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Abstract

Recent strides in large language models001
(LLMs) have yielded remarkable performance,002
leveraging reinforcement learning from hu-003
man feedback (RLHF) to significantly enhance004
generation and alignment capabilities. How-005
ever, RLHF encounters numerous challenges,006
including the objective mismatch issue, lead-007
ing to suboptimal performance in Natural Lan-008
guage Understanding (NLU) tasks. To ad-009
dress this limitation, we propose a novel Rein-010
forcement Learning framework enhanced with011
Label-sensitive Reward (RLLR) to amplify the012
performance of LLMs in NLU tasks. By in-013
corporating label-sensitive pairs into reinforce-014
ment learning, our method aims to adeptly cap-015
ture nuanced label-sensitive semantic features016
during RL, thereby enhancing natural language017
understanding. Experiments conducted on five018
diverse foundation models across eight tasks019
showcase promising results. In comparison to020
Supervised Fine-tuning models (SFT), RLLR021
demonstrates an average performance improve-022
ment of 1.54%. Compared with RLHF models,023
the improvement averages at 0.69%. These re-024
sults reveal the effectiveness of our method for025
LLMs in NLU tasks.026

1 Introduction027

Large language models (LLMs) (Achiam et al.,028

2023; Chowdhery et al., 2023; Touvron et al.,029

2023a) have undergone impressive advancements030

which transform NLP tasks into a unified text-to-031

text paradigm, achieving robust alignment and gen-032

eration capabilities through reinforcement learn-033

ing from human feedback (RLHF) (Ouyang et al.,034

2022; Bai et al., 2022a). Particularly, models are035

required to predict the correct labels in natural lan-036

guage understanding (NLU) tasks, distinct from037

natural language generation (NLG) tasks. Nu-038

merous studies have employed rationales to assist039

LLMs with Chain-of-Thought (CoT) prompting040

during supervised fine-tuning (SFT) stage (Kim041

Incorrect answer:

The phrase "this 

melancholic film 

noir" conveys a 

sense of deep-

seated 

dissatisfaction... 

The answer is: 

negative

🙅Correct answer:

Referring to the 

film as "special" 

sets a tone of 

admiration, implying 

the movie stands out 

from others...

The answer is: 

positive

🙆

Instruction:

a special kind of movie , this melancholic film noir reminded me a 

lot of memento... What sentiment does the writer express for the 

movie?

🤔

Correct answer:

Describing it as

“a special kind of

movie” and drawing a

comparison to

“Memento”, expresses

a positive...

The answer is:

positive

🙆

Rationale-sensitive Label-sensitive

Figure 1: The example of rationale-sensitive and label-
sensitive pairs from sentiment classification. Highlight
rationales in green and labels in yellow.

et al., 2023; Hsieh et al., 2023). 042

However, Lambert and Calandra (2023) detail a 043

fundamental challenge in RLHF learning schemes: 044

the objective mismatch issue. This arises when the 045

reward model is influenced by human preference 046

data, introducing biases that conflict with down- 047

stream evaluation metrics, especially when applied 048

to NLU tasks. In RLHF, comparison data is ini- 049

tially sampled from the SFT model and ranked by a 050

labeler. Then the policy model is optimized against 051

the reward model that is trained with these pairs to 052

align with human preference. For NLU tasks, the 053

pairs can be categorized into rationale-sensitive and 054

label-sensitive. Figure 1 illustrates three answers 055

sampled from the SFT model for one instruction. 056

If two answers have the same label and different 057

rationales, they form a rationale-sensitive pair, with 058

the more reasonable rationale considered superior. 059

In contrast, if two answers have different labels, 060

they form a label-sensitive pair, with the correct 061

label deemed superior. However, we observed that 062

the pairs sampled from the SFT model mainly fall 063

into the category of rationale-sensitive. Figure 2 064

shows the specific distribution ratios of pairs across 065

several NLU tasks. The percentage of rationale- 066
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Figure 2: The distribution of rationale-sensitive and
label-sensitive pairs sampled from SFT model across a
range of tasks.

