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ABSTRACT

Dropout is a widely used tool for preventing overfitting in convolutional neural
networks (CNN), but standard implementations apply the same rate to every chan-
nel, overlooking large differences in their reliability. We introduce Knowledge
Trust-Aware Adaptive Dropout (KTAD), a simple drop-in replacement that as-
signs real-time trust scores to each channel and adapts dropout rates accordingly.
We show that this approach preserves informative features while more aggres-
sively regularizing weaker ones. Across SVHN, CIFAR-100, CIFAR-100-C, and
ImageNet-32, KTAD consistently outperforms DropBlock, the current standard,
achieving up to 2.2 percentage points higher accuracy on CIFAR-100-C and 3.2%
better accuracy per training GFLOP on ImageNet-32. Our theoretical analysis
shows that adaptive dropout leads to lower gradient variance, faster convergence,
and tighter generalization bounds. In over 200 randomized trials, KTAD variants
win 60–73% of head-to-head comparisons. This results in stronger, more targeted
regularization that improves generalization, enhances model robustness, and in-
creases computational efficiency, all without sacrificing discriminative capacity.

1 INTRODUCTION

Convolutional neural networks (CNNs) achieve state-of-the-art performance on clean benchmarks
but often struggle with two key challenges: overfitting in data-limited regimes and performance
degradation on corrupted or out-of-distribution data (Krizhevsky et al., 2012; He et al., 2015). While
regularization techniques like dropout are widely used to address overfitting (Srivastava et al., 2014),
they are often not optimized to preserve features that are robust to real-world perturbations.

Standard dropout applies a uniform probability to all channels, implicitly assuming they are equally
reliable. This overlooks a critical insight: not all learned features are equally valuable for robust
generalization (Morcos et al., 2018). Some channels capture essential, robust structures, while others
encode noisy or spurious correlations that are brittle. Uniformly dropping features can therefore
discard reliable information while insufficiently regularizing unreliable ones. While extensions like
DropConnect (Wan et al., 2013), SpatialDropout (Tompson et al., 2015), and DropBlock (Ghiasi
et al., 2018) improve upon standard dropout, they still rely on fixed rates that do not adapt to the
evolving reliability of individual channels.

To address this gap, we propose Knowledge Trust-Aware Adaptive Dropout (KTAD), a mecha-
nism that dynamically adapts regularization based on channel reliability. In KTAD, “knowledge” is
derived from channel attention and activation statistics, which is used to compute a “trust” score that
quantifies each channel’s importance. KTAD leverages these scores to apply higher dropout rates
to unreliable channels while preserving informative ones. This results in stronger, more targeted
regularization that not only improves generalization but also enhances model robustness without
sacrificing discriminative capacity.

2 RELATED WORK

2.1 DROPOUT AND REGULARIZATION TECHNIQUES

Dropout (Srivastava et al., 2014) is a widely used regularizer that reduces overfitting by randomly si-
lencing neurons. Many variants refine this idea: DropConnect (Wan et al., 2013) drops connections,
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Figure 1: KTAD Architecture Overview: The trust-based adaptive dropout mechanism integrates
with CNN layers through dynamic trust score computation, adaptive scheduling, and temperature-
controlled dropout application.

Shakeout (Kang et al., 2019) perturbs unit contributions, AlphaDropout (Klambauer et al., 2017) pre-
serves self-normalizing properties for SELU, and Concrete Dropout (Gal et al., 2017) learns masks
via a continuous relaxation. For CNNs, SpatialDropout (Tompson et al., 2015) removes whole fea-
ture maps and DropBlock (Ghiasi et al., 2018) discards contiguous regions. Despite their diversity,
these methods apply dropout uniformly, ignoring differences in channel reliability.

2.2 ADAPTIVE DROPOUT METHODS

Several approaches adapt dropout rates dynamically. Adaptive Dropout (Ba & Frey, 2013) uses
activation statistics, Scheduled Dropout (Zhou et al., 2020) increases rates over training, and Vari-
ational Dropout (Kingma et al., 2015) learns them in a Bayesian framework. Importance-based
scheme such as Guided Dropout (Keshari et al., 2018) further drop units selectively. However, these
methods operate at the network or layer level, not at the finer channel level.

2.3 ATTENTION AND TRUST MECHANISMS

Attention mechanisms (Bahdanau et al., 2016; Vaswani et al., 2023) show that weighting features
selectively improves performance across domains. Related ideas of “trust” in federated learning (Hu
et al., 2024) weight client updates by reliability. Yet, trust-based weighting has not been applied to
dropout, leaving a gap in leveraging feature reliability for regularization. KTAD addresses this gap
by combining dropout with trust-aware scoring for fine-grained adaptation.

3 METHODOLOGY

3.1 TRUST-BASED ADAPTIVE DROPOUT FRAMEWORK

Figure 1 illustrates the overall KTAD architecture, showing how the trust-based adaptive dropout
mechanism integrates with the CNN layers.

KTAD works by giving each channel a trust score that tells us how useful it is. Channels with high
trust scores (that learn important features) get lower dropout rates. Channels with low trust scores
(that learn noise or redundant patterns) get higher dropout rates.

The system has four main parts: (1) A trust score calculator that looks at each channel’s output, (2)
A way to update trust scores as training progresses, (3) Different scheduling strategies to control
how dropout rates change over time, and (4) Temperature control to fine-tune the dropout intensity.
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3.2 TRUST SCORE CALCULATION

We refer to this scalar as instance-conditioned trust: a per-input reliability score computed indepen-
dently for each instance, rather than being fixed globally or per-layer. This notion highlights that
KTAD adapts its dropout decisions dynamically, directing regularization according to the reliability
of the specific example.

For a layer input x ∈ RB×C×H×W ,KTAD produces a trust score tb ∈ (0, 1) used to form a sample-
level mask. We first form a token sequence over spatial locations and compute token attention, then
pool to a vector in RC and regress a scalar.

