2. The refinement protocol is divided into two main phases, with weights that can vary across
iterations to progressively adjust the optimization focus. The two-phase protocol is structured as
follows:

• Phase 1: Hydrogen-free refinement
– Step 1: Focus on minimizing internal energy.
– Step 2: Reinforce ligand alignment with a focus on shape and pharmacophore overlap.
– Step 3: Add steric clashes and internal energy penalties while maintaining overlap

improvements.
– Step 4: Fine-tune steric clashes and internal energy, with reduced shape weighting.

• Phase 2: Hydrogen-reintroduced refinement
– Step 1: Focus on internal energy minimization after hydrogen addition.
– Step 2: Add shape and pharmacophore constraints for improved fit.
– Step 3: Emphasize pocket volume interactions alongside energy adjustments to refine

binding.
– Step 4: Perform final fine-tuning of both overlap interactions and energetic stability.
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The weights of the loss terms (Table S2) were empirically tuned using a validation set of ten diverse
protein–ligand complexes from the training data. For each term—shape similarity, pharmacophoric
complementarity, steric clash penalty, and internal energy regularization—we explored multiple
weightings. The final values were chosen based on convergence behavior, pose quality, RMSD and
alignment performance across the validation set.

Algorithm S7: POSEOPTIMIZATION

Input: Ligand conformation with coordinates x, number of optimization steps niterations,
learning rate lr

for niterations do
Compute loss: Loptim = −α SSTS − β SPTS − ω Spocket + γ Einternal
Update atoms positions x = x− lr ×∇xLoptim

Table S2: Hyperparameters for two-phase pose optimization protocol. All weights were tuned
empirically. (x→ y) means that the weight increase linearly over iterations from x to y.

Phase Step max_iterations α β ω γ

Without H

1 50 1.0 0.0 0.0 1.0
2 200 (1.0→20.0) (1.0→50.0) 10.0 10.0
3 50 30.0 10.0 200.0 (1.0→50.0)
4 200 1.0 50.0 200.0 50.0

With H

1 25 0.0 0.0 0.0 1.0
2 200 10.0 10.0 25.0 10.0
3 50 10.0 10.0 150.0 (10.0→25.0)
4 200 10.0 10.0 25.0 10.0

C AlignDockBench and training dataset

C.1 AlignDockBench

Table S3: PDB IDs of template and query structures used in AlignDockBench.

Template PDB ID Query PDB IDs
1A4G 2QWJ, 1INF, 1VCJ, 4HZW, 1INV, 2QWI, 1IVB, 1B9S, 1XOG, 3K37, 1F8E, 1F8C, 4MJV,

1INW, 5JYY

2B1P 7KSJ, 7KSI, 4W4V, 4WHZ

1UY6 1UYD, 3HZ5, 1UYH, 5LR1, 1UY9, 7D24, 3FT8, 2H55, 7D22, 1UY8, 2FWZ, 6OLX,
1UYI, 4XIR, 1UYF, 4U93, 4XIQ, 6LR9, 1UY7, 1UYC, 7D26, 2FWY

3BIZ 3CR0, 2Z2W, 3BI6, 3CQE, 1X8B, 2IO6, 2IN6

2AA2 6W9M, 1ZUC, 6W9K, 5MWY, 4QL8, 5HCV, 1XQ3, 6W9L, 2A3I, 2OAX, 2AMB, 2Q1V,
1GS4

3QKL 3QKM, 3QKK

3EML 5IUB, 5IUA, 5IU7, 5IU8

3SFF 7ZZW, 3SFH, 7ZZU

3D4Q 3PPK, 3PSB, 3PPJ, 7SHV

2ICA 3M6F

3LBK 4OQ3, 5LAV, 1T4E
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3BQD 7PRV, 6W9M, 6W9L, 5NFP