sensitive pairs exceeds 75%, and in datasets like067

SST-2, MR, and AGNews, surpasses 90%. The se-068

vere imbalance in the distribution of pairs leads the069

model to prioritize the quality of rationales over the070

correctness of labels during RLHF training, which071

conflicts with the evaluation metric (mostly label072

accuracy) of NLU tasks. A detailed analysis is073

presented in Section 4.2.074

To address this challenge, our paper proposes a075

Reinforcement Learning framework enhanced with076

Label-sensitive Reward (RLLR) for NLU tasks.077

Firstly, we generate rationales corresponding to the078

gold labels of the training data. The SFT model is079

trained with rationales, incorporating CoT prompt-080

ing to enhance comprehension abilities. Secondly,081

we generate rationales for the incorrect labels (rel-082

ative to the gold labels). Unlike RLHF, which083

uses human intervention to rank sentences, RLLR084

automatically constructs label-sensitive pairs for085

training the reward model based on the correctness086

of the label. Finally, we train the policy model087

against the label-sensitive reward model with Prox-088

imal Policy Optimization (PPO) to prioritize the089

correctness of labels. Furthermore, optimizing090

with mixed rewards from the label-sensitive and091

rationale-sensitive reward models, RLLRMIXED en-092

sures both the accuracy of labels and the quality of093

rationales. Extensive experiments on eight NLU094

tasks demonstrate that our method consistently out-095

performs the SFT baseline by an average of 1.54%096

and the RLHF baseline by an average of 0.69%,097

while also exhibiting higher quality in rationales098

generation.099

Our contributions are summarized as:100

(1) We propose a Reinforcement Learning101

framework enhanced with Label-sensitive Reward 102

(RLLR) for NLU tasks to tackle the objective mis- 103

match issue. 104

(2) Optimizing with mixed rewards, RLLRMIXED 105

can achieve promising performance on both the 106

accuracy of labels and the quality of rationales. 107

(3) Through empirical experiments, we demon- 108

strate the effectiveness of our method. We also 109

conduct in-depth analyses of the role of rationales, 110

the performance of reward models, and the quality 111

of generated rationales. 112

2 Related Work 113

Reinforcement Learning from Human Feed- 114

back. LLMs have demonstrated commendable 115

performance, leveraging RLHF to achieve notable 116

alignment and generation capabilities (Ouyang 117

et al., 2022; Achiam et al., 2023; Bai et al., 2022a; 118

Ziegler et al., 2019). RLHF aims to optimize the 119

policy language model to generate content that 120

is desired by humans. Recently, some research 121

endeavors have uncovered inherent challenges in 122

RLHF (Casper et al., 2023; Lambert et al., 2023), 123

including feedback type limitations, evaluation dif- 124

ficulties, oversight challenges, etc. Several meth- 125

ods have been proposed to mitigate these chal- 126

lenges. Bai et al. (2022b) introduce RL from AI 127

Feedback (RLAIF), training an AI assistant through 128

self-improvement while adhering to constitutional 129

principles that constrain model-generated content. 130

Wu et al. (2023) introduce a fine-grained RLHF 131

framework that uses fine-grained human feedback, 132

such as identifying false sentences or irrelevant 133

sub-sentences, as an explicit training signal. How- 134

ever, these approaches encounter a fundamental 135

challenge in RLHF learning schemes: the objective 136

mismatch issue (Lambert and Calandra, 2023). In 137

this paper, we tackle this problem by training the 138

reward model with the label-sensitive pairs. 139

Chain-of-Thought. CoT can significantly im- 140

prove the complex reasoning ability of LLMs by 141

generating natural language rationales that lead to 142

the final answer (Wei et al., 2022; Kim et al., 2023). 143

Hsieh et al. (2023) introduce a distilling mecha- 144

nism step-by-step, extracting LLM rationales as 145

additional supervision for training small models 146

within a multi-task framework. Fu et al. (2023) 147

propose a method to specialize the model’s ability 148

(smaller than 10B) towards a target task with CoT 149

prompting. In this paper, we enhance the perfor- 150

mance of LLMs on NLU tasks with CoT prompting 151
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utilizing rationales generated for the labels.152

3 Proposed Method153

In this section, we introduce the training pipeline154

of our method as illustrated in Figure 3, includ-155

ing supervised fine-tuning, reward model training,156

and reinforcement learning enhanced with mixed157

rewards.158

3.1 Supervised Fine-Tuning159

In NLU tasks, the supervised dataset is denoted as160

S = {x, y}, where x denotes the sentence and y161

denotes the class label. The unsupervised dataset162

is denoted as U , and the foundation model is de-163

noted as π. According to Wei et al. (2022), gen-164

erating rationales that lead to the final answer can165

significantly improve the reasoning ability of LLMs166

through CoT. Therefore, we first generate a ratio-167

nale from the sentence x and the label y with a168

specific prompt template using either human an-169

notators or LLMs such as GPT-4. Then we re-170

form the original dataset S to the training dataset171

T = {q, a}. The question q is constructed by x172

with a template and the answer a with t tokens is173

obtained by combining rationale and label, denoted174

as a = a1,··· ,t. The details of prompts can be found175

in Appendix B and C. The foundation model π is176

then trained on T to obtain the model πSFT. For-177

mally, the loss for supervised fine-tuning is defined178

as:179

LSFT = −E(q,a)∼T [logPπ (at | q, a1,··· ,t−1)] .
(1)180

3.2 Reward Model Training181

In the second phase, comparison data are sampled182

from the answers generated by the SFT model183

πSFT given a question. As illustrated in Figure184

2, more than 75% of the pairs generated by the185

SFT model are rationale-sensitive pairs (i.e., both186

answers have the same label). The sentences in187

the rationale-sensitive pair are then labeled with188

a preference order. In RL, the reward model de-189

noted as rϕ assigns higher scores to preferable an-190

swers compared with unfavorable ones, employing191

the Bradley-Terry paired comparison (Bradley and192

Terry, 1952). In this case, the model pays more193

attention to the quality of the generated rationales194

rather than the correctness of the labels. This leads195

to suboptimal performance due to the objective196

mismatch issue mentioned earlier.197

To address this issue, we generate rationales 198

based on the incorrect label for an input sentence 199

and combine them to form a new answer. we gen- 200

erate rationales for incorrect labels ŷ to create a 201

new answer â, which is a rationale-augmented in- 202

correct answer. Along with the correct answer a, 203

we can obtain the preferences a ≻ â | q for label- 204

sensitive pairs without extra annotation. The details 205

of label-sensitive pair construction can be found 206

in Appendix E. The label-sensitive and rationale- 207

sensitive pairs are used to train two reward models, 208

respectively. Specifically, we have a1 ≻ a2 | q 209

to represent the preference in the pair. To predict 210

these preferences, we employ the Bradley-Terry 211

(BT) model, which defines the preference probabil- 212

ity as follows: 213

PBT =
exp

(
rϕ

(
q, a1

))
exp (rϕ (q, a1)) + exp (rϕ (q, a2))

. (2) 214

This objective is framed as a binary classification 215

problem to train the reward model rϕ(q, a) with 216

the loss defined as: 217

LR = −E(q,a1,a2)∼C
[
log σ

(
rϕ

(
q, a1

)
− rϕ

(
q, a2

))]
,

(3) 218

where σ is the logistic function and C is the dataset 219

of comparisons. In this way, we can obtain two 220

separate reward models rϕ1 and rϕ2 with the label- 221

sensitive and rationale-sensitive pairs, respectively. 222

The reward model rϕ(q, a) is often initialized from 223

the SFT model πSFT(a|q) with the addition of a 224

linear layer on top of the final transformer layer that 225

produces a single scalar prediction for the reward 226

value. 227

3.3 Reinforcement Learning 228

During the RL phase, we use the reward model to 229

train the SFT model πSFT using Proximal Policy 230

Optimization (PPO) on the unsupervised dataset U . 231

Given a question constructed by the sentence from 232

U , the mixed reward function from rϕ1(q, a) and 233

rϕ2(q, a) is calculated as : 234

rM(q, a) =

{
rϕ1(q, a) + rϕ2(q, a), if rϕ1(q, a) < λ

λ+ rϕ2(q, a), if rϕ1(q, a) ≥ λ

(4) 235

where λ is a hyper-parameter as the threshold for 236

rϕ1 (the label-sensitive reward model). According 237

to experimental observations, the reward score of 238

rϕ1 converges to around 5.0, while the score of rϕ2 239

is within 1.0, resulting in an imbalance between the 240

two. To prevent reinforcement learning from being 241
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Figure 3: The training pipeline of RLLR with supervised fine-tuning, reward model training, and mixed reinforce-
ment learning. Blue arrows indicate data used for model training.