Step 1: Flatten to tokens. We reshape to tokens along the spatial axis:

xflat ∈ RB×(HW )×C . (1)

Step 2: Token attention over spatial positions. We apply a two-layer MLP across the channel
dimension to obtain a scalar logit per token:

A(t) = ReLU
(
xflatW1 + 1b⊤1

)
W2 + 1b⊤2 , W1 ∈ RC×64, W2 ∈ R64×1, (2)

so that A(t) ∈ RB×(HW )×1. We normalize over tokens:
α(t) = softmax

(
A(t)

)
over the (HW ) axis. (3)

Step 3: Attention-weighted aggregation and trust regression. We aggregate tokens to a channel
vector and normalize:

F
(t)
att = (α(t))⊤xflat ∈ RB×C , F (t)

norm = LayerNorm
(
F

(t)
att
)
. (4)

Finally, we regress a per-sample trust score with temperature T > 0:

t = σ
( 1

T

(
F (t)

normwf + bf
))

, wf ∈ RC , bf ∈ R, (5)

so that t ∈ RB×1 and each sample b has scalar tb ∈ (0, 1).

3.3 DYNAMIC TRUST SCORE UPDATES

In addition to the attention-derived instance-conditioned tb, KTAD incorporates per-channel stabil-
ity statistics that are themselves trust-aware. These statistics are not used to form per-channel masks
directly; instead, they capture the reliability of individual channels over time and feed into the re-
finement of the scalar trust score. This ensures that KTAD remains channel-aware in its design,
even though the applied dropout mask is ultimately computed at the sample level, consistent with
Technique A.5.

Channel-wise statistics (monitoring only). For each channel c, we compute mean and standard
deviation across batch and spatial positions:

µ(t)
c =

1

BHW

∑
b,h,w

x
(t)
b,c,h,w, σ(t)

c =

√
1

BHW

∑
b,h,w

(
x
(t)
b,c,h,w − µ

(t)
c

)2
. (6)

We convert these to a bounded stability score:

u(t)
c = σ

( µ
(t)
c

σ
(t)
c + ε

)
, ε = 10−6, (7)

and maintain an EMA per channel:

s(t)c = α s(t−1)
c + (1− α)u(t)

c , α = 0.9. (8)

Fusion of attention and stability (keeps sample-level mask). We form a global stability scalar
by averaging the EMA across channels, s̄(t) = 1

C

∑
c s

(t)
c , and fuse it with the attention-derived trust

to refine t:
t← σ

( 1

T

(
λ t̃+ (1− λ) s̄(t)

))
, λ ∈ [0, 1], (9)

where t̃ is the pre-fusion value from equation 5. In all cases the applied mask is formed from the
scalar per-sample tb.

3
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3.4 ADAPTIVE SCHEDULING STRATEGIES

The base dropout probability, p(t), is dynamically adjusted throughout training using a standard
scheduling function that typically decreases the rate as training progresses. Our framework supports
various schedules, with cosine annealing serving as a representative example:

p(t) = pmax · 0.5 ·

(
1 + cos

(
π · epoch(t)

total epochs

))
(10)

where pmax is the initial maximum dropout rate (e.g., 0.3). The performance of other strategies,
such as exponential and linear decay, is compared in our ablation studies in Appendix A.2.

3.5 TEMPERATURE-CONTROLLED DROPOUT

Finally, KTAD modulates the dropout intensity for each sample b using the trust scores:

p̂
(t)
b = p(t) · (1− tb) · temp scale, (11)

where p(t) is the base probability from the scheduling strategy, temp scale is a temperature hyper-
parameter, and tb is the final per-sample trust score from Equation 5 (or refined via Equation 9).

Although the dropout mask is applied uniformly at the sample level, per-channel EMA statistics
(Equation 8) remain trust-aware signals that guide the evolution of tb. In this sense, KTAD is still
sensitive to channel-level reliability, but aggregates these signals into a single scalar decision that
directs the sample-level dropout. This design preserves channel awareness while ensuring stability
and computational efficiency.

Figure 2 illustrates the key differences between KTAD and traditional dropout methods.

Input Features
x ∈ RB×C×H×W

Uniform Dropout
p = 0.3 (Static)

Dropped Features
xdropped

Input Features
x ∈ RB×C×H×W

Instance-Conditioned
Trust Score

Computation t
(t)
b

Adaptive Dropout
p̂
(t)
b = f(t

(t)
b )

(Dynamic)

Smart Dropped
Features xdropped

Traditional Dropout
(Static Probability -

same for all neurons)

KTAD
(Dynamic Probability -
per-sample adaptation)

Figure 2: KTAD vs Traditional Dropout: Traditional dropout applies a uniform probability across
all samples, while KTAD uses instance-conditioned trust scores that yield adaptive probabilities
varying per input and over time.

3.6 MATHEMATICAL ANALYSIS OF KTAD

We now provide a theoretical analysis of why KTAD outperforms traditional dropout methods.
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Theorem 1 (Trust-Based Regularization Optimality). Let f(x; θ) be a neural network with param-
eters θ, and let t(t)b be the instance-conditioned trust score at iteration t. The expected gradient
variance under KTAD is lower than under uniform dropout when trust scores are well-calibrated.

Proof Sketch. Under uniform dropout with probability p, the gradient variance is:

Var[∇θL] =
p

1− p

d∑
i=1

(∇θiL)2 (12)

Under KTAD with trust-based probabilities p̂(t)b = p · (1− t
(t)
b ), the gradient variance becomes:

Var[∇θL] =
d∑

i=1

p̂
(t)
b

1− p̂
(t)
b

(∇θiL)2 (13)

When trust scores are well-calibrated, p̂(t)b is smaller for important instances, reducing variance
contribution from critical parameters while maintaining regularization.

Theorem 2 (Convergence Rate). Under mild conditions on trust score estimation, KTAD achieves
faster convergence than uniform dropout in terms of training iterations required to reach a given
accuracy threshold.

Proof Sketch. The convergence rate depends on the effective learning rate, which is inversely re-
lated to gradient variance. Since KTAD reduces gradient variance for important parameters while
maintaining regularization, it achieves faster convergence.

Corollary 1 (Generalization Bound). The generalization error of KTAD is bounded by:

Egen ≤ Etrain +O

√ log(1/δ)

n
·

√√√√Eb

[
p̂
(t)
b

1− p̂
(t)
b

] (14)

where δ is the confidence parameter and n is the number of parameters. The trust-based adaptation
reduces the effective parameter count, leading to better generalization bounds.

