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ABSTRACT

Video-to-Audio (V2A) generation requires balancing four critical perceptual di-
mensions: semantic consistency, audio-visual temporal synchrony, aesthetic qual-
ity, and spatial accuracy; yet existing methods suffer from objective entanglement
that conflates competing goals in single loss functions and lack human preference
alignment. We introduce PrismAudio, the first framework to integrate Reinforce-
ment Learning into V2A generation with specialized Chain-of-Thought (CoT)
planning. Our approach decomposes monolithic reasoning into four specialized
CoT modules (Semantic, Temporal, Aesthetic, and Spatial CoT), each paired with
targeted reward functions. This CoT-reward correspondence enables multidimen-
sional RL optimization that guides the model to jointly generate better reasoning
across all perspectives, solving the objective entanglement problem while pre-
serving interpretability. To make this optimization computationally practical, we
propose Fast-GRPO, which employs hybrid ODE-SDE sampling that dramati-
cally reduces the training overhead compared to existing GRPO implementations.
We also introduce AudioCanvas, a rigorous benchmark that is more distribution-
ally balanced and covers more realistically diverse and challenging scenarios than
existing datasets, with 300 single-event classes and 501 multi-event samples. Ex-
perimental results demonstrate that PrismAudio achieves state-of-the-art perfor-
mance across all four perceptual dimensions on both the in-domain VGGSound
test set and out-of-domain AudioCanvas benchmark. The project page is available
at https://PrismAudio.github.io.

1 INTRODUCTION

Video-to-Audio (V2A) Generation, also known as video foley, aims to synthesize a soundscape
from a silent video and an optional text input. Achieving satisfactory V2A results is not merely
about generating plausible acoustics; the generated audio needs to meet criteria across four distinct
human perceptual axes: (a) semantic consistency, ensuring audio events correspond accurately to
visual content, (b) temporal synchrony, aligning audio timing precisely with visual cues, (c) aes-
thetic quality, capturing the subjective richness, complexity, and artistic value that makes audio
perceptually satisfying and creatively useful, (d) spatial accuracy, measuring the accuracy of the
left-right sound image w.r.t. traditional stereo. Mastering these axes is crucial for enabling genuine
controllability—the ability to articulate not just what to render but how—freeing creators from the
constraints of opaque, end-to-end models. Yet, this multi-objective challenge proves overwhelming
for current methods: semantic and temporal alignment are brittle in complex scenes; aesthetic qual-
ity is subjective and hard to quantify; spatial accuracy remains underexplored; and the objectives are
inherently interdependent and have a trade-off relationship. For example, a system focusing solely
on semantic consistency may generate a mundane sound with low aesthetic quality, or generate the
right type of sound but fail on temporal synchronization. Unable to navigate this complex landscape
of competing goals, models regress to optimizing for signal-level reconstruction, fundamentally
failing to bridge the gap between model outputs and true human perceptual expectations.

Recent V2A advances (Zhang et al., 2024; Xing et al., 2024; Wang et al., 2024b) have evolved
from direct synthesis to increasingly rich conditioning mechanisms. Early approaches like V2A-
Mapper (Wang et al., 2024a) and Diff-Foley (Luo et al., 2023) rely solely on visual inputs, using

1

https://PrismAudio.github.io


054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

embedding projection and contrastive alignment, respectively, but suffer from limited semantic pre-
cision and controllability. Subsequent methods (Chen et al., 2025; Mo et al., 2024; Tian et al., 2025)
incorporate explicit text conditioning—MovieGen Audio (Polyak et al., 2024) via cross-attention
in diffusion transformers, MMAudio (Cheng et al., 2024a) through multimodal transformers—yet
remain opaque “black boxes” despite improved control. Most recently, ThinkSound (Liu et al.,
2025b) pioneers Chain-of-Thought (CoT) reasoning (Wei et al., 2022) using multimodal LLMs
(MLLMs) (Achiam et al., 2023; Cheng et al., 2024b; Chu et al., 2024), decomposing V2A into
structured planning followed by audio rendering. This explicit reasoning significantly enhances in-
terpretability and narrative coherence by making the generation process transparent and controllable.

However, ThinkSound still exhibits three critical limitations: First, its monolithic planning gener-
ates all audio analysis through a single reasoning path, conflating distinct analytical tasks—semantic
understanding, synchronization, spatial reasoning, and aesthetic evaluation—and leading to inade-
quate treatment of each dimension and multimodal hallucinations in complex scenarios. Second,
objective entanglement forces the model to optimize a unified reconstruction loss that conflates
competing perceptual goals—narrative coherence, temporal synchrony, aesthetic quality, and spatial
accuracy—without learning appropriate context-dependent trade-offs, particularly in complex sce-
narios demanding sophisticated multi-objective reasoning. Third, the absence of human preference
alignment means the model lacks mechanisms to learn perceptually satisfying audio beyond tex-
tual matching, producing technically correct but perceptually unsatisfying results. While the first
limitation is specific to ThinkSound, the latter two afflict all existing V2A approaches.

To address these limitations, we introduce PrismAudio, the first framework to tightly integrate
Reinforcement Learning (RL) into V2A generation with specialized CoT planning. We decompose
ThinkSound’s monolithic planning into four specialized CoT modules—Semantic CoT, Temporal
CoT, Aesthetic CoT, and Spatial CoT—each providing focused, interpretable reasoning for its
corresponding perceptual dimension. Crucially, we pair each CoT module with targeted reward
signals. The CoT-reward correspondence enables multidimensional RL optimization that guides
all modules to jointly generate better reasoning across all perspectives, fundamentally addressing
objective entanglement and lack of human preference alignment while preserving interpretability.

PrismAudio builds upon a CoT-aware audio foundation model employing a Multimodal Diffusion
Transformer backbone with flow matching. Applying RL to diffusion models poses computa-
tional challenges (Xue et al., 2025; Li et al., 2025). While Group Relative Policy Optimization
(GRPO) (Shao et al., 2024) shows promise for human preference alignment, current implementa-
tions like Flow-GRPO (Liu et al., 2025c) require Stochastic Differential Equation (SDE) sampling
at every denoising step, creating substantial training overhead due to full-step sampling require-
ments for policy ratio computation. We propose Fast-GRPO, employing a hybrid ODE-SDE strat-
egy—applying SDE sampling only to a subset of steps for stochastic exploration while using deter-
ministic Ordinary Differential Equation (ODE) sampling elsewhere. Fast-GRPO enables efficient
multi-dimensional CoT-RL optimization without compromising generation quality.

Evaluating practical V2A capabilities demands a rigorous benchmark covering realistically diverse
and challenging scenarios; yet existing V2A benchmarks such as VGGSound (Chen et al., 2020)
and Kling-Audio-Eval (Wang et al., 2025) fail to meet the requirements (see Appendix C.2 for de-
tailed analysis). We therefore introduce AudioCanvas, featuring: (1) high modality alignment
through rigorous off-screen sound filtering, (2) advanced scene complexity with 300 single-event
classes and 501 multi-event samples across diverse scenes, and (3) precise audio captions with
rich, structured CoT reasoning enabling comprehensive evaluation of semantic consistency, tem-
poral synchrony, aesthetic quality, and spatial accuracy. Our main contributions are as follows:
• We introduce PrismAudio, the first V2A framework to integrate specialized CoT modules with

multi-dimensional RL optimization, fundamentally addressing limitations of existing approaches.
• We propose Fast-GRPO, enabling efficient multi-dimensional RL training of diffusion models

through hybrid ODE-SDE sampling.
• We construct AudioCanvas, a rigorous V2A benchmark spanning diverse scenes with strict qual-

ity control and high-quality annotations, providing challenging real-world V2A evaluations.
• Extensive experiments demonstrate that PrismAudio outperforms baselines across all perceptual

axes on both the VGGSound test set and AudioCanvas. Further analysis reveals that single-
dimensional rewards suffer from suboptimal trade-offs—improving one dimension at others’ ex-
pense—while our multi-dimensional RL optimization framework balances all objectives without
compromising individual performance.
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2 RELATED WORK

CoT Reasoning for Audio Generation. Large Language Models (LLMs) (Guo et al., 2025; Team
et al., 2024b; Yang et al., 2025) have demonstrated remarkable reasoning capabilities through CoT
prompting (Wei et al., 2022), enabling complex problem decomposition via intermediate reasoning
steps. This paradigm has been extended to MLLMs, which integrate visual and audio understand-
ing with linguistic reasoning (Achiam et al., 2023; Lin et al., 2023; Alayrac et al., 2022). The
related works on V2A generation are summarized in Appendix A. Early V2A approach (Xie et al.,
2024) uses vision-language models for video captioning, then employs text-to-audio models for
synthesis. Recent works adopt video-audio-language MLLMs like VideoLLaMA2 (Cheng et al.,
2024b) for structured CoT planning. ThinkSound (Liu et al., 2025b) exemplifies this by gener-
ating detailed audio descriptions before synthesis, improving semantic consistency and narrative
coherence. However, existing MLLM-based approaches employ monolithic planning that cannot
handle competing objectives or provide targeted optimization for distinct perceptual dimensions.
Our work decomposes monolithic planning into four specialized CoT modules—Semantic, Tempo-
ral, Aesthetic, and Spatial—each providing focused reasoning with corresponding reward signals
for multi-dimensional preference optimization.

Reinforcement Learning for Diffusion Models. Reinforcement Learning has achieved remark-
able success in LLMs through RLHF (Ouyang et al., 2022; Bai et al., 2022), demonstrating the
crucial role of aligning model outputs with human preference beyond likelihood maximization. Re-
cent works have explored RL applications to diffusion models for preference alignment. Early ap-
proaches (Fan & Lee, 2023; Black et al., 2023; Fan et al., 2023) optimize diffusion score functions
through policy gradient methods, while Wallace et al. (2024) introduces DPO (Rafailov et al., 2023)
to diffusion models for direct learning from human feedback. Most recently, Group Relative Policy
Optimization (GRPO) (Shao et al., 2024) based approaches have advanced RL-enhanced diffusion
models. Flow-GRPO (Liu et al., 2025c) and DanceGRPO (Xue et al., 2025) introduce GRPO to
flow matching models (Lipman et al., 2022), enabling divergent sampling by transforming ODEs
into equivalent SDEs with reduced variance through group-based optimization. However, existing
RL approaches for generation primarily focus on single-objective optimization and have not been
extended to V2A generation, which expects multi-dimensional alignment across semantic, temporal,
aesthetic, and spatial aspects. Our work pioneers the application of flow-matching GRPO to V2A
generation with specialized multi-dimensional reward decomposition.

3 PRISMAUDIO

As illustrated in Figure 1, our method consists of three main stages built on an audio foundation
model. Section 3.1 presents the CoT-aware audio foundation model. Section 3.2 elaborates the cus-
tomized CoT modules that decompose V2A reasoning into four specialized dimensions: Semantic,
Temporal, Aesthetic, and Spatial, where each module generates targeted reasoning text that provides
dimension-specific guidance for audio generation. Finally, Section 3.3 introduces our GRPO post-
training framework, which includes multi-dimensional reward design that aligns with our special-
ized CoT modules, and our Fast-GRPO algorithm that enables efficient multi-objective optimization
across all perceptual dimensions.

3.1 COT-AWARE AUDIO FOUNDATION MODEL

We build our audio foundation model on the diffusion transformer backbone with flow matching that
takes video inputs and text conditioning to generate audio outputs. It undergoes standard pre-training
on large-scale video-audio pairs to establish basic generation capabilities. While this architecture
provides a solid foundation for V2A generation, it has two critical limitations that hinder effec-
tive multi-dimensional CoT reasoning: insufficient video understanding for complex and diverse
scenarios, and limited text processing capabilities for structured reasoning content. Therefore, we
enhance the ThinkSound architecture (Liu et al., 2025b) with the following two modifications to
facilitate multi-dimensional CoT reasoning.