3KBA 3HQ5, 3G8O, 1ZUC

2I0E 8U37, 8UAK, 2JED

1XOI 2IEG, 2ZB2

3SKC 4XV1, 4EHG, 5ITA, 4E4X, 5FD2, 3TV4, 4PP7

3KL6 2J34, 2VVU, 5VOF, 2P93, 2Y7Z, 2Y80, 2VVC, 2VWO, 4Y71, 1WU1, 2UWP, 2J38,
2UWO, 2J4I, 2P95, 1IOE, 1NFW, 1IQI, 2UWL, 2J2U, 1IQ,L 2VWL, 2VVV, 2J94, 1IQK,
2VWN, 1IQN, 2PR3, 4Y79, 1IQG, 2CJI, 4Y7A, 2J95, 4Y7B, 2D1J, 1J17, 4ZH8, 1IQH,
4Y76, 3SW2, 2P94

2XCH 3OT8, 2R7B, 2IN6, 2PE1, 2IO6

1E3G 3G0W, 1ZUC, 2NW4, 2AAX, 5T8J, 2HVC, 4QL8, 4ZN7, 8E1A 5V8Q 5T8E, 2IHQ,
2A3I, 2AMB, 5VO4, 5CJ6, 3D90, 1XNN, 1GS4

2E1W 1WXZ, 1V7A, 1NDY

3LAN 3LAL, 1C1C, 2JLE, 1TL3, 3DRP, 3TAM, 3LAK, 4NCG, 2YNG, 8U6E, 1C1B, 2WON,
1RT1, 8U6P, 7SLR, 8U6C, 4WE1, 2B5J, 1RT2, 8U6B, 3DYA, 8U6O, 7SLS, 2BE2, 3LAM,
2YNI, 5TUQ, 8U6Q, 3T19

3LPB 6VNI

1UYG 2QG2, 2QF6, 1UY9, 4CWR, 3HZ5, 8SSV, 4U93, 4R3M, 1UYI, 7D24 6N8Y 3B26 7D26
5LR1 7D22 1UYC 2H55 1UYK 3O0I, 1UY7, 1UYD, 3B25, 1UY8, 6LR9, 3FT8, 1UYM,
1UYH, 4L91, 6EL5, 2FWY

3BKL 3BKK, 6TT1

1W7X 4JYU, 5PAM, 4X8V, 4ZXY, 1YGC, 1W0Y, 4YT7, 4JYV, 4YT6, 4NGA, 5PAQ, 4NG9,
1W2K

1S3B 2VZ2, 1GOS, 2C66, 2C64, 2C65, 1S3E, 5MRL

3F9M 4MLH, 3FR0, 6E0E, 3GOI, 3A0I, 4MLE

2ZEC 3V7T, 2ZA5, 2BM2, 2ZEB

2GTK 3FEJ

3LN1 3N8X, 6COX, 5KIR, 3QMO

2RGP 3W33, 3BEL

3CJO 2FME, 2FL2, 6HKX, 2FKY, 2G1Q, 1YRS, 2FL6

3I4B 5BVF 3I60

1Q4X 3IMY

2VWZ 5MJA, 4YJS, 8BK0, 4YJP, 4P4C, 2VWY, 4G2F

3HMM 6B8Y, 3KCF, 1VJY, 1PY5, 3FAA, 5QTZ, 1RW8

5L7H 2OAX, 5MWY, 5L7G

2OI0 3B92

2AZR 2BGE, 7FQU, 2HB1

3FRG 5C2E, 5SHB, 4FCD, 5SF7, 3GWT, 6MSC, 5SHG, 5SJF, 5TKB, 4PM0, 5SKF, 3SNI

1LRU 1BSJ

1ZW5 4OGU, 4DXJ, 3ICZ, 4DWB, 4KPD

3L3M 4RV6, 5XSR, 5A00, 5XST, 2RCW, 6I8M

1EVE 6TT0, 6EZH, 7D9Q, 6EZG, 7D9P, 7D9O, 5NAP

3CHP 7AV1
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1F0R 1F0S

3NY8 2YCZ, 7DHI, 5A8E, 6PS1, 4BVN

3KK6 3N8X, 5KIR

3M2W 3FYJ

1L2S 6DPY, 1XGJ, 1XGI, 4KZ4, 4JXS, 6DPX

1B9V 3CKZ, 1B9T 1VCJ, 3K39, 4DGR

2QD9 6M95, 3ZSH

3NW7 3NW6, 3I81

3K5E 1X88, 2FL6, 2FME, 2X7C, 2X7D

1J4H 1J4I

1S3V 1MVT

2ZDT 2GMX, 2ZDU

2VT4 6PS1, 5A8E, 2YCZ, 6PS4, 2Y04

1CX2 5KIR

3KC3 3R30

1KVO 1KQU, 1J1A

Figure S6: Overview of protein diversity in AlignDockBench.