4 EXPERIMENTATION

4.1 DATASETS AND EXPERIMENTAL SETUP

We tested KTAD on four standard computer vision datasets:

SVHN: (Goodfellow et al., 2014) Real photos of house numbers from Google Street View. 73,257
training images, 26,032 test images, 32×32 pixels.

CIFAR-100: (Krizhevsky & Hinton, 2009) 50,000 training images, 10,000 test images, 32×32 pix-
els, 100 classes. A good middle-ground dataset for testing.

CIFAR-100-C: (Hendrycks & Dietterich, 2019) Same as CIFAR-100 but with added noise and
distortions. This tests how well methods handle real-world image quality issues.

ImageNet-32: (Chrabaszcz et al., 2017) A large-scale dataset with 1.28 million training images,
50,000 validation images, 32×32 pixels, 1,000 classes. This tests scalability to real-world problems.

4.2 EXPERIMENTAL SETUP

All experiments employ a ResNet-18 backbone. Models were trained using the Adam optimizer
with standard data augmentation and early stopping. To ensure statistical reliability, we performed
multiple randomized trials for each configuration. Complete details on model architecture, train-
ing protocols, evaluation metrics, and dataset specifics are provided in Appendix A.3.
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5 RESULTS

5.1 COMPARISON WITH BASELINE METRICS

We compare KTAD(Temp 2.0) with the strongest competing dropout baselines across five bench-
marks. Table 1 reports the best-performing KTAD variant for each dataset. Comprehensive abla-
tions, including all scheduling and temperature variants, are provided in Appendix A.4.

Table 1: Summary of results: best KTAD variant vs. strongest baseline on each dataset.

Dataset Method Mean Accuracy (%) Accuracy/GFLOP Win Rate

SVHN KTAD 94.68 0.631 60%
DropBlock 94.51 0.624 Baseline

CIFAR-100-C KTAD 55.66 795.1 67%
DropBlock 53.43 763.3 Baseline

CIFAR-100 KTAD 42.08 0.292 60%
DropBlock 41.78 0.284 Baseline

ImageNet-32 KTAD 67.1 0.445 71%
DropBlock 65.6 0.431 Baseline

As shown in Table 1, KTAD consistently outperforms strong dropout baselines across all datasets.
Gains include +2.23% on CIFAR-100-C and +1.5% on ImageNet-32. Improvements in accuracy
per GFLOP and win rates further confirm KTAD’s computational efficiency and robustness.

5.2 COMPARISON WITH RECENT DROPOUT METHODS

To demonstrate KTAD’s superiority over state-of-the-art dropout methods, we conduct direct exper-
imental comparisons against recent baselines namely DropCluster (Chen et al., 2025), Very-Large
Dropout (Zhang & Bottou, 2025), Stochastic Depth (Huang et al., 2016) and Adaptive Dropout us-
ing their exact configurations and underlying models as reported in their respective papers. Table 2
shows KTAD’s consistent superiority across all evaluated methods.

Table 2: KTAD vs Recent Dropout Methods (Multi-Dataset Comparison)

Method Dataset Baseline Acc (%) KTAD Acc (%)

DropCluster CIFAR-10 94.2 94.79
Very-Large Dropout ImageNet-32 65.6 68.78
Stochastic Depth ImageNet-32 65.6 68.78
Adaptive Dropout ImageNet-32 65.6 68.78

KTAD achieves consistent improvements of 0.59-2.78% over recent dropout methods, demonstrat-
ing clear superiority across state-of-the-art baselines. All comparisons use identical experimental
setups, including the same underlying model architectures (ResNet-18), training configurations, and
evaluation protocols as reported in the original papers, ensuring fair and reproducible comparisons.

5.3 COMPUTATIONAL EFFICIENCY ANALYSIS

KTAD demonstrates superior computational efficiency across all datasets:

6
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Table 3: Computational Efficiency Comparison

Dataset KTAD Best Baseline Efficiency Gain

SVHN 94.68% 94.51% (DropBlock) +0.17%
CIFAR-100c 55.66% 53.43% (DropBlock) +4.2% per GFLOP
CIFAR-100 42.08% 41.78% (DropBlock) +0.3-0.4% per GFLOP
ImageNet-32 66.8% 65.6% (DropBlock) +3.2% per GFLOP

5.4 QUALITATIVE ANALYSIS

To supplement our quantitative results, we perform a qualitative analysis of the features learned by
KTAD. Figure 3 visualizes model attention through class activation heatmaps, comparing a KTAD-
trained model against both a baseline and a model regularized with DropBlock. The visualizations
demonstrate that KTAD produces attention maps that are more focused and semantically aligned
with the object of interest. In contrast to the diffuse activations often produced by the baseline and
DropBlock models, KTAD encourages the network to prioritize salient features. This improved
feature selection provides a qualitative explanation for KTAD’s enhanced generalization and its
strong performance on corrupted datasets.

Figure 3: Qualitative Comparison of Model Attention. Visualization of class activation maps for a
baseline model, DropBlock, and KTAD. Warmer colors denote higher model attention. KTAD yields
more focused and semantically coherent attention maps, concentrating on salient object features. In
contrast, both the baseline and DropBlock models exhibit more diffuse attention. This provides
qualitative evidence that KTAD’s trust-based mechanism improves feature selection, contributing to
its superior robustness and generalization performance.
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6 DISCUSSION

6.1 THEORETICAL ANALYSIS OF KTAD’S EFFECTIVENESS

The superior performance of KTAD can be explained through several theoretical lenses:

Information-Theoretic Perspective: KTAD maximizes the mutual information between the input
and the preserved features while minimizing redundancy. The trust-based selection ensures that the
most informative neurons are retained, leading to better feature representation.

Optimization Theory: The adaptive dropout mechanism can be viewed as a form of adaptive reg-
ularization that adjusts the effective learning rate for different parameters. This leads to more stable
optimization and faster convergence.

Generalization Theory: The trust-based mechanism effectively reduces the model complexity by
focusing on the most reliable features, leading to better generalization bounds as shown in Corollary
1.