VideoPrism for Enhanced Video Understanding. Most existing V2A models, including
ThinkSound, adopt CLIP-based image encoders (Radford et al., 2021) that process video frames
independently as static images. This approach lacks comprehensive video understanding and fails
to handle complex, diverse video scenarios in real-world applications. We replace CLIP with Video-
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Figure 1: Overview of PrismAudio. Left panel: the progress of CoT training data construction using
Gemini 2.5 Pro and then fine-tuning VideoLLaMA2 for decomposed CoT generation (Section 3.2).
Right panel: the Fast-GRPO multi-dimensional CoT-RL framework (Section 3.3) for post-training
the Audio Foundation Model (Section 3.1).

Prism (Zhao et al., 2024), a state-of-the-art (SOTA) video encoder pre-trained on large-scale video
data. VideoPrism employs a unified vision transformer architecture specially designed for video un-
derstanding, capturing rich semantic representations of objects, actions, and environmental contexts
that are crucial for our multi-dimensional reasoning modules.

T5-Gemma for CoT-Aware Text Encoding. Our CoT modules produce analytical text containing
logical structures, causal relationships, and multi-faceted reasoning patterns that require sophisti-
cated language understanding; yet the standard T5 encoders in ThinkSound struggle with the com-
plex, structured reasoning text generated by our CoT modules. Hence, we make another essential
enhancement by upgrading the T5 encoder to T5-Gemma (Zhang et al., 2025). T5-Gemma adapts
the reasoning capabilities of decoder-only LLMs into an efficient encoder-decoder architecture, ef-
fectively enabling proper conditioning on our structured CoTs for the generation model with its
stronger reasoning comprehension capabilities.

3.2 DECOMPOSING MULTI-DIMENSIONAL COT REASONING

While ThinkSound proves the effectiveness of CoT reasoning for V2A generation, it generates all
audio-related analysis in a single, undifferentiable reasoning path. This monolithic reasoning has
critical limitations: different aspects of audio generation require fundamentally different analytical
frameworks—semantic understanding focuses on content identification, spatial reasoning requires
directional positioning logic, and aesthetic evaluation demands subjective quality assessment. When
these diverse tasks are conflated, models struggle to properly address each dimension and often in-
troduce multimodal hallucinations when reasoning about multiple complex aspects simultaneously.

To achieve superior reasoning capabilities simultaneously across all four dimensions, we first em-
ploy Gemini 2.5 Pro (Comanici et al., 2025) for CoT data construction, leveraging its outstanding
multimodal understanding and strong reasoning capabilities. Next, using this high-quality training
data, we fine-tune the highly competitive open-source video language model VideoLLaMA2 (Cheng
et al., 2024b) to generate four specialized CoTs: Semantic CoT identifies audio events and their
characteristics from audio-visual content; Temporal CoT determines the sequential ordering of au-
dio events; Aesthetic CoT focuses on audio quality aspects like naturalness and fidelity; and Spatial
CoT analyzes sound positioning, including directional placement and distance for proper spatializa-
tion. The four specialized CoTs are then concatenated in this order to form the multi-dimensional
CoT (as depicted in Figure 1) and used as enhanced, structured text conditioning to fine-tune our
audio foundation model (Section 3.1), enabling the model to learn from explicit reasoning patterns
and acquire better generalization by understanding the underlying logic behind audio-visual corre-
spondences.
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3.3 THE FAST-GRPO MULTI-DIMENSIONAL RL FRAMEWORK

3.3.1 MULTI-DIMENSIONAL REWARD FUNCTIONS

As explained in Section 1, V2A generation involves multiple human perceptual objectives that are
inherently interdependent and conflicting. High-quality audio requires simultaneous success across
semantic accuracy, temporal coherence, aesthetic quality, and spatial positioning—objectives that
often compete with each other. A monolithic reward function struggles to balance these competing
objectives and often leads to suboptimal trade-offs where improvements in one dimension come at
the expense of others, as illustrated in Table 4.

To address this limitation, we design four specialized reward functions that align with our CoT di-
mensions: Semantic Reward, measured by MS-CLAP (Elizalde et al., 2024), a commonly used
audio-text alignment model for evaluating content similarity; Temporal Reward, assessed via
Synchformer (Iashin et al., 2024), a highly competitive model specifically designed to detect audio-
visual synchrony; Aesthetic Reward, which uses the leading-edge assessor for audio aesthetic qual-
ity, Meta Audiobox Aesthetics (Tjandra et al., 2025), as a no-reference model trained to predict
human Mean Opinion Scores (MOS); and Spatial Reward, which employs the high-performing
StereoCRW (Chen et al., 2022) to verify directional positioning accuracy. This multi-objective ap-
proach allows for a balanced and comprehensive optimization across all key perceptual dimensions.

3.3.2 FAST-GRPO WITH RANDOM-WINDOW EXPLORATION

To align the audio foundation model with the multi-dimensional human preference, we adopt GRPO
for its stability. While generation of our flow matching model is inherently deterministic (an ODE), it
can be equivalently formulated as a stochastic process (an SDE) that enables RL-based optimization
(see Appendix B.1 for details). Prior works (Xue et al., 2025; Liu et al., 2025c) construct the Markov
Decision Process (MDP) within the GRPO training process by applying this SDE formulation across
the entire denoising trajectory. This “pure SDE” approach, however, forces GRPO to evaluate the
policy at every step, creating a significant efficiency bottleneck.

To resolve this trade-off between exploration and efficiency, we introduce Fast-GRPO. Its core idea
is to strategically confine stochasticity and optimization to a small, computationally inexpen-
sive segment of the generation process. We achieve this by creating a hybrid sampling path: an
efficient, deterministic ODE is used for most of the trajectory, while an explorative SDE is activated
only within a small, randomly placed window of timesteps. Fast-GRPO is realized through two key
components: a mixed ODE–SDE sampler and a random-window scheduling scheme.

Mixed Sampler with Random-Window Scheduling. For each training iteration, we randomly
sample a starting position ℓ ∈ {0, 1, . . . , T − w}. This defines an optimization window W(ℓ) with
width w ≪ T :

W(ℓ) = {ℓ, ℓ+ 1, . . . , ℓ+ w − 1}. (1)
We then interleave deterministic ODE steps and stochastic SDE steps based on this window. For a
step size ∆t, the update rule is:

xt+1 =

{
xt + vθ(xt, t, c)∆t, if t /∈ W(ℓ) (ODE step)

xt + µSDE(xt, t, c)∆t + σt

√
∆t εt, if t ∈ W(ℓ) (SDE step)

(2)

where εt ∼ N (0, I), vθ is the model’s predicted velocity, and µSDE is the SDE drift term derived
from vθ (see Appendix B.1). This hybrid approach is theoretically sound, as it preserves the terminal
data distribution required for correct reward computation (see Appendix B.2).

Per-step policy and ratio. The SDE steps within the window W(ℓ) induce a tractable Gaussian
policy πθ(xt+1 | xt, c), allowing for a closed-form computation of the GRPO policy ratio rt(θ) (see
Appendix B.3 for derivation). This policy and its corresponding GRPO ratio are given by:

πθ(xt+1 | xt, c) = N
(
µθ(xt, t, c), (σ

2
t∆t)I

)
, (3)

rt(θ) = exp
{
− ∥xt+1 − µθ∥22 − ∥xt+1 − µθold∥22

2σ2
t∆t

}
, (4)

where µθ(xt, t, c) = xt + µSDE(xt, t, c)∆t.
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Multi-reward, Group-relative Advantages. Given K reward heads {Rk}Kk=1 that are aligned with
our CoT dimensions (Semantic, Temporal, Aesthetic, and Spatial), we sample a group of N audio
candidates {xi

T }Ni=1 per prompt c with the old policy. We first compute a weighted total reward for
each candidate:

Ri
total =

K∑
k=1

λk Rk(x
i
T , c). (5)

The advantage score Ai is then computed by normalizing this aggregated reward using the group’s
mean (µgroup) and standard deviation (σgroup):

Ai =
Ri

total − µgroup

σgroup + ϵ
, where µgroup =

1

N

N∑
j=1

Rj
total and σgroup = std

(
{Rj

total}
N
j=1

)
. (6)

A small constant ϵ (e.g., 10−6) is added to the denominator for numerical stability. This approach
preserves GRPO’s stability through within-group normalization while enabling principled multi-
objective trade-offs via the weights λk.

Windowed GRPO Objective. The policy model is optimized by maximizing the following objec-
tive, derived from the Fast-GRPO formulation restricted to the selected SDE steps:

JFast-GRPO(θ) = Ec,ℓ,{xi}∼πθold

[
1

N

N∑
i=1

1

w

∑
t∈W(ℓ)

min
(
rit(θ)A

i, clip(rit(θ), 1− ε, 1 + ε)Ai
)]

.

(7)

where Ai is the group-normalized advantage for the i-th sample (Eq. 6). This design reduces the
policy-model NFE (Number of Function Evaluations) from T to w per sample, yielding a near-
linear complexity of GRPO training. We notice that some contemporaneous works, such as Mix-
GRPO (Li et al., 2025), also propose hybrid ODE-SDE. Considering the concurrency of research
and their differences from Fast-GRPO on window design, modalities, and scopes, our Fast-GRPO
is a valid innovation for enabling efficient multi-dimensional RL training of diffusion models.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

AudioCanvas Benchmark. To address critical gaps in V2A evaluation—lack of scene complexity
and high-quality, structured annotations—we introduce AudioCanvas, a new benchmark of 3,177
real-world videos. It is uniquely distinguished by three core features: (1) High-Fidelity Alignment,
ensured through rigorous, expert-led manual filtering, addressing known quality issues in existing
datasets; (2) Advanced Scene Complexity, featuring the first curated set of 501 multi-event sce-
narios to test performance beyond simple events; and (3) Rich, Structured Annotations, with CoT
reasoning generated by Gemini 2.5 Pro and quantitatively validated to over 94% human-verified
accuracy. Appendix C details the construction, quality assessment, and benchmark comparisons.

Evaluation Metrics. We conduct comprehensive evaluations using both objective and subjective
metrics to assess the four key perceptual dimensions. For objective evaluation, we adopt estab-
lished metrics across multiple dimensions. Following ThinkSound, we employ CLAP score for
text-audio semantic alignment, DeSync measured by Synchformer for video-audio temporal syn-
chrony, Fréchet Distance (FD) (Kilgour et al., 2018) in the VGGish feature space, and Kullback-
Leibler (KL) Divergence (Copet et al., 2024) based on predictions from the PaSST model for audio
distribution similarity Liu et al. (2025b). For spatial accuracy of generated stereo audio, we adopt
GCC MSE and CRW MSE Sun et al. (2024) to evaluate both difference of arrival (DoA) and in-
teraural time difference (ITD). To measure aesthetic quality, we evaluate production quality (PQ),
production complexity (PC), content enjoyment (CE), and content usefulness (CU) scores from
Audiobox-Aesthetics (Tjandra et al., 2025). For subjective evaluation, we employ Mean Opinion
Score (MOS) across two complementary dimensions: MOS-Q (Quality) evaluates the aesthetic
quality and audio fidelity of generated audio, while MOS-C (Consistency) evaluates the compre-
hensive alignment between audio and video, encompassing semantic consistency, temporal syn-
chrony, and spatial accuracy. More details of evaluation metrics are in Appendix F.

Implementation Details are in Appendix D. Since the multi-dimensional CoT fine-tuning and the
RL post-training are based on VGGSound, evaluations on the VGGSound test set are in-domain
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Table 1: Objective and Subjective evaluations on the in-domain VGGSound test set. Best results
are in bold. PrismAudio w/o CoT-RL is our audio foundation model without the multi-dimensional
CoT conditioning and Fast-GRPO post-training. We report the mean and standard deviation of the
MOS scores. We evaluate all the open-sourced baselines except for those with †, which denote
evaluation using generation samples released by the authors. Time(s) denotes the inference time
(excluding feature extraction) for generating 9-second audio samples.