C.2 Structure Preparation

Each structure retrieved from the PDB was repaired and protonated using the PDB2PQR program
[Dolinsky et al., 2007] with the AMBER force field. Subsequently, energy minimization was
performed using the GROMACS molecular dynamics engine [Van Der Spoel et al., 2005] with the
AMBER03 force field in implicit solvent. Small molecules were parametrized using GAFF2 [Wang
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Figure S7: Morgan fingerprints tanimoto similarity histogram between AlignDockBench and the
training set molecules.

et al., 2004] with the ambertools suite [Case et al., 2023], and partial charges were assigned using
AM1-BCC [Jakalian et al., 2002]. The minimization was performed in two stages: initially, 5,000
steps (time step = 2 fs) were conducted with positional restraints of 10,000 kJ/mol·nm² applied to
all heavy atoms. In the second stage, another 5,000 steps were performed with restraints of 1,000
kJ/mol·nm² applied to the protein backbone and all heavy atoms of the small molecules.

D Experimental details

D.1 Experimental setup

Vina and rDock. Docking simulations were performed as follows: a random conformer of each query
molecule was generated using RDKit ETKDGv2 [Riniker and Landrum, 2015] and minimized with
MMFF94 forcefields [Halgren, 1996]. Protonation states were assigned using the internal proprietary
small-molecule protonation model at physiological pH (7.4). Ten docking poses were generated
per molecule. In rDock, docking was carried out in "dock" mode using the default "STANDARD
SCORE" scoring function. For AutoDock Vina, docking was performed with an exhaustiveness
parameter set to 15, using the default Vina scoring function.

FitDock and LSalign. To prepare ligand inputs for both FitDock [Yang et al., 2022] and LS-align
[Hu et al., 2018], we generated 10 random conformers per query molecule using the same protocol
described above, based on RDKit’s ETKDGv2 method followed by MMFF94 energy minimization.
Each minimized conformer was exported as an individual SDF file, then converted to MOL2 format
using Open Babel [O’Boyle et al., 2011], with partial atomic charges assigned using the Gasteiger
method [Gasteiger and Marsili, 1980]. For each template–query pair, FitDock was provided with the
MOL2 representations of both the template and query ligands, as well as the corresponding PDB files
of the template and query proteins. LSalign requires only the MOL2 ligand files; we used its flexible
alignment mode with the “-rf” flag enabled, allowing torsions to adjust during superposition. After
alignment, we selected the top-ranked conformer based on each software’s primary scoring metric:
the “Binding Score” for FitDock, and the “RMSD lb” output for LSalign.
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ROSHAMBO. For the ROSHAMBO software [Atwi et al., 2024], the query ligand was provided as
a single 2D SDF file, from which ten aligned poses were generated. Shape volumes were modeled
using the "Gaussian" option. The resulting poses were ranked according to the “ComboTanimoto”
score, and the highest-scoring pose was retained.

D.2 Supplementary results

D.2.1 Cumulative distribution of RMSD values

In Figure S8 we report the cumulative distribution of RMSD values on AlignDockBench for each
method.

Figure S8: Cumulative distribution of RMSD values: percentage of molecules with RMSD below
different thresholds

D.2.2 Redocking experiments

Results for each method in a redocking scenario, where the query ligand is aligned within its own
crystal protein, are presented in Table S4. Methods like ROSHAMBO and LSalign, which do not
incorporate protein information, have identical performance in both redocking and crossdocking
contexts.

Figure S9 compares the performance of pocket-aware methods in both crossdocking and redocking
scenarios, highlighting the gain of using true protein context for pose accuracy. Traditional docking
approaches, such as Vina and rDock, exhibit significant improvements in redocking due to the
availability of the correct pocket environment. FMA-PO+ also shows a slight performance gain in
the redocking scenario whereas FMA-PO shows no notable difference.