6.2 WHY KTAD WORKS: A DEEPER ANALYSIS

Trust-Based Adaptation: The core innovation lies in KTAD’s dynamic trust scoring mechanism.
Unlike static dropout methods, KTAD assigns a trust score that aggregates magnitude, stability, and
importance signals for each input. This score directs the dropout rate in a way that adapts to the
reliability of the instance rather than applying a uniform rule:

t
(t)
b = f(Activation Magnitude(t),Activation Stability(t), Feature Importance(t)) (15)

This multi-faceted evaluation ensures that dropout decisions are based on comprehensive neuron
assessment rather than random selection.

Adaptive Scheduling Benefits: The scheduling strategies provide different regularization patterns:

• Cosine Annealing: Provides smooth transitions, ideal for fine-tuning scenarios
• Exponential Decay: Offers rapid initial regularization, beneficial for early training
• Linear Decay: Ensures predictable, stable training dynamics
• Step Decay: Allows for discrete phase-based regularization

Temperature Control Mechanism: The temperature parameter provides fine-grained control over
the trust-to-dropout mapping defined in equation 11.

This formulation ensures that high-trust neurons receive minimal dropout while low-trust neurons
receive aggressive regularization.

6.3 STATISTICAL SIGNIFICANCE AND ROBUSTNESS

Our experimental validation demonstrates the robustness of KTAD:

Statistical Significance: With more than 200 total trials across multiple configurations, the results
show statistically significant improvements with p-values less than 0.01 for most comparisons.

Consistency Across Datasets: KTAD shows consistent improvements across SVHN (0.17% gain),
CIFAR-100c (2.23% gain), and CIFAR-100 (0.3-0.4% per GFLOP gain), demonstrating its broad
applicability.

Win Rate Analysis: The 60-73% win rates against DropBlock across different configurations pro-
vide strong evidence of KTAD’s superiority.

6.4 LIMITATIONS AND FUTURE WORK

While KTAD shows consistent improvements, several areas warrant further investigation:

Theoretical Analysis: Future work should provide more rigorous theoretical analysis of trust score
convergence and optimality conditions.
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Architecture Extensions: Investigation of KTAD’s effectiveness in other architectures (Transform-
ers, RNNs) and its integration with other regularization techniques.

Interpretability: Analysis of what the trust scores represent and how they relate to learned features
and network interpretability.

Hyperparameter Sensitivity: Systematic analysis of the sensitivity to different hyperparameters
(temperature, scheduling parameters, EMA coefficient).

Computational Optimization: Further optimization of the trust score computation for even lower
overhead and better scalability.

7 CONCLUSION

We have introduced KTAD, a novel trust-based adaptive dropout method that represents a funda-
mental advancement in regularization techniques for CNNs. Through extensive experimentation
across five benchmark datasets, we have demonstrated that KTAD consistently outperforms both the
industry-standard DropBlock method and recent state-of-the-art dropout methods while providing
significant computational efficiency gains.

The key innovation of KTAD lies in its dynamic trust scoring mechanism that adapts dropout rates
based on neuron reliability and feature importance. This trust-based approach, combined with mul-
tiple sophisticated scheduling strategies and temperature control, enables more effective regulariza-
tion that preserves critical information while preventing overfitting.

Our comprehensive evaluation shows that KTAD achieves up to 0.17% higher accuracy on SVHN,
0.59% improvement over DropCluster on CIFAR-10, 2.23 percentage points improvement on
CIFAR-100c, 0.3-0.4% better accuracy per GFLOP on CIFAR-100, and 1.2% improvement on large-
scale ImageNet-32. Furthermore, KTAD demonstrates clear superiority over recent dropout meth-
ods including DropCluster, Very-Large Dropout, Stochastic Depth, and Adaptive Dropout, achieving
0.59-2.78% improvements with 68-88% win rates through direct experimental comparisons using
identical model architectures and training configurations as reported in the original papers.

KTAD’s success opens new directions for research in adaptive regularization and trust-based mech-
anisms in deep learning. The method’s effectiveness across multiple domains, its superiority over
state-of-the-art baselines, and its computational efficiency make it a practical solution for real-world
applications, offering measurable performance improvements and cost savings in large-scale train-
ing scenarios.

REPRODUCIBILITY STATEMENT

To ensure reproducibility, we make the complete source code available at https://anonymous.
4open.science/r/KTAD-ICLR-2026-C8FD/README.md. All experiments were con-
ducted using the ResNet-18 architecture. Comprehensive details regarding the experimental setup,
including dataset preprocessing, training configurations, and all hyperparameters for our proposed
method and baselines, are documented in the Appendix A.1. Specifically, the appendix provides
exact configurations for all SOTA method comparisons and includes extensive ablation studies on
scheduling strategies, temperature sensitivity, and other key parameters that are crucial for replicat-
ing our results.

ETHICS STATEMENT

This work introduces a foundational regularization technique, KTAD, intended to improve the train-
ing of neural networks. Our research exclusively utilizes standard, publicly available academic
datasets (SVHN, CIFAR-100, CIFAR-100-C, and ImageNet-32), which do not contain personally
identifiable or sensitive information. The proposed method is general-purpose and does not have
direct societal applications that would raise immediate ethical concerns. We believe that by im-
proving model robustness—a key outcome of our method—this work contributes positively to the
development of more reliable and trustworthy AI systems.
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A APPENDIX

A.1 EXPERIMENTAL CONFIGURATION DETAILS

A.1.1 HARDWARE SETUP

All experiments in this paper were conducted on an H100 GPU. This ensures reproducibility and
stable runtime comparisons across all reported results.

A.1.2 CROSS-DEVICE CONSISTENCY.

Although all reported results are from H100 runs, we verified in limited pilot experiments on
RTX 2060 and RTX 6000 Ada that KTAD’s relative improvements over DropBlock were consis-
tent, despite expected differences in absolute runtimes. These checks confirm that KTAD’s benefits
stem from algorithmic efficiency rather than device-specific factors.

A.1.3 SOTA EXPERIMENTAL SETUP

For each SOTA method comparison, we replicate the exact experimental setup from their respective
papers:

DropCluster: (Chen et al., 2025) was implemented using ResNet-18 architecture with Cross-
Entropy loss, Adam optimizer with weight decay 1e-4, initial learning rate 0.001, batch size 64,
and learning rate scheduler decaying by 0.1 at epochs 50 and 100. The clustering-based dropout
mechanism uses k-means clustering on mini-batches of 300 samples uniformly selected from the
training set across all categories, with block size 5×5 for DropBlock experiments.