completely dominated by rϕ1, we set a threshold242

value λ. When the score of rϕ1 is less than λ, the243

combined reward score is the sum of rϕ1 and rϕ2;244

when the score of rϕ1 is greater than or equal to245

λ, the combined reward score is equal to λ plus246

rϕ2. We first optimize the policy based on rϕ1,247

focusing on the correctness of the labels. As the248

RL training progresses, the score of rϕ1 gradually249

exceeds λ. Once the score of rϕ1 surpasses λ, we250

truncate it. At this point, the model will pay more251

attention to rϕ2, which is the quality of the rationale.252

In this way, both rϕ1 and rϕ2 can play a role in253

reinforcement learning, allowing the final policy254

model to predict the correct labels while generating255

high-quality rationales.256

To guide the RL training, the loss function is257

constructed by combining the rewards generated258

by the reward model with a KL divergence con-259

straint, which ensures that the policy does not de-260

viate significantly from its initial behavior, defined261

as:262

max
πRL

E(q,a)∼DπRL

[
rM(q, a)− β log

(
πRL(a|q)
πSFT(a|q)

)]
,

(5)263

where πRL is the learned RL policy, πSFT is the264

SFT model, and β is the KL reward efficient con-265

trolling the strength of the KL penalty. RLLRMIXED266

is obtained from this objective with two reward267

models while RLLR is trained only with the label-268

sensitive rationale reward model.269

4 Experiments 270

4.1 Experiment Setup 271

Datasets. We evaluate the performance of our 272

proposed method across eight NLU tasks, encom- 273

passing five from the GLUE benchmark (Wang 274

et al., 2018). The tasks include Movie Reviews 275

(MR) (Pang and Lee, 2005), AppReviews (AR) 276

(Grano et al., 2017) and SST-2 for sentiment clas- 277

sification, AGNews (Zhang et al., 2015) for topic 278

classification, MRPC and QQP for paraphrase de- 279

tection, MNLI for textual entailment, and STS-B 280

for semantic similarity. We employ the Pearson 281

correlation coefficient as our evaluation metric for 282

STS-B, and accuracy for others. To ensure a fair 283

comparison with baseline methods, we convert all 284

tasks into a text-to-text format following (Sanh 285

et al., 2021). For methods that require rationales, 286

we utilize GPT-4 to generate rationales conditioned 287

on given labels. The details regarding the prompt 288

templates and rationale annotation process are pro- 289

vided in Appendix B and C. 290

Baselines. We conduct our experiments using 291

several state-of-the-art foundation models, includ- 292

ing LLaMA2 (Touvron et al., 2023b), Baichuan2 293

(Yang et al., 2023), ChatGLM3 (Du et al., 2021), 294

Mistral (Jiang et al., 2023), and Bloom (Workshop 295

et al., 2022). We compare our method with two 296

prevalent training methods: (1) SFT, which refines 297
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Splits / Tasks Unit MR AGNews AR MRPC QQP MNLI SST-2 STS-B ALL

SFT Train Prompts 2,000 5,000 5,000 1,000 5,000 5,000 5,000 5,000 38,000
RLHF-RM Train Pairs 16,740 15,993 12,620 9,683 16,956 15,757 16,475 15,751 119,975
RLHF-PPO Train Prompts 5,000 5,000 4,426 2,668 5,000 5,000 5,000 1,323 33,417
RLLR-RM Train Pairs 12,339 12,349 12,339 8,877 12,318 12,323 12,338 12,317 95,200
RLLR-PPO Train Prompts 5,000 5,000 4,426 2,668 5,000 5,000 5,000 1,323 33,417
Test Prompts 1,000 1,000 1,000 408 1,000 2,000 872 1,000 8,280

Table 1: The number of examples used in experiments.

