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Abstract

Large language models are trained on mas-001
sive scrapes of the web, which are often un-002
structured, noisy, and poorly phrased. Cur-003
rent scaling laws show that learning from such004
data requires an abundance of both compute005
and data, which grows with the size of the006
model being trained. This is infeasible both007
because of the large compute costs and dura-008
tion associated with pre-training, and the im-009
pending scarcity of high-quality data on the010
web. In this work, we propose Web Rephrase011
Augmented Pre-training (WRAP) that uses an012
off-the-shelf instruction-tuned model prompted013
to paraphrase documents on the web in specific014
styles such as “like Wikipedia” or in “question-015
answer format” to jointly pre-train LLMs on016
real and synthetic rephrases. First, we show017
that using WRAP on the C4 dataset, which018
is naturally noisy, speeds up pre-training by019
∼ 3×. At the same pre-training compute bud-020
get, it improves perplexity by more than 10%021
on average across different subsets of the Pile,022
and improves zero-shot question answer accu-023
racy across 13 tasks by more than 2%. Second,024
we investigate the impact of the re-phrasing025
style on the performance of the model, offering026
insights into how the composition of the train-027
ing data can impact the performance of LLMs028
in OOD settings. Our gains are attributed to029
the fact that re-phrased synthetic data (i) in-030
corporates style diversity that closely reflects031
downstream evaluation style, and (ii) has higher032
‘quality’ than web-scraped data.033

1 Introduction034

Large language model (LLM) pre-training has been035

largely democratized and open-sourced, allowing036

various academic labs, and industries to pre-train037

custom LLMs. Yet, a key differentiator between038

these models is the composition and size of the039

data used to train them. Data curation strategies040

are required to filter out scrapes of the web that041

are unstructured and/or poorly phrased (Eisenstein,042

2013). While some of these strategies have been 043

made public (Brown et al., 2020; Wenzek et al., 044

2019; Penedo et al., 2023), most state-of-the-art 045

data curation techniques are unknown to the re- 046

search community, and only anecdotal evidence 047

remains. Research on data curation requires mul- 048

tiple rounds of re-training, making it an expensive 049

endeavour to document techniques that lead to prac- 050

tical improvements. On the other hand, scaling 051

laws for language models (such as Chinchilla scal- 052

ing laws (Hoffmann et al., 2022)) show that with 053

increasing model sizes, we should also increase 054

both the training compute and data size linearly. 055

This is infeasible because (a) high-quality data is 056

limited (Villalobos et al., 2022), and repeating for 057

even a small number of epochs (4 or more) results 058

in diminishing returns or overfitting (Muennighoff 059

et al., 2023; Touvron et al., 2023; Xue et al., 2023); 060

and (b) pre-training for such long durations is pro- 061

hibitively expensive. 062

Meanwhile, the use of synthetic data has gained 063

prominence in the paradigm of aligning pre-trained 064

LLMs via instruction fine-tuning, RLHF (Ouyang 065

et al., 2022), and instruction backtranslation (Li 066

et al., 2023b). Recently, in the context of pre- 067

training, synthetic data was used to generate 068

datasets such as Tiny Stories (Eldan and Li, 2023) 069

and Textbook quality synthetic data (Gunasekar 070

et al., 2023; Li et al., 2023c). These were used 071

to train smaller language models (like the Phi 072

model family) that were as performant as larger lan- 073

guage models on certain tasks. However, their data 074

generation process stays largely opaque, and pro- 075

hibitively expensive, requiring prompting a GPT- 076

3.5 model for generating billions of tokens. Addi- 077

tionally, such data generation can create “knowl- 078

edge bias” by generating data pertaining to tasks 079

that we want to perform well on. While synthetic 080

data has shown promise, it is unclear if this is be- 081

cause of its higher quality, or strategic topic selec- 082

tion (Maini, 2023). 083
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Figure 1: (a) WRAP: We prompt an off-the-shelf instruction-tuned model to rephrase articles on the web, and
pre-train an LLM on a mixture of real and synthetic data. (b) Zero-shot performance of GPT 1.3B models trained
on combinations of C4 and synthetic variations. (c) Weighted average perplexity over 21 sub-domains of the Pile
for varying model sizes and amount of pre-training data.