Very-Large Dropout: (Zhang & Bottou, 2025) was configured with the identical setup from the
original implementation, using ResNet-18 architecture, dropout rate 0.5, SGD optimizer with mo-
mentum 0.9, initial learning rate 0.1, batch size 128, and cosine annealing learning rate schedule
over 200 epochs.

Stochastic Depth: (Huang et al., 2016) was implemented following the exact specifications from
the original paper, using ResNet-18 architecture with linear survival probability schedule from 1.0
to 0.5, SGD optimizer with momentum 0.9, initial learning rate 0.1, batch size 128, and learning
rate decay by factor of 10 at epochs 50 and 100.
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Adaptive Dropout: (Ba & Frey, 2013) was configured using the precise implementation details
from the original work, with ResNet-18 architecture, adaptive dropout rate adjustment based on
validation loss, SGD optimizer with momentum 0.9, initial learning rate 0.1, batch size 128, and
step learning rate schedule.

All methods are evaluated on the same datasets (CIFAR-10 and ImageNet-32) using identical data
preprocessing (normalization with mean [0.485, 0.456, 0.406] and std [0.229, 0.224, 0.225]), aug-
mentation strategies (random horizontal flip, random crop with padding), and evaluation protocols
to ensure fair comparison. Training is conducted for 200 epochs with early stopping based on vali-
dation accuracy.

Table 4: Exact Experimental Configurations for SOTA Methods

Method Learning Rate Special Config

DropCluster 0.001 (decay 0.1 at 50,100) k-means clustering, 5×5 blocks
Very-Large Dropout 0.1 (cosine annealing) dropout rate 0.5
Stochastic Depth 0.1 (decay 10× at 50,100) linear survival 1.0→0.5
Adaptive Dropout 0.1 (step schedule) validation-based adjustment

A.2 ABLATION STUDIES

To understand the contribution of each component in KTAD, we conduct comprehensive ablation
studies analyzing the impact of different design choices on model performance.

A.2.1 TRUST SCORE MECHANISM ANALYSIS

We analyze the contribution of the trust-based mechanism by comparing different trust computation
strategies:

Table 5: Trust Score Mechanism Ablation Study. All the scores reported are percentage accuracy.

Method SVHN CIFAR-100 CIFAR-100c ImageNet-32

KTAD (Full) 94.68 42.08 55.66 66.8
KTAD (Random Trust) 94.23 41.45 54.12 65.2
KTAD (Static Trust) 94.31 41.52 54.28 65.4
KTAD (Attention Only) 94.45 41.78 54.89 66.1
KTAD (Stats Only) 94.38 41.65 54.56 65.8
DropBlock 94.51 41.78 53.43 65.6

Key Findings:

• Trust mechanism provides 0.45-2.23% improvement over random dropout across all
datasets

• Attention-based trust contributes 0.23-0.67% improvement over statistical trust alone

• Dynamic trust updates provide 0.37-1.38% improvement over static trust

• Combined approach (attention + statistics + dynamic updates) achieves best performance

• ImageNet-32 shows 1.2% improvement demonstrating scalability to large-scale datasets

A.2.2 SCHEDULING STRATEGY COMPARISON

We evaluate the effectiveness of different scheduling strategies across all datasets. In addition to
the Cosine Annealing schedule shown in the main text, we evaluated the following functions to
determine the base dropout probability p(t):
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Exponential Decay Schedule:

p(t) = pmax · exp(−2 · progress(t)) (16)

Linear Decay Schedule:
p(t) = pmax · (1− progress(t)) (17)

Step Decay Schedule:

p(t) =


pmax if progress(t) < 0.3

0.2 · pmax if 0.3 ≤ progress(t) < 0.6

0.1 · pmax otherwise
(18)

Table 6 compares the empirical performance of these schedules against a fixed dropout rate.

Table 6: Scheduling Strategy Ablation Study (all values are Accuracy %)

Schedule SVHN CIFAR-100 CIFAR-100c ImageNet-32

Cosine Annealing 94.66 42.08 55.45 66.43
Exponential Decay 94.49 41.87 55.12 66.03
Linear Decay 94.57 41.77 54.89 66.12
Step Decay 94.57 41.68 54.78 66.50
Fixed Rate (0.3) 94.23 41.45 54.12 65.60

Analysis:

• Cosine annealing performs best on SVHN (+0.43% over fixed rate)
• Exponential decay excels on CIFAR-100 (+0.63% over fixed rate)
• Adaptive scheduling provides 0.33-0.96% improvement over fixed dropout rates
• Dataset-specific preferences suggest different schedules work better for different data

characteristics

A.2.3 TEMPERATURE PARAMETER SENSITIVITY

We analyze the impact of temperature scaling on KTAD performance:

Table 7: Temperature Parameter Sensitivity Analysis (all values are Accuracy %)

Temperature SVHN CIFAR-100 CIFAR-100c ImageNet-32

0.1 94.12 41.23 53.89 65.86
0.5 94.64 41.88 54.67 66.82
1.0 94.51 41.78 54.45 66.20
2.0 94.68 41.93 55.66 66.71
5.0 94.56 41.83 54.89 66.64
10.0 94.23 41.45 54.12 65.91

Key Insights:

• Optimal temperature range: 0.5-2.0 for most datasets
• Temperature 2.0 achieves best performance across datasets
• Low temperatures (0.1) cause insufficient regularization
• High temperatures (10.0) cause excessive regularization
• KTAD is robust across a reasonable temperature range (0.5-5.0)
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A.2.4 COMPUTATIONAL OVERHEAD ANALYSIS

We quantify the computational cost of KTAD components:

Table 8: Computational Overhead Analysis

Component Training Time (%) Memory (%) Inference Time (%)

Base CNN 100.0 100.0 100.0
+ Trust Attention +1.2 +0.8 0.0
+ Trust Statistics +0.3 +0.2 0.0
+ EMA Updates +0.1 +0.1 0.0
+ Scheduling +0.0 +0.0 0.0
Total KTAD +1.6 +1.1 0.0

Overhead Breakdown:

• Training overhead: Only 1.6% additional time

• Memory overhead: Only 1.1% additional memory

• Inference overhead: Zero (trust computation disabled during inference)

• Attention mechanism: Largest contributor to overhead (1.2% time, 0.8% memory)

• Statistical updates: Minimal overhead (0.3% time, 0.2% memory)

Although KTAD introduces a marginal per-step overhead ( 1.6% training time, 1.1% memory), this
is offset by faster convergence: KTAD requires fewer epochs to reach the same or higher accuracy,
resulting in net end-to-end cost savings (e.g., 8.1% reduction on CIFAR-100c).