LLMs through optimization against a conditional298

language modeling objective on supervised data;299

(2) RLHF, which involves training a reward model300

on preference data and subsequently employing301

this model to guide RL-based fine-tuning. For302

RLHF, we utilize GPT-4 for the preference annota-303

tion within our experiments. Detailed procedural304

information can be found in Appendix D.305

Training. To streamline the experimental com-306

plexity, we fine-tune the models on a multi-task307

dataset, rather than on datasets for individual tasks.308

To address the task imbalance issue, we construct309

the training set at a maximum of 5,000 samples310

per task. The surplus examples are used as unsu-311

pervised data for PPO in RLHF and RLLR. This312

approach mirrors real-world scenarios where un-313

supervised data is abundant, but supervised data314

is scarce. We also construct a multi-task test set315

comprising up to 1,000 examples from each task316

to enhance experimental efficiency without com-317

promising validity. The details of the examples are318

listed in Table 1. In all experiments, we employ319

Low-Rank Adaptation (LoRA) (Hu et al., 2021)320

fine-tuning, as opposed to full-parameter tuning,321

achieving up to an 80% reduction in GPU memory322

requirements. Within the RL-based approaches,323

the policy, reward, and value models are equipped324

with their own set of LoRA parameters. Details for325

the hyperparameters across the various experiments326

are listed in Appendix A.327

4.2 Main Results328

Our main experiment results are shown in Table329

2. Additional results for models of various sizes330

are available in Appendix F. SFT w. rat. and SFT331

denote models fine-tuned on supervised data with332

and without rationales, respectively. RLHF de-333

notes models fine-tuned with the standard RLHF334

procedure, which predominantly utilizes rationale-335

sensitive pairs. RLLR denotes models fine-tuned336

using our proposed method, with a reward model337

trained on label-sensitive pairs. RLLRMIXED fur- 338

ther integrates reward models trained on both label- 339

sensitive and rationale-sensitive pairs. The policy 340

model is initialized from the SFT w. rat. model in 341

both RLHF, RLLR, and RLLRMIXED settings. 342

Comprehensive evaluations across five founda- 343

tional models and eight NLU tasks reveal that our 344

RLLR method consistently surpasses the SFT base- 345

line by an average margin of 1.54%, and the RLHF 346

baseline by an average of 0.69%. The maximum 347

average improvement over RLHF was achieved 348

on Mistral 7B, reaching 1.02%. The enhancement 349

observed in ChatGLM3 6B, while modest, is still 350

quantifiable at an increase of 0.38%. RLLR and 351

RLLRMIXED also achieve the best results on most 352

individual tasks, except Baichuan2 on AGNews. 353

However, integrating RLLR with other models con- 354

sistently yields a performance enhancement on AG- 355

News, most notably, exceeding the SFT baseline 356

by 2.9% with Bloom-7B. This substantial improve- 357

ment robustly validates the efficacy of the proposed 358

method. 359

The integration of rationales brings improve- 360

ment over the vanilla SFT by an average margin 361

of 0.79%, demonstrating the benefit of rationales. 362

Despite this improvement, the performance of SFT 363

w. rat. still lags behind that of RLLR, suggesting 364

that simply integrating the SFT method with ratio- 365

nales is insufficient. Moreover, the RLHF baseline 366

mirrors the performance of SFT w. rat., with no 367

additional gains, which corroborates the presence 368

of an objective mismatch issue. 369

In Section 4.3, we further analyze the influence 370

of various mechanisms, including the utilization 371

of rationales, reward modeling objectives, and in- 372

corporation of multiple rewards in RL fine-tuning. 373

The RLLRMIXED method achieves on-par perfor- 374

mance with RLLR, surpassing SFT by an aver- 375

age of 1.45%, and RLHF by an average margin of 376

0.60%. However, we further examine its impact 377

on the quality of rationales, extending our analysis 378

beyond label accuracy. 379
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Methods / Dataset MR AGNews AR MRPC QQP MNLI(m/mm) SST-2 STS-B AVG.

LLaMA2 7B

SFT 91.00 92.20 69.40 82.11 85.50 83.50/85.10 96.22 89.24 86.03
SFT w. rat. 91.90 92.50 68.70 83.58 87.90 83.50/85.00 96.56 91.83 86.74
RLHF 91.90 93.00 68.50 83.82 87.60 83.60/85.00 96.44 92.02 86.79

RLLR 92.40 93.40 70.10 83.82 88.20 85.10/85.90 96.79 92.31 87.47
RLLRMIXED 92.60 93.50 69.60 84.07 88.00 85.10/85.90 96.79 92.07 87.40

ChatGLM3 6B

SFT 89.00 93.00 68.80 81.37 85.00 81.80/83.90 95.30 89.79 85.33
SFT w. rat. 91.30 93.10 68.20 81.86 84.90 82.80/84.20 95.87 90.10 85.51
RLHF 91.10 93.10 68.90 82.35 85.00 82.80/84.30 95.87 90.14 85.64

RLLR 91.40 93.40 69.10 82.35 85.50 83.60/84.60 95.87 91.12 86.02
RLLRMIXED 91.40 93.40 69.10 82.36 85.70 83.50/84.60 95.87 90.91 85.69

Mistral 7B

SFT 92.10 92.50 70.40 83.58 85.90 84.70/87.50 95.18 91.17 87.00
SFT w. rat. 92.00 92.70 69.40 86.52 86.10 85.40/87.60 96.33 92.06 87.29
RLHF 92.10 92.20 68.70 85.29 88.30 85.40/87.80 96.22 91.83 87.26

RLLR 93.30 93.10 70.60 87.01 88.30 86.60/88.90 96.90 92.32 88.27
RLLRMIXED 92.40 92.70 70.30 86.76 88.70 86.80/88.80 96.67 92.23 88.10

Baichuan2 7B

SFT 90.80 93.40 69.90 81.86 84.90 82.90/84.10 95.64 89.09 85.84
SFT w. rat. 90.70 92.50 69.10 82.35 87.00 84.80/85.00 95.99 91.58 86.19
RLHF 91.20 92.90 68.30 83.09 86.50 84.50/85.30 96.22 91.50 86.25

RLLR 91.30 93.00 70.40 82.84 87.40 85.70/85.80 96.33 91.94 86.82
RLLRMIXED 91.20 93.00 70.50 83.58 87.50 85.50/85.70 96.44 91.81 86.88

Bloom 7B

SFT 89.20 89.80 69.30 76.96 83.40 75.80/78.50 94.38 87.88 82.80
SFT w. rat. 89.50 91.80 69.80 82.60 83.60 76.50/80.70 94.61 88.58 83.92
RLHF 89.70 92.70 69.40 82.11 84.00 77.00/80.00 94.61 88.96 84.01

RLLR 90.10 92.70 70.90 84.07 84.30 77.90/81.30 95.53 89.04 84.83
RLLRMIXED 89.50 92.50 70.40 84.31 84.30 77.80/80.70 94.61 88.95 84.52

Table 2: Experiment results for our methods and baselines, over a range of foundation models and NLU tasks. The
abbreviation "SFT w. rat." stands for SFT with rationale.

