
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ACTIONS SPEAK LOUDER THAN WORDS:
RATE-REWARD TRADE-OFF IN MARKOV DECISION
PROCESSES

Anonymous authors
Paper under double-blind review

ABSTRACT

The impact of communication on decision-making systems has been extensively
studied under the assumption of dedicated communication channels. We instead
consider communicating through actions, where the message is embedded into
the actions of an agent which interacts with the environment in a Markov decision
process (MDP) framework. We conceptualize the MDP environment as a finite-
state channel (FSC), where the actions of the agent serve as the channel input,
while the states of the MDP observed by another agent (i.e., receiver) serve as
the channel output. Here, we treat the environment as a communication channel
over which the agent communicates through its actions, while at the same time,
trying to maximize its reward. We first characterize the optimal information the-
oretic trade-off between the average reward and the rate of reliable communica-
tion in the infinite-horizon regime. Then, we propose a novel framework to de-
sign a joint control/coding policy, termed Act2Comm, which seamlessly embeds
messages into actions. From a communication perspective, Act2Comm functions
as a learning-based channel coding scheme for non-differentiable FSCs under
input-output constraints. From a control standpoint, Act2Comm learns an MDP
policy that incorporates communication capabilities, though at the cost of some
control performance. Overall, Act2Comm effectively balances the dual objectives
of control and communication in this environment. Experimental results validate
Act2Comm’s capability to enable reliable communication while maintaining a cer-
tain level of control performance.

1 INTRODUCTION

The role of communication in multi-agent systems has received significant attention as it allows
agents with a partial view of the system to better coordinate and cooperate by exchanging mes-
sages in parallel to actions taken in the environment (Foerster et al., 2016; Sukhbaatar et al., 2016).
However, these systems rely on dedicated channels for communication. On the other hand, explicit
communication channels may not always be available, or may be complemented with other implicit
forms of communication. Such examples are abundant in nature. Bacteria communicate through
chemical molecules, known as quorum sensing (Waters & Bassler, 2005), altering their environ-
ment and behavior to achieve population-wide coordination. Ants use pheromones to encode the
path to food for other ants (von Thienen et al., 2014). Non-verbal communication through gestures,
gaze, and even physical appearance, is also known to play an important role in human communica-
tion (Trenholm, 2020). In the artificial realm, autonomous robots may also need to rely on implicit
communications when explicit communication channels are not available. In medical nano-robots,
electromagnetic communication is not feasible due to size and energy limitations, but implicit com-
munication can be achieved through molecular communications (Weiss & Knight, 2001; Wang et al.,
2023). Even for more advanced robots, electromagnetic or other types of explicit communication
channels may not be available in harsh or hostile environments; for example, for robots decom-
missioning nuclear storage facilities, or those operating in deep space, deep ocean, or subterranean
environments, e.g., tunnels and caves (Ebadi et al., 2024). Moreover, wireless signals are prone to
wiretapping due to their broadcast nature (Poor & Schaefer, 2017), and can be unreliable in adver-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

sarial scenarios due to jamming (Pirayesh & Zeng, 2022; Martz et al., 2020), which are other factors
limiting explicit communications.

Motivated by these challenges, this paper explores implicit communication in a Markov Decision
Process (MDP) environment—communication through actions—which facilitates information trans-
mission from the MDP controller to other agents that can observe the MDP states. Effectively uti-
lizing this internal channel has the potential to reduce the dependence on dedicated communication
channels. However, these communication capabilities come with inherent trade-offs. As we will
demonstrate, using this channel for communication often leads to a degradation in MDP control per-
formance. This raises a fundamental challenge in balancing control and communication objectives,
underscoring the need for a cohesive design that integrates both control and communication.

An MDP consists of a controller and an environment (Puterman, 2014). At each time step, the
environment is in some state s, and the controller selects some action a. Upon executing action a,
the environment stochastically transitions to a new state s′ and generates a reward. The controller’s
objective is to find an optimal policy for selecting an action at each time to maximize its accumulated
reward over a given time horizon. Consider that the controller now wants to communicate with
another agent in the same environment that can also observe the environment state.

In communication theory, a finite-state channel (FSC) (Gallager, 1968) is an input-output system
with states, where the output depends on both the input and the current state. Messages are encoded
into the input sequence, resulting in a corresponding output sequence. The receiver decodes the
message from this output sequence. From this perspective, the state transition of an MDP from s to
s′ upon taking action a can be viewed as an FSC from the controller to the agent. We refer to this
internal channel within the MDP as an action-state channel. To communicate through the action-
state channel, we need an encoder that maps the message to a sequence of actions, and a decoder
that translates the resulting state sequence back into the original message. However, the objective of
this encoder differs from that of the controller: the encoder aims to maximize the transmission rate
and reliability of its message, while the controller seeks to maximize the accumulated reward. These
two objectives are generally inconsistent, and a trade-off between the two must be sought.

In this paper, we first investigate the trade-off between the capacity (i.e., the maximum achievable
transmission rate) of the action-state channel and the MDP reward in the infinite horizon regime. We
demonstrate that the capacity of this channel can be expressed in a simple form—as the conditional
mutual information between the input and output conditioned on the channel state. We also show
that the capacity-reward trade-off can be characterized by a convex optimization, which can be
solved numerically. While the capacity-reward trade-off provides an upper bound on the practically
achievable rate under certain reward constraints, solving it does not yield a practical coding scheme.
We then propose a practical framework for the integrated control and communication task in the
finite block-length regime. The challenge of designing such a framework is twofold: (1) balancing
the control and communication performance, and (2) dealing with the non-differentiability of the
action-state channel. To tackle these issues, we propose Act2Comm, a transformer-based coding
scheme in which encoder and decoder are trained iteratively.

Contributions. The main contributions of this paper are summarized as follows: (1) We introduce a
novel paradigm of communicating through actions within an MDP environment, framing it as an in-
tegrated control and communication problem. (2) We derive the capacity of the action-state channel,
and characterize the capacity-reward trade-off as a convex optimization. (3) We propose Act2Comm,
a practical transformer-based coding scheme to learn a policy that optimizes communication perfor-
mance while maintaining a specified level of MDP reward. Act2Comm can be of independent interest
for designing practical channel coding schemes over other non-differentiable FSC scenarios.

2 RELATED WORK

Communication plays a significant role in MDPs, especially in multi-agent reinforcement learning
(RL), where agents exchange messages over dedicated or noisy links to achieve a common goal
(Wang et al., 2020; Chen et al., 2024; Tung et al., 2021). This is known as emergent communications
(Boldt & Mortensen, 2024), but this framework relies on explicit communications over dedicated
channels. Implicit communication through actions is considered by Knepper et al. (2017) and Tian
et al. (2019). The latter also trains a policy, but it focuses on the multi-agent scenarios, and encour-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Encoder

Finite-state
channel

Decoder

 Unit-Delay

Encoder

Extended action-state channel

Decoder

feedback link

Receiver

Controller

Transmitter

feedback link

(a)

Reward

(b)

Encoder

 Decoder

Unit-Delay

Encoder & Controller

Decoder

(a). A standard finite-state channel (b). Action-state channel

Figure 1: From a standard finite-state channel to an action-state channel.

ages communication by appropriately changing the reward function. We do not explicitly specify
the communicated information, and instead, take a more fundamental approach by characterizing
the information theoretic limits of communication and designing a practical coding policy.

Sokota et al. (2022) explored a similar concept of communication via MDPs. In their study, the re-
ceiver can observe the entire trajectory, including both the action and state sequences. This enables
the controller to encode (compress) messages into the action sequence, and the receiver can sub-
sequently decode the messages from the trajectory. Essentially, this is a randomized source coding
problem. However, in most practical scenarios, while the MDP state is a physical signal observable
by the receiver, the controller’s actions are usually not observable to other agents. Therefore, in our
work, we assume the receiver can only observe the state sequence. This shifts the problem from
source coding to channel coding. Karabag et al. (2019) also examined a similar system, but their
focus was on developing policies that restrict the observer’s ability to infer transition probabilities.

FSC represents a general class of communication channels, and its study has been a long-standing
problem in information and coding theory. Blackwell et al. (1958) studied the capacity of indecom-
posable FSCs without feedback. Subsequent studies in the non-feedback setting include Verdu &
Han (1994) and Goldsmith & Varaiya (1996). The capacity of FSCs with feedback was examined
by Massey (1990) and Permuter et al. (2009). More recently, Shemuel et al. (2022) explored the
capacity of FSCs with feedback and state information at the encoder. However, these results express
capacity in multi-letter forms, relying on the entire input and output sequences as their lengths ap-
proach infinity. Although Sabag et al. (2017) provided a single-letter upper bound for the feedback
capacity of unifilar FSCs, exact single-letter expressions for FSC capacity are generally unknown.
The action-state channel studied in this paper is a special FSC with state and feedback at the encoder.
Utilizing the unique structure of this channel, we derive a single-letter expression for its capacity.

Machine learning has recently advanced traditional channel coding schemes by replacing linear
operations with trainable non-linear neural networks, including Turbo autoencoder (Jiang et al.,
2019), DeepPolar (Hebbar et al., 2024), KO codes (Makkuva et al., 2021), and other approaches
(Jiang et al., 2020; Kim et al., 2018). However, these are designed for Gaussian channels, which are
differentiable and allow joint training of the encoder and decoder. Our channel, in contrast, is non-
differentiable, presenting new challenges for the design of the encoder and decoder. Channel coding
for FSCs is a challenging task with limited results in the literature. Some existing work focuses only
on the design of the decoder (Aharoni et al., 2023). However, the main challenge in our problem lies
in designing the encoder to balance control and communication performance.

Notations: For any xt with t ≥ 1, xk
i denotes the sequence {xi, xi+1, . . . , xk}, where xk

1 is written
as xk. |X | denotes the cardinality of the set X . A detailed notation table is provided as Table. 1.

3 PRELIMINARIES AND SYSTEM MODEL

Markov Decision Process (MDP). An MDP can be characterized by a tuple (S,X ,T , r, α),
where S is the state space, X is the action space, T is the transition kernel, r : S × X → R is
the bounded reward function, and α is the initial state distribution. At each time step t, taking ac-
tion xt in state st results in a reward r(xt, st) and a state transition from st to st+1, where st+1

is sampled from the distribution T (·|st, xt). We assume both S and X are finite sets. A stationary
deterministic policy is a mapping π : S → X that selects action xt based on state st at each time t.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

The objective is to find an optimal policy that maximizes the long-term average reward, as follows:

P1: max
π

lim
N→∞

1

N
E

[
N∑
t=1

r(st, xt)|s1 ∼ α

]
. (1)

In this paper, we assume that the MDP is unichain; that is, any deterministic policy induces a Markov
chain consisting of a single recurrent class plus some transient states. As a result, the optimality of
P1 can be achieved through a stationary deterministic policy. The set of stationary deterministic
policies is denoted by ΠSD. It is worth noting that the set of admissible policies for an MDP is not
restricted to ΠSD. In general, a policy can be history-dependent, determining xt using all historical
states and actions up to time t. Let ΠS and ΠH denote the sets of stationary (possibly randomized)
and history-dependent policies, respectively. It is easy to see that ΠSD ⊂ ΠS ⊂ ΠH .