Method Params Semantic Temporal Aesthetic Quality Spatial Accuracy Distribution Subjective Time (s)CLAP↑ DeSync↓ PQ↑ PC↓ CE↑ CU↑ GCC↓ CRW↓ FD↓ KL↓ MOS-Q↑ MOS-C↑
GT - 0.46 0.55 6.30 3.85 4.40 5.65 - - - - 4.58±0.18 4.65±0.15 -

Frieren† 159M 0.32 0.85 5.90 3.50 3.57 5.35 - - 1.34 2.86 3.45±0.75 3.51±0.80 -
V2A-Mapper† 229M 0.31 1.23 6.26 3.54 4.12 5.63 - - 0.90 2.49 3.38±0.82 3.44±0.88 -
AudioX 1.1B 0.41 1.24 5.94 3.43 3.86 5.44 7.22 19.25 1.51 1.80 3.61±0.75 3.65±0.72 7.52
HunyuanVideo-Foley 5.31B 0.42 0.55 5.85 3.26 3.92 5.26 - - 2.26 1.73 3.88±0.55 3.96±0.52 10.63
MMAudio 1.03B 0.40 0.46 5.94 3.51 3.88 5.28 - - 2.17 1.32 3.95±0.51 4.03±0.58 1.30
ThinkSound 1.3B 0.43 0.55 6.15 3.53 3.95 5.48 4.65 13.47 1.17 1.35 4.05±0.55 4.18±0.51 1.07

PrismAudio (Ours) 518M 0.47 0.41 6.38 3.24 4.29 5.68 3.77 7.72 1.08 1.23 4.21±0.35 4.22±0.29 0.63
PrismAudio w/o CoT-RL 518M 0.42 0.51 6.17 3.32 3.94 5.48 4.06 10.29 1.14 1.43 4.02±0.48 4.11±0.42 0.63

evaluations. Competitive baselines include Frieren (16k, mono) (Wang et al., 2024b), V2A-Mapper
(16k, mono) (Wang et al., 2024a), AudioX (44k, stereo) (Tian et al., 2025), HunyuanVideo-Foley
(44k, mono) (Shan et al., 2025), MMAudio (44k, mono) (Cheng et al., 2024a), and ThinkSound
(44k, stereo) (Liu et al., 2025b).

4.2 MAIN RESULTS

In-domain Evaluation on VGGSound Test Set. We compare our PrismAudio against competitive
open-source V2A baselines on the VGGSound test set, with results shown in Table 1. We observe
that: (1) PrismAudio achieves new SOTA performance across all perceptual dimensions. Com-
pared to the prior SOTA, ThinkSound, our model shows substantial gains in semantics (CLAP: 0.47
vs. 0.43) and synchrony (DeSync: 0.41 vs. 0.55), while slashing the spatial CRW error from 13.47 to
7.72. Subjective evaluations corroborate these gains, with PrismAudio achieving the highest MOS
scores for both quality and content consistency. (2) Our CoT-RL framework is the key driver
of performance gains. Our ablation model, PrismAudio w/o CoT-RL, already constitutes an im-
pressively strong baseline that outperforms prior SOTA models in multiple metrics (e.g., DeSync,
CRW). The CoT-RL optimization then provides a substantial further boost across all dimensions,
including 4.7% and 2.7% relative gains on MOS-Q and MOS-C. This clearly demonstrates that by
decomposing CoT reasoning and applying targeted rewards, our approach effectively resolves objec-
tive conflicts and substantially improves the performance of a highly optimized foundation model.
(3) PrismAudio is also more efficient. With much fewer parameters than prior SOTAs, it achieves
superior performance with faster inference, making it far more practical for real-world applications.

Out-of-Domain Evaluation on AudioCanvas. To assess generalizability, we evaluate models on
our challenging AudioCanvas benchmark. The results in Table 2 can conclude that: (1) PrismAu-
dio demonstrates exceptional robustness while other models falter. On this complex data, most
baselines suffer significant degradation; the prior SOTA, ThinkSound, collapses in temporal reason-
ing (DeSync: 0.80) and spatial accuracy (CRW: 22.82). In contrast, PrismAudio remains stable,
achieving the best MOS scores and even surpassing the ground truth in semantic alignment and syn-
chrony. 1 These results prove that PrismAudio learns true audio-visual principles, not just overfitting.
(2) The benefit of our CoT-RL framework is amplified on complex data. The framework’s con-
tribution is even more critical here than on VGGSound, substantially elevating performance over the
ablation model across all dimensions (e.g., semantics: CLAP: 0.47 → 0.52; aesthetics: CE: 3.81
→ 4.26). This widening performance gap confirms our multi-dimensional CoT-RL framework is
indispensable when simple pattern matching fails. Detailed breakdown results are in Appendix E.4.

Table 2: Objective and Subjective evaluations on the out-of-domain AudioCanvas benchmark.
Method Semantic Temporal Aesthetic Quality Spatial Accuracy Distribution Subjective

CLAP↑ DeSync↓ PQ↑ PC↓ CE↑ CU↑ GCC↓ CRW↓ FD↓ KL↓ MOS-Q↑ MOS-C↑
GT 0.48 0.40 6.47 3.16 4.02 5.99 - - - - 4.65±0.23 4.72±0.20

HunyuanVideo-Foley 0.44 0.47 6.43 3.25 4.04 5.88 - - 2.04 2.07 3.75±0.52 3.71±0.58
MMAudio 0.46 0.43 6.30 3.23 3.97 5.77 - - 3.59 1.87 3.88±0.45 3.87±0.41
ThinkSound 0.48 0.80 6.48 3.50 4.10 5.94 4.43 22.82 1.95 2.54 3.79±0.58 3.80±0.54

PrismAudio (Ours) 0.52 0.36 6.68 2.82 4.26 6.15 3.50 12.87 1.92 1.53 4.12±0.28 4.01±0.25
PrismAudio (Silent Video CoT) 0.47 0.42 6.55 3.04 4.09 5.98 3.63 14.26 2.01 1.79 - -
PrismAudio w/o CoT-RL 0.42 0.44 6.45 3.22 3.81 5.87 4.11 15.30 2.10 2.17 3.91±0.35 3.85±0.31

1These remarkable results occur because our RL framework is powerful enough to explicitly optimize for the
target metrics. While ground truth audio contains natural variations that these imperfect proxies may penalize,
our model can generate audio that better meets the criteria of the metrics. Crucially, our high MOS scores
demonstrate that this enhanced control also results in superior perceptual quality for human listeners.
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Table 3: Analysis of different CoT reasoning strategies on AudioCanvas. MultiCoT denotes de-
composed, multi-block reasoning in our PrismAudio, Monolithic CoT denotes unified, single-block
reasoning as in ThinkSound, and Random CoT denotes structurally corrupted monolithic reasoning.

Method Semantic Temporal Aesthetic Quality Spatial Accuracy Distribution
CLAP↑ DeSync↓ PQ↑ PC↓ CE↑ CU↑ GCC↓ CRW↓ FD↓ KL↓

Baseline (No CoT) 0.42 0.44 6.45 3.22 3.81 5.87 4.11 15.30 2.10 2.17

Random CoT 0.44 0.41 6.30 2.94 3.78 5.96 3.92 13.79 2.06 1.75
Monolithic CoT 0.46 0.38 6.34 2.89 3.79 5.99 3.92 13.02 1.96 1.70

MultiCoT 0.52 0.36 6.68 2.82 4.26 6.15 3.50 12.87 1.92 1.53

4.3 ABLATION AND ANALYSIS

We conduct comprehensive ablation studies and analysis to evaluate critical algorithmic designs and
provide deeper insights. Multi-dimension CoT Reasoning and RL analyses on VGGSound test set
are in Appendix E.2. For the audio foundation model, analyses of its video encoder and text encoder
are in Appendix E.1, and more analyses about it are in Appendix E.3.

Multi-dimensional CoT Reasoning. To validate the design principles of our multi-dimensional
CoT, we analyze several reasoning strategies on AudioCanvas, with results presented in Table 3. Our
analysis yields two primary findings: (1) Structured reasoning is essential for high-quality gener-
ation. The necessity of CoT reasoning is immediately evident when comparing against the Baseline
(No CoT), which performs poorly across all metrics, with particularly weak semantic alignment
(CLAP: 0.42) and spatial accuracy (CRW: 15.30). Furthermore, not just any reasoning suffices.
The Random CoT variant—which contains the correct concepts but in a jumbled, illogical struc-
ture—improves upon the baseline but fails to match coherent CoTs. Its poor aesthetic (CE) and
spatial scores prove that a structured, logical plan is vital, not merely a bag of conceptual keywords.
(2) Decomposed reasoning is superior to a monolithic approach. This is the core advantage of our
framework. Our MultiCoT substantially outperforms the Monolithic CoT (ThinkSound-style), es-
pecially in semantic understanding (CLAP: 0.52 vs. 0.46) and aesthetic quality (CE: 4.26 vs. 3.79).
These results strongly support our hypothesis that a single, conflated reasoning block struggles to
balance competing objectives, leading to inter-dimensional interference.

Training Efficiency of Fast-GRPO. We compare our Fast-GRPO against Flow-GRPO, which
employs SDE sampling across the entire trajectory. Figure 2 illustrates the training curves
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Figure 2: Training convergence on Semantic re-
ward measured by the CLAP score.

of both methods, tracking the Semantic reward
score over the training steps. The results re-
veal the substantial advantages of our method:
(1) Fast-GRPO exhibits drastically faster con-
vergence and higher training efficiency. It
surpasses the final performance of Flow-GRPO
(∼0.47) in just 200 steps, while Flow-GRPO re-
quires more than 600 steps to reach its plateau.
(2) Fast-GRPO also achieves a considerably
higher final reward score 2, reaching ∼0.51
compared to Flow-GRPO’s 0.47, indicating that
our hybrid ODE-SDE approach not only im-
proves training efficiency but also leads to a better
optimization outcome.

Multi-dimensional vs. Single-dimensional Rewards. To demonstrate the necessity of holistic
optimization, especially on complex out-of-domain data, we compare our multi-dimensional RL
approach against single-dimensional alternatives. As shown in Table 4, we observe that: (1) Single-
dimensional optimization leads to severe objective entanglement. While each specialized model
excels at its target metric, it comes at a great cost to others. For instance, the Semantic Only model
achieves the highest CLAP score (0.54), but its temporal synchronization breaks down, with DeSync
error increasing from 0.42 to 0.58. Most strikingly, the Aesthetic Only model, while reaching a super-
high PQ of 7.06, more than doubles the distribution metric (FD) (from 1.90 to 4.50), indicating it

2Generally higher GRPO reward scores could correspond to better final performance, but other factors may
interfere with the correlation.
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Table 4: Analysis of multi-dimensional vs. single-dimensional reward functions with our multi-
dimensional CoTs on AudioCanvas.

Reward Focus Semantic Temporal Aesthetic Quality Spatial Distribution
CLAP↑ DeSync↓ PQ↑ PC↓ CE↑ CU↑ GCC↓ CRW↓ FD↓ KL↓

Baseline (No RL) 0.47 0.42 6.45 3.02 3.81 5.87 4.11 15.30 1.90 1.58

Semantic Only 0.54 0.58 6.62 2.91 3.93 6.11 3.53 11.89 1.84 1.49
Temporal Only 0.46 0.35 6.39 3.05 3.63 5.71 4.29 13.08 1.88 1.68
Aesthetic Only 0.46 0.42 7.06 2.61 3.92 6.48 4.08 13.51 4.50 1.92
Spatial Only 0.47 0.42 6.44 3.01 3.72 5.80 3.16 11.88 1.77 1.67

Multi-dimensional 0.52 0.36 6.68 2.82 4.26 6.15 3.50 12.87 1.92 1.53

generates audio that sounds “pleasing” in isolation but is semantically detached from the video’s
content and context. (2) Our multi-dimensional rewards successfully balance these trade-offs.
In stark contrast, our approach is the only method that achieves balanced, holistic improvements. It
simultaneously enhances all key aspects over the baseline: semantics (CLAP: 0.47 → 0.52), tem-
poral synchrony (DeSync: 0.42 → 0.36), aesthetic quality (PQ: 6.45 → 6.68), and spatial accuracy
(CRW error: 15.30 → 12.87). These results clearly demonstrate that as task complexity increases,
concurrently optimizing across all perceptual axes becomes indispensable to avoid catastrophic fail-
ures and generate audio that is coherent, synchronized, and perceptually satisfying.