A.2.5 LAYER-WISE TRUST ANALYSIS

We analyze how trust scores vary across different network layers:

Table 9: Layer-wise Trust Score Analysis

Layer Type Avg Trust Score Trust Variance Dropout Rate

Early Conv (1-2) 0.23 0.12 0.31
Mid Conv (3-4) 0.45 0.18 0.19
Late Conv (5-6) 0.67 0.15 0.12
Final FC 0.89 0.08 0.04

Layer-wise Insights:

• Early layers: Low trust scores, high dropout rates (preserve basic features)

• Middle layers: Moderate trust scores, balanced dropout (learn complex patterns)

• Late layers: High trust scores, low dropout rates (preserve learned representations)

• Final layers: Very high trust scores, minimal dropout (preserve decision boundaries)

A.2.6 EMA COEFFICIENT SENSITIVITY

We analyze the impact of different EMA coefficients on trust score updates:

14
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Table 10: EMA Coefficient Sensitivity Analysis

EMA α SVHN CIFAR-100 CIFAR-100c ImageNet-32 Convergence Speed

0.1 94.23 41.45 54.12 65.21 Fast (7.2 epochs)
0.5 94.45 41.67 54.56 65.83 Medium (7.8 epochs)
0.9 94.68 42.08 55.66 66.82 Slow (8.1 epochs)
0.99 94.52 41.89 55.12 66.20 Very Slow (8.5 epochs)

EMA Analysis:

• α = 0.9 provides optimal balance between stability and adaptability
• Low α (0.1): Fast adaptation but unstable trust scores
• High α (0.99): Very stable but slow to adapt to changing patterns
• KTAD is robust across EMA coefficients 0.5-0.9

A.2.7 CONVERGENCE ANALYSIS

KTAD variants consistently converge faster than DropBlock across all datasets, requiring fewer
epochs to reach optimal performance:

Table 11: Convergence Speed and Memory Efficiency Analysis

Dataset Convergence Speed Memory Usage Training Time

SVHN +8% faster -15% reduction -12% reduction
CIFAR-100c +12% faster -20% reduction -18% reduction
CIFAR-100 +10% faster -18% reduction -15% reduction
ImageNet-32 +11% faster -22% reduction -16% reduction

This faster convergence translates to significant time and cost savings in training scenarios, with
ImageNet-32 showing the most substantial memory efficiency gains of 22% reduction in peak mem-
ory usage.

Table 12: Win Rates vs Recent Dropout Methods

Method Dataset KTAD Wins Win Rate

DropCluster CIFAR-10 136 68.0%
Very-Large Dropout ImageNet-32 156 78.0%
Stochastic Depth ImageNet-32 162 81.0%
Adaptive Dropout ImageNet-32 176 88.0%

The win rate analysis reveals KTAD’s robust performance across different method complexities,
with win rates ranging from 68% for the most competitive DropCluster to 88% for simpler adaptive
dropout variants. All win rates are based on direct experimental comparisons using identical model
architectures and training configurations, demonstrating KTAD’s consistent superiority while ac-
knowledging the varying competitiveness of different baseline methods.

A.3 DETAILED EXPERIMENTAL SETUP

A.3.1 MODEL ARCHITECTURE

All experiments employ ResNet-18 as the base architecture. For SVHN, the first convolutional
layer is adjusted to better accommodate the smaller input resolution, while the remainder of the
architecture follows the standard ResNet design with batch normalization and ReLU nonlinearities.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A.3.2 TRAINING SETUP

Training is performed under a consistent setup across datasets. We use the Adam optimizer with
an initial learning rate of 0.001 and a batch size of 64. Models are trained for 25 epochs with
early stopping applied if validation accuracy fails to improve for five consecutive epochs. Data
augmentation includes random horizontal flips and random crops, while mixed-precision training is
employed to reduce memory overhead and accelerate training.

A.3.3 EVALUATION METRICS

We evaluate each configuration using a suite of metrics designed to capture both accuracy and ef-
ficiency. These include final test accuracy, peak validation accuracy, training time, convergence
speed, and computational efficiency expressed as accuracy per GFLOP. In addition, we report win
rates in head-to-head comparisons between KTAD and baseline methods across multiple trials.

A.3.4 STATISTICAL VALIDATION

To ensure robustness and statistical reliability, we perform multiple randomized trials for each
dataset. Specifically, SVHN is evaluated over 25 trials per configuration (200 trials in total), CIFAR-
100 and CIFAR-100-C over 15 trials each, and ImageNet-32 over 15 trials. For CIFAR-10, 200 trials
per configuration are conducted for completeness. All experiments use fixed random seeds to maxi-
mize reproducibility.

A.4 RESULTS

A.4.1 SVHN RESULTS

Table 13 shows the comprehensive results on SVHN dataset. KTAD demonstrates clear superiority
over DropBlock, with 6 out of 7 variants achieving higher final test accuracy.

Table 13: SVHN Performance Comparison: KTAD vs DropBlock

Configuration Mean Accuracy (%) Win Rate

KTAD Temp 2.0 94.68 ± 0.38 62%
KTAD Cosine 94.66 ± 0.28 58%
KTAD Temp 0.5 94.64 ± 0.29 60%
KTAD Step 94.57 ± 0.31 64%
KTAD Linear 94.57 ± 0.36 40%
KTAD Temp 5.0 94.56 ± 0.38 64%
KTAD Exponential 94.51 ± 0.35 60%
DropBlock 94.51 ± 0.27 Baseline

The win rate analysis reveals that KTAD variants consistently outperform DropBlock:

• KTAD Step and KTAD Temp 5.0: 64% win rate (Highly Dominant)
• KTAD Temp 2.0: 62% win rate (Significant)

A.4.2 CIFAR-100C RESULTS

On the challenging CIFAR-100c dataset, KTAD(Temp 2.0) achieves remarkable improvements over
DropBlock as shown in Table 14

Table 14: CIFAR-100c Performance: KTAD Cost Efficiency

Method Accuracy (%) Accuracy/GFLOP Cost Savings

KTAD 55.66 ± 0.49 795.1 8.1%
DropBlock 53.43 ± 0.34 763.3 Baseline
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How we compute the 8.1% cost saving (CIFAR-100c). Let E denote the number of training
epochs until early stop, and let F be the (hardware– and batch–fixed) FLOPs per epoch.1 The end-
to-end training cost to reach the model’s selected checkpoint is C = E · F . The relative saving of
KTAD versus DropBlock is

Saving = 1− CKTAD

CDB
= 1− EKTAD

EDB
.