Finite-State Channel (FSC). As illustrated in Fig. 1, an FSC can be characterized by a tuple
(X ×S, PY,S+|X,S ,Y×S), where X is the input alphabet, Y is the output alphabet, S is the channel
state alphabet, and PY,S+|X,S is the channel law specifying the probability of the channel outputting
Y and transitioning to the new state S+, given that the channel input is X in state S. We consider a
time-invariant channel that exhibits the Markov property, which can be formally expressed as:

P (yt, st+1|xt, st,yt−1) = PY,S+|X,S(yt, st+1|xt, st), ∀t. (2)

To transmit a message m, an encoder generates a sequence of channel inputs xt as codewords. When
each xt is input to the channel, the channel transitions to a new state st+1 and produces an output yt.
The decoder then collects the output sequence yt to reconstruct m. We suppose that the channel state
is available to the encoder but not to the decoder, and that the outputs are fed back to the encoder.

Let M denote the set of messages, with each message m uniformly sampled from M. The encoder
is defined as a sequence of mappings, E ≜ {E1, . . . , En}, where each mapping Et : M × St ×
X t−1 × Yt−1 → X generates the channel input at time t. In other words, the channel input at time
t, xt = Et(m, st,xt−1,yt−1), is a function of m and all the historical information available at the
transmitter up to time t. The decoder is defined as the mapping, D : Yn → M, which reconstructs
the message from all n channel outputs, m̂ = D(yn). The pair (E ,D) constitutes a code, where n
represents the code length. Suppose the message set is M = {1, 2, . . . , 2k}, then each message can
be represented with k bits. The rate of the code (E ,D) is defined as RE,D = k/n.

The probability of error P (n)
e for (E ,D) is defined as P (n)

e = Pr(D(yn) ̸= m|m is sent). A rate R
is deemed achievable if there exists a code (E ,D) such that the error probability of the transmission
approaches zero as n → ∞. Consequently, the capacity of the FSC is defined as the supremum of all
achievable rates. In other words, channel capacity reveals the maximum rate required for error-free
transmission when the code length approaches infinity. In practice, however, constructing a code
with infinite code length is unfeasible. Hence practical channel coding aims to balance the trade-off
between R and P

(n)
e with a finite code length n. For instance, we design codes to maximize the rate

while ensuring that the probability of error remains below a certain threshold σ > 0:

P2: max
E,D

RE,D, subject to P
(n)
e ≤ σ. (3)

Integrated Control and Communication. We investigate a scenario in which the controller of
an MDP aims not only to optimize rewards but also to facilitate communication. Assuming that the
receiver can observe the state of the MDP, then the environment can be modeled as a specialized
FSC, enabling communication between the transmitter (i.e., the controller) and the receiver.

(a) Action-state channel model: This integrated FSC is referred to as the action-state channel,
where the state of the MDP aligns with the state of the FSC. The action and the subsequent state
are viewed as the channel input and output, respectively. Upon executing xt in state st, the MDP
environment returns a reward rt and transitions to a new state st+1. Here st+1 functions as both the
channel output and the new channel state, and st−1 represents not only the historical state sequence,
but also the historical feedback signal. The channel law of the action-state channel is given by:

P (st+1|xt, st) = PS+|X,S(st+1|xt, st) = T (st+1|xt, st). (4)

This type of channel is also referred to as a POST channel in the literature (Permuter et al., 2014).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

(b) Controller & Encoder: Within this framework, the MDP controller and the FSC encoder rep-
resent the two aspects of the same entity, jointly responsible for selecting an action xt ∈ X at each
time step. However, their objectives differ: the controller aims to maximize the reward, while the
FSC encoder seeks to maximize the message rate. Unlike the controller, which can focus on sta-
tionary deterministic policies, the encoder must account for more complex policy forms. For any
message m, the encoder described in the previous part can be viewed as a history-dependent policy
for the MDP. Therefore, we consider the joint control and coding policy in its most general form.
The policy E is represented as a sequence of mappings {Ei : 0 ≤ i ≤ n− 1}, where Ei is defined as
Ei : M×Si × X i−1 → X . Each message is transmitted via a sequence of n actions. For example,
if the controller begins to transmit a message m at time t, then xt+i = Ei(m, st+i

t ,xt+i−1
t) for

0 ≤ i ≤ n − 1. We assume the controller always has a new message ready for transmission imme-
diately after completing the transmission of the previous message, and each message is uniformly
sampled from M. The long-term average reward of the MDP under policy E is denoted by GE .

(c) Decoder: The receiver observes the state sequence associated with a message and uses it to
decode the message. For example, the state sequence associated with the i-th message is sinin−n+1.
The decoder, represented as a mapping : D : Sn → M, decodes the message as: m̂ = D(sinin−n+1).

In this paper, we consider non-terminating MDPs over an infinite time horizon and investigate the
trade-off between control and communication performance. As discussed previously, if the code
length n → ∞, the communication performance can be characterized by the channel capacity (i.e.,
the maximum achievable rate). Here, we consider a practical setting with finite code length n, where
the performance of a code (E ,D) is characterized by its rate RE,D and the error probability P

(n)
e .

We study the trade-off through the following optimization problem with constants V and σ > 0,

P3: max
E,D

RE,D (5)

s.t. GE ≥ V and P (n)
e ≤ σ. (6)

4 THE CAPACITY-REWARD TRADE-OFF

In this section, we analyze the trade-off between the capacity of the action-state channel and the
MDP reward. While the results may not offer direct guidance for practical coding—since the capac-
ity is typically achievable only in the infinite-horizon regime (i.e., when the code length n → ∞)—
they hold substantial theoretical importance. These findings provide a fundamental understanding of
this integrated control and communication system. All proofs are detailed in Appendix B.

In information theory, the capacity of an FSC is usually expressed in terms of conditional mutual
information (Shemuel et al., 2024). Let X,S+ and S denote the random variable associated with
the input, output (i.e., the next state), and the current state of the action-state channel, respectively.
Then the conditional mutual information of X and S+ given S is defined as (Cover, 1999):

I(X;S+|S) = Ep(x,s+,s)

[
log

p(s, s+|s)
p(x|s)p(s+|s)

]
. (7)

Let π(·|s) denote an input distribution of the channel given that the channel state is s ∈ S . For a
given channel, the joint distribution p(x, s+, s) is determined by the conditional input distribution
π. From the MDP perspective, π(x|s) represents the probability of selecting action x in state s; thus,
π can be viewed as a stationary randomized policy for the MDP. Let ρπ denote the equilibrium state
distribution of the MDP under policy π. We have the following result:

Theorem 1 The capacity of the action-state channel without reward constraint is given by

C = max
{π(x|s):x∈X ,s∈S}

I(X;S+|S)

where X,S, and S+ follow a joint distribution given by

p(x, s+, s) = ρπ(s)π(x|s)T (s+|s, x), x ∈ X , s, s+ ∈ S.

As previously discussed, a general encoder for an FSC generates a channel input based on all the
historical state and feedback information. However, Theorem 1 reveals a surprising fact: the capacity

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

of the action-state channel can be achieved by encoding messages into a stationary randomized
policy for the MDP, without relying on historical information.

Theorem 1 presents the capacity of the action-state channel without considering the MDP reward.
If we want to maintain a certain level of long-term average reward for the MDP, the capacity may
generally decrease. Next, we characterize the trade-off between channel capacity and MDP reward.

Given a stationary policy π for the MDP, define wπ(s, x) = ρπ(s)π(x|s). Here, wπ(s, x) represents
the long-term proportion of time that the MDP is in state s and takes action x. In the literature, wπ

is referred to as the occupation measure of policy π (Altman, 2021). Let W denote the set of all
occupation measures, then W is the set of w ∈ R|S|×|X| satisfying the following equations:∑

x∈X
w(s, x)−

∑
s′∈S

∑
x′∈X

w(s′, x′)T (s|s′, x′) = 0, ∀s ∈ S, (8)∑
s∈S

∑
x∈X

w(s, x) = 1, w(s, x) ≥ 0, ∀s ∈ S, x ∈ X . (9)

Clearly, W is a polytope. It is well-known that there is a one-to-one mapping between W and ΠS .
In particular, π(x|s) = wπ(s, x)/

∑
x′ wπ(s, x

′) for any s ∈ S, x ∈ X . Using this relationship, the
problem of computing the capacity with reward constraint V (i.e., ensuring the long-term average
reward is not less than V) reduces to a convex optimization, as stated in the following theorem:

Theorem 2 The capacity of the action-state channel with reward constraint V is the optimal value
of the following convex optimization problem:

max
w∈W

I(w,T)

s.t.
∑
s∈S

∑
x∈X

w(s, x)r(s, x) ≥ V

where I(w,T) is a concave function of w ∈ W defined as

I(w,T) ≜
∑
s∈S

∑
x∈X

w(s, x)
∑
s′∈S

T (s′|s, x) log
T (s′|s, x)

∑
x′′ w(s, x′′)∑

x′ T (s′|s, x′)w(s, x′)
.

Denote by C(V) the capacity of the action-state channel with reward constraint V . We have:

Lemma 1 C(V) is a concave function.

Since the capacity is an upper bound for the rate of any practical coding scheme, Lemma 1 implies
that the achievable region of rate-reward pairs forms a convex set.

The convex optimization problem in Theorem 2 can be efficiently solved using the gradient ascent
algorithm if the gradient of the objective function has a closed-form expression (Bertsekas, 2016).
Next, we derive the gradient of I(w,T) with respect to w. Define

l(w,wn,T) ≜
∑
s∈S

∑
x∈X

w(s, x)
∑
s′∈S

T (s′|s, x) log
T (s′|s, x)

∑
x′′ wn(s, x

′′)∑
x′ T (s′|s, x′)wn(s, x′)

, w, wn ∈ W.

Lemma 2 For any wn ∈ W , l(w,wn,T) is a tangent line of I(w,T) at point wn. That is,

(i) l(wn, wn,T) = I(wn,T).

(ii) l(w,wn,T) ≥ I(w,T) for all w.

It follows immediately from Lemma 2 that

∇Iwn
(s, x) ≜

∂I(w,T)

∂w(s, x)

∣∣∣∣
w=wn

=
∑
s′∈S

T (s′|s, x) log
T (s′|s, x)

∑
x′′ wn(s, x

′′)∑
x′ T (s′|s, x′)wn(s, x′)

, (10)

for any wn ∈ W , s ∈ S , and x ∈ X . The gradient ∂I/∂w = [∇Iw(s, x)]s,x then can be used in the
gradient descent method to solve the optimization problem in Theorem 2.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Encoder Quantizer

Critic Network
Gradient estimation

Environment

Step 2 Total Loss

Step 1 Critic loss

Inference workflow

 . . .

 . . .

Critic network updating

Iterative updating strategy

. . .

. . .

Inner training step Inner training step

Outer training step

Se
qu

en
ce

un
pa

rt
iti

on

Se
qu

en
ce

pa
rt

iti
on

EAS channel

Decoder

Neighboring
sampling

(a) (b)

Encoder
parameters

Decoder
parameters

CriticNet parameters

cross-entropy

Figure 2: Left: Workflow diagram of the Act2Comm scheme, with the dashed line indicating the
gradient flow. Right: Illustration of the iterative training strategy, incorporating a critic network.

5 ACT2COMM: A PRACTICAL CODING SCHEME

This section presents Act2Comm, a learning-based practical coding scheme that balances both con-
trol and communication objectives . This framework assumes a pre-determined control policy π that
satisfies the reward constraint Gπ ≥ V , referred to as the target policy. Such a target policy can be
easily derived using traditional MDP or RL algorithms. Act2Comm aims to learn a coding policy
that: (1) closely mimics the stochastic behavior of the target policy; (2) minimizes the probability
of decoding errors for a given coding rate. That is, Act2Comm takes a policy achieving the desired
reward, and embeds messages into it with the desired reliability. For ease of reference, we denote
the element of matrix X located at the i-th row and j-th column as X[i, j]. The sets of states and
actions are indexed as S = {0, 1, . . . , |S| − 1} and X = {0, 1, . . . , |X | − 1}.