In this work, we propose Web Rephrase084

Augmented Pre-training (WRAP)—that attempts085

to bridge three important challenges stemming086

from the ambiguity around data curation— (i) what087

data should you pre-train on? (ii) how can you088

pre-train with limited data? (iii) how can you pre-089

train computationally efficiently? In particular, we090

show that re-phrasing documents on the web using091

an off-the-shelf medium size LLM allows models092

to learn much more efficiently than learning from093

raw text on the web, and accounts for performance094

gains on out of distribution datasets that can not095

be offset with additional web data. Our proposed096

method involves using a pre-trained off-the-shelf097

LLM to re-phrase documents from a web corpus098

into different styles (Figure 1a).099

In our work, we tackle two important challenges100

faced during synthetic data curation in the works101

of Gunasekar et al. (2023)—generation cost, and102

data bias—by rephrasing articles on the web. (i)103

WRAP allows for using an open source, and much104

smaller LLM (1.8B/7B v/s GPT3.5) to rephrase105

unstructured and poorly phrased documents in dif-106

ferent styles, since it does not rely on the LLM107

as a knowledge bank. (ii) Thanks to the informa-108

tion maintaining nature of rephrasing, we are able109

to leverage the natural diversity of the web rather110

than relying on an LLM for information, which111

may be prone to factual errors, and data biases.112

WRAP shows that the “style” alone can result in113

large gains in pre-training efficiency, and down-114

stream performance.115

Using WRAP on the C4, we evaluate model116

performance on 13 different zero-shot tasks, and 117

21 different language modeling domains of the 118

Pile, and find that pre-training LLMs with syn- 119

thetic data allows us to train equivalent models 120

with 5x lesser data, or 3x lesser compute. In fact, 121

our models, also outperform the recent TinyLLama 122

models that were trained for 3 trillion tokens (10x 123

data and compute) across several zero-shot Q/A 124

tasks. We further observe a reduction in perplexity 125

by ∼ 50% on the Pile, and note that our 350M pa- 126

rameter model trained on combinations of real and 127

synthetic rephrases on just 15% of the entire C4 128

corpus, outperforms pre-training a 1.3B parameter 129

on the entire C4. Finally, we conduct an analysis on 130

the potential of data leakage, properties of synthetic 131

data styles, and how to combine synthetic data for 132

improving WRAP based LLM pre-training. 133

2 Related Work 134

Neural Scaling Laws for Language Models 135

Neural scaling laws relate the optimal number of 136

model parameters and amount of training data for 137

a fixed amount of compute. Hoffmann et al. (2022) 138

presented the Chinchilla scaling laws for language 139

models demonstrating that there was a linear re- 140

lationship between the size of the model and the 141

amount of training data needed. Their findings indi- 142

cated that prior models such as Gopher (Rae et al., 143

2021) are severely undertrained. Recently, models 144

such as Llama (Touvron et al., 2023) are trained 145

with much more data. These scaling laws were 146

drawn for the paradigm of single-epoch training. 147

Recently, Muennighoff et al. (2023) showed that 148
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the marginal utility of repeated data rapidly dimin-149

