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ABSTRACT

Recently, a variety of methods under the name of non-contrastive learning (like
BYOL, SimSiam, SwAV, DINO) show that when equipped with some asym-
metric architectural designs, aligning positive pairs alone is sufficient to attain
good performance in self-supervised visual learning. Despite some understand-
ings of some specific modules (like the predictor in BYOL), there is yet no unified
theoretical understanding of how these seemingly different asymmetric designs
can all avoid feature collapse, particularly considering methods that also work
without the predictor (like DINO). In this work, we propose a unified theoreti-
cal understanding for existing variants of non-contrastive learning. Our theory
named Rank Differential Mechanism (RDM) shows that all these asymmetric
designs create a consistent rank difference in their dual-branch output features.
This rank difference will provably lead to an improvement of effective dimen-
sionality and alleviate either complete or dimensional feature collapse. Different
from previous theories, our RDM theory is applicable to different asymmetric
designs (with and without the predictor), and thus can serve as a unified under-
standing of existing non-contrastive learning methods. Besides, our RDM the-
ory also provides practical guidelines for designing many new non-contrastive
variants. We show that these variants indeed achieve comparable performance
to existing methods on benchmark datasets, and some of them even outperform
the baselines. Our code is available at https://github.com/PKU-ML/
Rank-Differential-Mechanism.

1 INTRODUCTION

Self-supervised learning of visual representations has undergone rapid progress in recent years, par-
ticularly due to the rise of contrastive learning (CL) (Oord et al., 2018; Wang et al., 2021). Canonical
contrastive learning methods like SimCLR (Chen et al., 2020) and MoCo (He et al., 2020) utilize
both positive samples (for feature alignment) and negative samples (for feature uniformity). Sur-
prisingly, researchers notice that CL can also work well by only aligning positive samples, which
is referred to as non-contrastive learning. Without the help of negative samples, various techniques
are proposed to prevent feature collapse, for example, stop-gradient, momentum encoder, predictor
(BYOL (Grill et al., 2020), SimSiam (Chen & He, 2021)), Sinkhorn iterations (SwAV (Caron et al.,
2020)), feature centering and sharpening (DINO (Caron et al., 2021)). These above designs all cre-
ate a certain of asymmetry between the online branch (with gradient) and the target branch (without
gradient) (Wang et al., 2022a). Empirically, these tricks can successfully alleviate feature collapse
and obtain comparable or even superior performance than canonical contrastive learning. Despite
this progress, it is still not clear why these different heuristics can reach the same goal.

Some existing works are proposed to understand some specific non-contrastive techniques, mostly
focusing on the predictor head proposed by BYOL (Grill et al., 2020). From an empirical side, Chen
& He (2021) think that the predictor helps approximate the expectation over augmentations, and
Zhang et al. (2022a) take a center-residual decomposition of representations for analyzing the col-
lapse. From a theoretical perspective, Tian et al. (2021) analyze the dynamics of predictor weights
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Figure 1: The effective rank of the normalized outputs of the online and target branches for four
different non-contrastive methods (BYOL, SimSiam, SwAV, and DINO) on CIFAR-10.

under simple linear networks, and Wen & Li (2022) obtain optimization guarantees for two-layer
nonlinear networks. These theoretical discussions often need strong assumptions on the data distri-
bution (e.g., standard normal (Tian et al., 2021)) and augmentations (e.g., random masking (Wen &
Li, 2022)). Besides, their analyses are often problem-specific, which is hardly extendable to other
non-contrastive variants without a predictor, e.g., DINO. Therefore, a natural question is raised here:

Are there any basic principles behind these seemingly different techniques?

In this paper, we make the first attempt in this direction by discovering a common mechanism behind
these non-contrastive variants. To get a glimpse of it, in Figure 1, we measure the effective rank (Roy
& Vetterli, 2007) of four different non-contrastive methods (BYOL, SimSiam, SwAV, and DINO).
We find the following phenomenons: 1) among different methods, the target branch (orange line)
has consistently higher rank than the online branch (blue line); 2) after the initial warmup stage, the
rank of the online branch (blue line) consistently improves along the training process. Inspired by
this observation, we propose a new theoretical understanding of non-contrastive methods, dubbed
Rank Differential Mechanism (RDM), where we show that these different techniques essentially
behave as a low-pass spectral filter, which is guaranteed to induce the rank difference above and
avoid feature collapse along the training. We summarize the contribution of this work as follows:

• Asymmetry matters for feature diversity. In contrast to common beliefs, we show that
even a symmetric architecture can provably alleviate complete feature collapse. However,
it still suffers from low feature diversity, collapsing to a very low dimensional subspace. It
indicates the key role of asymmetry is to avoid dimensional feature collapse.

• Asymmetry induces low-pass filters that provably avoid dimensional collapse. Based
on theoretical and empirical evidence on real-world data, we point out the common un-
derlying mechanism of asymmetric designs in BYOL, SimSiam, SwAV, DINO is that they
behave as low-pass online-branch filters, or equivalently, high-pass target-branch filters.
We further show that the asymmetry-induced low-pass filter can provably yield the rank
collapse (Figure 1) and prevent feature collapse along the training process.

• Principled designs of asymmetry. Following the principle of RDM, we design a series
of non-contrastive variants to empirically verify the effectiveness of our theory. For the
online encoder, we show that different variants of low-pass filters can also attain fairly
good performance. We also design a new kind of target predictors with high-pass filters.
Experiments show that SimSiam with our target predictors can outperform DirectPred (Tian
et al., 2021) and achieve comparable or even superior performance to the original SimSiam.

2 RELATED WORK

Non-contrastive Learning. Among existing methods, BYOL (Grill et al., 2020) is the first to show
we can alleviate the feature collapse of aligning positive samples along with an online predictor and
a momentum encoder. Later, SimSiam (Chen & He, 2021) further simplifies this requirement and
shows that only the online predictor is enough. As for another thread, SwAV (Caron et al., 2020) ap-
plies Sinkhorn-Knopp iterations (Cuturi, 2013) to the target output from an optimal transport view.
DINO (Caron et al., 2021) further simplifies this approach by simply combining feature centering
and feature sharpening. Remarkably, all these methods adopt an online-target dual-branch architec-
ture and gradients from the target branch are detached. Our theory provides a unified understanding
of these designs and reveals their common underlying mechanisms. Additional comparison with
related work is included in Appendix F.
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Figure 2: Comparison of the asymmetric SimSiam with two symmetric baselines, SymSimSiam
(ours) and Vanilla Siamese on CIFAR-10, where SymSimSiam adopts Lsym(f

′
θ) (Eq. 2), while

Vanilla Siamese adopts Lsym(fθ). (a): Linear probing test accuracy. (b): Feature variance of nor-
malized outputs. (c): Eigenvalues of the correlation matrix of the normalized outputs. (d): Eigen-
values of the correlation matrix of the normalized outputs from two branches of SymSimSiam.

Dimensional Collapse of Self-supervised Representations. Prior to ours, several works also ex-
plore the dimensional collapse issue in contrastive learning. Ermolov et al. (2021), Hua et al. (2021),
Weng et al. (2022) and Zhang et al. (2022b) propose whitening techniques to alleviate dimensional
collapse, similar in spirit to Barlow Twins (Zbontar et al., 2021) with a feature decorrelation regular-
ization. Jing et al. (2022) point out the dimensional collapse of contrastive learning without using
the projector, and propose DirectCLR as a direct replacement. Instead, our work mainly focuses on
understanding the role of asymmetric designs on overcoming dimensional collapse.

Theoretical Analysis on Contrastive Learning. Saunshi et al. (2019) first establish downstream
guarantees for contrastive learning, which are later gradually refined (Nozawa & Sato, 2021; Ash
et al., 2022; Bao et al., 2022). Tosh et al. (2021) and Lee et al. (2021) also propose similar guarantees
on downstream tasks. However, these methods mostly rely on the conditional independence assump-
tion that is far from practice. Recently, HaoChen et al. (2021) and Wang et al. (2022b) propose an
augmentation graph perspective with more practical assumptions, and contribute the generalization
ability to the existence of augmentation overlap (which also exists for non-contrastive learning).
Wen & Li (2021) analyze the feature dynamics of contrastive learning with shadow ReLU networks.