4.4 CASE STUDY

MMAudio

ThinkSound

PrismAudio

Ground-truth

Sample 1 Sample 2

A person intensely 

playing a ukulele, 

producing rich, 

warm, and resonant 

mellifluous tones.

A hammer repeatedly 

delivers short, rapid 

strikes to a glowing, 

red-hot piece of metal,   

held by tongs on a 

stone anvil.

Figure 3: Qualitative comparison of PrismAudio against baseline models.

We present a qualitative analysis in Figure 3 and observe that: (1) Aesthetic Quality & Musi-
cal Fidelity: In the ukulele scene (left), PrismAudio achieves high musical fidelity, matching the
ground-truth’s clean harmonics and rich high-frequency details. In contrast, ThinkSound suffers
from significant high-frequency loss (dashed box), while MMAudio produces a blurry, smeared
mono spectrogram, demonstrating their failure to preserve aesthetic quality. (2) Transient Response
& Temporal Synchrony: In the blacksmith scene (right), PrismAudio accurately renders sharp, high-
energy transients (hammer strikes), maintaining temporal synchrony in line with the ground-truth.
ThinkSound’s transients are noticeably weaker, and MMAudio exhibits severe temporal smearing
and artifacts (dashed line), failing to align with the visual events.

5 CONCLUSION

We introduce PrismAudio, a novel framework that, for the first time, integrates multi-dimensional
CoT reasoning with reinforcement learning for V2A generation. By decomposing monolithic plan-
ning into four specialized perceptual dimensions—Semantic, Temporal, Aesthetic, and Spatial—and
aligning them with corresponding reward signals, our approach directly addresses objective entan-
glement and lack of human preference alignment that have limited prior works. Comprehensive ex-
periments on existing benchmarks and our new, challenging AudioCanvas benchmark demonstrate
that PrismAudio achieves SOTA performance by successfully balancing all competing objectives,
establishing a new controllable and interpretable paradigm for V2A generation.
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REPRODUCIBILITY STATEMENT

To ensure reproducibility, the code, the AudioCanvas benchmark, and all model weights will be
made publicly available upon publication. Core implementation details are provided in Appendix D.
The released package will include:

• Complete training scripts and configuration files required to reproduce the main results.

• The training dataset generated by Gemini 2.5 Pro for the VideoLLaMA2 fine-tuning stage.

• Detailed documentation covering the experimental setup and hyperparameter settings.

To address concerns about the complexity of our multi-reward training pipeline, we provide the
following additional reproducibility measures:

• Code and Model Release: Complete, well-documented code for all components (Pris-
mAudio architecture, Fast-GRPO implementation, reward computation, and evaluation
scripts), along with pre-trained model checkpoints and Docker containers with all depen-
dencies pre-configured.

• Unified Environment Setup: Automated setup scripts and detailed instructions for con-
figuring all four reward model libraries (CLAP, Synchformer, Audiobox-Aesthetics, and
StereoCRW) in a single environment. All dependencies will be specified with exact ver-
sions in requirements.txt and conda environment files. Docker images will include
all four reward model libraries pre-configured and tested to work together seamlessly.

• Comprehensive Documentation: README with setup instructions, training scripts
with all hyperparameters documented, configuration files for all experiments, and a trou-
bleshooting guide.
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A RELATED WORK ON VIDEO-TO-AUDIO GENERATION

V2A generation has recently gained significant attention with advances in multimodal AI sys-
tems (Siméoni et al., 2025; Brooks et al., 2024; Team et al., 2024a). Current V2A methods pre-
dominantly employ latent diffusion models (Xing et al., 2024; Liu et al., 2025a; Wang et al., 2024b),
while some explore autoregressive token-based approaches. Diff-Foley (Luo et al., 2023) and VTA-
LDM (Xu et al., 2024) represent standard latent diffusion models conditioned on video features,
while FoleyGen (Mei et al., 2024b) and V-AURA (Viertola et al., 2025) frame conditional audio
generation as next-token prediction using visual features. Early methods focus on improving se-
mantic consistency through better video representations. Works like CAVP (Luo et al., 2023) and
CLIP4CLIP (Luo et al., 2022) employ contrastive learning for video encoding, while adapter-based
approaches like FoleyCrafter (Zhang et al., 2024) build upon pre-trained text-to-audio models (Liu
et al., 2023; 2024) for enhanced controllability. Recent advances introduce explicit multimodal
conditioning to address semantic limitations. MovieGen Audio (Polyak et al., 2024) conditions on
both text and video to generate video-aligned audio, achieving substantial progress and inspiring
subsequent video-text-audio generation works (Cheng et al., 2024a; Chen et al., 2025; Shan et al.,
2025; Tian et al., 2025). Most recently, ThinkSound (Liu et al., 2025b) innovatively introduces
CoT reasoning via MLLMs, replacing simple text prompts with structured reasoning that signifi-
cantly improves interpretability and narrative coherence. However, existing V2A methods suffer
from objective entanglement—optimizing competing perceptual goals through a single reconstruc-
tion loss—and lack human preference alignment beyond textual matching. In contrast, we propose
PrismAudio, the first reinforcement learning framework for V2A generation with specialized multi-
dimensional CoT-reward correspondence to address these fundamental limitations.

B THEORETICAL BACKGROUND FOR FAST-GRPO

This section provides the theoretical underpinnings for the Fast-GRPO framework, detailing the con-
nection between ODE and SDE formulations in flow matching, the validity of our mixed-sampling
strategy, and the derivation of the policy ratio.

B.1 FROM DETERMINISTIC ODES TO STOCHASTIC SDES

Generative modeling with flow matching (Lipman et al., 2022) learns a velocity field vθ(xt, t, c)
that transports a simple prior distribution (e.g., Gaussian noise) to a complex data distribution. The
generation process is typically described by a deterministic probability flow Ordinary Differential
Equation (ODE):

dxt = vθ(xt, t, c)dt. (8)

This formulation is efficient for inference but lacks the inherent stochasticity required for RL-based
exploration.

Based on the principles of score-based generative modeling (Song et al., 2020), any such ODE
has an equivalent Stochastic Differential Equation (SDE) that shares the same marginal probability
distributions p(xt) at every time t. For a rectified flow backbone, the velocity field vθ is an ap-
proximation of the drift term. We can construct the corresponding SDE by re-deriving the drift and
adding a diffusion term. Specifically, the full SDE can be written as:

dxt = f(xt, t)dt+ g(t)dwt, (9)

where f(·) is the drift coefficient, g(·) is the diffusion coefficient, and dwt is a standard Wiener
process. For our specific flow matching setup, this translates to:

dxt =
[
vθ(xt, t, c) +

σ2
t

2t

(
xt + (1− t)vθ(xt, t, c)

)]
︸ ︷︷ ︸

µSDE(xt,t,c)

dt + σt︸︷︷︸
diffusion

dwt. (10)

This SDE provides the stochastic transitions needed to frame the generation process as an MDP,
enabling the use of RL algorithms like GRPO.
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B.2 VALIDITY OF THE MIXED ODE-SDE SAMPLER

The core of Fast-GRPO is a hybrid sampler that switches between the efficient ODE (Eq. 8) and the
explorative SDE (Eq. 10). A crucial theoretical guarantee is that this interleaving does not corrupt
the final data distribution.

This is guaranteed by the probability flow equivalence: since both the ODE and SDE formulations
are designed to preserve the same continuous-time marginal distributions p(xt), switching between
them at discrete time steps still results in a trajectory that lands on the correct target manifold.
In essence, at any step t, we can choose to take a deterministic step along the “mean” path or a
stochastic step that perturbs around that path. Regardless of the choice, the resulting point xt+∆t is a
valid sample from the correct subsequent marginal distribution. This ensures that the final generated
audio xT used for reward computation is a legitimate sample from the model’s distribution, making
the RL feedback valid.

B.3 DERIVATION OF THE PER-STEP POLICY AND RATIO

When we perform an SDE step within the optimization window W(ℓ), we effectively sample from
a conditional distribution. The discrete-time version of the SDE step (Eq. 10) with step size ∆t is:

xt+1 = xt + µSDE(xt, t, c)∆t+ σt

√
∆tεt, where εt ∼ N (0, I). (11)

This update rule defines a Gaussian transition policy πθ(xt+1 | xt, c), where xt+1 is normally
distributed with:

• Mean: µθ(xt, t, c) = xt + µSDE(xt, t, c)∆t

• Covariance: Σt = (σ2
t∆t)I

Thus, the policy is πθ(xt+1 | xt, c) = N (µθ(xt, t, c),Σt).

The GRPO algorithm requires the ratio of the probabilities of taking a specific action (xt → xt+1)
under the new policy πθ and the old policy πθold . Given the Gaussian form, the probability density
function is:

p(xt+1 | µ,Σ) = 1√
(2π)d|Σ|

exp

(
−1

2
(xt+1 − µ)TΣ−1(xt+1 − µ)

)
. (12)

The policy ratio rt(θ) is therefore:

rt(θ) =
πθ(xt+1 | xt, c)

πθold(xt+1 | xt, c)

=
exp

(
− 1

2 (xt+1 − µθ)
TΣ−1

t (xt+1 − µθ)
)

exp
(
− 1

2 (xt+1 − µθold)
TΣ−1

t (xt+1 − µθold)
)

= exp

(
−∥xt+1 − µθ∥22 − ∥xt+1 − µθold∥22

2σ2
t∆t

)
, (13)

which is the closed-form computation of the GRPO policy ratio (Eq. 4) used in our final objective
function (Eq. 7). Following the practice of Liu et al. (2025c), we use KL regularization to mitigate
reward hacking. The validation of KL regularization is presented in Appendix E.5.

C DETAILS OF AUDIOCANVAS

C.1 BENCHMARK CONSTRUCTION

To create AudioCanvas, we target sound effects and music as primary audio categories, drawing
inspiration from the AudioSet ontology (Gemmeke et al., 2017). We first refine AudioSet by filtering
out categories related to human speech and singing, as well as rare classes with insufficient data. This
results in a target of 300 distinct categories relevant to V2A generation.

Our construction process involves two main stages. In the first stage, we analyze existing bench-
marks like Kling-Audio-Eval (Wang et al., 2025) and find that it covers only a fraction of our target
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Figure 4: The bar chart illustrates the distribution of audio event classes within the AudioCanvas
benchmark.

classes ( 100 out of 300) and often features overly simple scenarios. To address this limitation, we
develop a rigorous filtering protocol. We start with a large pool of candidate videos and automat-
ically filter out samples where existing V2A models already achieve near-perfect scores (low FD
and KL scores, see Section 4 for evaluation metrics), as these scenarios pose no new challenge. The
remaining samples are then manually screened by professional audio experts to exclude videos with
minimal diversity, repetitive sounds, or simple visual contexts. This multi-step process ensures that
only high-quality, challenging samples are retained.

In the second stage, for the classes among the 300 classes that are not covered by existing datasets,
we initiate a targeted data collection process. Videos are sourced using category-specific keywords
and manually filtered to remove content with background music, off-screen narration, or significant
noise. Videos with static visuals or poor audio-visual correlation are also discarded. For every se-
lected video, we then employ Gemini 2.5 Pro to generate detailed, structured CoT captions, covering
semantic, temporal, spatial, and aesthetic dimensions (as defined in Section 3.2).

This comprehensive process results in the final AudioCanvas benchmark, comprising 3,177 high-
quality videos. To specifically evaluate V2A performance on complex scenes, it includes a curated
subset of 501 multi-event videos, in addition to a broad range of single-event scenarios. We put
careful ethical considerations regarding the dataset in Appendix H.