D.2.3 Comparison to HarmonicFlow

We compared FMA to the recent flow-based docking method HarmonicFlow Stärk et al. [2023]
using the official settings from the authors’ repository. As shown in Table S5, FMA significantly
outperforms HarmonicFlow in both mean RMSD and success rate (< 2Å), even when reporting
HarmonicFlow’s best RMSD across the 10 sampled poses. Applying PO to HarmonicFlow improves
results but still underperforms FMA, highlighting the higher quality of FMA’s pose distribution and
the benefit of using the template ligand to guide docking.
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Table S4: Performance comparison of 3D molecular alignment and docking methods on AlignDock-
Bench in a redocking scenario. Methods marked with an (*) use GPU. For methods that did not align
all 369 molecules, percentages are reported as X/Y, where the first value is calculated over aligned
molecules only, and the second over the total set of 369 molecules.

Method # of Molecules
Aligned

Mean RMSD
(Å ↓)

% of Molecules
with RMSD < 2Å (↑)

FMA-PO∗ 369/369 1.86 ± 1.43 68.56
FMA-PO+∗ 369/369 1.52 ± 1.24 82.11
FitDock 292/369 3.27 ± 4.64 54.11 / 42.82
LSalign 368/369 2.54 ± 2.00 54.35 / 54.2
ROSHAMBO∗ 369/369 2.87 ± 2.09 48.51
rDock 369/369 2.79 ± 2.93 60.43
Vina 368/369 1.95 ± 2.54 75.82 / 75.61

Figure S9: Pose accuracy comparison in redocking and crossdocking scenarios.

Table S5: Comparison to Harmonic Flow

Method # of Molecules
with successful pose generation

Mean RMSD
(Å ↓)

% of Molecules
with RMSD < 2Å (↑)

FMA (Top score) 369/369 1.97 ± 1.36 64.77
FMA (Top RMSD) 369/369 1.39 ± 0.85 84.55

FMA + PO+ (Top score) 369/369 1.62 ± 1.33 77.78
FMA + PO+ (Top RMSD) 369/369 1.11 ± 0.85 91.6

Harmonic-Flow (Top RMSD) 356/369 4.47 ± 2.07 2.81/2.71
Harmonic-Flow + PO +(Top RMSD) 356/369 3.71 ± 2.22 19.94/19.24

D.2.4 Discussion about runtime

We analyzed runtime as a function of ligand size for both FMA and PO. As shown in Table S6, PO
(2.7 s per pose, run on CPU) is slower than FMA (0.84 s for 10 poses, run on GPU). In both cases,
runtime increases moderately with the number of heavy atoms and rotatable bonds (Pearson ∼0.2),
without signs of exponential growth.

Runtime is a critical factor for practical applications. Each molecule is processed independently, so
scaling across multiple compute instances is straightforward. To illustrate this, we report in Table S7
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Table S6: Time, * GPU

Method Average
runtime (s)

Pearson correlation with
the number of heavy atoms

Pearson correlation with
the number of rotatable bonds

FMA∗ 0.84 s (for 10 poses) 0.20 0.23
PO 2.7 s (for 1 pose) 0.19 0.23

the estimated runtime and cost of processing various dataset sizes using 100 AWS g4dn.2xlarge
instances in parallel. This setup could be use within a de novo drug design pipeline, where screening
around 50,000 molecules is a realistic and relevant scale. For ultra-large virtual screening campaigns
(e.g., tens or hundreds of millions of molecules), further acceleration and simplification of PO would
be required. For example, moving to a batched optimization strategy, rather than optimizing one
molecule at a time, could significantly reduce total runtime.

Table S7: Estimated runtime (in hours) and cost (USD) using 100 AWS g4dn.2xlarge instances in
parallel for different numbers of molecules.

Number of molecules 50,000 105 106

Time FMA+PO (h) 0.49 0.98 9.83

Cost FMA+PO ($) 41 82 826

D.3 Quality of predictions

Figure S10 reports of the strain energy as defined by GenBench3D Baillif et al. [2024], for each
method. FMA yields higher strain energies, due to the absence of the PO module. While unrealistic
conformations are a known limitation of deep learning models [Buttenschoen et al., 2024], this was
one of the key motivations for introducing our PO module. Both FMA-PO and FMA-PO+ reduce
strain energy.