3 ASYMMETRY IS THE KEY TO ALLEVIATE DIMENSIONAL COLLAPSE

Prior works tend to believe that asymmetric designs are necessary for avoiding complete feature col-
lapse (Zhang et al., 2022a), while we show that a fully symmetric architecture, dubbed SymSimSiam
(Symmetric Simple Siamese network), can also avoid complete collapse. Specifically, we simply
align the positive pair (x, x+) with a symmetric alignment loss,

Lsym(f
′
θ) = −Ex,x+f ′

θ(x)
⊤f ′

θ(x
+), (1)

where we apply feature centering on the output of an encoder f , i.e., f ′
θ(·) = fθ(·)− µ. The feature

average µ = Exfθ(x) can be computed via mini-batch estimate or exponential moving average as
in Batch Normalization (Ioffe & Szegedy, 2015) (see Algorithm 1). Theorem 1 states that SymSim-
Siam can avoid complete collapse by simultaneously maximizing feature variance Var(fθ(x)).

Theorem 1. When fθ(x) is ℓ2-normalized, the SymSimSiam objective is equivalent to

Lsym(f
′
θ) = Lsym(fθ)−Var(fθ(x)) + 1 = −Ex,x+fθ(x)

⊤fθ(x
+)− Ex∥fθ(x)− µ∥2 + 1. (2)

Empirically shown in Figures 2(a) & 2(b), compared to vanilla Siamese network, SymSimSiam
indeed alleviates complete collapse, i.e., the feature variance is maximized along training and a good
linear probing accuracy is achieved. However, the accuracy of SymSimSiam is also obviously lower
than the asymmetric SimSiam (Figure 2(a)). This indicates that symmetric design could alleviate
complete collapse, but it may be not enough to prevent dimensional feature collapse. Intuitively,
features uniformly distributed on a great circle of a unit sphere have maximal variance while being
dimensionally collapsed. As further shown in Figure 2(c), SymSimSiam indeed suffers from more
severe dimensional collapse compared to SimSiam. With few effective dimensions, the encoder
network has limited ability to encode rich semantics (HaoChen et al., 2021).

The above SymSimSiam experiments show that with a symmetric architecture, we can easily pre-
vent complete collapse while hardly improving the effective feature dimensionality for overcoming
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Figure 3: Eigenspace alignment of the online and target outputs along the training. Given ui as an
eigenvector of Cz , if it is also an eigenvector of Cp, then Cpui = λ′

iui is in the same direction as
ui. Thus, we measure the alignment of ui by computing the cosine similarity between ui and Cpui,
and take the average over each ui as the overall eigenspace alignment (details in Appendix B.3).

dimensional collapse. Instead, we also notice that SimSiam with asymmetric designs can alleviate
dimensional collapse and achieve better performance. It reflects the fact that the asymmetry in ex-
isting non-contrastive methods is the key to alleviating dimensional collapse, which leads us to the
main focus of our paper, i.e., demystifying asymmetric designs.

4 THE RANK DIFFERENCE MECHANISM OF ASYMMETRIC DESIGNS

In Figure 1, we have observed a common mechanism behind the non-contrastive learning methods:
these asymmetric designs create positive rank differences between the target and online outputs
consistently throughout training. Here, we provide a formal analysis of this phenomenon from both
theoretical and empirical sides and show how it helps alleviate dimensional feature collapse.

Problem Setup. Given a set of natural training data X̄ = {x̄ | x̄ ∈ Rd}, we can draw a pair
of positive samples (x, x+) from independent random augmentations of a natural example x̄ with
distribution A(·|x̄). Their joint distribution satisfies P(x, x+) = P(x+, x) = Ex̄A(x|x̄)A(x+|x̄).
Without loss of generality, we consider a finite sample space |X | = n (can be exponentially large)
following HaoChen et al. (2021), and denote the collection of online and target outputs as p, z ∈
Rn×k whose x-th row is px, zx, respectively. We consider a general alignment loss

L(p) = Ex,x+ℓ(px, sg(zx+)) (3)

to cover different variants of non-contrastive methods. The online and target outputs px, zx are
either ℓ2-normalized (BYOL and SimSiam) or softmax-normalized (SwAV and DINO). For the
loss function ℓ, BYOL and SimSiam adopt the mean square error (MSE) loss, while SwAV and
DINO adopt the cross entropy (CE) loss. sg(·) denotes stopping the gradients from the operand.
For an encoder f , we define its feature correlation matrix C = Exf(x)f(x)

⊤, whose spectral
decomposition is C = V ΛV ⊤, where V contains unit eigenvectors in columns, and Λ is the diagonal
matrix with descending eigenvalues λ1 ≥ · · · ≥ λk ≥ 0.

Measure of Dimensional Collapse. A well-known measure of the effective feature dimensionality
is the effective rank (erank) of the feature correlation matrix C = Exf(x)f(x)

⊤ (Roy & Vetterli,
2007). Specifically, erank(C) = exp(H(q)), where q = (q1, . . . , qk), qi = λi/

∑
i λi are the

normalized eigenvalues as a probability distribution, and H(q) = −
∑

i qi log(qi) is its Shannon
entropy. Compared to the canonical rank, the effective rank is real-valued and invariant to feature
scaling. A more uniform distribution of eigenvalues has a larger effective rank, and vice versa. Thus,
the effective rank of C is a proper metric to measure the degree of dimensional feature collapse.

Spectral Filters. In the signal processing literature, a spectral filtering process G of a signal f is
to apply a scalar function (i.e., a spectral filter) g : R → R element-wisely on its eigenvalues in its
spectral domain, i.e., ux = Gf(x) = V g(Λ)V ⊤f(x), where G = V g(Λ)V ⊤ is also known as a
spectral convolution operator. The filtered signal admits Cu = Exuxu

⊤
x = V g(Λ)ΛV T . Depending

on the property of g, a filter can be categorized as low-pass, high-pass, band-pass or band-stop. Gen-
erally speaking, a low-pass filter will amplify large eigenvalues and diminish smaller ones (e.g., a
monotonically increasing function), and a high-pass filter does the opposite. Many canonical algo-
rithms can be seen as special cases of spectral filtering, e.g., PCA-based image denoising is low-pass
filtering.
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4.1 ASYMMETRIC DESIGNS BEHAVE AS SPECTRAL FILTERS

First of all, we notice that regardless of the existence of asymmetry, the alignment of two-branch
outputs in non-contrastive learning will enforce the two-branch output features of the positive pairs
to be close to each other. Therefore, from a spectral viewpoint, a natural hypothesis is that the
online and target features will be aligned into the same eigenspace, and only differ slightly in the
eigenvalues. We describe this hypothesis formally below.

Definition 1 (Eigenspace alignment). For two matrices A and B, they have aligned eigenspace if

∃ V, s.t. A = V ΛaV
⊤, B = V ΛbV

⊤, (4)

where V is an orthogonal matrix of eigenvectors and Λa,Λb consist non-increasing eigenvalues.

Hypothesis 1. During training, non-contrastive learning aligns the eigenspace of three correlation
matrices of output features: the online correlation Cp = Expxp

⊤
x , the target correlation Cz =

Exzxz
⊤
x , and the feature correlation of positive samples C+ = Ex,x+zxz

⊤
x+ .