ishes when training for more than 4 epochs, and150

formulated scaling laws under repeated data. Con-151

currently, Xue et al. (2023) showed that repeating152

even small fractions of the pre-training data can153

lead to overfitting and reduce model performance.154

Dataset Selection Selecting high quality data for155

pre-training LLMs remains an active, high-impact,156

yet understudied area of research. For instance,157

GPT-2 model was pre-trained on all outbound links158

from Reddit, a social media platform, which re-159

ceived at least 3 karma (Brown et al., 2020). This160

was used as a heuristic indicator that the doc-161

ument may be interesting, educational, or just162

funny. Follow-up works have used other heuris-163

tics such as prioritizing documents that resemble164

wikipedia (Gururangan et al., 2022). Rae et al.165

(2021) used multiple heuristic filters to remove doc-166

uments, such as the absence of certain stopwords,167

length of the document, percentage of alphabetic168

characters, mean word length, symbol-to-word ra-169

tio, percentage of lines starting with a bullet point,170

or ending with an ellipsis etc. Their work high-171

lights the intricacies of filtering out text data. An172

alternative paradigm for building better datasets173

for training is to distill high-quality datasets. Xie174

et al. (2023) proposed a method, DoReMi, to se-175

lect the best data mixture for pre-training language176

models by reweighting data from various domains.177

Concurrently, Abbas et al. (2023) showed that178

de-duplicating pre-training data can improve pre-179

training efficiency. Recently several methods were180

proposed for automatic filtering of low-quality data181

for faster fine-tuning of LLMs (Chen et al., 2023;182

Solaiman and Dennison, 2021; Zhou et al., 2023).183

Simultaneously, in the realm of image-language184

models such as CLIP (Radford et al., 2021), the185

Datacomp benchmark (Gadre et al., 2023) and re-186

cent entries (Maini et al., 2023; Yu et al., 2023) de-187

veloped approaches at filtering out low-quality sub-188

sets from pre-training datasets like LAION (Schuh-189

mann et al., 2022), or the common crawl.190

Data Augmentation and synthetic data Eldan191

and Li (2023) showed that a synthetically gener-192

ated dataset in the form of stories that toddlers193

can understand allows training a small language194

model that can generate coherent sentences. Gu-195

nasekar et al. (2023) showed that textbook quality196

(synthetic) data alone helps models achieve state-197

of-the-art performance on reasoning and coding198

tasks. Similar approaches are used in concurrent199

work for enhancing coding and mathematical rea- 200

soning abilities while finetuning (Liu et al., 2023a; 201

Wei et al., 2023). Shumailov et al. (2023) show 202

that training on synthetic data can actually be harm- 203

ful for model performance, especially when we 204

do multiple rounds of pre-training an LLM and 205

then training the next LLM on data generated by 206

the previous one. On the other hand, some other 207

works have shown that such a strategy can actu- 208

ally be useful. Li et al. (2023b) and Köksal et al. 209

(2023) discuss how a model can generate instruc- 210

tion data and then fine-tune on its own generated 211

data to improve performance. Jung et al. (2023) 212

discuss how such repeated cycles of synthetic data 213

can help train a very small paraphrase model that 214

outperforms GPT-3. 215

The vision and multimodal literatures have also 216

seen a surge of works examining the use of syn- 217

thetic data for training. The works of Bansal and 218

Grover (2023); Trabucco et al. (2023); Azizi et al. 219

(2023) have shown that using synthetic data in com- 220

bination with real data achieves state of art model 221

performance both in and out-of-distribution. Cubuk 222

et al. (2020) used generative models to generate 223

image augmentations for better domain generaliza- 224

tion. There are also multiple studies on increasing 225

multiplicity of augmentations and their value for 226

improving generalization (Choi et al., 2019; Fort 227

et al., 2021; Hoffer et al., 2020). However, Ale- 228

mohammad et al. (2023) showed that generated 229

models trained for more than five cycles of their 230

own generated data can undergo mode collapse. 231

3 WRAP: Web Rephrase Augmented 232

Pretraining 233

Generating synthetic data using an off-the-shelf 234

language model can be both computationally ex- 235

pensive and operationally challenging. Prior ap- 236

proaches to generating synthetic textbook quality 237

data using LLMs (Gunasekar et al., 2023) required 238

(1) a language model that contains sufficient world 239

knowledge to generate articles worth training on, 240

thereby increasing generation cost; (2) a careful 241

selection of prompts that enable generating high 242

quality, and diverse articles that fill any knowledge 243

gaps in the synthetic corpus. This challenge was 244

highlighted in follow-up work of Li et al. (2023c), 245

and has the potential of inadvertently creeping in 246

biases in the language models (Maini, 2023), as 247

opposed to those trained on the natural diversity 248

of the web. As a remedy to the challenge of (i) 249
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generation cost, and (ii) data diversity, we propose250