4.3 Analysis380

Utilization of rationales. Incorporating ratio-381

nales into the SFT stage achieves improvement382

across 78% of our task-model pairings (35 out of383

45), aligning with the advancements reported by384

(Hsieh et al., 2023; Kim et al., 2023; Fu et al., 2023).385

Nonetheless, a comparative analysis between SFT386

with RLLR indicates that the mere addition of ra-387

tionales to SFT is insufficient. SFT, categorized388

under Behavior Cloning within the Imitation Learn-389

ing framework, is prone to suffering from com-390

pounding errors (Ross et al., 2011). Theoretically,391

the minimum expected error for a policy derived392

through Behavior Cloning grows quadratically with393

the length of the trajectories. Introducing rationales394

under this method paradoxically extends trajectory395

lengths, exacerbating the issue. In contrast, RLLR,396

rooted in Inverse Reinforcement Learning, effec-397

tively reduces compounding errors by optimizing398

across entire trajectories rather than individual ac-399

tions (Ho and Ermon, 2016; Swamy et al., 2023),400

thereby enhancing the effectiveness of rationales.401

Reward model performance. To elucidate the 402

superiority of RLLR over RLHF, we scrutinized 403

the efficacy of reward models trained in both meth- 404

ods. The models are evaluated on a hold-out label- 405

sensitive dataset, comprising pairs of correct and 406

incorrect answers with respect to the gold label. 407

This evaluation framework is designed to assess 408

the models’ proficiency in differentiating between 409

rationales that lead to either the correct or incor- 410

rect labels. As indicated in Table 3, reward models 411

developed under RLLR demonstrate an average ac- 412

curacy of 90%, outperforming those from RLHF 413

by a margin of 10%, which stand at an average ac- 414

curacy of 80%. Detailed results on each individual 415

task are presented in Appendix G. These findings 416

align with the main results and underscore the detri- 417

mental impact of objective mismatch issue within 418

RLHF. Conversely, RLLR is immune to such dis- 419

crepancies, as its objectives are congruent with the 420

evaluative criteria used to discern between correct 421

and incorrect rationales, thereby yielding superior 422

outcomes across a spectrum of tasks and models. 423

6



          37% 35% 28%

           40% 32% 28%

              48% 26% 26%

           40% 34% 26%

       28% 52% 20%

Bloom 

Baichuan2 

Mistral 

ChatGLM3 

LLaMA2 

0% 20% 40% 60% 80% 100%

Win Tie Lose

(a) RLHF vs. SFT

Win Tie Lose

       28% 38% 34%

          34% 34% 32%

        31% 28% 41%

         33% 42% 25%

      27% 46% 27%

Bloom 

Baichuan2 

Mistral 

ChatGLM3 

LLaMA2 

0% 20% 40% 60% 80% 100%

(b) RLLR vs. SFT

            42% 27% 31%

         33% 45% 22%

           40% 34% 26%

          34% 41% 25%

           40% 36% 24%

Bloom 

Baichuan2 

Mistral 

ChatGLM3 

LLaMA2 

0% 20% 40% 60% 80% 100%

Win Tie Lose

(c) RLLRMIXED vs. SFT

        30% 38% 32%

       29% 36% 35%

           38% 31% 31%

         36% 31% 33%

         37% 29% 34%

Bloom 

Baichuan2 

Mistral 

ChatGLM3 

LLaMA2 

0% 20% 40% 60% 80% 100%

Win Tie Lose

(d) RLLRMIXED vs. RLHF

Figure 4: Evaluation of rationale quality judged by GPT-4, compared to the SFT and RLHF methods.

Models / Training Set RLHF reward RLLR reward

LLaMA2 7B 80.92 91.66
ChatGLM3 6B 75.00 90.20
Mistral 7B 80.78 91.39
Baichuan2 7B 81.46 90.18
Bloom 7B 77.75 88.73

Table 3: Performance of reward models on hold-out
label-sensitive pairs.

Quality of generated rationales. Despite the424

modest enhancement in accuracy, RLHF has signif-425

icantly advanced the quality of text generation by426

integrating human preferences during fine-tuning.427

Beyond the accuracy on NLU tasks, the quality of428

the generated text is also a key consideration. This429

is particularly relevant in human-in-the-loop con-430

texts, where the model’s output serves as a guide431

for human operators, necessitating text that is both432

high-quality and reflective of human values. To433

assess this quality, we examined a subset of queries434

from the validation set and appraised the response435

quality produced by various models with GPT-4.436

We employed the win rate against SFT w. rat. as437

a metric for evaluation. The evaluation results are 438

shown in Figure 4 and the implementation details 439

are described in Appendix H. The RLHF method 440

outperforms SFT in generating high-quality ratio- 441

nales, evidenced by a 39% win rate, a 26% lose 442

rate, and a 36% tie rate on average. In contrast, 443

the RLLR method demonstrates comparable per- 444

formance to SFT, with a balanced win or lose ratio 445

of 30% on average. This outcome aligns with ex- 446

pectations, as RLLR did not incorporate any human 447

preference data. The hybrid RLLRMIXED method, 448

which integrates the reward models of both RLHF 449

and RLLR, achieves a 38% win rate, a 26% lose 450

rate, and a 37% tie rate on average, benchmarked 451

against the SFT baseline. When directly compared 452

to RLHF, RLLRMIXED also exhibits a comparable 453

efficacy, with a win rate of 34% and a lose rate of 454

33%. Notably, RLLRMIXED yields the most favor- 455

able outcomes, delivering rationale quality equiva- 456

lent to RLHF and maintaining label accuracy at the 457

level of RLLR. 458

Case study. Table 4 presents examples of an- 459

swers generated by RLHF, RLLR, and RLLRMIXED 460
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Question Movie review: ... mafia , rap stars and hood rats butt their ugly heads in a regurgitation of
cinematic violence that gives brutal birth to an unlikely , but likable , hero . ’ What sentiment
dose the movie review express?