Preliminary. Let U ≜ X |S|, where each u ∈ U is referred to as a decision rule because the i-th
element of u, can be viewed as an action for state i. Specifically, a decision rule specifies an action
for each state; hence it can be used to determine an action for any given state. A control policy is
thus a collection of decision rules spanning the entire time horizon. To align the coding policy with
the target policy, we propose using a sequence of n decision rules as the codeword instead of n
actions. To achieve this, the action-state channel is converted into an extended action-state (EAS)
channel (Fig. 6) using Shannon’s method (Shannon, 1958). In particular, we conceptually separate
the encoder and controller, considering the controller as an integral component of the EAS channel.
The channel state is assumed to be available at the controller but not the encoder. At each time t, the
encoder selects a decision rule ut from U . Then the controller uses ut and the state st to determine
an action xt = ut(st). Consequently, the EAS channel has an input alphabet U , output alphabet S,
and channel law:

PS+|S,U (st+1|st, ut) = PS+|S,X(st+1|st, ut(st)) = T (st+1|st, ut(st)). (11)

The EAS channel and the action-state channel are equivalent, and we will focus on the EAS channel
to develop our coding scheme. In the rest of this section, we detail the Act2Comm framework in five
main components: the overall workflow, block-attention feedback coding, transceiver design, joint
optimization of control and communication, and the iterative training strategy.

Overall workflow. As depicted in Fig. 2, given a k-bit message m ∈ {0, 1}k, the Act2Comm
first encodes m into a belief map Z ∈ R|S|× k

R . This Z is subsequently mapped into a codeword
U ∈ X |S|× k

R by a quantizer. At each time step t, the controller selects an action xt = U [st, t] for
state st, and transitions into a new state according to the channel law P (st+1|xt, st). After k

R time
steps, the receiver decodes the message based on the accumulated observations s ∈ S k

R .

Block-attention feedback coding. One of the principal innovations of Act2Comm is the block-
attention coding mechanism, which reduces the coding complexity and enhances the performance.

(a) Message block: Formally, we partition message m into l blocks as m = [b1; b2; . . . ; bl], where
each block bi ∈ {0, 1}µ contains µ = k/l bits. This allows us to encode m with l coding rounds,
with each round consisting of µ/R time steps. For each coding round τ (1 ≤ τ ≤ l), the input
message block is defined as B(τ) ≜ [2b1 − 1; . . . ; 2bτ − 1] ∈ Rτ×µ.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

(b) Feedback block: Although Theorem 1 shows that the capacity-achieving code with infinite
blocklength can be history-independent, feedback has demonstrated benefits in simplifying the cod-
ing process for better performance in the practical finite blocklength regime (Kostina et al., 2017;
Kim et al., 2020). Hence, for each time step t within the τ -th coding round, we introduce the feed-
back vector as c(τ)t ≜ [s

(τ)
t , x

(τ)
t , s

(τ)
t+1] ∈ R1×3, which encapsulates the current state, the selected

action, and the subsequent state. The feedback matrix for the τ -th round can then be given by
Cτ = [c

(τ)
1 ; . . . ; c

(τ)
µ
R

] ∈ R
µ
R×3. Consequently, for each coding round τ , we concatenate prior

feedback matrices to construct a feedback block: C(τ) ≜ [C1; . . . ;Cτ] ∈ Rτ× µ
R×3.

Transceiver design.

(a) Encoder: At each coding round τ , a transformer-based encoder is utilized to generate a belief
matrix Z(τ) ∈ Rτ×µ|S|

R using B(τ) and C(τ). The detailed architecture is provided in Fig. 9,
with each component illustrated in Appendix C. The τ -th row vector of Z(τ), denoted as z(τ) ≜

Z(τ)[τ, :] ∈ R
µ|S|
R , represents the belief vector derived from the τ -th coding round. After completing

all l coding rounds, the selected belief vectors are combined to form the final belief map Z =

[z(1), . . . ,z(l)] ∈ R
k
µ×µ|S|

R , which is subsequently reshaped into Z ∈ R|S|× k
R . Each element of

this reshaped belief map Z[st, t] indicates the action belief at time step t given state st.

(b) Quantizer: Act2Comm employs a quantizer to generate the codeword U ∈ X |S|× k
R as:

U = Q(|X | · Sigmoid(Z)), (12)
where Q : R|S|× k

R → X |S|× k
R is the quantization operation that maps the coding result to the

nearest action index in the action space X , and each element of resultant codeword xt = U [st, t]
represents the selected action for state st at time step t.

(c) Decoder: Given the state observations s ≜ [s1 . . . , s k
R
] ∈ S k

R , a transformer-based decoder is

utilized to output logits M̂ ∈ R
k
µ×2µ for all blocks. After applying the softmax function, each block

is predicted and subsequently transformed into the reconstructed bitstream m̂.

Joint optimization of control and communication. To model the trade-off between control and
communication, we utilize a weighted loss function: Lall = Lcom + λ · Lcont. The communication
loss Lcom is defined as the cross-entropy between the predictions from a critic network and their
corresponding ground-truth, which quantifies the message decoding accuracy. To ensure control
performance, we aim to make the coding policy behave closely to the target policy. Therefore, Lcont

measures the “distance” between the coding policy and the target policy.

Let π denote the target policy, with π(x|s) representing the probability of taking action x in state
s. Let fU (x|s) denote the frequency of selecting x in state s across all decision rules in U . We
then use the mean square error (MSE) between π and fU to measure the control loss for its stabil-
ity in experiments. However, fU is non-differentiable during the backpropagation as it is discrete.
To address this issue, we estimate fU (x|s) using Z in equation 12. Let e denote the all-one row
vector, and define ΓZ(T , s, x) ≜ Sigmoid(γ · (|X |Sigmoid(Z[s, :]) − xe)). When γ > 0 is suffi-
ciently large, ΓZ(T , s, x) is a (kR)-dim vector with elements close to either 0 or 1. Additionally,
ΓZ(T , s, x)e⊤ approximates the number of elements in U [s, :] that are not less than x. We refer to
γ as the temperature parameter and estimate fU (x|s) for x > 0 as follows:

fU (x|s) ≈ f̂U (x|s) ≜
1

kR

[
ΓZ(T , s, x− 1)e⊤ − ΓZ(T , s, x)e⊤

]
. (13)

For x = 0, we have fU (0|s) ≈ f̂U (0|s) ≜ 1−ΓZ(T , s, 0)e⊤/kR. As a result, we define the control
loss as Lcont = MSE(π, f̂).

Iterative training strategy. Given the non-differentiable nature of the EAS channel and quantizer,
jointly updating the encoder and decoder is infeasible. To address this, we introduce a critic network
and employ an iterative updating strategy to train Act2Comm effectively, with the corresponding
algorithm and architectures detailed in the Appendix. C.4.

(a) Critic network As shown in Fig. 2, a critic network is introduced to estimate the gradient during
gradient backpropagation for the encoder optimization, which views the EAS channel and decoder

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0 0.5 1 1.5 2 2.5

Reward

10-5

10-4

10-3

10-2

10-1

100

B
E

R

O
pt

im
al

 r
ew

ar
d

Achievable
 R=1/2
 R=1/3
 R=1/4
 R=1/5
 R=1/6
 R=1/8

(a) BER v.s. Reward

0 0.1 0.2 0.3 0.4 0.5

Coding rate

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

R
ew

ar
d

Target BER: 5e-2
Target BER: 2e-2
Target BER: 5e-3
Target BER: 5e-4
Target BER: 1e-4

(b) Reward v.s. Rate

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Coding rate

10-5

10-4

10-3

10-2

10-1

100

B
E

R

Target reward 2.0
Target reward 1.5
Target reward 1.0
Target reward 0.5
w/o target reward

(c) BER v.s. Rate

Figure 3: Control-communication trade-off of Act2Comm in “Lucky Wheel”.

as an unknown environment. Before each update of the encoder, a critic network is trained over sin
inner steps to predict the logits for the neighbor belief maps of a given Z. For each inner step k,
the network is trained to predict the corresponding logits M̂k as M̂ck based on the neighbor belief
maps sampled from Zk = Z + Wk, where Wk ∈ R|S|× k

R ∼ N (0, σ2
w) is the Gaussian noise

term for neighboring sampling during the k-th inner step. The MSE loss, denoted as Lcn, is utilized
between M̂ck and M̂k to train the critic network. With this design, we aim to obtain a precise critic
network to estimate gradients from neighbors of Z in a given environment, thereby helping update
the encoder. Note that this extra training cost is incurred only during the offline training process, this
critic network will be removed during the inference phase, as detailed in Appendix C.5-C.6..

(b) Iterative updating strategy As outlined in Fig. 2, at each update step i, we first train a critic
network ϕi

sin
using sin inner steps to learn to estimate the gradient around the samples. Next, the

encoder is updated to θi+1 using the frozen decoder parameters ξi and the learned gradient estima-
tion. Subsequently, the decoder is directly optimized with the loss function to obtain new parameters
ξi+1, while keeping the encoder frozen at θi+1. This process iteratively alternates between encoder
and decoder updates, freezing one while optimizing the other at each step.

6 EXPERIMENTAL RESULTS

We evaluate Act2Comm across three distinct MDP environments, as detailed in Appendix D, with
communication performance measured by the bit error rate (BER). Due to page limitations, the
results of environment, “Erratic robot”, are provided in the Appendix D.4.

Experiment 1: Lucky Wheel. In this game, agent keeps spinning a wheel to accumulate rewards by
choosing either clockwise or counterclockwise. It is modeled as an MDP with 3 states and 2 actions,
the details of the environment and experimental setting is provided in Fig. 10a in Appendix D.

We examine the trade-off among the three performance metrics in Fig. 3. We set the optimal reward-
maximizing policy as the target policy, and consider different code rates. By adjusting λ, we can
control how closely the coding policy approximates the target policy. The shaded regions in the
figures (a)-(c) represent achievable regions of Act2Comm with various λ. When λ is large, regardless
of the coding rate, Act2Comm learns a policy that mirrors the target policy for the optimal reward.
In this case, all messages are mapped to the same sequence of decision rules since the target policy
is stationary and deterministic. As a result, the BER is 0.5, indicating no communication capability.

Next, we consider different target BERs, resulting in a trade-off between the code rate and reward.
As shown in Fig. 3b, achieving a pre-determined BER with a higher coding rate results in a reduced
reward. When targeting a lower BER, the reward decreases rapidly with the coding rate. Fig. 3c il-
lustrates Act2Comm’s ability to balance BER and coding rate when ensuring a specified reward. Our
results reveal that reducing the reward constraint leads to more reliable communication at the same
rate. In summary, these findings demonstrate that Act2Comm can communicate messages through
its actions at acceptable reliability while satisfying specific reward criteria.

Experiment 2: Catch the Ball. Next we consider “Catch the Ball”, which is an MDP with 27
states and 3 actions. This MDP includes a parameter p that influences its transition matrix (see the

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

(a) BER v.s. Reward

0 0.1 0.2 0.3 0.4 0.5

Coding rate

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

R
ew

ar
d

Target BER: 1e-2
Target BER: 5e-3
Target BER: 1e-3
Target BER: 0

(b) Reward v.s. Rate (c) BER v.s. Rate

Figure 4: Control-communication trade-off of Act2Comm in “Catch the Ball” with p = 0.