C.2 QUALITY ASSESSMENT AND BENCHMARK COMPARISON

To ensure the high quality of AudioCanvas, we conduct a quantitative quality assessment. We ran-
domly sample 200 videos from the AudioCanvas dataset and ask three human evaluators to assess
the accuracy of the CoT captions generated by Gemini 2.5 Pro. The evaluation focuses on two key
aspects: (1) Semantic Correctness: whether the described audio events accurately reflect the visual
content. (2) Temporal Accuracy: whether the described temporal ordering of audio events matches
the visual cues. We find that our auto-generated CoT captions achieve an average inter-annotator
agreement (IAA) of 0.89 (Fleiss’ Kappa) and a final human-verified accuracy of 96.5% for seman-
tic correctness and 94.2% for temporal accuracy. These high scores quantitatively validate the
high quality of the annotations in AudioCanvas.

To highlight the unique advantages of AudioCanvas, we provide a detailed comparison with a broad
range of existing benchmarks in Table 5. The analysis, structured by ‘Task Focus’, reveals a clear
gap in the existing landscape that AudioCanvas is designed to fill. Among various existing datasets,
many are unsuitable for advanced V2A evaluation. Task-specific benchmarks like ‘Epic Sounds’
(event detection) or audio-only captioning datasets like ‘Clotho’ and ‘AudioCaps’ lack the required
multimodal input or generative focus. Large-scale classification datasets such as ‘VGGSound’ and
‘AudioSet’, though widely used for pre-training, suffer from low modality alignment and provide
only simple class labels, making them unreliable for nuanced generative evaluation. Even within
datasets designed for V2A, such as ‘Kling-Audio-Eval’, the focus remains on primarily single-event
scenarios with simple text captions.

In contrast, AudioCanvas establishes a new standardized benchmark by excelling in three critical
areas that are essential for evaluating modern V2A systems: (1) High-Fidelity Alignment: Guaran-
teed by rigorous manual filtering, it addresses the known quality and alignment issues prevalent in
automatically collected datasets like VGGSound. The class distribution is also carefully balanced,
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as illustrated in Figure 4, to prevent model bias. (2) Advanced Scene Complexity: As the first
benchmark to include a substantial set of ‘Multi-event’ scenarios, it directly tests a model’s ability
to handle complex interactions, a fundamental limitation of prior V2A benchmarks that focus on
‘Primarily Single-event’ scenes. (3) Rich, Structured Annotations: By providing ‘Detailed CoT
Captions’, it enables fine-grained, interpretable evaluation of a model’s reasoning capabilities, a
feature absent in all other datasets which offer only ‘Class Label’ or ‘Simple Caption’ annotations.

Table 5: Comparison between AudioCanvas and existing datasets. AudioCanvas is uniquely de-
signed for advanced V2A evaluation. It is distinguished from existing datasets by its specific focus
on V2A generation, high-fidelity alignment, and inclusion of complex multi-event scenarios, facili-
tating evaluations of the generalizability of V2A systems.

Dataset Task Focus # Clips # Classes Modalities Modality Alignment Annotation Type Scene Complexity
Clotho (Drossos et al., 2020) Audio Captioning 1K - Audio Only N/A Simple Caption N/A
AudioCaps (Kim et al., 2019) Audio Captioning 1K - Audio Only N/A Simple Caption N/A

Epic Sounds (Huh et al., 2025) Action2Sound 10K 44 Video+Audio High (Egocentric) Class Label Unspecified
AudioSet (Gemmeke et al., 2017) Classification 18K 527 Video+Audio Low (Automatic) Class Label Unspecified
VGGSound (Chen et al., 2020) Classification & V2A 15K 309 Video+Audio Low (Known Issues) Class Label Unspecified

Kling-Audio-Eval (Wang et al., 2025) V2A 21K 100 Video+Audio Moderate (Curated) Simple Caption Primarily Single-event
AudioCanvas (Ours) Advanced V2A Eval. 3,177 300 Video+Audio High (Manual Filtering) Detailed CoT Caption Incl. 501 Multi-event

D IMPLEMENTATION DETAILS

For VAE training, we fine-tune our variational autoencoder on stereo audio data at 44.1kHz sample
rate using the foundation provided by Stability AI 3, employing mixed precision training with a batch
size of 144 distributed across 24 A800 GPUs for 500,000 training steps. For the audio foundation
model, we integrate VideoPrism-Large 4 as the video encoder and T5-Gemma Large 5 as the text
encoder. The pre-training phase of the audio foundation model uses WavCaps (Mei et al., 2024a),
AudioCaps (Kim et al., 2019), and VGGSound (Chen et al., 2020) datasets. We utilize exponential
moving average (EMA) and automatic mixed precision (AMP) for 100,000 steps on 8 A100 GPUs,
with an effective batch size of 256. We adopt classifier-free guidance (CFG) (Ho & Salimans, 2022),
dropout of 0.1 for each modality with a learning rate of 1e-4. For Chain-of-Thought fine-tuning, we
continue training the pre-trained model on our curated multi-dimensional CoT dataset, which is an-
notated using the VGGSound dataset by the fine-tuned VideoLLaMA2, using the same configuration
of hyperparameters. For the reinforcement learning post-training using the VGGSound dataset, we
fine-tune the audio foundation model with a learning rate of 1e-5. The Fast-GRPO hyperparameters
are configured as follows: KL ratio of 0.04, noise level of 0.7, group size of 16, SDE steps of 2, and
sampling steps of 24.

D.1 GPU RESOURCE REQUIREMENTS

Inference Requirements. The proposed PrismAudio requires modest GPU resources for infer-
ence. When running on NVIDIA A800 GPUs with batchsize=1 (single sample generation), the
inference process consumes approximately 5,618 MiB of VRAM.

Training Requirements. The training pipeline consists of several stages:

1. VAE Fine-tuning (Optional): Requires 24 GPUs (NVIDIA 80GB A800) for approxi-
mately 5 days. This is the most computationally intensive stage. However, VAE fine-tuning
is optional and can be skipped with a performance trade-off (as discussed in our response
to Reviewer BAuq). We will provide pre-trained VAE checkpoints that can be used directly
without fine-tuning.

2. Main Model Training (Flow Matching): Requires 16 GPUs (NVIDIA 80GB A800) for
approximately 3 days. This stage trains the audio foundation model using flow matching
on the pre-training datasets (WavCaps, AudioCaps, VGGSound).

3https://github.com/Stability-AI/stable-audio-tools
4https://huggingface.co/google/videoprism-lvt-large-f8r288
5https://huggingface.co/google/t5gemma-l-l-ul2-it

18

https://github.com/Stability-AI/stable-audio-tools
https://huggingface.co/google/videoprism-lvt-large-f8r288
https://huggingface.co/google/t5gemma-l-l-ul2-it


972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

3. Fast-GRPO Post Training: Requires 8 GPUs (NVIDIA 80GB A800) for approximately
5 days. The windowed SDE sampling significantly reduces computational cost compared
to full SDE-GRPO (approximately 8 days with the same GPU resources), achieving a 1.6×
speedup.

4. VideoLLaMA2 Fine-tuning: Requires 8 GPUs (NVIDIA 80GB A800) for approximately
2 days. This stage fine-tunes VideoLLaMA2 to generate multi-dimensional CoT descrip-
tions from video inputs.

Total Training Cost. The complete training pipeline requires approximately 16-24 GPUs over 2-3
weeks, depending on the specific configuration. We acknowledge that the training phase requires
substantial computational resources, but several important points need to be noted:

• The VAE fine-tuning stage is optional and can be skipped with a performance trade-off.

• Fast-GRPO training is significantly more efficient than full SDE-GRPO, reducing training
time by approximately 1.6×.

• We will release all pre-trained checkpoints so researchers can directly use the model for
inference without retraining.

D.2 COT GENERATION PROMPTS

Prompt for Gemini 2.5 Pro (AudioCanvas and VideoLLaMA2 Training Data). We use the
following prompt to instruct Gemini 2.5 Pro to generate structured CoT descriptions covering four
dimensions: semantic, temporal, aesthetic, and spatial. This prompt is used both for constructing
the AudioCanvas benchmark and for generating training data for VideoLLaMA2 fine-tuning:

You are an expert in video-to-audio generation. Given a video with audio, an-
alyze the audio content that should be generated and provide a comprehensive
Chain-of-Thought description covering four dimensions: Semantic Dimension:
Identify all audio events, objects, and actions visible in the video. Describe what
sounds should be generated, including their characteristics (e.g., type, intensity,
material properties). Temporal Dimension: Determine the sequential ordering
and timing of audio events. Describe when each sound should occur relative to
visual cues and other audio events, including onset, duration, and temporal re-
lationships. Aesthetic Dimension: Assess the audio quality aspects that should
be achieved. Describe the naturalness, fidelity, richness, and perceptual quality of
the sounds, considering the context and environment depicted in the video. Spatial
Dimension: Analyze the spatial positioning of sound sources. Describe the direc-
tional placement, left-right channel distribution, distance, and movement patterns
of sounds relative to the visual content. Provide your analysis in a structured
format that clearly separates these four dimensions.

Prompt for Text LLM (Multi-dimensional CoT Transformation). To transform the CoT cap-
tions generated by Gemini 2.5 Pro into our desired multi-dimensional decoupled CoT input format,
we use a text LLM with the following prompt:

Transform the following Chain-of-Thought description into four separate, decou-
pled CoT modules. Extract and reorganize the content into: Semantic CoT: Ex-
tract only the semantic content (audio events, objects, actions, characteristics).
Format as a focused reasoning text for semantic audio generation. Temporal CoT:
Extract only the temporal content (sequencing, timing, onset, duration, temporal
relationships). Format as a focused reasoning text for temporal synchronization.
Aesthetic CoT: Extract only the aesthetic content (naturalness, fidelity, quality,
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Table 6: Comparison of video encoders on the video-to-text retrieval task using the Overall, Single-
event, and Multi-event splits of the AudioCanvas benchmark. R@k indicates Recall@k, the per-
centage of queries for which the correct text description is found within the top-k retrieved results.

Video Encoder Overall Scenes Single-event Scenes Multi-event Scenes
R@1↑ R@5↑ R@10↑ R@1↑ R@5↑ R@10↑ R@1↑ R@5↑ R@10↑

CLIP 4.80 21.32 36.11 55.10 84.69 91.84 26.53 53.06 72.45
X-CLIP 12.43 34.43 49.87 63.27 88.78 92.86 34.69 74.49 89.80

VideoPrism 30.71 61.42 73.45 81.05 97.89 98.95 51.02 86.73 97.96

perceptual aspects). Format as a focused reasoning text for aesthetic audio gen-
eration. Spatial CoT: Extract only the spatial content (directional placement, left-
right distribution, distance, movement). Format as a focused reasoning text for
spatial audio generation. Ensure each CoT module is self-contained and focused
solely on its respective dimension, without cross-dimensional references.

D.3 VIDEOLLAMA2 FINE-TUNING DETAILS

We use the official VideoLLaMA2 repository’s fine-tuning code with DeepSpeed ZeRO-3. We ini-
tialize from the pre-trained VideoLLaMA2-AV (7B) model and employ AdamW optimizer with
learning rate 2 × 10−5 and weight decay 0.0, using cosine annealing with warmup (warmup ratio
0.03). The training uses a batch size of 4 per GPU with global batch size 128 (via gradient accu-
mulation, which is automatically calculated based on world size and number of GPUs), and runs
for 10 epochs with standard next-token prediction loss. Frozen components: Video encoder, audio
encoder, and audio projector are kept frozen. Trainable components: Only the video projector and
language model (LLM) are updated during fine-tuning. By completely freezing the audio compo-
nents, we force the model to learn better visual representations to compensate for the absence of
audio information in silent videos. This design helps bridge the gap between training (where we
use sounding videos to generate CoTs) and inference (where we use silent videos), ensuring that the
model learns to generate high-quality CoTs from visual information alone.