Next, we validate this hypothesis from both theoretical and empirical aspects. To begin with, we
consider a simplified setting adopted in prior work (Tian et al., 2021) for the ease of analysis: 1)
data isotropy, where the natural data distribution p(x̄) has zero mean and identity covariance, and the
augmentation A(x|x̄) has mean x̄ and covariance σ2I; 2) linear encoder zx = f(x) = Wfx,Wf ∈
Rd×k; 3) linear online predictor px = Wzx,W ∈ Rk×k. Under this setting, the following lemma
shows that for an arbitrary encoder f , the eigenspace of three correlation matrices indeed align well:

Lemma 1. With the assumptions above as in Tian et al. (2021), when the predictor W ∗ minimizes
the alignment loss (Eq. 3), we have

∃ V, s.t. Cp = V ΛpV
⊤,Cz = V ΛzV

⊤,C+ = V Λ+V
⊤, (5)

where V is an orthogonal matrix and Λp,Λz,Λ+ are diagonal matrices consisting of descending
eigenvalues λp

i , λ
z
i , λ

+
i , i = 1, . . . , k, respectively.

Next, we provide an empirical examination of Hypothesis 1 on real-world data. From Figures 3, we
can see that there is a consistently high degree of eigenspace alignment between Cp and Cz among
all non-contrastive methods.1 In Appendix E.1, we further verify the alignment w.r.t. C+. Therefore,
these methods indeed attain a fairly high degree of eigenspace alignment.

A Spectral Filter View. As a result of eigenspace alignment, the alignment loss essentially works
on mitigating the difference in eigenvalues. Therefore, we can take a spectral perspective on non-
contrastive methods, where the asymmetric designs are equivalent to a spectral filtering process
applied to the target output zx, or a target spectral filtering process applied to the target output px.
As the two cases are equivalent, we mainly take the online filter as an example in the discussion
below.

Lemma 2. Denote an online filter function g : λz → λg that satisfies λg
i =

√
λp
i /λ

z
i , i = 1, . . . , k.

We can apply a spectral filtering on zx with g, and get p̃x = Wgzx,Wg = V g(Λz)V
⊤. Then, we

have Cp = Cp̃ = Exp̃xp̃
⊤
x . In other words, px, p̃x have the same feature correlation.

This spectral filter view reveals the key difference between symmetric and asymmetric designs in
non-contrastive learning. In the symmetric case, the two branches yield almost equal eigenvalues
(Figure 2(d)). Thus, the alignment loss will quickly diminish and the representations collapse dimen-
sionally (Figure 2(c)). Instead, in asymmetric designs, asymmetric components create a difference
in eigenvalues such that the target output generally has a higher rank than the online output (Figure
4(a)). Therefore, the alignment loss will not easily diminish (not necessarily decrease; see Figure
9). Instead, the alignment improves feature diversity in an implicit way, as we will show later.

4.2 LOW-PASS PROPERTY OF ASYMMETRY-INDUCED SPECTRAL FILTERS

The discussion above reveals that a specific asymmetric design behaves as a spectral filter when
applied to non-contrastive learning. To gain some insights for a unified understanding, we further
investigate whether there is a common pattern behind the filters of different asymmetric designs.

To achieve this, we calculate and plot the corresponding online filter g(λz) =
√

λp
i /λ

z
i of each

non-contrastive method. From Figure 4(b), we find that the spectral filters indeed look very similar,
1As DINO adopts dynamic feature sharpening coefficients, there is a larger change of its eigenspace align-

ment compared to others. Nevertheless, the alignment degree is always above 0.7, which is relatively high.
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(a) Eigenvalues of the feature correction matrices of the online and target outputs.
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Figure 4: Eigenvalues and spectral filters of each method on CIFAR-10: top eigenvalues (whose
sum is larger than 99.99% of the total sum) are shown, 128 for BYOL and 512 for the other.
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Figure 5: The role of asymmetric designs. (a) & (b): spectral filters of the ideal optimal predictors,
g∗(λz

i ) = λ+
i /λ

z
i (Eq. 6). Both filters calculated from BYOL and SimSiam are almost monotoni-

cally decreasing. (c): The target filters using different Sinkhorn-Knopp (SK) iterations in SwAV. (d):
The target filters using centering and/or sharpening with different target temperatures (t) in DINO
(the online temperature is set to 0.1).

particularly in the sense that all filter functions are roughly monotonically increasing w.r.t. λz . This
kind of filter is usually called a low-pass filter because it (relatively) enlarges low-frequency com-
ponents (large eigenvalues) and shrinks high-frequency components (small eigenvalues). Based on
this empirical finding, we propose the following hypothesis on the low-pass nature of asymmetry.

Hypothesis 2. Asymmetric modules in non-contrastive learning behave as low-pass online filters.
Formally, the corresponding spectral filter g(λz) =

√
λp
i /λ

z
i is monotonically increasing.2

We note that we are not suggesting any asymmetric design behaves as low-pass filters, as someone
could easily apply a high-pass filter to the online output deliberately (which, as we have observed,
will likely fail). Therefore, our hypothesis above only applies to asymmetric designs that work well
in practice. In the discussion below, we further provide theoretical and empirical investigations of
why existing asymmetric modules have a low-pass filtering effect.

Case I. Online Predictor. One popular kind of non-contrastive method, including BYOL and Sim-
Siam, utilizes a learnable online predictor gθ : Rk → Rk for architectural asymmetry. One would
wonder why such a learnable predictor will behave as a low-pass filter (Lemma 2). Here, we provide
some theoretical insights in the following theorem.

2Equivalently, when viewing spectral filters from the target branch, the asymmetric modules behave as a
high-pass target filter because the corresponding filter function h(λp) =

√
λz
i /λ

p
i is monotonically decreasing.
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Theorem 2. Under Hypothesis 1, assume the invertibility of Cz , the optimal predictor is given by

W ∗ = C+C−1
z = V ΩV ⊤, where ωi = Ωii = λ+

i /λ
z
i ∈ [0, 1], i ∈ [k]. (6)

Therefore, the spectral property of the learnable filter is determined by the filter function λ+
i /λ

z
i .

Theorem 2 shows that the predictor essentially learns to predict the correlation C+ between positive
samples from one augmented view Cz , i.e., eliminating the augmentation noise and predicting the
common features. The following lemma further reveals that 1) the correlation between positive
samples is equivalent to the correlation of their underlying natural data x̄, and 2) the difference
between C+ and Cz is equal to the conditional covariance induced by data augmentation A(x|x̄).
Lemma 3. The following equalities hold:

1. C+ = C̄ := Ex̄zx̄z
⊤
x̄ , where zx̄ = Ex|x̄zx;

2. Cz = C̄+Vx|x̄, where Vx|x̄ = Ex̄Ex|x̄ (zx − zx̄) (zx − zx̄)
⊤ is the conditional covariance.

In practice, data augmentations mainly cause high-frequency noises in the feature space, therefore,
the denoising predictor will behave as a low-pass filter. Indeed, Figures 5(a) and 5(b) empirically
show that the filter derived from our theory, λ+

i /λ
z
i , aligns well with the actual learned predictor in

Figure 4(b) as a low-pass filter.

Case II. Target Transformation. Another kind of non-contrastive method is to apply hand-crafted
(instead of learned) transformations in the target branch, such as the Sinkhorn-Knopp (SK) iteration
in SwAV (Caron et al., 2020) and centering-sharpening operators in DINO (Caron et al., 2021).
In this case, we further study how these transformations behave as high-pass filters applied to the
target output (see footnote of Hypothesis 2). Since it is generally hard to analyze these spatial
transformations in the spectral domain, here we empirically study the role of each transformation
on the resulting filter. Figure 5(c) shows that SK iterations indeed act like low-pass filters, and
one iteration is enough. This explains why a few SK iterations already work well in SwAV. As for
DINO, we notice that centering operation alone is not enough to produce a high-pass filter, which
agrees with empirical results in DINO. Meanwhile, we notice that in order to obtain a high-pass filter
(monotonically decreasing), it is necessary for DINO to apply a temperature smaller than the online
branch (< 0.1), which is exactly the feature sharpening technique adopted in DINO (Caron et al.,
2021). These facts show our theory aligns well with empirical results in non-contrastive learning.

4.3 ASYMMETRY-INDUCED LOW-PASS FILTERS SAVE NON-CONTRASTIVE LEARNING

In the discussion above, we observed a common pattern in existing asymmetric designs: their cor-
responding spectral filters are all low-pass. Here, we further show that this property is so essential
that it can provably save non-contrastive learning from the risk of feature collapse by producing the
rank difference between outputs and alleviating dimensional collapse during training.