-0.5 0 0.5 1 1.5

Reward

10-4

10-3

10-2

10-1

100

B
E

R

O
pt

im
al

 r
ew

ar
d

Achievable
 R=1/2
 R=1/3
 R=1/4
 R=1/5
 R=1/6
 R=1/8

(a) BER v.s. Reward

0 0.1 0.2 0.3 0.4 0.5

Coding rate

0

0.5

1

1.5

R
ew

ar
d

Target BER: 1e-1
Target BER: 5e-2
Target BER: 1e-2
Target BER: 1e-3

(b) Reward v.s. Rate

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Coding rate

10-4

10-3

10-2

10-1

100

B
E

R

Target reward 1.2
Target reward 0.8
Target reward 0.5
Target reward 0.0
w/o target reward

(c) BER v.s. Rate

Figure 5: Control-communication trade-off of Act2Comm in “Catch the Ball” with p = 0.2.

Appendix D for details). When p = 0, the action-state channel is perfect as each action can be
reliably inferred from the resulting state transition, but it becomes noisy for p > 0.

We first consider p = 0, where no coding is needed since there is no noise. The challenge is to main-
tain a certain reward while communicating. Act2Comm performs excellently in this environment. As
shown in Fig. 4a, with a minor reduction in reward from 1.66 to 1.5, Act2Comm communicates at a
rate of 0.2 with no error. If we relax BER to 10−4, same rate can be achieved with a reward of 1.6.
The trade-off between reward and rate is shown in Fig. 4b. This experiment highlights our model’s
capacity to enable efficient communication capabilities with minimal impact on performance. We
also applied Act2Comm to this game with p = 0.2, in which the action-state channel is noisy and
the coding process becomes more complex. As detailed in Fig. 5, we can observe a reduction in the
coding rates for the same level of reliability due to the stochasticity in the environment.

7 CONCLUSION

We introduced a novel framework of communication through actions, a form of implicit communi-
cation from the controller of an MDP to a receiver that can observe the states. By treating the MDP
environment as a communication channel, messages can be encoded into the action sequence and
decoded from the state sequence. Aiming to optimize communication performance while ensuring a
certain MDP reward, we formulated an integrated control and communication problem. We derived
the capacity of the action-state channel and demonstrated that the trade-off between channel capacity
and reward can be characterized as a convex optimization problem. We then proposed Act2Comm, a
transformer-based framework for designing joint control and communication policies. Through ex-
periments, we demonstrated Act2Comm’s capability to communicate reliably through actions while
maintaining a certain level of MDP reward.

The proposed Act2Comm framework can be used as a plug-in component in various MDP and RL
applications, enabling information transmission by learning a joint control and coding policy that
closely mimics the target policy. More importantly, our study demonstrates the potential of commu-
nication through actions in multi-agent systems. While this form of implicit communication leads to
some loss in control performance, it may potentially improve the overall control performance by en-
hancing coordination when applied to multi-agent systems where explicit communication channels
are not available. This presents an interesting and challenging direction for future research.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Ziv Aharoni, Bashar Huleihel, Henry D Pfister, and Haim H Permuter. Data-driven neural polar
codes for unknown channels with and without memory. arXiv preprint arXiv:2309.03148, 2023.

Eitan Altman. Constrained Markov decision processes. Routledge, 2021.

Dimitri Bertsekas. Nonlinear programming. Athena Scientific, 2016.

David Blackwell, Leo Breiman, and Aram J Thomasian. Proof of shannon’s transmission theorem
for finite-state indecomposable channels. The Annals of Mathematical Statistics, pp. 1209–1220,
1958.

Brendon Boldt and David R Mortensen. A review of the applications of deep learning-based emer-
gent communication. Transactions on Machine Learning Research, 2024. ISSN 2835-8856. URL
https://openreview.net/forum?id=jesKcQxQ7j.

Jingdi Chen, Tian Lan, and Carlee Joe-Wong. Rgmcomm: Return gap minimization via discrete
communications in multi-agent reinforcement learning. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 38, pp. 17327–17336, 2024.

Thomas M Cover. Elements of information theory. John Wiley & Sons, 1999.

Kamak Ebadi, Lukas Bernreiter, Harel Biggie, Gavin Catt, Yun Chang, Arghya Chatterjee, Christo-
pher E. Denniston, Simon-Pierre Deschênes, Kyle Harlow, Shehryar Khattak, Lucas Nogueira,
Matteo Palieri, Pavel Petráček, Matěj Petrlı́k, Andrzej Reinke, Vı́t Krátký, Shibo Zhao, Ali-
akbar Agha-mohammadi, Kostas Alexis, Christoffer Heckman, Kasra Khosoussi, Navinda Kot-
tege, Benjamin Morrell, Marco Hutter, Fred Pauling, François Pomerleau, Martin Saska, Sebas-
tian Scherer, Roland Siegwart, Jason L. Williams, and Luca Carlone. Present and future of slam
in extreme environments: The darpa subt challenge. IEEE Transactions on Robotics, 40:936–959,
2024. doi: 10.1109/TRO.2023.3323938.

EA Fainberg. On controlled finite state markov processes with compact control sets. Theory of
Probability & Its Applications, 20(4):856–862, 1976.

Jakob Foerster, Ioannis Alexandros Assael, Nando de Freitas, and Shimon Whiteson. Learning to
Communicate with Deep Multi-Agent Reinforcement Learning. In Advances in Neural Informa-
tion Processing Systems, volume 29. Curran Associates, Inc., 2016. URL https://papers.nips.cc/
paper files/paper/2016/hash/c7635bfd99248a2cdef8249ef7bfbef4-Abstract.html.

Robert G Gallager. Information theory and reliable communication, volume 588. Springer, 1968.

A.J. Goldsmith and P.P. Varaiya. Capacity, mutual information, and coding for finite-state markov
channels. IEEE Transactions on Information Theory, 42(3):868–886, 1996. doi: 10.1109/18.
490551.

S Ashwin Hebbar, Sravan Kumar Ankireddy, Hyeji Kim, Sewoong Oh, and Pramod Viswanath.
Deeppolar: Inventing nonlinear large-kernel polar codes via deep learning. arXiv preprint
arXiv:2402.08864, 2024.

Onésimo Hernández-Lerma and Jean B Lasserre. Discrete-time Markov control processes: basic
optimality criteria, volume 30. Springer Science & Business Media, 2012.

Yihan Jiang, Hyeji Kim, Himanshu Asnani, Sreeram Kannan, Sewoong Oh, and Pramod Viswanath.
Turbo autoencoder: Deep learning based channel codes for point-to-point communication chan-
nels. Advances in neural information processing systems, 32, 2019.

Yihan Jiang, Hyeji Kim, Himanshu Asnani, Sreeram Kannan, Sewoong Oh, and Pramod Viswanath.
Learn codes: Inventing low-latency codes via recurrent neural networks. IEEE Journal on Se-
lected Areas in Information Theory, 1(1):207–216, 2020.

Mustafa O. Karabag, Melkior Ornik, and Ufuk Topcu. Least inferable policies for markov decision
processes. In 2019 American Control Conference (ACC), pp. 1224–1231, 2019. doi: 10.23919/
ACC.2019.8815129.

11

https://openreview.net/forum?id=jesKcQxQ7j
https://papers.nips.cc/paper_files/paper/2016/hash/c7635bfd99248a2cdef8249ef7bfbef4-Abstract.html
https://papers.nips.cc/paper_files/paper/2016/hash/c7635bfd99248a2cdef8249ef7bfbef4-Abstract.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Hyeji Kim, Yihan Jiang, Sreeram Kannan, Sewoong Oh, and Pramod Viswanath. Deepcode: Feed-
back codes via deep learning. Advances in neural information processing systems, 31, 2018.

Hyeji Kim, Yihan Jiang, Sreeram Kannan, Sewoong Oh, and Pramod Viswanath. Deepcode: Feed-
back codes via deep learning. IEEE Journal on Selected Areas in Information Theory, 1(1):
194–206, 2020.

Ross A. Knepper, Christoforos I. Mavrogiannis, Julia Proft, and Claire Liang. Implicit commu-
nication in a joint action. In 2017 12th ACM/IEEE International Conference on Human-Robot
Interaction (HRI, pp. 283–292, 2017.

Victoria Kostina, Yury Polyanskiy, and Sergio Verd. Joint source-channel coding with feedback.
IEEE Transactions on Information Theory, 63(6):3502–3515, 2017.

Ashok V Makkuva, Xiyang Liu, Mohammad Vahid Jamali, Hessam Mahdavifar, Sewoong Oh, and
Pramod Viswanath. Ko codes: inventing nonlinear encoding and decoding for reliable wireless
communication via deep-learning. In International Conference on Machine Learning, pp. 7368–
7378. PMLR, 2021.

Jeffrey Martz, Wesam Al-Sabban, and Ryan N Smith. Survey of unmanned subterranean explo-
ration, navigation, and localisation. IET Cyber-Systems and Robotics, 2(1):1–13, 2020.

James Massey. Causality, feedback and directed information. In Proc. Int. Symp. Inf. Theory
Applic.(ISITA-90), pp. 303–305, 1990.

Haim Henri Permuter, Himanshu Asnani, and Tsachy Weissman. Capacity of a post channel with
and without feedback. IEEE Transactions on Information Theory, 60(10):6041–6057, 2014. doi:
10.1109/TIT.2014.2343232.

Haim Henry Permuter, Tsachy Weissman, and Andrea J. Goldsmith. Finite state channels with
time-invariant deterministic feedback. IEEE Transactions on Information Theory, 55(2):644–662,
2009. doi: 10.1109/TIT.2008.2009849.

Hossein Pirayesh and Huacheng Zeng. Jamming attacks and anti-jamming strategies in wireless
networks: A comprehensive survey. IEEE Communications Surveys & Tutorials, 24(2):767–809,
2022. doi: 10.1109/COMST.2022.3159185.

H. Vincent Poor and Rafael F. Schaefer. Wireless physical layer security. Proceedings of the
National Academy of Sciences, 114(1):19–26, 2017. doi: 10.1073/pnas.1618130114. URL
https://www.pnas.org/doi/abs/10.1073/pnas.1618130114.

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons, 2014.

Oron Sabag, Haim H. Permuter, and Henry D. Pfister. A single-letter upper bound on the feedback
capacity of unifilar finite-state channels. IEEE Transactions on Information Theory, 63(3):1392–
1409, 2017. doi: 10.1109/TIT.2016.2636851.

Claude E Shannon. Channels with side information at the transmitter. IBM journal of Research and
Development, 2(4):289–293, 1958.

Eli Shemuel, Oron Sabag, and Haim H Permuter. Finite-state channels with feedback and state
known at the encoder. arXiv preprint arXiv:2212.12886, 2022.

Eli Shemuel, Oron Sabag, and Haim H. Permuter. Finite-state channels with feedback and state
known at the encoder. IEEE Transactions on Information Theory, 70(3):1610–1628, 2024. doi:
10.1109/TIT.2023.3336939.

Samuel Sokota, Christian A Schroeder De Witt, Maximilian Igl, Luisa M Zintgraf, Philip Torr, Mar-
tin Strohmeier, Zico Kolter, Shimon Whiteson, and Jakob Foerster. Communicating via markov
decision processes. In International Conference on Machine Learning, pp. 20314–20328. PMLR,
2022.

12

https://www.pnas.org/doi/abs/10.1073/pnas.1618130114

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Sainbayar Sukhbaatar, arthur szlam, and Rob Fergus. Learning multiagent communica-
tion with backpropagation. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and
R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 29. Cur-
ran Associates, Inc., 2016. URL https://proceedings.neurips.cc/paper files/paper/2016/file/
55b1927fdafef39c48e5b73b5d61ea60-Paper.pdf.