Table S8 reports the number of molecules exhibiting clashes with protein, per method. FMA suffers
from significantly more clashes, due to the absence of pocket conditioning. FMA-PO and FMA-PO+
reduce the number of clashes, confirming the effectiveness of the PO module in improving structural
plausibility.

To further evaluate the quality of generated poses, we employed the PoseBusters test suite [Butten-
schoen et al., 2024], which checks a range of geometric and chemical criteria to ensure physically
plausible ligand conformations within the binding pocket. We observed that some of the 369 ground-
truth crystallographic query poses from AlignDockBench did not fully satisfy the PoseBusters criteria,
particularly the minimum distance to the protein. As a result, we restricted our evaluation to a subset
of 263 molecules for which the ground-truth poses passed all PoseBusters checks.

Figure S11 presents, for each method, the percentage of molecules achieving an RMSD below 2Å,
along with the proportion that also satisfies the PoseBusters criteria. Traditional docking methods tend
to yield a higher proportion of PoseBusters-valid poses. In contrast, purely LB methods like LSalign
and ROSHAMBO exhibit a substantial drop in valid poses, reflecting the importance of protein
context in guiding pose generation. FMA (without PO) shows a larger drop in PoseBusters-valid
poses compared to FMA-PO+, highlighting the critical role of PO and the importance of sampling
multiple initial poses. Nevertheless, FMA-PO+ still exhibits a 12% drop, primarily due to the
minimum distance-to-protein check. This suggests that the method could be further improved by
incorporating additional pocket-specific constraints or assigning greater weight to the pocket score
during the PO stage. Additionally, integrating protein context directly into the initial pose generation
with the FMA model may enhance the physical plausibility of the generated poses.
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Figure S10: Strain energies of poses across methods (log scale).

Table S8: Number of molecules with protein clashes with the protein, per method.
Method 1 clash 2 clashes ≥ 3 clashes
FMA 37 16 20
FMA-PO 35 9 7
FMA-PO+ 21 6 2
Vina 1 0 0
FitDock 7 5 4
Co-crystallized Ligand 0 0 0

Figure S11: Percentage of accurate poses (RMSD < 2Å) and PoseBusters-valid (PB-valid) poses for
each method, evaluated on a subset of 263 molecules whose ground-truth crystallographic poses pass
the PoseBusters checks.
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D.4 Ablation studies

D.4.1 FMA’s contribution

We generated 10 candidate poses per method (FMA, RDKit-centroid, Vina, LS-align, FitDock-LB),
applied PO to each, and selected the top-ranked pose. Results are reported in In Table S9. The
RDKit-centroid baseline places a random conformer at the binding-site center. FMA-PO+ consistently
yields the lowest RMSD among all alternatives, indicating that FMA is the best initialization strategy
for PO and that its accuracy is crucial.

Table S9: PO applied to different base alignments. All methods use flexible search mode and identical
PO hyperparameters.

Method + PO # of Molecules
Aligned

Mean RMSD
(Å ↓)

% of Molecules
with RMSD < 2Å (↑)

FMA + PO+ 369/369 1.62 ± 1.33 77.78
rdkit + PO+ 369/369 4.63 ± 1.94 10.33
Vina + PO+ 368/369 1.96 ± 1.87 71.47/71.27
LS-align + PO+ 357/369 2.31 ± 2.07 63.31/61.25
Fitdock LB + PO+ 365/369 2.78 ± 2.41 52.6/52.03

D.4.2 PO’s contribution

In Table S10, we evaluate the impact of the PO stage and its objectives on pose prediction. FMA,
exhibits the poorest performance across all metrics, highlighting the importance of the pose refinement.
Moreover, including the pocket during PO enhances the quality of the generated poses, as evidenced
by lower mean RMSD values and higher percentages of accurate alignments for both FMA-PO and
FMA-PO+.

Table S10: Ablation studies of PO loss terms on AlignDockBench in a crossdocking scenario.