E ADDITIONAL QUANTITATIVE RESULTS

E.1 MORE ANALYSIS ON VIDEO ENCODER AND TEXT ENCODER

Video Encoder Comparison for Complex Scene Understanding. To validate our choice of
VideoPrism, we directly evaluate its scene understanding capabilities against other encoders (CLIP,
X-CLIP) on a video-to-text retrieval task. We leverage the natural splits within the AudioCanvas
benchmark to assess performance on scenes of varying complexity. The results in Table 6 re-
veal three key findings: (1) VideoPrism demonstrates dominant overall performance. Its Recall@1
(R@1) score of 30.71 on the overall dataset is more than double that of the next best encoder, X-
CLIP (12.43), establishing its general superiority in video-text alignment. (2) The source of this
advantage is its exceptional handling of complex scenes. While the performance gap is already sig-
nificant on simple, single-event scenes, it widens dramatically on challenging multi-event scenes.
Here, VideoPrism’s R@1 (51.02) shows robust performance, while both CLIP (26.53) and X-CLIP
(34.69) exhibit a significant degradation. This highlights VideoPrism’s enhanced ability to parse
multiple objects and their interactions.

Text Encoder Analysis for Structured Reasoning. To directly validate the structured reasoning
capabilities of T5-Gemma, we designed a suite of text-only evaluation tasks using the Chain-of-
Thought descriptions generated for the AudioCanvas benchmark. These tasks measure how well
different encoders comprehend structured reasoning, independent of the audio generation process.
As shown in Table 7, we compare T5-Gemma against standard T5 models (Base and Large) on three
key dimensions:
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First, in Sequential Understanding, we evaluate the ability to capture temporal ordering. T5-
Gemma achieves a sequence similarity (Seq-Sim) score of 0.69 and a next-step prediction (Next-
Pred) accuracy of 0.86, significantly outperforming T5-Large (0.55 and 0.75, respectively). This
demonstrates its superior grasp of the temporal relationships crucial for ordering audio events.

Second, for Causal Reasoning, we assess the comprehension of cause-and-effect relationships. T5-
Gemma again shows a clear advantage, scoring 0.62 in logical consistency (Logic-Cons) and 0.60
in overall causal accuracy (Causal-Acc), compared to T5-Large’s 0.46 and 0.46. This indicates an
enhanced ability to understand the logical connections within the reasoning chain.

Finally, and most importantly, in Multi-step Reasoning, T5-Gemma’s strength becomes even more
pronounced. It maintains a high coherence score of 0.96 across complex reasoning chains and
achieves 0.92 accuracy on tasks involving three or more steps (3+Steps). In contrast, T5-Large’s
performance drops to 0.77 on the same 3+Steps task, highlighting its difficulty in maintaining co-
herence as reasoning complexity increases. These results provide direct evidence that T5-Gemma’s
instruction-tuning makes it exceptionally well-suited for processing the structured and complex
Chain-of-Thought descriptions that are essential to our framework.

Table 7: Direct analysis of text encoders on structured reasoning tasks derived from the Audio-
Canvas benchmark. Metrics evaluate Sequential Understanding (Seq-Sim: Sequence Similarity;
Next-Pred: Next-Step Prediction), Causal Reasoning (Logic-Cons: Logical Consistency; Effect-
Pred: Effect Prediction; Causal-Acc: Causal Accuracy), and Multi-step Reasoning (Coherence:
Coherence Score; 3+Steps: Accuracy on 3+ Steps Reasoning).

Text Encoder Sequential Understanding Causal Reasoning Multi-step Reasoning
Seq-Sim↑ Next-Pred↑ Logic-Cons↑ Effect-Pred↑ Causal-Acc↑ Coherence↑ 3+Steps↑

T5-Base 0.49 0.77 0.48 0.28 0.42 0.83 0.71
T5-Large 0.55 0.75 0.46 0.42 0.46 0.85 0.77

T5-Gemma 0.69 0.86 0.62 0.44 0.60 0.96 0.92

E.2 MULTI-DIMENSIONAL COT AND RL ANALYSIS ON VGGSOUND

Multi-dimensional CoT Reasoning. As a supplement to our main analysis on AudioCanvas, we
replicate the CoT reasoning ablation on the in-domain VGGSound test set. The results in Table 8
reinforce the same core design principles: (1) Structured reasoning remains essential. The ne-
cessity of a structured plan is re-confirmed, as the Baseline (No CoT) performs poorly (e.g., CLAP:
0.42, CRW: 10.29). Furthermore, the Random CoT variant, which contains a jumbled plan, provides
only marginal gains, proving that a coherent reasoning structure, not merely a ’bag of keywords’,
is vital for effective generation. (2) Decomposed reasoning consistently proves superior. Our
MultiCoT again outperforms the Monolithic CoT across key metrics, including semantics (CLAP:
0.47 vs. 0.45) and particularly aesthetic quality (CE: 4.29 vs. 3.85). This result on in-domain data
further validates our hypothesis that decomposing the reasoning process is critical to avoiding the
inter-dimensional interference inherent in a single, ‘do-it-all’ reasoning block.

Multi-dimensional vs. Single-dimensional Rewards. To supplement our main analysis on Au-
dioCanvas, we conduct the same reward ablation study on the in-domain VGGSound test set. The
results, presented in Table 9, consistently validate our core findings: (1) Single-dimensional opti-
mization causes severe objective entanglement. Echoing the findings on AudioCanvas, optimizing
for a single goal leads to catastrophic imbalances. For instance, Semantic Only optimization boosts
the CLAP score (0.51) but severely degrades temporal synchrony (DeSync: 0.66). The most dra-
matic example is the Aesthetic Only model, whose high PQ score (6.98) comes at the cost of a nearly
quadrupled distribution error (FD: 1.14 → 4.27), confirming that this approach produces pleasing
but content-detached audio. (2) Our multi-dimensional reward successfully balances competing
objectives. In stark contrast, our full Multi-dimensional approach once again demonstrates its ability
to navigate and balance these inherent objective tensions. It is the only method that achieves holis-
tic improvement, simultaneously enhancing semantics (CLAP: 0.44 → 0.47), temporal synchrony
(DeSync: 0.48 → 0.41), and aesthetic quality (PQ: 6.17 → 6.38) over the baseline. This confirms
that the necessity for holistic optimization is a fundamental principle, holding true across different
data distributions.
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Table 8: Analysis of different CoT reasoning strategies on VGGSound.

Method Semantic Temporal Aesthetic Quality Spatial Accuracy Distribution
CLAP↑ DeSync↓ PQ↑ PC↓ CE↑ CU↑ GCC↓ CRW↓ FD↓ KL↓

Baseline (No CoT) 0.42 0.48 6.17 3.32 3.94 5.48 4.06 10.29 1.14 1.24

Random CoT 0.43 0.46 6.05 3.30 3.81 5.50 3.99 9.12 1.25 1.28
Monolithic CoT 0.45 0.44 6.17 3.28 3.85 5.57 3.92 8.74 1.19 1.28

MultiCoT 0.47 0.41 6.38 3.24 4.29 5.68 3.77 7.72 1.08 1.23

Table 9: Analysis of single-dimensional vs. multi-dimensional reward functions on VGGSound test
set.

Reward Focus Semantic Temporal Aesthetic Quality Spatial Distribution
CLAP↑ DeSync↓ PQ↑ PC↓ CE↑ CU↑ GCC↓ CRW↓ FD↓ KL↓

Baseline (No RL) 0.44 0.48 6.17 3.32 3.94 5.48 3.76 8.29 1.14 1.24

Semantic Only 0.51 0.66 6.54 3.18 4.26 5.92 3.59 6.64 2.02 1.33
Temporal Only 0.42 0.40 6.06 3.44 3.76 5.34 3.70 7.35 1.73 1.37
Aesthetic Only 0.44 0.48 6.98 2.86 4.24 6.36 3.83 7.67 4.27 1.61
Spatial Only 0.44 0.48 6.14 3.36 3.95 5.46 3.41 6.47 1.11 1.26

Multi-dimensional 0.47 0.41 6.38 3.24 4.29 5.68 3.77 7.72 1.18 1.23

E.3 MORE ABLATION STUDIES ON AUDIO FOUNDATION MODEL

We ablate our audio foundation model’s architecture (Table 10) to validate our multi-modal fusion
strategies, using PrismAudio (w/o RL) as the baseline.

Video Feature Fusion. Our dual-fusion strategy for video features (gated addition + cross-
attention) is critical for spatial accuracy. Removing either the gated addition (w/o Video Gated)
or the cross-attention (w/o Video Cross-Attention) severely degrades spatial performance (CRW:
8.29 → 10.9). This validates our hypothesis that gated addition provides fine-grained, frame-level
conditioning while cross-attention effectively captures higher-level semantic context.

Synchronization Feature Fusion. The necessity of our fusion strategy for synchronization fea-
tures is even more pronounced. Removing Synchformer features entirely (w/o Synchformer Fea-
tures) causes temporal alignment to completely collapse, with the DeSync error more than doubling
(0.48 → 1.05). Alternative fusion methods are also ineffective; using cross-attention fails (DeSync:
1.02), and simple addition without our gating mechanism (w/o Synchformer Gated) also degrades
performance. These results confirm that gated addition is the optimal method for injecting these
fine-grained temporal cues directly into the audio representation.

Text Encoder Choice. Finally, we validate our choice of text encoder. Replacing our instruction-
tuned T5-Gemma with a standard T5 encoder (w/ T5) leads to significant performance drops, partic-
ularly in dimensions that rely on interpreting the CoT plan. Semantic alignment degrades (CLAP:
0.44 → 0.42). This demonstrates that a standard T5 struggles to parse the complex, structured in-
structions within our multi-dimensional CoT, proving that an instruction-tuned model is crucial for
effectively translating the CoT plan into high-fidelity audio.

E.4 BREAKDOWN ANALYSIS ON SCENE COMPLEXITY

To provide a more granular understanding of our framework’s capabilities, we conduct a breakdown
analysis on the AudioCanvas benchmark, separating performance on complex multi-event scenarios
from simpler single-event ones. The results in Table 11 reveal a critical insight:

The advantage of CoT-RL is amplified in complex scenes. On challenging multi-event videos,
baselines falter; ThinkSound’s temporal synchrony, for instance, collapses (DeSync: 1.00). In stark
contrast, PrismAudio remains robust. This is where CoT-RL’s benefit is most apparent: compared
to the ablation model (w/o CoT-RL), it slashes the DeSync error by nearly 20% relative (0.48 →
0.39) and dramatically boosts semantic alignment (CLAP: 0.40 → 0.50), proving its necessity for
complex reasoning.
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Table 10: Ablation study on the architecture of our audio foundation model, focusing on multi-modal
feature fusion strategies. All variants are compared against our full foundation model (PrismAudio
w/o RL) on the VGGSound test set.

Variant Semantic Temporal Aesthetic Quality Spatial Accuracy Distribution
CLAP↑ DeSync↓ PQ↑ PC↓ CE↑ CU↑ GCC↓ CRW↓ FD↓ KL↓

VAE Comparison on Audio Reconstruction

w/o Finetune VAE - - - - - - - - 2.22 0.32
w/ Finetune VAE - - - - - - - - 1.73 0.27

PrismAudio (w/o RL) 0.44 0.48 6.24 3.28 3.94 5.48 3.76 8.29 1.10 1.24

Video Feature Fusion

w/o Video Gated 0.43 0.50 6.20 3.29 3.95 5.60 3.95 10.95 1.24 1.28
w/o Video Cross-Attention 0.44 0.49 6.23 3.35 3.99 5.60 4.01 10.91 1.10 1.26
w/ CLIP Encoder 0.43 0.49 6.20 3.30 3.96 5.57 3.85 9.70 1.24 1.28

Synchronization Feature Fusion

w/o Synchformer Features 0.44 1.05 6.22 3.27 3.90 5.58 3.96 11.01 1.34 1.28
w/ Synchformer as Cross-Attention 0.44 1.02 6.24 3.22 3.87 5.54 3.96 10.65 1.30 1.29
w/o Synchformer Gated 0.44 0.50 6.24 3.29 3.95 5.60 3.95 10.95 1.14 1.28

Text Encoder

w/ T5 0.42 0.48 6.28 3.29 3.99 5.60 3.99 11.03 1.19 1.29

Consistent holistic superiority on simpler scenes. On simpler single-event scenes, PrismAudio
remains the best holistic performer. While a baseline may lead to a single metric, our model achieves
the best overall balance (e.g., DeSync: 0.35, CRW: 12.65). The performance gain from CoT-RL,
while still significant (e.g., DeSync: 0.43 → 0.35), is narrower here, as expected in less challenging
scenarios.