Zheng Tian, Shihao Zou, Ian Davies, Tim Warr, Lisheng Wu, Haitham Bou Ammar, and Jun Wang.
Learning to communicate implicitly by actions. arXiv:cs.AI:1810.04444, 2019. URL https://
arxiv.org/abs/1810.04444.

S. Trenholm. Thinking Through Communication: An Introduction to the Study of Human Commu-
nication (9th ed.). Routledge, 2020. doi: 10.4324/9781003016366.

Tze-Yang Tung, Szymon Kobus, Joan Pujol Roig, and Deniz Gündüz. Effective Communications:
A Joint Learning and Communication Framework for Multi-Agent Reinforcement Learning Over
Noisy Channels. IEEE Journal on Selected Areas in Communications, 39(8):2590–2603, August
2021. ISSN 1558-0008. doi: 10.1109/JSAC.2021.3087248. URL https://ieeexplore.ieee.org/
document/9466501.

S. Verdu and Te Sun Han. A general formula for channel capacity. IEEE Transactions on Information
Theory, 40(4):1147–1157, 1994. doi: 10.1109/18.335960.

Wolfhard von Thienen, Dirk Metzler, Dong-Hwan Choe, and Volker Witte. Pheromone communica-
tion in ants: a detailed analysis of concentration-dependent decisions in three species. Behavioral
ecology and sociobiology, 68:1611–1627, 2014.

Jiaming Wang, Sevda Öğüt, Haitham Al Hassanieh, and Bhuvana Krishnaswamy. Towards practical
and scalable molecular networks. In Proceedings of the ACM SIGCOMM 2023 Conference, ACM
SIGCOMM ’23, pp. 62–76. Association for Computing Machinery, 2023. doi: 10.1145/3603269.
3604881.

Rundong Wang, Xu He, Runsheng Yu, Wei Qiu, Bo An, and Zinovi Rabinovich. Learning Efficient
Multi-agent Communication: An Information Bottleneck Approach. In Proceedings of the 37th
International Conference on Machine Learning, pp. 9908–9918. PMLR, November 2020. URL
https://proceedings.mlr.press/v119/wang20i.html. ISSN: 2640-3498.

Christopher M Waters and Bonnie L Bassler. Quorum sensing: cell-to-cell communication in bacte-
ria. Annual Review of Cell and Developmental Biology, 21(1):319–346, 2005.

Ron Weiss and Thomas F. Knight. Engineered communications for microbial robotics. In Anne
Condon and Grzegorz Rozenberg (eds.), DNA Computing, pp. 1–16, Berlin, Heidelberg, 2001.
Springer Berlin Heidelberg. ISBN 978-3-540-44992-8.

Michael Zhang, James Lucas, Jimmy Ba, and Geoffrey E Hinton. Lookahead optimizer: k steps
forward, 1 step back. Advances in neural information processing systems, 32, 2019.

13

https://proceedings.neurips.cc/paper_files/paper/2016/file/55b1927fdafef39c48e5b73b5d61ea60-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/55b1927fdafef39c48e5b73b5d61ea60-Paper.pdf
https://arxiv.org/abs/1810.04444
https://arxiv.org/abs/1810.04444
https://ieeexplore.ieee.org/document/9466501
https://ieeexplore.ieee.org/document/9466501
https://proceedings.mlr.press/v119/wang20i.html

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

APPENDIX

A NOTATION AND DEFINITIONS

To bridge the RL and FSC areas, we provide a notation table for this paper. Note that lowercase and
uppercase bold letters represent vectors and matrices, respectively.

Table 1: Notation table

In general
xk
i , xk Sequence {xi, xi+1, . . . , xk}, sequence {x1, . . . , xk}

|X | Cardinality of set X
MDP: (S,X ,T , r, α)
st, xt MDP state and action at t
r, α Reward function and initial state distribution
S, X State and action space for MDP
T , π Transition kernel and control policy
FSC: (X × S, PY,S+|X,S ,Y × S)
xt, yt, st Channel input, output, and state at t
X , Y , S Channel input, output alphabet, and state alphabet
S+, S Future and current state (random variables)
E , D Encoder and decoder
k, n Message bit length and the code length
RE,D = k/n Rate of code (E ,D)
Action-state channel: P (st+1|xt, st)
st, xt State and action at t
S, X State alphabet, action alphabet
S+, S Future and current state (random variables)
E , D, T , GE Encoder, decoder, transition kernel, average reward
k, n, R Message bit length, code length, and rate
sinin−n+1 The state sequence associated with the i-th message
EAS channel for Act2Comm: P (st+1|xt, st)
st, xt, ut; π State, action and decision rule at t; Target policy
S+, S Future and current state (random variables)
U , X , S Alphabets of decision rule, actions, and states
T , GE transition kernel and average reward
E(·), D(·), C(·) Encoder, decoder, and critic network.
θ, ξ, ϕ Parameters of encoder, decoder, critic network
Z, U Encoded belief map and codeword
B(τ), C(τ) Message and feedback block at coding round τ
X(τ) Control policy at coding round τ

M̂ Decoded logits
Q(·) Quantizer
Lall Weighted loss function to update the encoder
Lcom, Lcont Communication loss term and Control loss term
Lcn MSE loss for critic network
fU (x|s) Frequency of selecting action x in state s across U
γ Estimation temperature for control policy
f̂U (x|s) Estimation of fU (x|s)
Zk, Wk Sampled neighbors of Z and its Gaussian term
M̂k The corresponding logits from the frozen decoder
M̂ck Predicted logits from the critic network (the k-th step)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Encoder Decoder

Unit-Delay

Encoder & Controller Decoder

(a). A standard FSC channel

(b). Action-state channel

Encoder DecoderController

(c). Extended action-state channel

MDP environment

Encoder & Controller Decoder

(a). Action-state channel

Encoder DecoderController

(b). Extended action-state channel

MDP environment

Figure 6: The action-state channel and the equivalent extended action-state channel.

B TECHNICAL PROOFS

This section presents the proofs of Section 4.

B.1 PROOF OF THEOREM 1

The proof of Theorem 1 relies on converting the action-state channel to an equivalent channel. This
equivalence is also stated in Section 5, as it is crucial for the design of Act2Comm. To enhance
readability, we present the equivalence here as well.

Let U ≜ XL, where each u ∈ U is referred to as a decision rule because the i-th element of u,
denoted by u(i), can be viewed as an action for state i. A control policy is thus a collection of
decision rules spanning the entire time horizon. To measure the similarity between the coding policy
and the target policy, we propose that the codeword for a message should be a sequence of n decision
rules, rather than a sequence of n actions. To this end, we convert the action-state channel into
an extended action-state (EAS) channel, as depicted in Fig. 6, using Shannon’s method (Shannon,
1958). In particular, we conceptually separate the encoder and controller, considering the controller
as an integral component of the EAS channel. We then assume that the channel state is available
at the controller but not the encoder. At each time t, the encoder selects a decision rule ut from U .
Then the controller uses ut and the state st to determine an action xt = ut(st). Consequently, the
EAS channel has an input alphabet U , output alphabet S, and channel law:

PS+|S,U (st+1|st, ut) = PS+|S,X(st+1|st, ut(st)) = T (st+1|st, ut(st)).

The EAS channel and the action-state channel are equivalent, and we will examine the EAS channel
instead of the action-state channel to derive the capacity.

Assume that the initial state of the action-state channel is fixed to be s1. Then it is well-known that
the capacity of the EAS channel is (Gallager, 1968)

C(s1) = max
{p(ui|ui−1)}i≥1

lim
N→∞

1

N
I(UN ;SN+1

2 |s1), (14)

where I(UN ;SN+1
2 |s1) is the mutual information given by

I(UN ;SN+1
2 |s1) =

∑
uN∈UN

∑
sN+1
2 ∈SN

p(uN)P (sN+1
2 |uN , s1) log

P (sN+1
2 |uN , s1)∑

zN∈UN p(zN)P (sN+1
2 |zN , s1)

.

For two random variables S and X , let H(X|S) denote the conditional entropy (Cover, 1999) of X
given S. Then we have

lim
N→∞

1

N
I(UN ;SN+1

2 |s1) = lim
N→∞

1

N

N∑
i=1

[
H(Si+1|Si

2, s1)−H(Si+1|Si
2, U

N , s1)
]

(a)
= lim

N→∞

1

N

N∑
i=1

[
H(Si+1|Si

2, s1)−H(Si+1|Si
2, U

N , Xi, s1)
]

= lim
N→∞

1

N

N∑
i=1

[H(Si+1|Si, s1)−H(Si+1|Si, Xi, s1)]

= lim
N→∞

1

N

N∑
i=1

I(Xi;Si+1|Si, s1)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

where (a) holds because Xi is determined by Si and Ui. It follows that

C = max
{p(ui|ui−1)}i≥1

lim
N→∞

1

N
I(UN ;SN+1

2 |s1)

(a)
= max

{p(xi|si,xi−1)}i≥1

lim
N→∞

1

N

N∑
i=1

I(Xi;Si+1|Si, s1)

(b)
= max

{p(xi|si)}i≥1

lim
N→∞

1

N

N∑
i=1

I(Xi;Si+1|Si, s1) (15)

In equation 15, (a) follows from the equivalence between the action-state channel and the EAS
channel. We next prove (b). Let η denote a history-dependent encoder and {ηi(xi|si, xi−1)}i≥1

denote the associated input distribution. Furthermore, let P η
i (s, x) denote the probability that Si = s

and Xi = s conditioned on the encoder η. Note that η can be viewed as a history-dependent policy
for the MDP. Then according to MDP theory, for any history-dependent policy η, there exists a
Markov policy η′ such that η and η′ share the same joint probability distribution of states and actions.
In particular, denote by η′i(xi|si) the probability of selecting action xi given that the state is si at
time i. Then η′ can be seen as a Markov encoder with input distribution {η′i(xi|si)}i≥1. By letting

η′i(xi|si) = ηi(xi|si) ≜
∑

si−1,xi−1

ηi(xi|si, xi−1)P (si−1, xi−1|s1),

we have

P η
i (s, x|s1) = P η′

i (s, x|s1), ∀i ≥ 1, s ∈ S, x ∈ X
We omit the proof here. The interested readers are referred to Theorem 5.5.1 of (Puterman, 2014) for
the formal statement and proof. Consequently, we can verify that for any history-dependent encoder
η, there exists a Markov encoder η′ such that they result in the same I(Xi;Si+1|Si, s1) for all i:

Iη(Xi;Si+1|Si, s1) =
∑
si∈S

∑
xi∈X

P η
i (si, xi|s1)

∑
si+1∈S

T (si+1|si, xi) log
T (si+1|si, xi)∑

x′
i
T (si+1|si, x′

i)ηi(x
′
i|si)

=
∑
si∈S

∑
xi∈X

P η′

i (si, xi|s1)
∑

si+1∈S
T (si+1|si, xi) log

T (si+1|si, xi)∑
x′
i
T (si+1|si, x′

i)η
′
i(x

′
i|si)

We thus conclude that restricting on Markov encoders does not result in any loss of capacity.

Next, we show that, as far as finding a capacity-achieving encoder is concerned, it is enough to
consider stationary encoders. To see this, we reformulate equation 15 as a dynamic programming
(DP) defined as follows:

• state at time i: si ∈ S
• action at time i given state si: qi(si) ∈ ∆(X) with qi(xi|si) = P (xi|si) being the i-th element
• transition law: P (si+1|si, xi) =

∑
xi∈X qi(xi|si)T (si+1|si, xi)

• reward function:

r(si, qi(si)) =
∑
xi∈X

qi(xi|si)
∑

si+1∈S
T (si+1|si, xi) log

T (si+1|si, xi)∑
x′
i
T (si+1|si, x′

i)qi(x
′
i|si)

Then the capacity expression given in equation 15 can be written as

C = max
{qi}i≥1

lim
N→∞

1

N

N∑
i=1

∑
si∈S

P (si)r(si, qi(si)) (16)

We can think of equation 16 as a problem of maximizing the long-term average reward of the above
DP over the set of Markov deterministic policies. Essentially, the DP is an MDP with finite state
space, compact action space, and bounded reward function. We can easily verify the following:

1. The reward function is a continuous function of action di.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

2. The transition law depends continuously on the action di.

3. Any stationary policy yields a Markov chain with one ergodic class and a possibly empty set of
transient states (Assumption 1).