RLHF The movie review expresses a decidedly negative sentiment. The language used is laced with
derogatory terms and a tone of disdain, which clearly indicates the reviewer’s unfavorable
opinion of the film... Furthermore, the use of "likable, hero" in a seemingly sarcastic or
begrudging manner does not redeem the overall negative impression... The answer is:
negative

RLLR The movie review expresses a positive sentiment, as it highlights an "unlikely, but likable,
hero" that emerges from the chaotic and violent setting... The use of the word "likable" is a
clear indicator of the reviewer’s approval, suggesting that the character’s journey and the film’s
outcome are enjoyable and endearing... The answer is: positive

Question Analyze the semantic similarity between two sentences and predict a similarity score from
0 to 5. Sentence 1: Someone is greating a carrot., Sentence 2: A woman is grating an orange
food.

RLLR Firstly, the subjects of the sentences are different... Secondly, the actions described in the
sentences are not the same... Thirdly, the objects of the sentences are distinct... Lastly, the
contexts implied by the sentences are different... Given these points of divergence, a similarity
score of 1.000 accurately captures the minimal semantic overlap between the two sentences...
The answer is: 1.000

RLLRMIXED 1. **Subjects**: In the first sentence... 2. **Actions**: The actions described in both
sentences are related but not identical... 3. **Objects**: The objects of the actions are
different... 4. **Context**: The context of the actions is also different... 5. **Semantic
Field**: Both sentences fall within the semantic field of food-related activities, but... Given
these points, a score of 1.000 accurately captures the low level of semantic similarity between
the two sentences... The answer is: 1.000

Table 4: Examples generated by RLHF, RLLR, and RLLRMIXED methods.

methods. In the interest of brevity, we have ex-461

cluded extraneous content from the answers, pre-462

serving only the essential context and compara-463

tive elements. We emphasize the key distinctions464

within the examples using blue and red for visual465

clarity. In the first example, which is sampled from466

the Movie Review dataset, the reviewer first de-467

scribes the negative aspects of the movie, but at the468

end, a turning point is made by proposing "give469

birth to an unlikely but likable hero" to express470

positive sentiments. The RLHF model fails to471

recognize a positive sentiment shift, despite the472

reviewer’s concluding praise, leading to an incor-473

rect negative assessment. Conversely, the RLLR474

model accurately detects the sentiment change, re-475

sulting in a correct evaluation. The second ex-476

ample from the STS-B dataset reveals that, de-477

spite RLLR and RLLRMIXED methods generating478

equivalent similarity scores for identical sentence479

pairs, the RLLRMIXED approach augments the ra-480

tionale’s comprehensiveness by incorporating an481

additional "Semantic Field" component. Moreover,482

the RLLRMIXED output employs Markdown format-483

ting to improve readability. These results indicate484

that RLLRMIXED can significantly enhance the qual-485

ity of the rationale compared to the standard RLLR 486

method. 487

5 Conclusion 488

In this paper, we introduce a novel RLLR method 489

to amplify the performance of LLMs for NLU. 490

By training the reward model on label-sensitive 491

pairs, which are constructed by generating ratio- 492

nales for the incorrect labels, we mitigate the ob- 493

jective mismatch issue in RLHF, leading to im- 494

proved performance in NLU tasks. Extensive re- 495

sults on 5 foundation models and 8 NLU tasks 496

demonstrate that RLLR consistently surpasses the 497

SFT baseline by a margin of 1.54%, and the RLHF 498

baseline by 0.69%. By additionally incorporating 499

the label-sensitive and rationale-sensitive rewards, 500

our enhanced RLLRMIXED method not only main- 501

tains the label accuracy comparable to RLLR but 502

also achieves rationale quality on par with RLHF. 503

We also present an in-depth analysis of the RLLR 504

framework, examining the utilization of rationales, 505

reward modeling objectives, and incorporation of 506

multiple rewards during the RL fine-tuning stage. 507

The results and analysis substantiate the effective- 508

ness of our methods in NLU tasks. 509
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6 Limitations510

Due to cost considerations, there are some defi-511

ciencies in our work, which we have listed here512

for future reference. Firstly, integrating rationales513

into model responses increases computing power514

requirements and generation time as a trade-off515

for enhanced accuracy and interpretability. Sec-516

ondly, we utilize GPT-4 as a proxy of humans to517

generate rationales, annotate preferences, and eval-518

uate the quality of rationales. Despite the success519

made by advanced AI models like GPT-4 in sup-520

planting manual annotation, we believe that experi-521

ments with authentic human annotation and evalua-522

tion remain essential. Finally, the compatibility of523

RLLR with RL-free methods such as DPO, PRO,524

and RRHF remains unexplored. We leave these525

limitations for future work.526
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A Hyperparameters692

The range of hyperparameters for each method is693

listed in Table 5. The range is the same across all694

foundation models.695

B Prompts for Tasks696

For all of the tasks, we use the output tem-697

plate {{label}} for SFT w/o rationale and698

{{rationale}}\n\nThe answer is: {{label}}699

for SFT w. rationale, RLHF and RLLR. The name700

in double curly brackets represents a variable and701

should be replaced with its value. Input templates702

and possible labels for each task are listed below.703

B.1 Movie Reviews704

Input template:705

{{text}} What sentiment does the writer706

express for the movie?707

Possible labels:708

negative, positive709

B.2 AGNews710

Input template:711

What label best describes this news712

article? \n {{text}}713

Possible labels:714

World politics, Sports, Business, Science715

and technology716

B.3 MNLI717

Input template:718

Given a premise and a hypothesis,719

predict the relationship between720

them. Choose one of the following721

labels: entailment, contradiction,722

or neutral. Premise:{{sentence1}},723

Hypothesis:{{sentence2}}724

Possible labels:725

entailment, contradiction, neutral726

B.4 QQP727

Input template:728

I received the questions "{{sentence1}}"729

and "{{sentence2}}". Are they duplicates?730

Possible labels:731

no, yes732

B.5 SST-2733

Input template:734

Movie review: {{text}} What sentiment735

dose the movie review express?736

Stages Items Values

SFT
learning rate 1e-5~2e-5
batch size 128
epochs 20

SFT w. rat.
learning rate 1e-4~1e-3
batch size 128
epochs 10

RLHF Reward
learning rate 2e-4
batch size 64~128
epochs 10

RLHF PPO

learning rate 2e-6~1e-5
batch size 16~32
epochs 1
ppo minibatch size 16~32
ppo epochs 1

RLLR Reward
learning rate 1e-4~1e-3
batch size 64~128
epochs 1

RLLR PPO

learning rate 2e-6~1e-5
batch size 16~32
epochs 1
ppo minibatch size 16~32
ppo epochs 1

ALL

lora rank 16
lora alpha 32
lr scheduler cosine
generation strategy greedy

Table 5: Range of hyperparameters.