First, let us take a look at its effect on the effective rank of two-branch output features. In the
theorem below, we show that low-pass online filters are guaranteed to produce a consistently higher
effective rank of target features than that of online features, as shown in Figure 1.

Theorem 3. If g(λz
i ) =

√
λp
i /λ

z
i is monotonically increasing, or equivalently, h(λp

i ) =
√
λz
i /λ

p
i

is monotonically decreasing, we have erank(Cp) ≤ erank(Cz). Further, as long as g(λz
i ) or h(λp

i )
is non-constant, the inequality holds strictly, erank(Cp) < erank(Cz).

Meanwhile, we also observe that for each output, its own effective rank is also successfully elevated
along this process. This is not a coincidence. Below, we theoretically show how the rank difference
alleviates dimensional collapse. As the training dynamics of deep neural networks is generally hard
to analyze, prior works (Tian et al., 2021; Wen & Li, 2021) mainly deal with linear or shadow
networks with strong assumptions on data distribution, which could be far from practice. As over-
parameterized deep neural networks are very expressive, we instead adopt the unconstrained feature
setting (Mixon et al., 2022; HaoChen et al., 2021) and consider gradient descent directly in the
feature space Rk. Taking the MSE loss ℓ(u, v) = 1

2∥u− v∥2 as an example, the following theorem
shows that the rank difference indeed helps improve the effective rank of online output p.

Theorem 4. Under Hypothesis 1, when we apply an online spectral filter px = Wzx (Lemma 2),
gradient descent with step size 0 < α < 1 gives the following update at the t-th step,

λp
i,t+1 = λp

i,t

(
(1− α)2 + α2h2(λp

i,t) + 2α(1− α)h(λp
i,t)

λ+
i,t

λz
i,t

)
, i = 1, . . . , k, (7)
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Table 1: Linear probing accuracy (%) of SimSiam with different online predictors (including learn-
able nonlinear and linear predictors of SimSiam) on CIFAR-10, CIFAR-100 and ImageNet-100.

CIFAR-10 CIFAR-100 IN-100 (400ep)
Predictor 100ep 200ep 400ep 100ep 200ep 400ep acc@1 acc@5

SimSiam (nonlinear) 74.00 84.39 89.41 46.12 55.51 63.39 77.96 94.26

SimSiam (linear) 72.42 83.67 88.9 42.98 55.69 62.02 77.18 94.02
g(σ) = σ 73.91 82.74 86.51 46.73 54.45 59.59 75.06 93.28
g(σ) = log(σ) 74.80 80.72 87.52 39.82 48.59 58.08 77.22 94.34
g(σ) = log(1 + σ) 75.70 80.47 86.76 40.53 47.68 61.15 77.42 93.90
g(σ) = log(1 + σ2) 75.51 82.28 87.51 39.19 48.97 59.06 77.22 94.00

Table 2: Linear probing accuracy (%) of SimSiam with different target predictors (including learn-
able nonlinear and linear predictors) on CIFAR-10, CIFAR-100 and ImageNet-100.

CIFAR-10 CIFAR-100 IN-100 (400ep)
Predictor 100ep 200ep 400ep 100ep 200ep 400ep acc@1 acc@5

SimSiam (nonlinear) 74.00 84.39 89.41 46.12 55.51 63.39 77.96 94.26

SimSiam (linear) 72.42 83.67 88.90 42.98 55.69 62.02 77.18 94.02
h(σ) = σ−0.3 77.33 85.57 88.74 48.07 58.07 62.83 77.68 94.16
h(σ) = σ−0.5 78.17 85.52 88.43 50.61 58.68 62.79 76.74 94.10
h(σ) = σ−0.7 77.98 85.79 88.45 51.04 58.37 62.69 77.28 94.94
h(σ) = σ−1 77.33 86.44 88.50 51.05 58.87 61.92 77.00 93.32

where h(λ) = 1/g(λ) is a high-pass filter because g(λ) is a low-pass filter (Hypothesis 2). Then,
the update λp

i,t+1/λ
p
i,t will nicely correspond to a high-pass filter under either of the two conditions:

1. the learned encoder is nearly optimal, i.e., W ≈W ∗ in Theorem 2.

2. λ+
i,t ≈ λz

i,t, which naturally holds with good positive alignment, i.e., zx ≈ zx+ .

Then, according to Theorem 3, we have erank(Cp(t+1)) > erank(Cp(t)). In other words, the effec-
tive rank of online output will keep improving after gradient descent.

Intuitively, the improvement of effective rank is a natural consequence of the rank difference. As
the online output has a lower effective rank than the target output, optimizing its alignment loss
w.r.t. the gradient-detached target sg(zx) will enforce the online output px to improve its effective
rank in order to match the target output zx. In this way, the rank difference becomes a ladder (cre-
ated by asymmetric designs) for non-contrastive methods to gradually improve its effective feature
dimensionality and get rid of dimensional feature collapse eventually.

Note on Stop Gradient. Our analysis above also reveals the importance of the stop gradient oper-
ation. In particular, when gradients from the target branch are not detached, in order to match the
rank of two outputs, minimizing the alignment loss can also be fulfilled by simply pulling down the
rank of the target output. In this case, the feature rank will never be improved without stop gradient.

5 PRINCIPLED ASYMMETRIC DESIGNS BASED ON RDM
The discussions above show that the rank differential mechanism provides a unified theoretical un-
derstanding of different non-contrastive methods. Besides, it also provides a general recipe for
designing new non-contrastive variants. As Theorem 3 points out, the key requirement is that the
asymmetry can produce a low-pass filter on the online branch, or equivalently, a high-pass filter on
the target branch. Below, we propose some new variants directly following this principle.

5.1 VARIANTS OF ONLINE LOW-PASS FILTERS

Despite the learnable predictor (Section 4.2), we can also directly design online predictors with fixed
low-pass filters. For numerical stability, we adopt the singular value decomposition (SVD) of the
output to compute the eigenvalues and the eigenspace, e.g., z = UΣzV ⊤ with singular values σz

i ’s.
As λz

i = (σzi)2, a filter that is monotone in λ is also monotone in σ, and vice versa. Specifically, for

8
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Table 3: Linear probing accuracy (%) of SimSiam with different predictors on ImageNet-1k.

SimSiam Online Low-pass Filter (ours) Target High-pass Filter (ours)
(Learnable Online Filter) g(σ) = log(1 + σ) g(σ) = σ−0.3

acc@1 acc@5 acc@1 acc@5 acc@1 acc@5
67.97 88.17 64.67 86.13 67.73 88.05
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Figure 6: Eigenvalues of the correlation matrix of the normalized outputs for different variants of
filters on CIFAR-10 and CIFAR-100.

an online encoder f : X → Rk, we assign W = V g(Σz)V ⊤, where g(Σz)ii = g(σz
i ) is a low-pass

filter that is monotonically increasing w.r.t. σ. We note that DirectPred proposed by Tian et al. (2021)
is a special case with g0(σ) = σ. Additionally, we consider three variants: 1) g1(σ) = log(σ); 2)
g2(λ) = log(σ + 1); 3) g3(σ) = log(σ2 + 1). These three new variants are low-pass filters because
they are monotonically increasing with σ ≥ 0.

We evaluate their performance on four datasets, i.e., CIFAR-10, CIFAR-100 (Krizhevsky et al.,
2009), ImageNet-100 and ImageNet-1k (Deng et al., 2009). We use ResNet-18 (He et al., 2016)
as the backbone encoder for CIFAR-10, CIFAR-100 and ImageNet-100 and adopt ResNet-50 for
Imagenet-1k following standard practice. And the projector is a three-layer MLP in which BN (Ioffe
& Szegedy, 2015) is applied to all layers. We adopt the linear probing task for evaluating the learned
representations. More details are included in Appendix B.2. Table 1 shows that our designs of online
predictors with different low-pass filters work well in practice, and achieve comparable performance
to SimSiam with learnable predictors. In particular, it also significantly outperforms SymSimSiam
(Figure 2(a)), showing that rank differences indeed help alleviate dimensional collapse (Figure 6).