Then, according to MDP theory (see, e.g., (Fainberg, 1976) and (Hernández-Lerma & Lasserre,
2012)), the maximum of equation 16 can be attained by a stationary deterministic policy. Therefore,
problem equation 16 is equivalent to

C = max
{π(·|s)∈∆(X):s∈S}

lim
N→∞

1

N

N∑
i=1

I(Xi;Si+1|Si, s1) (17)

Note that each {π(·|s) ∈ ∆(X) : s ∈ S} corresponds to a stationary policy for the original MDP.
Under Assumption 1, any stationary policy yields a Markov chain with equilibrium state distribution
ρπ(s). Therefore, the following probability converges to a probability that is independent of s1:

lim
i→∞

P (Xi = x, Si = s, Si+1 = s′|s1) = ρπ(s)π(x|s)T (s′|s, x)

As a result, I(Xi;Si+1|Si, s1) also converges to a value that is independent of s1. The desired result
follows immediately.

B.2 PROOF OF THEOREM 2

We first show that the capacity of the action-state channel without reward constraint can be written
as:

C = max
w∈W

I(w,T). (18)

To see this, using Theorem 1 and the formula π(x|s) = wπ(s, x)/
∑

x′ wπ(s, x
′) yields

I(X;S′|S) =
∑
s∈S

∑
x∈X

ρπ(s)π(x|s)
∑
s′∈S

T (s′|s, x) log T (s′|s, x)∑
x′ T (s′|s, x′)q(x′|s)

=
∑
s∈S

∑
x∈X

wπ(s, x)
∑
s′∈S

T (s′|s, x) log
T (s′|s, x)

∑
x′′ wq(s, x

′′)∑
x′ T (s′|s, x′)wq(s, x′)

.

Then the equivalence between equation 18 and the capacity expression given in Theorem 1 follows
immediately from the one-to-one mapping between W and ΠS .

It is well-known that the long-term average reward of a policy can be expressed as a linear function
of its occupation measure:

Gπ = lim
N→∞

1

N
Eπ

[
N∑
t=1

r(st, xt)|s1 ∼ α

]
=
∑
s∈S

∑
x∈X

wπ(s, x)r(s, x). (19)

Since the reward constraint is linear, to show that the optimization problem is a convex optimization,
it suffices to prove that I(w,T) is a concave function. For any λ ∈ [0, 1] and λ̄ = 1 − λ, let
w = λw1 + λ̄w2, where w1, w2 ∈ W . Then we have

∑
x∈X

w(s, x)T (s′|s, x) log
∑

x′ T (s′|s, x′)w(s, x′)

T (s′|s, x)
∑

x′′ w(s, x′′)

=
∑
x∈X

w(s, x)T (s′|s, x) log
∑

x′ T (s′|s, x′)w(s, x′)∑
x′′ w(s, x′′)

−
∑
x∈X

w(s, x)T (s′|s, x) logT (s′|s, x).

(20)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

The second term of equation 20 is clearly linear w.r.t. w. For the first term, an application of log-sum
inequality gives (∑

x∈X
w(s, x)T (s′|s, x)

)
log

∑
x′ T (s′|s, x′)w(s, x′)∑

x′′ w(s, x′′)

≤λ

(∑
x∈X

w1(s, x)T (s′|s, x)

)
log

∑
x′ T (s′|s, x′)w1(s, x

′)∑
x′′ w1(s, x′′)

+ λ̄

(∑
x∈X

w2(s, x)T (s′|s, x)

)
log

∑
x′ T (s′|s, x′)w2(s, x

′)∑
x′′ w2(s, x′′)

. (21)

Combining equation 20 and equation 21 yields∑
x∈X

w(s, x)T (s′|s, x) log
T (s′|s, x)

∑
x′′ w(s, x′′)∑

x′ T (s′|s, x′)w(s, x′)

≥λ
∑
x∈X

w1(s, x)T (s′|s, x) log
T (s′|s, x)

∑
x′′ w1(s, x

′′)∑
x′ T (s′|s, x′)w1(s, x′)

+ λ̄
∑
x∈X

w2(s, x)T (s′|s, x) log
T (s′|s, x)

∑
x′′ w2(s, x

′′)∑
x′ T (s′|s, x′)w2(s, x′)

. (22)

Summing both sides of the above inequality over s and s′ yields

I(w,T) = I(λw1 + λ̄w2,T) ≥ λI(w1,T) + λ̄I(w2,T).

We thus conclude that I(w,T) is a concave function of w. This completes the proof.

B.3 PROOF OF LEMMA 1

Define

WV =

{
w ∈ W :

∑
s∈S

∑
x∈X

w(s, x)r(s, x) ≥ V

}
.

For any achievable V1 and V2, let

wi = arg max
w∈WVi

I(w,T), i = 1, 2.

Then C(Vi) = I(wi,T), i = 1, 2. For any θ ∈ [0, 1], let θ̄ = 1 − θ. Let V = θV1 + θ̄V2 and
w3 = θw1 + θ̄w2. Then clearly w3 ∈ WV . We thus have

C(V) = max
w∈WV

I(w,T) ≥ I(w3,T) ≥ θI(w1,T) + θ̄I(w2,T) = θC(V1) + θ̄C(V2).

We thus conclude that C(V) is concave.

B.4 PROOF OF LEMMA 2

Since I(w,T) is concave w.r.t. w and l(w,wn,T) is linear w.r.t. w, to show that l(w,wn,T) is a
tangent line of I(w,T) at point wn, it is enough to prove that statements (i) and (ii) hold. Statement
(i) holds trivially by the definitions of the two functions.

For statement (ii), consider

l(w,wn,T)− I(w,T)

=
∑
s∈S

∑
x∈X

w(s, x)
∑
s′∈S

T (s′|s, x) log
∑

x′′ wn(s, x
′′)∑

x′ T (s′|s, x′)wn(s, x′)

∑
x′ T (s′|s, x′)w(s, x′)∑

x′′ w(s, x′′)
.

Define

Pw(s
′|s) =

∑
x′ T (s′|s, x′)w(s, x′)∑

x′′ w(s, x′′)
, Pwn

(s′|s) =
∑

x′ T (s′|s, x′)wn(s, x
′)∑

x′′ wn(s, x′′)
.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Note that
∑

s′ Pw(s
′|s) = 1. Hence it is indeed a conditional probability. Then

l(w,wn,T)− I(w,T) =
∑
s∈S

∑
s′∈S

(∑
x∈X

w(s, x)T (s′|s, x)

)
log

Pw(s
′|s)

Pwn
(s′|s)

=
∑
s∈S

∑
x∈X

w(s, x)
∑
s′∈S

Pw(s
′|s) log Pw(s

′|s)
Pwn

(s′|s)

≥ 0,

where the inequality follows from the non-negativity of relative entropy. Therefore, l(w,wn,T) is a
tangent line of I(w,T) at point wn.

C SYSTEM EXPLANATION AND ALGORITHM DETAILS

C.1 MODEL DESIGN

The concave optimization problem in Theorem 2 characterizes the capacity-reward tradeoff of the
action-state channel. It provides an upper bound for practically achievable coding rates under a
certain reward constraint. Solving the concave optimization yields the capacity and the optimal state-
action distribution ω, which can be translated to a stationary policy for the MDP via the following
formula:

π(a|s) = ω(s, a)∑
a′ ω(s, a′)

.

Note that this policy π can not be directly used as the coding policy for communication, as the coding
policy needs to generate actions based on both the state and the message. Therefore, in Section 5,
we propose Act2Comm to learn a coding policy that mimics the behavior of policy π from the
perspective of MDP control, with the input of message and feedback block.

By viewing this problem as a channel coding problem with finite blocklength, historical feedback
proves to be beneficial from our prior experience. To effectively map messages and feedback to
actions, the transformer architecture with an attention mechanism is naturally well-suited, forming
the backbone for both the encoder and decoder components.

To address the challenge of non-differentiability, we propose an iterative training strategy that incor-
porates a critic network to train the encoder and decoder.

Instead of directly outputting actions at each time step, our encoder generates a continuous belief
map, which is subsequently quantized into decision rules. This approach not only enhances perfor-
mance but also simplifies the training of the critic network.

C.2 ANALYSIS OF EACH SYSTEM COMPONENT

This section provides the outline of each component within the Act2Comm scheme, as summarized
in Table. 2.

• The encoder encodes a belief matrix Z(τ) ∈ Rτ×µ|S|
R using message block B(τ) and feed-

back block C(τ) at each coding round τ . After completing all l coding rounds, a final belief
map Z ∈ R

k
µ×µ|S|

R is constructed.

• A quantizer then generates the codeword U ∈ X |S|× k
R , where each element of the resultant

codeword, xt = U [st, t], represents the selected action for state st at time step t.

• Given the action and state, EAS channel then returns next states.

• The decoder collects all states and then performs the decoding process, which outputs logits
M̂ ∈ R

k
µ×2µ for the message.

• Since the gradient cannot propagate through the EAS and quantizer to the encoder, a critic
network is introduced to link the belief map Z to the decoded logits M̂ . Specifically, the

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 2: Functionality of Each System Component

Model components Function Input Output
Encoder Coding the belief matrix B(τ), C(τ) Z

Quantizer Generate decision rules Z U
EAS channel Generate state from actions U → xt st+1

Decoder Decoding the message s M̂ → m̂

Critic Network Estimate decoding logits Zk M̂ck

critic network is trained to predict M̂k from Zk, producing M̂ck at each inner optimiza-
tion step k within the total sin steps. Thanks to the introduction of the critic network, the
gradient can propagate through it, from logits to the belief map. As shown in the table,
it effectively “links” the encoder’s output to the decoder’s output, thereby “skipping” the
quantizer, EAS channel and decoder, which are treated as the unknown environment during
the training phase.

C.3 QUANTIZER

The quantizer, Q : R|S|× k
R → X |S|× k

R , is designed to convert continuous coding results |X | ·
Sigmoid(Z) into finite values corresponding to actions within the channel input alphabet set X =
{0, 1, . . . , |X | − 1}. For example, if there exist 5 actions and 1 states, then each element of the
coding result |X | · Sigmoid(Z) ∈ (0, 5) will be rounded down into the nearest action index. If
|X | · Sigmoid(Z) = [1.5, 0.8, 2.1, 3.2, 4.8], it will be rounded down to [1, 0, 2, 3, 4] as the channel
input via the quantizer Q.

Here, we adopt hard rounding, despite the availability of advanced quantization methods such as soft
rounding or noise injection during training. The chosen approach is intentionally straightforward,
and a critic network effectively mitigates the non-differentiability introduced by hard rounding.

C.4 ITERATIVE TRAINING AND UPDATING

As shown in Fig. 7, a critic network is introduced to facilitate gradient backpropagation for encoder
optimization, treating the quantizer, channel, and decoder as an unknown environment. Before up-
dating the encoder and decoder, the Critic network is trained over sin steps to capture knowledge of
the environment, with the encoder and decoder frozen during this phase. Subsequently, the encoder
is updated with the assistance of the Critic network, aiming to jointly optimize for control and com-
munication, while keeping the decoder frozen. Following this, the optimized encoder is frozen, and
the decoder is updated based on the newly optimized encoder. With the updated decoder, the Critic
network is retrained to adapt to the updated environment, preparing it to support the next round of
encoder updates.