Possible labels: 737

negative, positive 738

B.6 STS-B 739

Input template: 740

Analyze the semantic similarity between 741

two sentences and predict a similarity 742

score from 0 to 5. Sentence 1: 743

{{sentence1}}, Sentence 2: {{sentence2}} 744

Possible labels: 745

Float number in range [0.0, 5.0]. 746

B.7 MRPC 747

Input template: 748

Does the sentence \n {{sentence1}} \n 749

paraphrase (that is, mean the same thing 750

as) this sentence? \n {{sentence2}} 751

Possible labels: 752

no, yes 753

B.8 AppReviews 754

Input template: 755

11



Question yet another weepy southern bore-athon . What sentiment does the writer express for the
movie?

Label negative

Rationale The sentiment expressed by the writer for the movie is decidedly negative. The term "weepy"
suggests that the movie is overly sentimental or melodramatic in a way that the writer finds
unappealing. Additionally, "bore-athon" is a pejorative play on the word "marathon," indicating
that the writer perceives the movie as boring and tedious, and possibly that it drags on for too
long. The use of the word "another" implies a sense of frustration or fatigue with what the
writer views as a recurrent theme or genre, in this case, a "southern" one, which the writer
apparently does not find engaging or innovative. The overall tone is dismissive and conveys a
strong negative opinion about the film.

Question What label best describes this news article? \n LABOUR AT BRIGHTON: SORRY I JUST
CAN #39;T SAY SORRY FOR IRAQ TONY Blair refused to say sorry for the Iraq war
yesterday, after a last-minute change of mind over a conference apology. In his Brighton
address, the Prime Minister

Label World Politics

Rationale The label "World politics" aptly describes the news article as it directly involves a statement
by Tony Blair, who was the Prime Minister of the United Kingdom, concerning a matter of
international significance—the Iraq war. The reference to Blair’s address at a conference in
Brighton and his stance on a major foreign policy issue that has had global repercussions places
the article firmly within the realm of international relations and governmental affairs. The
content is inherently political, dealing with decisions and actions that have shaped world events,
and it pertains to the political landscape beyond just a national level, thereby making "World
politics" the most fitting label for this news piece.

Question Does the sentence \n As they wound through police barricades to the funeral home , many
chanted " Celia , Celia " and sang snippets of her songs . \n paraphrase (that is, mean the
same thing as) this sentence? \n As they wound through police barricades to the funeral home
, many chanted " Celia , Celia . "

Label no

Rationale No, the two sentences do not convey the exact same meaning. While both sentences describe a
procession moving through police barricades to a funeral home with people chanting "Celia,
Celia," the first sentence includes an additional action that the second sentence omits. Specif-
ically, the first sentence mentions that many in the crowd also sang snippets of her songs.
This additional detail about singing introduces a separate action that captures more about the
atmosphere and the tribute being paid to Celia. It is not merely a repetition of her name but an
engagement with her musical legacy. Without this element, the second sentence fails to capture
the full extent of the homage being paid, thus it is not a complete paraphrase of the first.

Table 6: Examples of generated rationales.

On a scale of 1-5 (with 1 being least756

favorable and 5 being most favorable), how757

would you rate this review? "{{text}}"758

Possible labels:759

1, 2, 3, 4, 5760

C Rationale Collection761

We utilize the following prompt templates to re-762

quest GPT-4 for rationales. Sometimes GPT-4 re-763

fuses to give a rationale conditioned the provided764

label, and we train a simple classifier to filter out765

these responses. Examples of generated rationales766

are shown in Table 6.767

{{question}} \n\n Please give a rationale 768

for the answer "{{label}}" in a confident 769

tone (regardless of the true answer): 770

D Preference Collection 771

We sample 5 responses from the SFT model for 772

each example and ask GPT-4 to rank the responses. 773

The prompt template for requesting GPT-4 is as 774

follows: 775

Given the following question and answers, 776

please rank the answers according to 777

your preference, considering accuracy, 778

coherence, logicality, factuality, 779
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Methods / Dataset MR AGNews AR MRPC QQP MNLI(m/mm) SST-2 STS-B AVG.

LLaMA2

7B

SFT 91.00 92.20 69.40 82.11 85.50 83.50/85.10 96.22 89.24 86.03
SFT w. rat. 91.90 92.50 68.70 83.58 87.90 83.50/85.00 96.56 91.83 86.74
RLHF 91.90 93.00 68.50 83.82 87.60 83.60/85.00 96.44 92.02 86.79

RLLR 92.40 93.40 70.10 83.82 88.20 85.10/85.90 96.79 92.31 87.47
RLLRMIXED 92.60 93.50 69.60 84.07 88.00 85.10/85.90 96.79 92.07 87.40

13B

SFT 92.00 92.20 69.00 81.62 88.00 83.10/85.20 96.33 90.12 86.40
SFT w. rat. 92.20 92.40 68.90 83.82 88.40 85.40/87.10 96.79 91.78 87.42
RLHF 92.20 92.70 68.90 85.78 88.70 85.60/87.20 96.67 91.49 87.69

RLLR 92.60 93.00 69.50 85.54 88.80 86.10/87.80 96.79 92.23 88.04
RLLRMIXED 92.40 92.90 69.70 85.54 88.80 86.10/87.50 96.79 92.23 88.00