5.2 VARIANTS OF TARGET HIGH-PASS FILTERS

In turn, we also consider applying a high-pass filter on the target branch using a target predictor.
Compared to the online predictors above, target predictors have additional advantages: with stop
gradient, we do not require backpropagation through SVD, which could reduce time overhead (Table
5). Specifically, we consider polynomial high-pass target filters h(σ) = σp with different−1 ≤ p <
0, which are all monotonically decreasing (see Algorithm 2).

We further evaluate the target filters following the same protocols above. As shown in Table 2,
our high-pass target filters can often outperform SimSiam by a large margin with a relatively short
training time. Especially, on CIFAR-10, the filter h(σ) = σ−0.5 improves the baseline by 5.75%
with 100 epochs and the filter h(σ) = σ−1 improves the baseline by 2.77% with 200 epochs.
Notably, on CIFAR-100, our methods outperform the baseline by a large margin (8.07%, 3.18%,
and 0.81% improvements with 100, 200, and 400 epochs, respectively). Additional results based on
the BYOL framework can be found in Appendix C.

6 CONCLUSION

In this paper, we presented a unified theoretical understanding of non-contrastive learning via the
rank differential hypothesis. In particular, we showed that existing non-contrastive learning all pro-
duce a consistent rank difference between the online and the target outputs. Digging deeper into
this phenomenon, we theoretically proved that low-pass online filters can yield such a rank differ-
ence and improve the effective feature dimensionality along the training. Meanwhile, we provided
theoretical and empirical insights on how existing asymmetric designs produce low-pass filters. At
last, following the principle of our theory, we designed a series of new online and target filters, and
showed that they achieve comparable or even superior to existing asymmetric designs.
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A OMITTED PROOFS

In this section, we present proofs for all lemmas and theorems in the main paper.

A.1 PROOF OF THEOREM 1

Proof. Since the output of fθ is ℓ2-normalized, and Exf(x) = Ex+f(x+) = µ, we have Lsym(θ) =
−Ex,x+f ′

θ(x)
⊤f ′

θ(x
+) = −Ex,x+(fθ(x) − µ)⊤(fθ(x

+) − µ) = −Ex,x+fθ(x)
⊤fθ(x

+) + ∥µ∥2,
and Var(f(x)) = Ex∥f(x)∥2 − ∥µ∥2 = 1 − ∥µ∥2. Thus, we conclude that Lsym(θ) =
−Ex,x+fθ(x)

⊤fθ(x
+)−Var(f(x)) + 1.

A.2 PROOF OF LEMMA 1

Proof. Let zx = Wfx and zx+ = Wfx
+, the loss functions is

L(Wf ,W ) = Ex,x+

1

2
∥Wzx − sg(zx+)∥2 (8)

= Ex,x+

1

2
(Wzx − sg(zx+))

⊤
(Wzx − sg(zx+)) (9)

= Ex,x+

1

2

(
z⊤x W⊤Wzx − sg(zx+)⊤Wzx − z⊤x W⊤ sg(zx+) + sg(zx+)⊤ sg(zx+)

)
(10)

=
1

2
Ex,x+

[
Tr
(
z⊤x W⊤Wzx

)
− 2Tr

(
sg(zx+)⊤Wzx

)
+Tr

(
sg(zx+)⊤ sg(zx+)

)]
(11)

=
1

2
Ex,x+

[
Tr
(
W⊤Wzxz

⊤
x

)
− 2Tr

(
Wzx sg(zx+)⊤

)
+Tr

(
sg(zx+) sg(zx+)⊤

)]
(12)

=
1

2

[
Tr
(
W⊤WExzxz

⊤
x

)
− 2Tr

(
WEx,x+zxz

⊤
x+

)
+Tr

(
Ex+zx+z⊤x+

)]
. (13)

Notice that

Cz = Exzxz
⊤
x = Ex+zx+z⊤x+ (14)

= Ex̄Ex|x̄Wfx (Wfx)
⊤ (15)

= WfEx̄Ex|x̄xx
⊤W⊤

f (16)

= WfEx̄

(
x̄x̄⊤ + σ2I

)
W⊤

f (17)

= (1 + σ2)WfW
⊤
f , (18)

and

C+ = Ex,x+zxz
⊤
x+ (19)

= Ex̄Ex,x+|x̄zxz
⊤
x+ (20)

= Ex̄

(
Ex|x̄Wfx

) (
Ex|x̄+Wfx

+
)⊤

(21)

= WfEx̄x̄x̄
⊤W⊤

f (22)

= WfW
⊤
f . (23)

Hence,

L(Wf ,W ) =
1

2

[
(1 + σ2) Tr

(
W⊤WWfW

⊤
f

)
− 2Tr

(
WWfW

⊤
f

)
+ (1 + σ2) Tr

(
WfW

⊤
f

)]
.

(24)
Taking partial derivative with respect to W , we get

∂L(Wf ,W )

∂W
= (1 + σ2)WWfW

⊤
f −WfW

⊤
f . (25)

With additional weight decay, we have

∂L(Wf ,W )

∂W
= (1 + σ2)WWfW

⊤
f −WfW

⊤
f + ηW, (26)
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where η > 0 is the coefficient of weight decay. Suppose the spectral decomposition WfW
⊤
f is

WfW
⊤
f = V ΛV ⊤, where V is an orthogonal matrix and Λ is a diagonal matrix consisting of

decending eigenvalues λ1, · · · , λk. Therefore,

Cz = (1 + σ2)WfW
⊤
f = V (1 + σ2)ΛV ⊤ = V ΛzV

⊤, (27)

C+ = Ex,x+zxz
⊤
x = WfW

⊤
f = V ΛV ⊤. (28)

Let ∂L(W )
∂W = 0, we get W ∗ = WfW

⊤
f

(
(1 + σ2)WfW

⊤
f + ηI

)−1

= V ΛwV
⊤, where Λw =

diag{λ1/((1 + σ2)λ1 + η), · · · , λk/((1 + σ2)λk + η)}. It follows that

Cp = Expxp
⊤
x = W ∗Exzxz

⊤
x W ∗⊤ = W ∗CzW

∗⊤ = V Λ2
wΛzV

⊤ = V ΛpV
⊤. (29)

Hence, Cp,Cz,C+ share the same eigenspace.

A.3 PROOF OF LEMMA 2

Proof. By the definition of p̃x = Wgzx, we know that

Cp̃ = Exp̃xp̃
⊤
x = ExWgzxz

⊤
x W⊤

g = Wg

(
Exzxz

⊤
x

)
W⊤

g = WgCzW
⊤
g . (30)

Since Wg = V g(Λz)V
⊤,Cz = V ΛzV

⊤, Cp = V ΛpV
⊤ and g(λz

i ) =
√
λp
i /λ

z
i , we have

Cp̃ = V g(Λz)V
⊤V ΛzV

⊤V g(Λz)V
⊤ = V g(Λz)Λzg(Λz)V

⊤ = V ΛpV
⊤ = Cp. (31)

A.4 PROOF OF LEMMA 3

Proof. For the first equality, we have

C+ = Ex,x+zxz
⊤
x+ = Ex̄Ex,x+|x̄zxz

⊤
x+ = Ex̄

(
Ex|x̄zx

) (
Ex|x̄+zx+

)⊤
= Ex̄zx̄z

⊤
x̄ = C̄. (32)

For the first part,

C̄+ Vx|x̄ = Ex̄zx̄z
⊤
x̄ + Ex̄

[
Ex|x̄ (zx − zx̄) (zx − zx̄)

⊤
]

(33)

= Ex̄zx̄z
⊤
x̄ + Ex̄

[
Ex|x̄zxz

⊤
x −

(
Ex|x̄zx

)
z⊤x̄ − zx̄

(
Ex|x̄zx

)⊤
+ zx̄z

⊤
x̄

]
(34)