This process iteratively alternates between freezing one component while optimizing the other. From
the experiment, we observe that the training process is more stable when the encoder is updated once
for every two updates of the decoder. The effectiveness of this approach is visualized in a Fig. 12
and Table. 5. The detailed training algorithm is presented in the Algorithm. 7

C.5 TRAINING AND INFERENCE ALGORITHM

To enhance readers’ understanding of the training and inference process, we provide the pseudocode
and illustration figures for Act2Comm (Fig. 7, Fig. 8), detailing both the training and inference
phases, as shown in Algorithms 1 and 2. Furthermore, Fig. 12 visualizes the training process by
tracking the loss values throughout the iterative updates. For additional details about the training,
the training logs and source code are also available on the project page of this paper.

To be more specific for the training phase, we train the encoder first and then train the decoder.
The critic network, with control loss, is applied to the encoder. The decoder only considers the
communication loss. After training the model, the critic network is removed, as shown in Fig. 7 (c).

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Encoder Quantizer Decoder

Gradient flow

Extended
action-state channel

CriticNet

Unknown environment

Forward flow

CriticNet updates

Encoder updates

Decoder updates

CriticNet

Unknown environment

Decoder

updates
Encoder

Unknown environment

Decoder

Unknown environment

Decoder
Encoder

Encoder

CriticNet

updates updates

CriticNet

(a). Gradient flow of the Act2Comm

(b). Iterative training strategy

optimize
communication

balance

communication
control

Encoder

Quantizer

Extended
action-state channel

Transmitter

Decoder

Receiver

Se
qu

en
ce

pa
rt

iti
on

Se
qu

en
ce

m
er

gi
ng

(c). Model workflow when inference

Figure 7: Illustration of the iterative training process: (a) Gradient flow in the proposed method,
where blue arrows indicate the gradient flow, and red arrows represent the forward process. (b)
Diagram of the update steps, where the red block represents the component being updated, the
blue block represents the frozen component, and the grey block indicates an unused component. (c)
Inference phase for the well-trained Act2Comm model, where the critic network is removed.

Only the encoder and decoder are deployed for communication and control, as implemented in Fig.
8.

C.6 COMPLEXITY ANALYSIS

To analyze the complexity of the proposed method, we consider an input size of 12 bits, 4 blocks,
and a rate of R = 1/3. The experimental results, presented in Table 4, were obtained using a single
GPU-A5000 with 10, 000 runs for the ”Erratic Robot” environment.

From the table, we observe that during the training process, the main computational complexity
arises from the critic network, as it needs to run around 20 iterations for each encoder update. Note
that the back-propagation FLOPs can be estimated by multiplying the forward FLOPs with a factor
(typically 2–3x). During inference, the critic network is removed. We observe that the encoding
process can be completed within 10 ms, while the decoding process is even faster, taking less than 3
ms for the message.

We also analyze the complexity of our approach concerning increasing state and action spaces.
Specifically, based on the design of Act2Comm, the number of actions does not impact the scaling
performance of the model, in terms of the computational complexity. A larger action space primarily
contributes to more diversity in decision rules, without increasing the computational complexity of
the approach. For increased state spaces, the complexity grows only in the encoder component. This

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Figure 8: An example of practical implementation of the proposed Act2Comm.

Table 3: Number of parameters, FLOPs, and coding times for the Act2Comm scheme (K = 12,
µ = 3, R = 1/3, sin = 20) with varying state numbers and action numbers, where the increased
value are colored with orange and red.

Action and state number Encoder Decoder
(|A|, |S|) with |A| ↑ (5, 16) (20, 16) (40, 16) (5, 16) (20, 16) (40, 16)

Parameters (k) 32.244 32.244 32.244 50.536 50.536 50.536
FLOPs (millions) 0.3164 0.3164 0.3164 0.1989 0.1989 0.1989
Coding Time (ms) 6.691 6.691 6.691 2.613 2.613 2.613

(|A|, |S|) with |S| ↑ (5, 16) (5, 64) (5, 256) (5, 16) (5, 64) (5, 256)
Parameters (k) 32.244 46.51 103.52 50.536 50.536 50.536

FLOPs (millions) 0.3164 0.4546 1.007 0.1989 0.1989 0.1989
Coding Time (ms) 6.691 6.69 7.04 2.613 2.613 2.613

occurs because the computational complexity of the encoder increases as the output matrix size
expands with the number of states.

However, environments with more complex action or state spaces may lead to a more challeng-
ing learning process, potentially affecting performance. To validate our method in such scenarios,
we introduced a new environment, the “Erratic Robot,” which features a five-action space. Results
demonstrate that our method remains effective, even in this more complex setting.

D EXPERIMENTAL DETAILS

D.1 EXPERIMENT SETUP

For the Act2Comm scheme, we train the model with a batch size of 4096, a learning rate of 0.001,
and an Adam-based lookahead optimizer (Zhang et al., 2019). The inner-training step for the critic
network is sin = 20, with a noise variance of σ2

w = 0.1. Each block has a length of µ = 3, and
temperature parameter is as γ = 10, γ = 50, γ = 100, γ = 200. The performance presented is
averaged over 20, 000 execution times. To investigate the trade-offs, we train the Act2Comm model
with λ ∈ [0.01, 20].

The detailed architecture of the Act2Comm scheme is provided in Fig. 9. At the transmitter, a
transformer-based encoder is utilized to generate the z(τ) from B(τ) and C(τ) for each coding
round. Specifically, C(τ) and B(τ) are firstly processed through multilayer perceptron (MLP) lay-
ers, then concatenated for linear projection and positional encoding operations, resulting in F0 ∈

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Algorithm 1 Training strategy of the Act2Comm scheme
Input: The initial MDP state: s0, Inner optimization step: sin,
Learning rates of encoder, decoder, and critic network: β, α, α, with α = 5β,
Target policy: π, balanced parameter λ.
Output: Parameters of the encoder and decoder: θ, ξ.

1: for the i-th step within the total training steps do
2: m = [b1; b2; . . . ; bl] ∈ {0, 1}l×µ, // Randomly sample and divide the message
3: C(1) ∈ 01×

µ
R×3, // Initialize the feedback block

4: for each coding round τ (1 ≤ τ ≤ l) do
5: B(τ) = [2b1 − 1; . . . ; 2bτ − 1] ∈ Rτ×µ, // Construct the message block
6: C(τ) = [C1; . . . ;Cτ] ∈ Rτ× µ

R×3, // Update the feedback block
7: Z(τ) = Eθ(B(τ),C(τ)) ∈ Rτ×µ|S|

R ,
z(τ) = Z(τ)[τ, :] ∈ R

µ|S|
R → R|S|× µ

R , // Encoding the belief map
8: U(τ) = Q(|X |Sigmoid(z(τ))) ∈ X |S|× µ

R , // Quantization for decision rules
9: for t = 1 : 1 : µ

R do
10: st+1 = T (st+1|st,U(τ)[st, t]), // Go through the EAS channel for µ

R time steps
11: c

(τ)
t = [s

(τ)
t , x

(τ)
t , s

(τ)
t+1] ∈ R1×3, // Update the feedback vector

12: end for
13: Cτ = [c

(τ)
1 ; . . . ; c

(τ)
µ
R

] ∈ R
µ
R×3, // Update the feedback matrix

14: end for
15: Z = [z(1); . . . ; z(l)] ∈ R

k
µ×µ|S|

R , s = [s1; . . . ; s k
R
] ∈ S k

R → S
k
µ× µ

R ,

16: M̂ = D(s) ∈ R
k
µ×2µ , // Collect codewords, states, and decode the logits

17: // Train the Critic network
18: if i%2 == 0 then
19: for k = 1 : 1 : sin do
20: Zk = Z +Wk, with Wk ∈ R

k
µ×µ|S|

R ∼ N (0, σ2
w) // Neighboring sampling

21: Uk = Q(|X |Sigmoid(Zk)) ∈ X |S|× k
R ,

22: for t = 1 : 1 : k
R do

23: st+1 = T (st+1|st,U(k)[st, t]), // Go through the EAS channel
24: end for
25: ŝ(k) = [s1; . . . ; s k

R
] ∈ S k

R → S
k
µ× µ

R , // Collect the observed states

26: M̂k = D(ŝ(k)) ∈ R
k
µ×2µ , // Decode the logits with a frozen decoder

27: M̂ck = C(Zk) ∈ R
k
µ×2µ // Predict the logits with critic network

28: Lcn = MSE(M̂ck,M̂k) // Compute the critic loss with MSE
29: ϕk+1 = ϕk − β∇ϕLcn // Update the Critic network.
30: end for
31: // Train the Encoder with a frozen Decoder
32: Lcont = MSE(π, f̂) // Control loss term for the estimated f̂

33: Lcom = cross-entropy(m,M̂ck) // Communication loss term
34: θ = θ − α∇θ(Lcom + λLcont) // Update the encoder
35: end if
36: // Train the Decoder with a frozen Encoder
37: for each coding round and corresponding time step do
38: z(τ) = Eθ(B(τ),C(τ))[τ, :] → U (τ), // Re-encode and re-quantize the decision rules
39: st+1 = T (st+1|st,U(τ)[st, t]), // Re-go through the EAS channel for all time steps
40: end for
41: s = [s1; . . . ; s k

R
], M̂ = D(s) // Decode the observed states from a forzen encoder

42: Lcom = cross-entropy(m,M̂) // Communication loss term
43: ξ = ξ − β∇ξLcom // Update the decoder
44: end for

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Algorithm 2 Inference of the Act2Comm scheme
Input and output for the encoding:
Input: Initial state: s0, k-bits message m, coding rate R, well-trained encoder: θ∗;
Output: Codeword (decision rules) Z ∈ R|S|× k

R .

Input and output for the decoding:
Input: Observed states s ∈ S k

R , well-trained decoder ξ∗;
Output: Predicted message: m̂.

1: Encoding phase:
2: C(1) ∈ 01×

µ
R×3, // Initialize the feedback block

3: for each coding round τ (1 ≤ τ ≤ l) do
4: B(τ) = [2b1 − 1; . . . ; 2bτ − 1] ∈ Rτ×µ, // Construct the message block
5: C(τ) = [C1; . . . ;Cτ] ∈ Rτ× µ

R×3, // Update the feedback block
6: Z(τ) = Eθ(B(τ),C(τ)) ∈ Rτ×µ|S|

R ,
z(τ) = Z(τ)[τ, :] ∈ R

µ|S|
R → R|S|× µ

R , // Encoding the belief map
7: U(τ) = Q(|X |Sigmoid(Z)) ∈ X |S|× µ

R , // Quantization for decision rules
8: for t = 1 : 1 : µ

R do
9: x

(τ)
t = U (τ)[st, t])

s
(τ)
t+1 = T (s

(τ)
t+1|s

(τ)
t , x

(τ)
t), // Go through the EAS channel for µ

R time steps

10: c
(τ)
t = [s

(τ)
t , x

(τ)
t , s

(τ)
t+1] ∈ R1×3, // Update the feedback vector

11: end for
12: Cτ = [c

(τ)
1 ; . . . ; c

(τ)
µ
R

] ∈ R
µ
R×3, // Update the feedback matrix

13: end for
14: Z = [z(1); . . . ; z(l)] ∈ R

k
µ×µ|S|

R → R|S|× k
R , // Collect the final codeword

15: Decoding phase:
16: s = [s1; . . . ; s k

R
] ∈ S k

R → S
k
µ× µ

R , // Collect the observed states

17: M̂ = D(s) ∈ R
k
µ×2µ , // Decode the logits

18: m̂ = argmax(Softmax(M̂), dim = −1) // Decode each block labels

Table 4: Number of parameters, FLOPs, and coding times for the Act2Comm scheme (K = 12,
µ = 3, R = 1/3, sin = 20) with varying critic network training steps sin for both training and
inference phases. Note that the backpropagation computational complexity is approximately 2–3
times that of the forward computation.