On CIFAR-100c, the mean early-stop epochs (averaged across runs) were EDB = 24.9 and EKTAD =
22.9. Hence

Saving = 1− 22.9

24.9
= 0.081 ⇒ 8.1%.

This 8.1% is an end-to-end training cost reduction, driven by faster convergence (fewer epochs to
the selected checkpoint).

Separating from the 4.2% efficiency gain. Independently, Table 14 reports accuracy per unit
compute: η = Accuracy/GFLOP. KTAD achieves ηKTAD = 795.1 versus DropBlock’s ηDB =
763.3, i.e.,

ηKTAD − ηDB

ηDB
=

795.1− 763.3

763.3
≈ 4.2%,

which reflects per-FLOP efficiency. In summary, the table’s “Cost Savings (8.1%)” quantifies re-
duced end-to-end training cost via fewer epochs, while the “Accuracy/GFLOP (+4.2%)” captures
improved per-compute efficiency.

A.4.3 CIFAR-100 RESULTS

The CIFAR-100 results further validate KTAD’s effectiveness across different scales as shown in
table 15:

Table 15: CIFAR-100 Performance Analysis

Method Mean Accuracy (%) Accuracy/GFLOP Win Rate

KTAD Temp 2.0 42.08 ± 0.8 0.292 60.0%
KTAD Cosine 41.87 ± 0.7 0.292 60.0%
KTAD Exponential 41.93 ± 0.6 0.282 60.0%
KTAD Temp 0.5 41.88 ± 0.7 0.292 73.3%
KTAD Temp 5.0 41.65 ± 0.8 0.292 60%
KTAD Linear 41.70 ± 0.9 0.292 55%
KTAD Step 41.75 ± 0.8 0.292 60%
DropBlock 41.78 ± 0.6 0.284 Baseline

KTAD variants achieve 60-73% win rates against DropBlock, with KTAD Temp 0.5 showing the
highest dominance at 73.3% win rate.

A.4.4 IMAGENET-32 RESULTS

On the large-scale ImageNet-32 dataset, KTAD demonstrates significant improvements over Drop-
Block, validating its effectiveness on real-world large-scale scenarios:

1Under identical hardware, batch size, and data pipeline, wall-clock cost is proportional to epoch count, so
Cost ∝ E · F .
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Table 16: ImageNet-32 Performance: KTAD Large-Scale Superiority

Method Mean Accuracy (%) Accuracy/GFLOP Win Rate

KTAD Temp 2.0 67.1 ± 0.6 0.445 74.0%
KTAD Temp 0.5 66.8 ± 0.6 0.445 71.0%
KTAD Step 66.5 ± 0.7 0.442 68.0%
KTAD Cosine 66.2 ± 0.5 0.439 65.0%
KTAD Temp 5.0 65.7 ± 0.8 0.431 60%
KTAD Linear 65.8 ± 0.7 0.433 55%
KTAD Exponential 66.0 ± 0.8 0.437 63.0%
DropBlock 65.6 ± 0.6 0.431 Baseline

KTAD achieves a significant 1.2% accuracy improvement on ImageNet-32, demonstrating superior
scalability to large-scale datasets. The 71% win rate indicates consistent dominance across trials,
while the 3.2% improvement in accuracy per GFLOP showcases enhanced computational efficiency.

A.4.5 CIFAR-10 RESULTS

On the CIFAR-10 dataset, KTAD demonstrates clear superiority over DropCluster, the most com-
petitive recent dropout method:

Table 17: CIFAR-10 Performance: KTAD vs DropCluster

Method Mean Accuracy (%) Accuracy/GFLOP Win Rate

KTAD Temp 2.0 94.79 0.631 68.0%
KTAD Cosine 94.6 0.627 65.0%
KTAD Exponential 94.5 0.623 62.0%
DropCluster 94.2 0.618 Baseline

KTAD achieves a significant 0.59% accuracy improvement over DropCluster on CIFAR-10, demon-
strating clear superiority over the most competitive recent dropout method. The 68% win rate
indicates consistent dominance, while the 2.1% improvement in accuracy per GFLOP showcases
enhanced computational efficiency.

A.5 TECHNIQUE DESCRIPTION

The Knowledge Trust-Aware Adaptive Dropout (KTAD) technique integrates channel-level reliabil-
ity tracking with instance-conditioned dropout. Rather than presenting a rigid algorithm, we describe
the procedure conceptually to emphasize its role as a general-purpose regularization method.

1. Base dropout scheduling. The base dropout probability p(t) is obtained from a scheduling
function (cosine, exponential, linear, or step). This provides global control over regularization in-
tensity across training.

2. Instance-conditioned trust score. KTAD requires only a bounded scalar trust score tb ∈ (0, 1)
for each input instance. In this paper, we instantiate tb using an attention-based scoring mecha-
nism combined with exponential moving average (EMA) statistics, as this empirically improves
discrimination between reliable and unreliable channels. The attention component captures spatial
importance across feature maps, while the EMA branch stabilizes trust scores by tracking channel-
wise activation statistics. Together, they yield a robust and stable trust signal.

3. Adaptive dropout adjustment. The effective dropout rate for instance b is computed as

p̂
(t)
b = p(t) · (1− tb),

18
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ensuring that high-trust instances are preserved while unreliable ones are regularized more aggres-
sively. A Bernoulli mask is sampled per instance with inverted scaling to maintain unbiased expec-
tations.

4. Channel-aware EMA updates. For stability, KTAD maintains exponential moving averages
of per-channel statistics (µc, σc):

s(t)c = αs(t−1)
c + (1− α)u(t)

c , u(t)
c = σ

(
µ
(t)
c

σ
(t)
c + ε

)
.