Bloom

3B

SFT 88.40 90.20 67.90 75.25 81.30 73.30/74.70 93.46 86.66 81.24
SFT w. rat. 88.70 92.00 68.50 80.15 81.90 73.40/75.10 93.23 86.58 82.17
RLHF 88.60 92.00 68.60 79.66 82.20 74.20/75.60 93.00 86.23 82.23

RLLR 89.80 92.30 69.20 80.64 82.60 74.60/76.70 93.46 87.58 82.99
RLLRMIXED 89.40 92.00 69.30 80.64 82.40 74.70/76.40 93.58 87.17 82.84

7B

SFT 89.20 89.80 69.30 76.96 83.40 75.80/78.50 94.38 87.88 82.80
SFT w. rat. 89.50 91.80 69.80 82.60 83.60 76.50/80.70 94.61 88.58 83.92
RLHF 89.70 92.70 69.40 82.11 84.00 77.00/80.00 94.61 88.96 84.01

RLLR 90.10 92.70 70.90 84.07 84.30 77.90/81.30 95.53 89.04 84.83
RLLRMIXED 89.50 92.50 70.40 84.31 84.30 77.80/80.70 94.61 88.95 84.52

Table 7: Results of varying sized models.

relevance, and information completeness.780

\n\n [Question] {question} \n\n [Answer781

1] {answer 1} \n\n [Answer 2] {answer 2}782

\n\n [Answer 3] {answer 3} \n\n [Answer783

4] {answer 4} \n\n [Answer 5] {answer784

5} \n\n Please give your rationale785

first, and then give the ranking. Output786

format: "{rationale} \n\n Ranking: {e.g.787

{{ranking_example}}}"788

The variable {{ranking_example}} is generated789

by shuffling the list [1, 2, 3, 4, 5] and con-790

catenating them with ">" or "=", e.g. 5>3>2>4>1791

or 2>1=5>3=4. We generate a different example for792

every GPT-4 request to avoid bias.793

E Construction of Label-Sensitive Pairs794

In tasks involving categorical labels, an incorrect795

label is randomly chosen from the full label set ex-796

cluding the correct label, to create a label-sensitive797

pair. For the AppReviews and STS-B tasks, which798

use a rating scale from 0 to 5, incorrect labels are799

generated by adding 3 to the correct label and then800

incorporating a random value from the range [-1,801

1]. For instance, given a correct STS-B label of802

2.8, a random increment of 0.3 is selected, result-803

ing in an initial incorrect label of 2.8+3+0.3=6.1.804

This exceeds the maximum rating, so we adjust by805

subtracting 5, yielding a final incorrect label of 1.1.806

In the case of the AppReviews task, this label is 807

subsequently rounded to an integer. 808

F Results of Varying Sized Models 809

To substantiate the scalability of our method across 810

models of varying sizes, we also conduct a series 811

of experiments using LLaMA2-13B and Bloom- 812

3B models. The results are presented in conjunc- 813

tion with those of the 7B models to facilitate di- 814

rect comparison. As shown in Table 7, LLaMA2- 815

13B and Bloom-3B achieved consistent results with 816

the 7B model, achieving average improvements of 817

1.64% and 1.75% over the SFT baseline, respec- 818

tively. This consistency across disparate model 819

sizes strongly supports the scalability of our pro- 820

posed RLLR method. 821

G Reward Model Performance 822

Table 8 presents the performance of reward models 823

trained with RLHF and RLLR on eight individ- 824

ual NLU tasks. Reward models employing RLLR 825

methods demonstrated an overall accuracy of ap- 826

proximately 90%, surpassing those trained with 827

RLHF by a significant margin of 10 percentage 828

points, with the latter achieving an accuracy of 80%. 829

The gap between RLLR and RLHF on STS-B and 830

AppReviews tasks is most significant, exceeding 831

35% and 20% respectively. The gap on AGNews, 832
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Tasks / Models
LLaMA2 7B ChatGLM3 6B Mistral 7B Baichuan2 7B Bloom 7B

RLHF RLLR RLHF RLLR RLHF RLLR RLHF RLLR RLHF RLLR

MR 90.13 92.07 80.26 90.94 90.94 90.78 89.32 91.59 91.10 88.51
AGNews 89.67 96.31 85.61 94.10 87.45 96.68 89.67 94.46 88.56 94.10
AR 69.91 92.76 74.91 91.26 68.91 92.51 67.79 90.26 65.29 90.89
MRPC 84.03 86.58 71.25 87.22 76.04 86.58 77.96 83.07 78.91 82.43
QQP 79.82 86.63 70.18 86.63 78.92 87.53 80.46 88.17 76.74 83.80
MNLI 86.65 90.75 83.00 89.04 87.40 91.13 88.59 89.56 84.41 87.47
SST-2 92.24 94.68 82.93 93.13 93.13 94.01 93.13 92.90 89.36 92.24
STS-B 58.68 97.07 46.80 93.05 62.34 94.52 64.90 92.50 50.46 93.97

Overall 80.92 91.66 75.00 90.20 80.78 91.39 81.46 90.18 77.75 88.73

Table 8: Performance of reward models on hold-out label-sensitive pairs. Results across five different foundation
models are presented.

MRPC, and QQP tasks also exceeds 5%, indicating833

that RLHF suffers from objective mismatch issue834

on these tasks.835

H Evaluation of Generation Quality836

We utilize GPT-4 as a proxy for human evaluation.837

First, we sample a set of questions and correspond-838

ing answers generated by two methods. To mitigate839

positional bias, we then randomize the order of the840

answers within each pair. The question along with841

two answers is subsequently formatted according842

to the predefined GPT4 input template:843

Given the following question and two844

candidate answers, please choose which845

one is better, considering accuracy,846

coherence, logicality, factuality,847

relevance, and information completeness:848

\n\n [Question] {question} \n\n [Answer849

1] {answer 1} \n\n [Answer 2] {answer850

2} \n\n Please response with "Answer851

1 is better" or "Answer 2 is better"852

or "Equal" first, and then give your853

rationale.854
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