= Ex̄zx̄z
⊤
x̄ + Ex̄Ex|x̄zxz

⊤
x − Ex̄zx̄z

⊤
x̄ (35)

= Exzxz
⊤
x (36)

= Cz. (37)

A.5 PROOF OF THEOREM 2

Proof. Similar to the derivation in the proof of Lemma 1, we have

L(W ) = Ex,x+

1

2
∥Wzx − sg(zx+)∥2 (38)

=
1

2

[
Tr
(
W⊤WExzxz

⊤
x

)
− 2Tr

(
WEx,x+zxz

⊤
x+

)
+Tr

(
Ex+zx+z⊤x+

)]
. (39)

Notice that Cz = Exzxz
⊤
x = Ex+zx+z⊤x+ and

Ex,x+zxz
⊤
x+ = Ex̄Ex,x+|x̄zxz

⊤
x+ (40)

= Ex̄

(
Ex|x̄zx

) (
Ex|x̄+zx+

)⊤
(41)

= Ex̄zx̄z
⊤
x̄ (42)

= Cz̄. (43)
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Hence,

L(W ) =
1

2

[
Tr
(
W⊤WCz

)
− 2Tr

(
W C̄

)
+Tr (Cz)

]
. (44)

Taking partial derivative with respect to W , we get

∂L(W )

∂W
= WCz − C̄. (45)

Let ∂L(W )
∂W = 0, we have W ∗ = C̄C−1

z . Since Cz, C̄ have aligned eigenspace V , we have

V Λ̄V ⊤ + Vx|x̄ = V ΛzV
⊤ (46)

=⇒Vx|x̄ = V
(
Λz − Λ̄

)
V ⊤, (47)

which implies that the corresponding eigenvalues satisfy εi = λz
i − λ̄i ≥ 0, where λ̄i, εi denote

the i-th eigenvalues of C̄,Vx|x̄, respectively. And C̄C−1
z = V Λ̄V ⊤ (V ΛzV

⊤)−1
= V Λ̄Λ−1

z V ⊤ =

V ΩV ⊤, where Ω is a diagonal matrix and Ωii =
λ̄i

λz
i
∈ [0, 1], i = 1, 2, . . . , k.

A.6 PROOF OF THEOREM 3
Before the proof of Theorem 3, we first introduce the following useful lemma.

Lemma 4. Assume that
∑k

i=1 qi = 1 and q1 ≥ q2 ≥ · · · ≥ qk > 0, then for any 1 ≤ i < j ≤ k
and any ∆ ∈ (0, pj), it holds that

H(q1, q2, . . . , qk) > H(q1, . . . , qi +∆, . . . , qj −∆, . . . , qk). (48)

Proof. We first note that

H(q1, q2, . . . , qk) > H(q1, . . . , qi +∆, . . . , qj −∆, . . . , qk) (49)
⇐⇒ − qi log(qi)− qj log(qj) > −(qi +∆) log(qi +∆)− (qj −∆) log(qj −∆). (50)

Define f(x) = −(qi + x) log(qi + x)− (qj − x) log(qj − x) and its first order derivative satisfies

f ′(x) = − log(qi + x) + log(qj − x) < 0, ∀x ∈ (0, qj). (51)

Hence, Equation (50) holds. This completes the proof of the lemma.

Proof of Theorem 3. Let qzi = λz
i /(
∑k

l=1 λ
z
l ) and qpi = λp

i /(
∑k

l=1 λ
p
l ), where i = 1, 2, . . . , k, then∑k

i=1 q
z
i =

∑k
i=1 q

p
i = 1, qz1 ≥ qz2 ≥ · · · ≥ qzk and qz1 ≥ qz2 ≥ · · · ≥ qzk. Without loss of generality,

we assume that qpk, q
z
k > 0. Because g(λz

i ) =
√
λp
i /λ

z
i is monotonically increasing and λz

i ≥ λz
j ,

for any 1 ≤ i < j ≤ k, we have

qpi
qpj

=
λp
i /(
∑k

l=1 λ
p
l )

λp
j/(
∑k

l=1 λ
p
l )

=
λp
i

λp
j

=
g2(λz

i )λ
z
i

g2(λz
j )λ

z
j

≥ λz
i

λz
j

=
λz
i /(
∑k

l=1 λ
z
l )

λz
j/(
∑k

l=1 λ
z
l )

=
qzi
qzj

. (52)

If g(λz
i ) is constant, it follows that

qpi
qpj

=
qzi
qzj

, ∀1 ≤ i < j ≤ k. (53)

Combining with
∑k

i=1 q
z
i =

∑k
i=1 q

p
i = 1, we get qpi = qzi , i = 1, 2, . . . , k. Hence,

H(qp1 , q
p
2 , . . . , q

p
k) = H(qz1 , q

z
2 , . . . , q

z
k), (54)

which implies that erank(Cp) = erank(Cz).

If g(λz
i ) is non-constant, then g(λz

1) > g(λz
k). And it follows that

qp1
qpk

>
qz1
qzk

. (55)
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Arming with Equations (52) and (55), we get

1 =

k∑
i=1

qpi = qpk

k∑
i=1

qpi
qpk

> qpk

k∑
i=1

qzi
qzk

=
qpk
qzk

k∑
i=1

qzi =
qpk
qzk

, (56)

which indicates qpk < qzk. Similarly, we have qp1 > qz1 . Hence, m = max{i|qpi ≥ qzi , i = 1, 2, . . . , k}
exists and m < 1. Using Equation (52), we have{

qpi ≥ qzi if 1 ≤ i ≤ m,

qpi < qzi if m+ 1 ≤ i ≤ k.
(57)

Directly applying
∑k

i=1 q
z
i =

∑k
i=1 q

p
i = 1 gives that

m∑
i=1

qpi − qzi︸ ︷︷ ︸
≥0

=

k∑
i=m+1

qzi − qpi︸ ︷︷ ︸
>0

. (58)

According to Lemma 4 and Equation (58), if we transport the redundancy from right to left, the
entropy of the distribution will decrease. The transportation process is described as following:

Step 1 Let i← 1 and j ← k.

Step 2 If ∆ = min{qpi − qzi , q
z
j − qpj } > 0, then qzi ← qzi +∆ and qzj ← qzj −∆.

Step 3 If qpi = qzi , i← i+ 1. Else j ← j − 1.

Step 4 If i ≥ j , we finish this process. Else, we return step 2.

After at most k − 1 loops, (qz1 , q
z
2 , . . . , q

z
k) becomes (qp1 , q

p
2 , . . . , q

p
k) . Equation (58) ensures the

correctness of the transportation process. According to Lemma 4, we have

H(qz1 , q
z
2 , . . . , q

z
k) > H(qp1 , q

p
2 , . . . , q

p
k), (59)

which implies that erank(Cp) < erank(Cz).