Method Mean RMSD
(Å ↓)

% of Molecules
with RMSD < 2Å (↑)

FMA 1.97 ± 1.36 64.77

FMA-PO 1.86 ± 1.42 69.38
FMA-PO w/o SSTS 1.98 ± 1.38 63.96
FMA-PO w/o SPTS 1.86 ± 1.38 67.48
FMA-PO w/o Spocket 1.88 ± 1.41 67.75
FMA-PO w/o Einternal 2.8 ± 0.91 13.82

FMA-PO+ 1.62 ± 1.33 77.78
FMA-PO+ w/o SSTS 1.85 ± 1.32 66.67
FMA-PO+ w/o SPTS 1.71 ± 1.33 74.25
FMA-PO+ w/o Spocket 1.70 ± 1.39 75.61
FMA-PO+ w/o Einternal 2.98 ± 1.26 14.09

In Table S11) we applied PO to top poses from other methods. PO consistently reduced RMSD
supporting its general effectiveness as a refinement stage. PO also improves chemical plausibility
and geometrical validity as demonstrated in Figure S10 and Table S8

D.4.3 Vina contribution to Sscore

We evaluated the influence of the SVina component in the total score Sscore by systematically ablating
it across three key configurations: FMA, FMA-PO(i.e., scoring of FMA poses and PO applied to the
top-ranked pose), and FMA-PO+(i.e., PO applied to all poses, and scoring of optimized poses). The
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Table S11: Impact of PO on FMA, Vina, LS-align and FitDock LB compared to the base aligners
alone.

Method # Aligned Mean RMSD (Å ↓) % RMSD < 2Å (↑)
FMA 369/369 1.97 ± 1.36 64.77
FMA + PO 369/369 1.86 ± 1.42 69.38
Vina 368/369 3.39 ± 2.81 47.28 / 47.15
Vina + PO 368/369 3.24 ± 2.85 52.17 / 52.03
LS-align 368/369 2.54 ± 2.00 54.35 / 54.20
LS-align + PO 357/369 2.47 ± 2.15 59.66/57.72
FitDock LB 366/369 2.93 ± 2.36 49.73/ 49.32
Fitdock LB + PO 366/369 2.75 ± 2.38 52.88/52.3

results are summarized in Table S12. These results indicate that Vina scoring provides limited benefit
when applied to unoptimized poses (FMA or FMA-PO), but can help select better candidates among
refined poses (FMA-PO+). Our method still outperforms all baselines without using the Vina score
in Sscore.

Table S12: Vina contribution to Sscore

Method Vina term
in Sscore

Mean RMSD
(Å ↓)

% of Molecules
with RMSD < 2Å (↑)

FMA Yes 1.97 ± 1.36 64.77
FMA No 1.96 ± 1.35 64.77

FMA-PO Yes 1.86 ± 1.42 69.38
FMA-PO No 1.81 ± 1.40 69.38

FMA-PO+ Yes 1.62 ± 1.33 77.78
FMA-PO+ No 1.68 ± 1.38 75.61

D.4.4 Impact of the number of generated conformations

We assessed the impact of the number of generated poses with FMA on final pose accuracy. Figure
S12 shows the percentage of molecules with RMSD below 2Å and 1.5Å for the best (i.e., lowest
RMSD) pose of FMA-PO and FMA-PO+ as a function of the number of sampled poses prior to PO.
Performance increases with the number of generated poses, with higher sampling yielding a greater
proportion of low RMSD predictions.

Figure S12: Effect of the number of generated poses prior to PO on the pose accuracy of FMA-PO
and FMA-PO+ on AlignDockBench.
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Figure S13: Comparison of predicted binding poses of various ligands using 3D molecular
alignment and docking methods. The crystallized protein and ligand are shown in grey. The first
example is based on PDB entry 5QCO, corresponding to the human Beta-secretase 1 (BACE1),
co-crystallized with a macrocyclic compound [Parks et al., 2020], using the PDB entry 5QCY [Parks
et al., 2020] as template. The second structure is based on PDB entry 1J1A, corresponding to the
pancreatic secretory phospholipase A2 co-crystallized with an inhibitor [Hansford et al., 2003], using
the PDB entry 1KVO [Cha et al., 1996] as template. The third structure is based on PDB entry
1G27, corresponding to a polypeptide deformylase from Escherichia coli co-crystallized with an
inhibitor [Clements et al., 2001], using the PDB entry 1LRU [Guilloteau et al., 2002] as template.
The quality of the predicted poses was assessed by computing the RMSD relative to the crystallized
ligand conformation.
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