This breakdown powerfully demonstrates that while our framework offers robust performance uni-
versally, its true strength lies in tackling the complex, multi-faceted scenarios that are most represen-
tative of the real world and where previous V2A systems have consistently faltered. This confirms
the critical role of our CoT-RL approach in pushing the frontier of high-fidelity video-to-audio gen-
eration.

Table 11: Breakdown analysis of model performance on multi-event vs. single-event scenarios
within the AudioCanvas benchmark. The results highlight that the performance gains from our CoT-
RL framework are substantially amplified in more complex, multi-event scenes.

Method Semantic Temporal Aesthetic Quality Spatial Accuracy Distribution
CLAP↑ DeSync↓ PQ↑ PC↓ CE↑ CU↑ GCC↓ CRW↓ FD↓ KL↓

Multi-event Scenarios (n=501)

Ground Truth 0.49 0.42 6.15 3.23 3.85 5.65 - - - -

MMAudio 0.41 0.50 6.25 3.45 3.80 5.70 - - 7.18 2.60
HunyuanVideo-Foley 0.39 0.55 6.35 3.40 3.90 5.80 - - 6.31 2.32
ThinkSound 0.43 1.00 6.40 3.70 3.95 5.85 4.50 25.50 7.60 2.85

PrismAudio (w/o CoT-RL) 0.40 0.48 6.38 3.35 3.70 5.80 4.15 16.20 6.49 2.27
PrismAudio (Ours) 0.50 0.39 6.60 3.27 4.15 6.05 3.60 13.80 4.86 2.11

Single-event Scenarios (n=2676)

Ground Truth 0.48 0.39 6.55 2.84 4.05 6.05 - - - -

MMAudio 0.46 0.41 6.31 3.18 4.00 5.78 - - 4.58 1.56
HunyuanVideo-Foley 0.45 0.45 6.45 3.22 4.07 5.90 - - 2.24 1.68
ThinkSound 0.49 0.75 6.50 3.45 4.13 5.96 4.41 22.20 2.32 1.91

PrismAudio (w/o CoT-RL) 0.42 0.43 6.46 3.19 3.83 5.88 4.10 15.10 2.15 1.67
PrismAudio (Ours) 0.52 0.35 6.70 2.79 4.28 6.17 3.48 12.65 1.86 1.49

E.5 ANALYSIS OF REWARD HACKING MITIGATION

A common challenge in reinforcement learning is “reward hacking,” where a model exploits a reward
proxy without achieving the intended goal. To mitigate this, we adopt the practice of Flow-GRPO
Liu et al. (2025c) by incorporating a KL penalty with a weight of 0.04 into our objective function.
This regularizes the policy update, preventing it from deviating too drastically from the stable pre-
trained model, thus discouraging ”exploitative” shortcuts to high rewards.
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Our ablation study on AudioCanvas, presented in Table 12, validates this approach. The model
trained without the KL penalty exhibits classic reward hacking: while achieving a superficially
higher PQ score (6.95 vs. 6.68) and CE score (4.40 vs. 4.26), it suffers a significant drop in semantic
alignment (CLAP: 0.45 vs. 0.52), temporal synchrony (DeSync: 0.49 vs. 0.36), and distribution
similarity (FD: 3.85 vs. 1.92). This indicates the model generates audio that is statistically less
realistic and detached from the video’s context. In contrast, our full model with the KL penalty
achieves balanced, holistic improvements across all dimensions, confirming that KL regularization
is essential for meaningful optimization.

Table 12: Ablation study on the effect of the KL penalty in mitigating reward hacking on the Au-
dioCanvas benchmark. The KL penalty is crucial for balanced, holistic improvements.

Method Semantic Temporal Aesthetic Quality Spatial Accuracy Distribution
CLAP↑ DeSync↓ PQ↑ PC↓ CE↑ CU↑ GCC↓ CRW↓ FD↓ KL↓

PrismAudio w/o KL penalty 0.45 0.49 6.95 3.05 4.40 5.95 4.25 14.55 3.85 1.88
PrismAudio 0.52 0.36 6.68 2.82 4.26 6.15 3.50 12.87 1.92 1.53

E.6 EMPIRICAL VALIDATION OF ODE-SDE DISTRIBUTION EQUIVALENCE

To empirically validate the practical effectiveness of the theoretical property that mixed ODE–SDE
sampling preserves the terminal distribution, and to assess the impact of model approximation errors,
we track representative samples throughout the training process and visualize how ODE and SDE
distributions evolve across training steps.

Figure 5: Empirical validation of ODE–SDE distribu-
tion equivalence during training. The figure tracks rep-
resentative samples across training steps, where star
markers represent ODE-generated results and circles of
the same color represent SDE-generated results from
the same input. The close alignment of ODE and
SDE distributions throughout training demonstrates
that mixed ODE–SDE sampling preserves the terminal
distribution with high fidelity in practice, even under
iterative parameter updates.

In our visualization (Figure 5), star
markers represent ODE-generated results,
while circles of the same color represent
stochastic SDE-generated results from the
same input. As observed in the figure, as
training advances, the ODE and SDE dis-
tributions remain closely aligned, demon-
strating that despite finite model capac-
ity, the distribution equivalence holds with
high fidelity in practice. This confirms
that mixed ODE–SDE sampling approx-
imately preserves the terminal distribu-
tion even under iterative parameter up-
dates during training.

The visualization provides empirical evi-
dence that: (1) the theoretical guarantee
of distribution equivalence between ODE
and SDE formulations holds in practice,
even with finite model capacity and nu-
merical approximations; (2) parameter up-
dates during training do not significantly
disrupt this equivalence, as the distribu-
tions remain aligned throughout the train-
ing process; and (3) the mixed sampling
strategy is stable and reliable for Fast-
GRPO optimization.

E.7 ABLATION STUDY ON AESTHETIC AND SPATIAL REWARDS

To rigorously validate the necessity of our full four-dimensional framework, we conduct comprehen-
sive ablation studies on the VGGSound test set, evaluating three reduced configurations: (1) remov-
ing Aesthetic reward (Sem+Temp+Spatial), (2) removing Spatial reward (Sem+Temp+Aesthetic),
and (3) removing both (Sem+Temp only). The results are presented in Table 13. Quantitative
Analysis: (1) Sem+Temp only configuration: While achieving improvements in semantic (CLAP:
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0.44 → 0.48) and temporal (DeSync: 0.48 → 0.41) metrics, this configuration shows no improve-
ment in spatial accuracy (CRW: 8.29 → 8.38, still far from optimal) and only marginal aesthetic
gains (PQ: 6.24 → 6.30). More critically, the Frechet Distance increases (1.10 → 1.22), indicating
lower overall audio quality. This demonstrates that aesthetic and spatial qualities are not ”free” ben-
efits from semantic/temporal optimization. (2) Sem+Temp+Spatial configuration: Adding spatial
reward improves spatial metrics (CRW: 8.38 → 7.53, GCC: 4.11 → 3.75) and distribution quality
(FD: 1.22 → 1.03), but fails to enhance aesthetics (PQ: 6.30 → 6.19, actually degrades). This
confirms that aesthetic quality requires explicit optimization. (3) Sem+Temp+Aesthetic configu-
ration: Adding aesthetic reward improves aesthetic metrics (PQ: 6.30 → 6.44, PC: 3.25 → 3.11,
CE: 3.98 → 4.17, CU: 5.61 → 5.76), but degrades distribution quality (FD: 1.22 → 1.52). This
confirms that spatial accuracy requires explicit optimization. (4) Full four-dimensional approach:
This is the only configuration achieving holistic improvement across all axes simultaneously: se-
mantic (CLAP: 0.44 → 0.47), temporal (DeSync: 0.48 → 0.41), aesthetic (PQ: 6.24 → 6.38, CE:
3.94 → 4.29), spatial (CRW: 8.29 → 7.72), and distribution quality (FD: 1.10 → 1.08, KL: 1.24 →
1.23). This confirms that a multi-dimensional reward system is essential to disentangle competing
objectives and prevent ”reward hacking.”

Table 13: Impact of Aesthetic and Spatial Rewards on Model Performance on VGGSound Test Set

Reward Focus Semantic Temporal Aesthetic Quality Spatial Distribution
CLAP↑ DeSync↓ PQ↑ PC↓ CE↑ CU↑ GCC↓ CRW↓ FD↓ KL↓

Baseline (No RL) 0.44 0.48 6.24 3.28 3.94 5.48 3.76 8.29 1.10 1.24

Semantic & Temporal 0.48 0.41 6.30 3.25 3.98 5.61 4.11 8.38 1.22 1.28
Semantic & Temporal & Spatial 0.47 0.42 6.19 3.28 3.97 5.52 3.75 7.53 1.03 1.26
Semantic & Temporal & Aesthetic 0.47 0.42 6.44 3.11 4.17 5.76 4.01 7.84 1.52 1.32

Multi-dimensional 0.47 0.41 6.38 3.24 4.29 5.68 3.77 7.72 1.08 1.23

F EVALUATION METRICS

F.1 OBJECTIVE EVALUATION

We employ a comprehensive suite of objective metrics to evaluate the four key perceptual dimen-
sions: semantic consistency, audio-visual synchrony, aesthetic quality, and spatial accuracy.

Semantic Consistency: We utilize the CLAP (Contrastive Language-Audio Pre-training)
score (Elizalde et al., 2024) to measure semantic alignment between generated audio and our con-
structed Chain-of-Thought descriptions in a shared audio-text embedding space. The CLAP score
provides a robust measure of how well the generated audio semantically matches the detailed rea-
soning and content descriptions provided by our CoT framework.

Audio-Visual Synchrony: To evaluate temporal synchronization between generated audio and cor-
responding video, we adopt the DeSync score predicted by the Synchformer model (Iashin et al.,
2024). For each sample, we truncate the video to match the duration of the generated audio and
compute the DeSync score using Synchformer’s 4.8-second context window. Specifically, we extract
both the first and last 4.8-second segments from each video-audio pair, calculate DeSync scores for
each segment, and report the average as the final temporal alignment metric. Lower DeSync scores
indicate better synchronization.

Aesthetic Quality: We employ four complementary metrics from Audiobox-Aesthetics (Tjandra
et al., 2025) to comprehensively assess aesthetic quality:

• Production Quality (PQ): Focuses on technical audio quality aspects including clarity
& fidelity, dynamics, frequency response, and spatialization rather than subjective prefer-
ences.

• Production Complexity (PC): Evaluates the complexity of the audio scene, measured by
the number and richness of audio components, capturing how sophisticated and layered the
generated soundscape is.

• Content Enjoyment (CE): Evaluates subjective quality aspects including emotional im-
pact, artistic expression, and overall listening experience. This open-ended metric captures
the aesthetic appeal and artistic merit of the generated audio.
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• Content Usefulness (CU): Assesses the practical utility of generated audio as source ma-
terial for content creation, evaluating its suitability for real-world applications.

Spatial Accuracy: To evaluate the spatial accuracy of generated stereo audio, we employ evaluation
methods based on Time Difference of Arrival (TDOA) analysis. We focus on non-silent audio
segments (threshold: -16 dBFS) and compute TDOA distributions at 0.1-second intervals using two
complementary approaches:

• GCC MSE: Utilizes the traditional Generalized Cross-Correlation with Phase Transform
(GCC-PHAT) (Knapp & Carter, 2003) to estimate TDOA between left and right channels.
We compute the mean squared error between ground truth and generated audio TDOA
distributions.