A.7 PROOF OF THEOREM 4

Proof. Since p
(t+1)
x = p

(t)
x − α(p

(t)
x − z

(t)
x+) = (1− α)p

(t)
x + αz

(t)
x+ and px = Wzx,

C(t+1)
p = Exp

(t+1)
x (p(t+1)

x )⊤ (60)

= Ex,x+

(
(1− α)p(t)x + αz

(t)
x+

)(
(1− α)p(t)x + αz

(t)
x+

)⊤
(61)

= Ex(1− α)2p(t)x

(
p(t)x

)⊤
+ Ex+α2z

(t)
x+

(
z
(t)
x+

)⊤
+ Ex,x+α(1− α)

[
p(t)x

(
z
(t)
x+

)⊤
+ z

(t)
x+

(
p(t)x

)⊤]
(62)

= (1− α)2Exp
(t)
x

(
p(t)x

)⊤
+ α2Ex+z

(t)
x+

(
z
(t)
x+

)⊤
+ α(1− α)

[
WEx,x+z(t)x

(
z
(t)
x+

)⊤
+ Ex,x+z

(t)
x+

(
z(t)x

)⊤
W⊤

]
(63)

= (1− α)2C(t)
p + α2C(t)

z + α(1− α)
(
WC+ + C+W

⊤) . (64)

It follows that

V Λ(t+1)
p V ⊤ = (1− α)2V Λ(t)

p V ⊤ + α2V Λ(t)
z V ⊤ + 2α(1− α)V Λ(t)

w Λ
(t)
+ V ⊤. (65)

As a result, we have

Λ(t+1)
p = (1− α)2Λ(t)

p + α2Λ(t)
z + 2α(1− α)Λ(t)

w Λ
(t)
+ , (66)

i.e.,
λp
i,t+1 = (1− α)2λp

i,t + α2λz
i,t + 2α(1− α)λw

i,tλ
+
i,t. (67)
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Dividing both sides of Equation (67) by λp
i,t, we have

λp
i,t+1

λp
i,t

= (1− α)2 + α2
λz
i,t

λp
i,t

+ 2α(1− α)
λw
i,tλ

+
i,t

λp
i,t

(68)

= (1− α)2 + α2h2
t (λ

p
i,t) + 2α(1− α)ht(λ

p
i,t)

λ+
i,t

λz
i,t

, (69)

where ht(λ
p
i,t) = 1/λw

i,t =

√
λz
i,t

λp
i,t

.

• If W = W ∗ = C(t)
+ (C(t)

z )−1, then ht(λ
p
i,t) =

λz
i,t

λ+
i,t

. Hence,
λp
i,t+1

λp
i,t

= 1 − α2 + α2h2
t (λ

p
i,t)

is monotonically decreasing and non-constant.

• If λz
i,t = λ+

i,t, then
λp
i,t+1

λp
i,t

= (1− α)2 + α2h2
t (λ

p
i,t) + 2α(1− α)ht(λ

p
i,t) is monotonically

decreasing and non-constant (0 < α < 1).

According to Theorem 3, we have erank(Cp(t+1)) > erank(Cp(t)).

B EXPERIMENTAL DETAILS

In this section, we provide the details and hyperparameters for SymSimSiam and variants of spectral
filters.

B.1 DATASETS

We evaluate the performance of our methods on four benchmark datasets: CIFAR-10, CIFAR-100
(Krizhevsky et al., 2009), ImageNet-100 and ImageNet-1k (Deng et al., 2009). CIFAR-10 and
CIFAR-100 are small-scale datasets, composed of 32 × 32 images with 10 and 100 classes, respec-
tively. ImageNet-100 is a subset of ImageNet-1k containing 100 classes.

B.2 IMPLEMENTATION DETAILS

Unless specified otherwise, we follow the default settings in solo-learn (da Costa et al., 2022) on
CIFAR-10, CIFAR-100 and ImageNet-100. For ImageNet, our implementation follows the official
code of SimSiam (Chen & He, 2021), and we use the same settings. For a fair comparison, SimSiam
with a learnable linear predictor is adopted as our baseline. With the original projector, SimSiam
with a learnable linear predictor could not work, so we delete the last BN in the projector in this
case. And we also list the results of SimSiam with the default predictor (we refer it as a learnable
nonlinear predictor).

Data augmentations. The augmentation pipeline is RandomResizedCrop with scale in (0.2, 1.0),
RandomHorizontalFlip with probability 0.5, ColorJitter (brightness (0.4), contrast (0.4), saturation
(0.4), hue (0.1)) with probability 0.8 and RandomGray with probability 0.2. For ImageNet-100 and
ImageNet-1k, Gaussian blurring (Chen et al., 2020) with an applying probability 0.5 is also used.

Optimization. SGD is used as the optimizer with momentum 0.9 and weight decay 1.0 × 10−5

(1.0 × 10−4 for ImageNet-1k). The learning rate adopts the linear scaling rule (lr×BatchSize/256)
with a base learning rate of 0.5 (0.05 for ImageNet-1k). After 10 epochs of warmup training, we use
the cosine learning rate decay (Loshchilov & Hutter, 2017). We use a batch size 256 on CIFAR-10
and CIFAR-100; 128 on ImageNet-100 and 512 on ImageNet-1k.

Linear evaluation. For the linear evaluation, we evaluate the pre-trained backbone network by
training a linear classifier on the frozen representation. For CIFAR-10, CIFAR-100 and ImageNet-
100, the linear classifier is trained using SGD optimizer with momentum = 0.9, batch size = 256 and
initial learning rate = 30.0 for 100 epochs. The learning rate is divided by 10 at epochs 60 and 80.
For ImageNet-1k, following the official code of SimSiam (Chen & He, 2021), we train the linear
classifier for 90 epochs with a LARS optimizer (You et al., 2017) with momentum = 0.9, batch size
= 4096, weight decay = 0, initial learning rate = 0.1 and cosine decay of the learning rate.
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B.3 EXPERIMENTAL SETTING FOR FIGURES

For the implementations of BYOL, SimSiam, SwAV and DINO on CIFAR-10 and CIFAR-100, we
use codes and all default settings in the open-source library solo-learn (da Costa et al., 2022). For
SwAV, we do not store features from the previous batches to augment batch features (queue size = 0)
for the consistency of training loss. We adopt ResNet-18 as the backbone encoder. The dimensions
of the outputs of BYOL, SimSiam, SwAV and DINO are 256, 2048, 3000 and 4092, respectively.

In Figure 3, we use the alignment metric to measure the eigenspace alignment of the online and
target outputs, i.e., Cp and Cz . The intuition is that, given ui as an eigenvector of Cz , if it is also
an eigenvector of Cp, then Cpui = λ′

iui is in the same direction as ui. Thus, the higher the cosine
similarity between ui and Cpui, the more aligned between the eigenspace of Cp and Cz . Formally,
we define the alignment between the eigenspace of Cp and Cz as

Alignment(Cp,Cz) =
1

m

m∑
i=1

uT
i

∥ui∥2
Cpui

∥Cpui∥2
, (70)

where ui is eigenvector corresponding to the i-th largest eigenvalue λz
i of Cz , i = 1, 2, . . . ,m.

And m is set to 512 for SimSiam, SwAV and DINO and 128 for BYOL. The sum of the first m
eigenvalues is greater than 99.99% of the sum of all eigenvalues. Therefore, we can think that the
space span by the first m eigenvectors is a good approximation to the original eigenspace. And in
Figures 4, 5 & 8, the first 512 point pairs are displayed for SimSiam, SwAV and DINO (128 for
BYOL).

B.4 PSEUDOCODE

Here, we provide the pseudocode for SymSimSiam (Algorithm 1) and variants of spectral filters
(Algorithm 2).

Algorithm 1 SymSimSiam: Pseudocode in a PyTorch-like style.

# f : backbone + p r o j e c t i o n mlp
# c : c e n t e r (1 − by−k )
# m: momentum 0 . 9

f o r x i n l o a d e r : # l o a d a m i n i b a t c h x wi th n samples
x1 , x2 = aug ( x ) , aug ( x ) # two random a u g m e n t a t i o n s
z1 , z2 = f ( x1 ) , f ( x2 ) # p r o j e c t i o n s , n−by−k
z1 = n o r m a l i z e ( z1 , dim =1) # l2 − n o r m a l i z e
z2 = n o r m a l i z e ( z2 , dim =1) # l2 − n o r m a l i z e

u p d a t e c e n t e r ( c a t ( z1 , z2 ) )
z1 , z2 = z1 −c , z2 −c

l o s s = −( z1 * z2 ) . sum ( dim = 1 ) . mean ( )

l o s s . backward ( )
u p d a t e ( f . params ) # SGD u p d a t e

@torch . n o g r a d ( )
d e f u p d a t e c e n t e r ( z ) :

c = m * c + (1 −m) * z . mean ( dim =0)

C ADDITIONAL RESULTS BASED ON BYOL FRAMEWORK

In the main paper, we conduct experiments based on the SimSiam framework. Here, we also gather
some results of variants of target high-pass filters based on the BYOL framework. We adopt ResNet-
18 as the backbone encoder and use the default setting in da Costa et al. (2022).