Training Phase (forward)

Model components Encoder Decoder CrititNet CriticNet CriticNet
sin = 5 sin = 10 sin = 20

Parameters (k) 32.244 50.536 7.568 7.568 7.568
FLOPs (millions) 0.3164 0.1989 0.1454 0.2909 0.5818

Inference Phase
Model components Encoder Decoder Critic network

Parameters (k) 32.244 50.536 ✗
FLOPs (millions) 0.3164 0.1989 ✗
Coding Time (ms) 6.691 2.613 ✗

Rτ×d, where d is the hidden layer dimension. After Lt transformer layers, the resultant FLt ∈ Rτ×d

is further transformed by a fully-connected layer into Z(τ). The decoding process begins with re-
shaping S into S

k
µ× µ

R . This reshaped S is then processed symmetrically through fully-connected
layers, positional encoding, and Lr transformer layers, yielding the feature DLr ∈ R

k
µ×d. Subse-

quently, DLr is input into a fully-connected layer to generate the logits M̂ ∈ Rl×2µ for each block.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Layer Norm

Multi-Head
Attention

Layer Norm

MLP Layer

Transformer Layer

Positional Encoding

...

Transformer Layer

Linear Projection

 x

Linear Projection

Transformer Layer

MLP Layer

MLP Layer

MLP Layer
...

Transformer Layer

Linear Projection

Linear Projection

Transformer Layer

Positional Encoding

Encoder Decoder

 x

Figure 9: The architecture of the Act2Comm.

+5

−5 0

(a) Lucky wheel. (b) Catch the Ball. (c) Erratic robot.

Figure 10: Illustrations of experimental MDP environments

After a softmax function, we predict the label of m and transform it into bit stream m̂. Specifically,
we set d = 32, Lt = 2 and Lt = 4 during the experiments.

D.2 LUCKY WHEEL

As illustrated in Fig. 10a, the wheel is evenly divided into three regions. At each time step, the
player can select either action 0 or action 1, where action 0 corresponds to a clockwise rotation of
the wheel, and action 1 corresponds to an anti-clockwise rotation. If action 0 is selected, there is a
probability p = 0.2 that the pointer remains in its current region, and a probability 1− p = 0.8 that
it moves to the next region in the clockwise direction. Similarly, if action 1 is selected, there is a
probability p = 0.2 that the pointer remains in its current region, and a probability 1− p = 0.8 that
it moves to the next region in the anti-clockwise direction. The rewards for the three regions are 5,
−5, and 0, respectively. The player receives a reward at each time step based on the region in which
the pointer is located.

D.3 CATCH THE BALL

The “Catch the Ball” game is set in a 3× 3 grid, as illustrated in Fig. 10b. A ball randomly appears
at the top of the grid and descends one grid space at each time step. Meanwhile, a board at the
bottom moves horizontally to catch the falling ball. Each time the board successfully catches a ball,
the player receives a reward r. If the ball falls to the bottom of the grid without being caught, it
disappears, resulting in a penalty of −r for the player. At all other times, there are no rewards or
penalties for the player. After a ball disappears or is caught, a new ball appears randomly (with equal
probability) at one of the three positions at the top of the grid.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

(a) BER v.s. Reward

0 0.1 0.2 0.3 0.4 0.5

Coding rate

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
ew

ar
d

Target BER: 5e-2
Target BER: 1e-2
Target BER: 2e-3
Target BER: 0

(b) Reward v.s. Rate (c) BER v.s. Rate

Figure 11: Control-communication trade-off of Act2Comm in “Erratic Robot”.

Figure 12: Loss during the training process,
where the loss value decreases significantly
with each decoder update, while showing a
slight increase with each encoder update.

Table 5: Ablation study when sequentially removing one im-
provement after another. Note higher BER means worse per-
formance for a given reward here with R = 1/4.

The player has three available actions to move the board: move left, move right, or remain stationary.
If the player chooses to move left or right, there is a probability p ∈ [0, 1) that the movement fails
(in which case the board remains in its current position), and a probability 1−p that the board moves
for one grid space successfully as intended. Additionally, any action that attempts to move the board
outside the grid will always fail. In this experiment, we set r = 5 and p = 0.8.

D.4 ERRATIC ROBOT.

The ‘Erratic robot’ game takes place on a 4×4 grid map with 16 states and 5 actions, as shown in Fig.
10c. The robot is designed to minimize the number of steps required to collect goods while avoiding
obstacle points. Specifically, its primary objective is to continuously take goods from designated
destination points, earning a reward of +5 for each successful collection. The grid also includes
four obstacle points, each incurring a penalty of −2 when encountered. The robot has five available
actions: move left, move right, move up, move down, or remain stationary. Due to the instability,
any movement of the robot has a probability p ∈ [0, 1) of resulting in an additional unintended step.
Actions that would move the robot outside the grid boundaries always fail. In this experiment, the
probability of additional operation is set to p = 0.2. The results are presented in the Fig. 11

As shown in the Fig. 11, the proposed Act2cComm scheme can achieve perfect communication with
R = 1/5, albeit with a reduction in the average reward from the optimal value of 0.753 to 0.45. If we
relax BER, the same rate can be achieved with a better reward. Similarly, for different reward targets,
we can obtain different communication performances. This additional experiment also highlights the
versatility of the proposed Act2Comm scheme across various environments.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Channel coding rate

10 -6

10 -5

10 -4

10 -3

10 -2

B
E

R

Act2Comm with Markov code
Act2Comm with History-dependent code

(a)

0 10 20 30 40 50

Reward

10-4

10-3

10-2

10-1

B
E

R

T
ar

ge
t r

ew
ar

d

T
ar

ge
t r

ew
ar

d

T
ar

ge
t r

ew
ar

d

R=1/3
R=1/4
R=1/5

(b)

Figure 13: Left: Performance for different coding scheme. Right: Approaching a given policy π̄.

E ADDITIONAL ABLATION EXPERIMENTS

This section presents additional ablation experiments for our proposed Act2Comm framework, using
the lucky wheel environment as the default experimental setting with an initial state 0.

E.1 ABLATION STUDY OVER DIFFERENT MECHANISMS

To showcase the efficiency of our approach, we present the loss values monitored throughout the
iterative training process in Fig. 12. While the loss value occasionally fluctuates during the training
updates—primarily due to the alternating update scheme between the decoder and encoder—overall,
the model exhibits a rapid and consistent convergence.

Additionally, to further validate the performance of our Critic network, we plot the estimated loss
values generated by the Critic alongside the true loss during training. As shown in Fig. 12, the Critic
network maintains accurate loss estimation throughout the training phase.

We present a detailed comparative analysis of each mechanism within our method, as shown in
Table 5, emphasizing the specific contributions of each component to the cumulative performance
improvements. Notably, utilizing the Critic network to predict the loss directly, or eliminating policy
noise during inner-step training can yield failure, underscoring the critical importance of appropriate
policy noise and neighboring sampling mechanisms.

all these design elements collectively ensure that our proposed solution consistently delivers robust
performance across a wide range of scenarios.

E.2 ABLATION STUDY OVER THE FEEDBACK DESIGN

Act2Comm supports both history-dependent coding, which encodes both message and feedback
blocks, and Markov coding, which encodes only the message block. We examine Act2Comm scheme
with both History-dependent codes and Markov codes across various coding rates R for a pure com-
munication optimization.

The experimental results are depicted in Fig. 13a. It is evident that the BER performance improves
significantly as the channel coding rate decreases. Specifically, with a coding rate R = 1/6, the
BER reaches 10−6 level, indicating a significant enhancement in performance due to the increased
number of channel uses. Comparing history-dependent codes with Markov codes reveals that in-
corporating feedback blocks can yield substantial performance improvements. Although, from a
theoretical perspective, channel feedback does not enhance the capacity of a memoryless channel,
the observed benefits may be attributed to the attention mechanism applied to historical states and
their corresponding actions. This mechanism effectively utilizes prior coding experience to simplify
the subsequent coding process.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

E.3 ABLATION STUDY OVER THE MESSAGE LENGTH

Additional experiments with Act2Comm are conducted across different message lengths and coding
rates, as presented in Table. 6. The results demonstrate that Act2Comm scheme consistently delivers
competitive performance over different message lengths and coding rates. An interesting observa-
tion is that communication performance generally improves with longer block lengths; however, it
eventually declines due to the increased learning complexity. Notably, for longer message lengths k,
adapting a larger block size µ can potentially enhance performance while addressing the increased
learning complexity.

Coding rate k = 12 k = 24 k = 36
R = 1/2 1.16e−2 1.06e−2 9.15e−3

R = 1/3 1.06e−3 1.02e−3 1.14e−3

R = 1/5 2.84e−5 1.62e−5 2.06e−5

Table 6: BER for Act2Comm across different message length and coding rate, where µ = 3.

E.4 ABLATION STUDY OVER A SPECIFIC POLICY

In previous part of this paper, we focused solely on the optimal strategy as the target policy for
training, aiming to optimize the control objective. However, our approach is versatile and can ac-
commodate a broad spectrum of policies—ranging from optimal to specialized strategies—enabling
users to employ the system to approach specific policies for their own tasks.

In the lucky wheel environment, now we consider a target policy π̄ given as:

π̄ =

[
π(x = 0|s = 0) π(x = 1|s = 0)
π(x = 0|s = 1) π(x = 1|s = 1)
π(x = 0|s = 2) π(x = 1|s = 2)

]
=

[
0.7 0.3
0.3 0.7
0.7 0.3

]
. (23)

We evaluate the Act2Comm scheme with different coding rates and consider a single message trans-
mission with an accumulated reward. The experimental results in Fig. 13b display the curve repre-
senting the lower envelope of all possible BER-reward trade-off outcomes for each coding rate. This
curve illustrates that the region above it is achievable by our Act2Comm scheme.

Notably, our method can achieve good communication performance, approximately 4·10−1, 4·10−2,
and 3 · 10−3 for R = 1/3, R = 1/4, and R = 1/5 respectively, with almost no loss in control
performance. This is due to the stochastic nature of our target policy, as opposed to a deterministic
one, allowing our method to adaptively learn a similar policy that maintains comparable rewards
while being more favorable for channel coding. In summary, the experimental results demonstrate
that our Act2Comm framework achieves satisfactory communication performance while maintaining
the reward, as defined by a specific policy, at a certain level in scenarios such as those involving
stochastic policies.

28

	Introduction
	Related work
	Preliminaries and System Model
	The Capacity-Reward Trade-off
	Act2Comm: A practical coding scheme
	Experimental Results
	Conclusion
	Notation and Definitions
	Technical Proofs
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Lemma 1
	Proof of Lemma 2

	System Explanation and Algorithm Details
	Model design
	Analysis of Each System Component
	Quantizer
	Iterative training and updating
	Training and inference algorithm
	Complexity analysis

	Experimental Details
	Experiment setup
	Lucky Wheel
	Catch the Ball
	Erratic robot.

	Additional ablation experiments
	Ablation study over different mechanisms
	Ablation study over the feedback design
	Ablation study over the message length
	Ablation study over a specific policy