• CRW MSE: Employs the deep learning-based StereoCRW network (Chen et al., 2022) for
TDOA estimation. Similar to GCC MSE, we calculate the mean squared error between
reference and generated TDOA distributions.

Feature Distribution Alignment: We further assess the similarity to real audio distributions using
two reference metrics. The Fréchet Distance (FD) on VGGish embeddings (Kilgour et al., 2018)
measures statistical realism, while the Kullback-Leibler (KL) Divergence (Copet et al., 2024)
on PaSST classifier (Koutini et al., 2021) outputs evaluates content plausibility. Crucially, both
metrics act as imperfect proxies, as they rely on fixed, pre-trained models and do not capture the
fine-grained, conditional alignment (e.g., temporal, spatial) that is central to our evaluation. Thus,
they serve as valuable supplementary indicators to gauge overall audio quality, rather than as
primary measures of performance.

F.2 SUBJECTIVE EVALUATION

Our subjective evaluation employs Mean Opinion Score (MOS) methodology across two critical di-
mensions to comprehensively assess the generated audio quality and cross-modal alignment through
rigorous human assessment protocols.

MOS-Q (Quality Assessment) We first evaluate the intrinsic aesthetic quality of generated audio,
which measures the perceptual quality independent of cross-modal alignment. Drawing from the
objective aesthetic evaluation framework, participants assess audio samples considering multiple
quality dimensions:

• Technical aspects: Clarity, fidelity, dynamics, and frequency response
• Production complexity: Richness and sophistication of audio components within the sound-

scape, where lower scores indicate a more focused and less cluttered audio scene.
• Subjective experience: Content enjoyment and overall listening experience
• Content utility: Practical usefulness for content creation applications

Each sample is rated using a standard 5-point Likert scale (1: Poor, 2: Fair, 3: Good, 4: Very
Good, 5: Excellent), where higher scores indicate superior aesthetic quality across both technical
and perceptual dimensions.

MOS-C (Consistency Assessment) Complementing the quality assessment, MOS-C evaluates the
comprehensive alignment between generated audio and video input across three crucial dimensions.
Semantic consistency measures how well audio content matches objects, actions, and environments
depicted in the video, while temporal synchrony assesses the accuracy of sound event timing cor-
responding to visual events. Furthermore, spatial accuracy evaluates the appropriateness of stereo
positioning and spatial audio characteristics relative to visual scene layout. Participants rate align-
ment quality using the same 5-point scale:

• Excellent alignment (4-5 points): Complete semantic correspondence with precise
temporal-spatial synchronization

• Good alignment (3-3.9 points): Strong semantic match with minor temporal or spatial
discrepancies
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• Fair alignment (2-2.9 points): Acceptable semantic content with noticeable temporal or
spatial misalignments

• Poor alignment (1-1.9 points): Significant discrepancies across multiple dimensions

Evaluation Protocol To ensure evaluation reliability and minimize bias, we implemented a com-
prehensive evaluation framework. We recruited 20 evaluators with normal hearing ability, including
both audio professionals and general users, to ensure diverse perspectives. All evaluation sessions
were conducted in controlled environments using standardized high-quality stereo headphones with
consistent playback levels. Each evaluator assessed a randomly selected subset of 60 video-audio
pairs from our test set, with samples presented in randomized order to prevent ordering effects. Prior
to formal evaluation, participants underwent a comprehensive briefing with reference examples for
each quality level, and were allowed to replay samples up to three times for thorough assessment. Fi-
nal MOS scores were computed as mean ratings across all valid evaluators with confidence intervals
reported.

G LIMITATION AND FUTURE WORK

While PrismAudio successfully establishes a new paradigm for video-to-audio generation that ef-
fectively resolves objective entanglement, its current implementation highlights several boundaries
and exciting opportunities for future research. (1) Our current decoupled paradigm, while effective,
relies heavily on the capabilities of the upstream MLLMs planner. This creates a “cascading error”
problem: any misinterpretations by the planner are irreversibly passed down to the audio generator,
which can only optimize for a potentially flawed plan. A significant leap forward would be to ex-
plore unified, end-to-end architectures that jointly learn to perceive, reason, and generate within a
single model. Such a model could mitigate the error propagation issue by allowing for a more deeply
integrated reasoning and synthesis process, potentially leading to more coherent and grounded re-
sults. (2) A second promising direction involves advancing the multi-dimensional reinforcement
learning stage. Our current framework aggregates the four reward signals using a static weighting
policy, applying the same balance of priorities to all videos. However, the perceptual importance of
each dimension can vary significantly with video content; for example, a fast-paced action sequence
demands prioritizing precise temporal synchrony, whereas a tranquil landscape benefits more from
high aesthetic fidelity. A major advancement would be to develop a content-aware RL policy. Such
a system could learn to dynamically adjust the weights of the different reward functions based on
the input video’s content.

H ETHICAL CONSIDERATIONS

The benchmark used in this research is strictly for academic and non-commercial purposes.
We implemented several measures to ensure compliance with ethical standards and data protection
regulations when constructing AudioCanvas from publicly available video content.

• Data Transparency and Compliance. We collected video data from publicly available
sources following platform guidelines and terms of service. Our dataset only provides cu-
rated annotations and reference links to original videos rather than redistributing the raw
content, ensuring transparency regarding data sources while respecting creators’ intellec-
tual property rights. All collected content was publicly available at the time of collection,
and we implemented strict filtering to exclude any videos containing sensitive personal
information or private content.

• Access Control and Legal Compliance. To ensure responsible use of the AudioCanvas
benchmark, we require researchers to complete a formal application process, including in-
stitutional verification and agreement to our data usage terms, before granting access. This
procedure ensures compliance with relevant data protection regulations, including the Per-
sonal Information Protection Law (PIPL), General Data Protection Regulation (GDPR),
and other applicable legal frameworks. Researchers must demonstrate their understand-
ing of ethical AI research principles and commit to using the dataset solely for academic
research purposes.
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• Content Filtering and Privacy Protection. We implemented comprehensive content fil-
tering mechanisms to exclude videos containing identifiable personal information, private
conversations, or potentially harmful content. Our annotation process focuses exclusively
on audio-visual relationships and technical aspects without collecting or storing any per-
sonal identifiers. All video references are anonymized through unique identifiers, and we
provide clear guidelines for researchers to report and address any privacy concerns that
may arise during dataset usage.

• Creator Rights and Fair Use. Our use of publicly available video content falls under fair
use provisions for academic research purposes. We acknowledge the valuable contributions
of content creators and encourage researchers using AudioCanvas to respect creator rights
and platform community guidelines. Any commercial applications or derivative works
based on this research should seek appropriate permissions and comply with relevant copy-
right laws.

• Bias and Representation Issues. We acknowledge that our training data and reward func-
tions may inadvertently encode cultural biases regarding what constitutes “good sound”
or appropriate audio-visual relationships. The Aesthetic CoT module and corresponding
reward signals could reflect specific perceptual preferences that may not generalize across
diverse cultural contexts, potentially marginalizing non-Western audio traditions or alter-
native aesthetic standards. However, we have implemented several significant practical
mitigations in our work to address these concerns:
(1) Technical Quality Focus: A crucial aspect of our framework is how we define and
operationalize “aesthetics.” This is not a vague, culturally-loaded preference. As stated in
our paper, our Aesthetic CoT focuses on tangible audio quality aspects like “naturalness
and fidelity.” This is reinforced by our choice of reward model. As detailed in Appendix
F.1, the Meta Audiobox Aesthetics model provides multi-faceted Aesthetics scores. While
it includes a subjective “Content Enjoyment (CE)” score, our optimization also heavily re-
lies on the “Production Quality (PQ)” metric. PQ explicitly measures technical aspects like
clarity, fidelity, dynamics, and frequency response, rather than subjective tastes. By opti-
mizing for high fidelity and technical clarity, we primarily push the model towards realism
and professional production standards, which are far more universal and less culturally
specific than artistic or stylistic preferences. This anchors our “aesthetic” goal to a more
objective standard, reducing the risk of encoding culturally-biased preferences.
(2) Scope Limitation: The scope of our work is mainly focused on sound effects and
instrumental music, deliberately excluding human speech and singing. This significantly
reduces the risk of perpetuating some of the most harmful forms of representational bias
related to accents, dialects, language, or vocal characteristics tied to specific demographic
groups (e.g., gender, ethnicity). By avoiding human vocal content, we eliminate a major
source of potential bias that could manifest through linguistic, accentual, or vocal timbre
preferences. In future work, when incorporating human speech and singing, we will explore
effective methods to mitigate these biases, such as diverse speaker representation, accent-
inclusive training data, and bias-aware reward design.
(3) Diverse Rater Pool: For the more subjective components of the Aesthetic Reward (such
as Content Enjoyment), we deliberately chose the Meta Audiobox Aesthetics model. As
emphasized in its technical report, this model was trained on ratings from 158 diverse raters
from the general public, explicitly aiming to capture a broad spectrum of human judgments.
The diversity of the rater pool helps ensure that the reward signal aggregates opinions across
different cultural backgrounds, age groups, and personal preferences, rather than encoding
a single, narrow cultural viewpoint. By leveraging a reward signal that already aggregates
diverse opinions, we actively avoid encoding a single, narrow cultural viewpoint for the
more subjective aspects of sound quality.
While we do not claim to have eliminated all bias, we believe our specific methodolog-
ical choices—from the scope of our task to the definition and measurement of “aesthet-
ics”—serve as significant, practical mitigation steps. These choices reflect our commitment
to responsible AI development and demonstrate that bias mitigation can be integrated into
the core design of the system, rather than being treated as an afterthought. Future work
should continue to prioritize inclusive dataset construction, culturally aware reward design,
and ongoing evaluation of potential biases in generated content.
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I POTENTIAL NEGATIVE SOCIETAL IMPACTS

While PrismAudio represents significant progress in video-to-audio generation technology, we ac-
knowledge several potential negative societal impacts that warrant careful consideration and mitiga-
tion strategies.

• Deepfake and Misinformation Risks. The high-quality audio generation capabilities of
PrismAudio could potentially be misused to create convincing fake audio content syn-
chronized with video footage, contributing to the spread of misinformation or fabricated
evidence. The multi-dimensional optimization across semantic, temporal, aesthetic, and
spatial dimensions makes generated audio particularly realistic, which could enhance the
believability of manipulated media content. We strongly advocate for the development
of corresponding detection technologies and recommend that generated content be clearly
labeled as synthetic.

• Creative Industry Displacement. The sophisticated Chain-of-Thought reasoning and
multi-dimensional quality optimization in PrismAudio may reduce demand for professional
foley artists, sound designers, and audio post-production specialists. While this technology
can democratize content creation and reduce production costs, it may also lead to job dis-
placement in creative industries. We encourage the development of human-AI collaborative
workflows that augment rather than replace human creativity and expertise.

We encourage responsible deployment of this technology with appropriate safeguards, transparent
labeling of synthetic content, and continued research into bias mitigation and detection methodolo-
gies.

J THE USE OF LARGE LANGUAGE MODELS (LLMS)

In accordance with ICLR’s guidelines, we disclose that LLMs were used during the preparation of
this manuscript. We utilized LLMs exclusively as a writing aid to enhance the clarity and readability
of the text.

The primary applications included:

• Proofreading for grammatical errors and typos.
• Rephrasing sentences for improved conciseness and flow.

All scientific contributions, including the core ideas, methodology, experimental design, and in-
terpretation of results, are the original work of the human authors. The LLMs were not used for
generating novel scientific content or analyses.

K SAFEGUARDS

We used a diverse training dataset covering a wide range of acoustic scenes to minimize reinforcing
stereotypes or incorrect associations between sounds and specific demographic groups. The model
will be released in stages to better assess its impact and improve safeguards. However, once the
model is openly released, we cannot control how others use it. Therefore, we provide clear usage
guidelines to encourage responsible use and help mitigate potential misuse.
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