Table 4 shows that our target high-pass filters can often outperform BYOL with a large margin at
earlier epochs. In particular, on CIFAR-10, the target filter h(σ) = σ−0.3 improves BYOL with
learnable linear predictor by 4.92%, 2.68% and 1.00% with 100, 200 and 400 epochs, respectively.

17



Published as a conference paper at ICLR 2023

Algorithm 2 Variants of spectral filters: Pseudocode in a PyTorch-like style.

# f : backbone + p r o j e c t i o n mlp
# g : s p e c t r a l f i l t e r
# l o c a t i o n : t h e l o c a t i o n o f s p e c t r a l f i l t e r ( o n l i n e o r t a r g e t )

f o r x i n l o a d e r : # l o a d a m i n i b a t c h x wi th n samples
x1 , x2 = aug ( x ) , aug ( x ) # two random a u g m e n t a t i o n s
z1 , z2 = f ( x1 ) , f ( x2 ) # p r o j e c t i o n s , n−by−k

l o s s = L ( z1 , z2 , l o c a t i o n ) / 2 + L ( z2 , z1 , l o c a t i o n ) / 2

l o s s . backward ( )
u p d a t e ( f . params ) # SGD u p d a t e

d e f L ( p , z , l o c a t i o n ) : # l o s s f u n c t i o n
i f l o c a t i o n == ” o n l i n e ” : # o n l i n e p r e d i c t o r

wi th t o r c h . n o g r a d ( ) :
u , s , vh = svd ( p )
w = vh . T @ d i a g ( g ( s ) ) @ vh

p = p @ w. d e t a c h ( )
e l s e : # t a r g e t p r e d i c t o r

wi th t o r c h . n o g r a d ( ) :
u , s , vh = svd ( z )
z = u @ d i a g ( g1 ( s ) ) @ vh # g1 ( t ) = t g ( t )

z = z . d e t a c h ( ) # s t o p g r a d i e n t
p = n o r m a l i z e ( p , dim =1) # l2 − n o r m a l i z e
z = n o r m a l i z e ( z , dim =1) # l2 − n o r m a l i z e
r e t u r n −( p* z ) . sum ( dim = 1 ) . mean ( )

Table 4: Linear probing accuracy (%) of BYOL with different target predictors on CIFAR-10/100.

CIFAR10 CIFAR100
Predictor 100ep 200ep 400ep 100ep 200ep 400ep

BYOL (nonlinear predictor) 82.14 87.89 91.24 53.92 60.75 67.41

BYOL (linear predictor) 80.81 86.58 89.73 49.65 57.53 60.66
h(σ) = σ−0.3 85.73 89.26 90.73 57.56 61.89 65.88
h(σ) = σ−0.5 85.46 89.24 90.30 58.12 62.51 65.16
h(σ) = σ−0.7 85.08 88.21 90.01 58.20 62.58 65.72
h(σ) = σ−1 84.64 88.29 89.96 58.40 62.06 65.04

On CIFAR-100, the filter h(σ) = σ−1 is better 8.75% than the baseline with 100 epochs, the filter
h(σ) = σ−0.7 improves the baseline by 5.05% with 200 epochs and h(σ) = σ−0.3 improves the
baseline by 5.22% with 400 epochs.

D COST COMPARISON

We compare the training speeds and GPU memory usages of different methods (SimSiam, the online
filter g(σ) = log(1 + σ) and the target filter h(σ) = σ−0.3 ) on CIFAR-10. We perform our
experiments on a single RTX 2080ti GPU.

As shown in Table 5, compared to the original SimSiam, the GPU memory usage of our methods
only increase a little (26 MiB). SimSiam and the target filter h(σ) = σ−0.3 have the same training
time for 20 epochs.
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Table 5: Training time and memory comparison of different methods on CIFAR-10.

Method Total time for 20 epochs GPU memory

SimSiam 527 s 3043 MiB
g(σ) = log(1 + σ) 532 s 3069 MiB
h(σ) = σ−0.3 527 s 3069 MiB

Table 6: Eigenspace alignment between Cz and C+.

Method BYOL SimSiam SwAV DINO

CIFAR-10 0.9897 0.9979 0.9965 0.9734
CIFAR-100 0.9892 0.9972 0.9956 0.9621

E ADDITIONAL VISUALIZATION

E.1 ADDITIONAL EMPIRICAL EVIDENCE FOR EIGENSPACE ALIGNMENT

In the main paper, we have shown that Cp and Cz share the same eigenspace. Here, we add empirical
evidence for eigenspace alignment between Cz and C+ on CIFAR-10 and CIFAR-100. As shown
in Table 6, we can see that all methods have very high alignment between the eigenspace of Cz and
C+.

E.2 RESULTS ON CIFAR-100
We conduct some experiments on CIFAR-100. Figure 7 demonstrates that the target branch always
has higher effective rank than the online branch and the rank of the online branch continues to
increase after the warmup state in all methods.

In Figure 8(a), we compare the eigenvalues computed from two branch outputs. There is a clear
difference in eigenvalues, and the eigenvalue distribution of the target branch is more biased towards
larger values. Figure 8(b) shows the spectral filter g(λz

i ) =
√
λp
i /λ

z
i , where λp

i , λ
z
i are eigenvalues

of online and target correlation matrices Cp,Cz , respectively. The spectral filters of all methods are
nearly monotonically increasing w.r.t. λz

i .

E.3 TRAINING DYNAMIC

In Figure 9, we compare the training loss between SimSiam and SymSimSiam on CIFAR-10 and
CIFAR-100. We can see that the loss of SimSiam is always larger than SymSimsiam and does not
consistently decrease. Instead, the alignment loss of SymSimSiam continues to decrease.
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Figure 7: The effective rank of the normalized outputs of the online and target branches along the
training dynamics on CIFAR-100.

F COMPARISON TO RELATED WORK

Comparison with Tian et al. (2021). Although we assume eigenspace alignment as in Tian et al. ,
we take very different techniques and arrive at different conclusions, as highlighted below:

• Difference Perspectives, Techniques, and Conclusions. As for the goal, Tian et al. only
consider how predictor helps avoid full collapse. Instead, we first point out that avoiding
full collapse is not the key role of asymmetric designs (also achievable with symmetric
designs). Thus, we focus on the more general dimensional collapse issue and analyze this
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(a) Eigenvalues of the feature correction matrices of the online and target outputs.
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Figure 8: Rank difference experiments and spectral filters on CIFAR-100.
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Figure 9: Training loss of SimSiam and SymSimSiam on CIFAR-10 and CIFAR-100.

quantitatively through the change of the effective rank along training. As for the techniques,
Tian et al. mainly analyze the linear learning dynamics under strong architectural and data
assumptions, while ours focus on the common spectral filtering property that also holds
for nonlinear modules and general data distributions. As for the conclusion, we formally
show that asymmetric designs will improve effective dimensionality, while Tian et al. only
discuss how it avoids full collapse (which is an extreme case of dimensional collapse, and
a non-full-collapse encoder may still suffer from dimensional collapse).

• A unified framework for various asymmetric designs. Tian et al. ’s analysis only focuses
on the predictor in BYOL and SimSiam, and they cannot explain why SwAV and DINO
also work without predictors. Our RDM applies to all existing asymmetric designs through
the unified spectral filter perspective.

• General principles for predictor design. Tian et al. propose DirectPred, which is only a
specific filter. Instead, we point out the core underlying principle, that as long as the online
filter is a low-pass filter, it could theoretically avoid feature collapse. We also empirically
verify this point by showing that various online low-pass filters can avoid feature collapse.
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• A More Effective Asymmetric Design through Target Predictor. Based on our RDM
theory, we also propose a new kind of asymmetric design in non-contrastive learning: ap-
plying a predictor to the target branch. We show that target predictors achieve better results
than online predictors while being more computationally efficient.

Therefore, our analysis improves Tian et al. (2021) in many aspects and apply to a wider context.
And we achieve this with new perspectives and techniques that are quite distinctive from Tian et al.
(2021).
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