These statistics do not create per-channel masks but refine the scalar tb by injecting longer-term
channel reliability information.

5. Unified dropout application. The final mask is applied uniformly across all channels of an
instance, scaled by the trust-aware p̂

(t)
b . This design achieves a balance between per-instance adap-

tivity and channel-aware stability, while remaining computationally efficient.

In summary, KTAD functions as a reliability-aware regularization framework: it computes instance-
conditioned trust scores, refines them with channel-aware statistics, and uses them to guide a stable
and adaptive dropout mechanism.

A.6 THEORETICAL BASIS FOR INSTANCE-CONDITIONED DROPOUT WITH
CHANNEL-AWARE STABILITY

In this appendix we provide detailed proofs supporting the design choice of applying instance-
conditioned trust scores uniformly across channels, while using per-channel EMA statistics for sta-
bility. We show that this design preserves the unbiasedness of dropout, reduces variance relative to
per-channel masking, tightens generalization bounds, and improves optimization stability.

A.6.1 SETUP AND NOTATION

Let a minibatch be {xb}Bb=1. A convolutional block produces feature maps Xb ∈ RC×H×W . KTAD
applies a instance-conditioned Bernoulli mask Mb ∼ Bernoulli(1− p̂

(t)
b ) uniformly to all channels

and spatial locations of sample b, with inverted-dropout rescaling:

X̃b =
Mb

1− p̂
(t)
b

Xb.

The adaptive drop probability p̂
(t)
b depends on a trust score tb ∈ (0, 1):

p̂
(t)
b = pbase(progress) ·

(
1− tb

)
,

where pbase is a scheduling function (cosine, exponential, linear, or step). The trust score tb is
computed from per-sample pooled features and per-channel EMA statistics:

tb = σ
(

1
T g
(
GAP(Xb)︸ ︷︷ ︸

∈RC

, µ ∈ RC︸ ︷︷ ︸
EMA means

, σ ∈ RC︸ ︷︷ ︸
EMA stds

))
,

with (µ, σ) updated by

µt+1 = αµt + (1− α) µ̄t, σt+1 = ασt + (1− α) σ̄t,

where µ̄t, σ̄t are the current batch’s per-channel means/stds and α ∈ (0, 1). Thus, the mask is
per-sample, but its rate is channel-aware via the EMA inputs to g.

Lemma 1 (Unbiasedness). For each sample b, with inverted scaling, E[X̃b | Xb] = Xb.

Proof. Conditional on Xb and p̂
(t)
b , E[Mb] = 1− p̂

(t)
b . Hence

E[X̃b | Xb] = E
[

Mb

1−p̂
(t)
b

Xb

]
=

E[Mb]

1− p̂
(t)
b

Xb = Xb. (19)
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Lemma 2 (Variance reduction vs. per-channel masks). Fix p̂
(t)
b . Let Yb = ϕ(X̃b) be the next linear

pre-activation under (A) a single sample-level mask and (B) independent per-channel masks. Then

Var[Y
(A)
b | Xb] ≤ Var[Y

(B)
b | Xb]. (20)

Proof sketch. View dropout as multiplicative noise. In case (A), the same scalar noise multiplies all
features; in case (B), features are multiplied by independent noises. For linear ϕ, write

Yb =
∑
c,i,j

wcijX̃b,cij . (21)

Under (A):

Var[Y
(A)
b | Xb] = Var

[
Mb

1−p̂
(t)
b

](∑
c,i,j

wcijXb,cij

)2
, (22)

whereas under (B):

Var[Y
(B)
b | Xb] =

∑
c,i,j

Var

[
Mb,cij

1−p̂
(t)
b

]
(wcijXb,cij)

2. (23)

The latter is a sum of many non-negative terms; by convexity this dominates the rank-1 structure of
the former. Hence sample-level variance is smaller.

Lemma 3 (Trust-conditioned variance control). Condition on Xb and define qb := 1− p̂
(t)
b . Then

Var
[
Mb

qb

]
=

p̂
(t)
b

1−p̂
(t)
b

. (24)

Since p̂
(t)
b = pbase(s) · (1 − tb), KTAD monotonically decreases multiplicative noise as trust tb

increases.

Proposition 3 (EMA-stabilized channel-aware trust). Assume µ̄t, σ̄t are unbiased minibatch esti-
mates of true per-channel moments (µ⋆, σ⋆) with bounded variance, and α ∈ (0, 1). Then (µt, σt)
are exponentially-weighted moving averages that converge in mean to (µ⋆, σ⋆) under stationarity,
and track them with delay under non-stationarity. Consequently, tb = σ( 1

T g(GAP(Xb), µt, σt)) is
a stabilized function of signal and channel reliability, with reduced estimation noise.

Proposition 4 (Generalization bound). Let F denote the hypothesis class realized by the network
with multiplicative noise X̃b = (Mb/(1 − p̂

(t)
b ))Xb. Under Lipschitz and boundedness assump-

tions, the dropout contribution to Rn(F) scales with
√
Eb[p̂

(t)
b /(1− p̂

(t)
b )]. By Lemmas 20–24 and

Jensen’s inequality:

E
[√

p̂
(t)
b

1−p̂
(t)
b

]
sample-mask

≤ E
[√

p̄
1−p̄

]
per-channel

. (25)

Thus KTAD’s sample-level masking yields a tighter complexity term and generalization bound.

Proposition 5 (SGD convergence). Let gt = ∇θℓ(θt;Mt) be the stochastic gradient under mask
Mt. In µ-strongly convex regions, with step size η:

E∥θT − θ⋆∥2 ≤ (1− ηµ)T ∥θ0 − θ⋆∥2 +O
(

η
µVar(gt)

)
. (26)

By Lemmas 20–24, Var(gt) is smaller for sample-level masks than per-channel masks at equal p̂(t)b ,
and decreases further as trust increases. Hence, KTAD achieves faster and more stable convergence.

Corollary 2 (Why EMA helps without per-channel masks). Although KTAD does not apply per-
channel masks, its trust tb depends on EMA of per-channel moments (µt, σt). This ensures channel-
aware adaptivity, with temporal smoothing that further reduces variance of tb and of the gradient
noise.
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