WRAP that leverages the natural diversity of ar-251

ticles on the web, allowing us to utilize signifi-252

cantly smaller LLMs (than GPT-3.5) to generate253

high-quality paraphrases of noisy and unstructured254

articles on the web.255

3.1 Rephrasing the Web256

It has been observed in past work that up-weighting257

high-quality data, such as texts from Wikipedia,258

can be useful to improve language modeling.259

These terms have generally been very loosely de-260

fined and there is only anecdotal evidence of the261

same (Brown et al., 2020; Wenzek et al., 2019).262

At the same time, web data is deficient of text263

in question-answering or conversational format,264

which is a prominent use case of language mod-265

els. Based on these two insights, we design our266

rephrasing styles.267

Rephrasing Styles In lieu of the anecdotal ev-268

idence above, we attempt rephrasing documents269

on the web in four different styles—(i) Easy270

(text that even a toddler will understand); (ii)271

Medium (in high quality English such as that found272

on Wikipedia); (iii) Hard (in terse and abstruse273

language); (iv) Q/A (in conversation question-274

answering format). In order to operationalize275

rephrasing in these stylistic variations, we appro-276

priately prompt an instruction-tuned model. The277

rephrased examples of these four styles and the278

prompts templates used in our work are provided279

in Appendix I.280

Generating Synthetic Data Now, we detail how281

we utilize an instruction-tuned language model to282

rephrase texts from web-crawled datasets such as283

C4 (Raffel et al., 2020) (which we use for all our284

experiments). In particular, we use a frozen Mistral-285

7B instruction-tuned model (Jiang et al., 2023) (see286

Ablations in Section 6 for other models). To gen-287

erate synthetic data in “medium” style, the Mistral288

model is prompted using the following instruction:289

“For the following paragraph give me a paraphrase290

of the same in high-quality English language as in291

sentences on Wikipedia”. The prompt was created292

using iterative human feedback by comparing out-293

puts of ‘medium’ sized LLMs with those of GPT-4.294

We use the model output to create a parallel corpus295

of “high-quality” synthetic data corresponding to296

the original noisy web data. Each example has a297

maximum of 300 tokens, which was decided based298

on our empirical observation that asking an LLM299

to rephrase more than 300 tokens, often led to loss 300

of information. Discussions on data quality can be 301

found in Section C. 302

Combining Real and Synthetic Data Our 303

method of re-phrasing web data naturally incor- 304

porates the information diversity found on the in- 305

ternet. However, it does not incorporate the noise 306

in real data. While synthetic data may help LLMs 307

pre-train faster, we also want them to be able to 308

understand noisy web text that may be filled with 309

typos and linguistic errors so that the LLMs do not 310

fail in user facing situations. In order to incorpo- 311

rate this style diversity in language modeling, we 312

sample real and synthetic data in a 1:1 ratio. 313

3.2 Implementation Details 314

Architecture We train decoder-only transformer 315

models (Vaswani et al., 2017) at three different 316

scales, small, medium and XL. The small-scale 317

(128M parameter) model consists of 12 layers, 12 318

attention heads, and a hidden dimension size of 319

768. The medium-scale (350M parameter) model 320

consists of 24 layers, 16 attention heads, and a hid- 321

den dimension size of 1024. The XL-scale (1.3B 322

parameter) model consists of 24 layers, 16 attention 323

heads, and a hidden dimension size of 2048. We 324

do not use dropout in either model and a maximum 325

sequence length of 1024. The models are trained 326

using NVIDIA’s Megatron-LM repository. 327

Pre-training We train all our XL models for a 328

total of 300k steps with a batch size of one mil- 329

lion tokens, unless otherwise specified. We use a 330

maximum learning rate of 3e−4 for the 128M, and 331

350M parameter models, and 2e−4 for the 1.3B 332

parameter model. The minimum learning rate is 333

1e−5. We use a weight decay of 0.01, along with 334

a gradient clipping norm of 1.0. We use cosine 335

learning rate scheduler with a warmup for 1% of 336

total steps; and Adam optimizer with β1 = 0.9 and 337

β2 = 0.999. 338

4 Perplexity Evaluation 339

We evaluate the perplexity of the pre-trained model 340

on the validation set of multiple out-of-distribution 341

datasets. All models are either trained on the C4 342

dataset (Raffel et al., 2020), or a particular stylistic 343

rephrase of the same. All the evaluations are done 344

on 21 sub-domains of the Pile (Gao et al., 2020). 345

These subsets are created from the first 10,000 doc- 346

uments from each domain of the Pile dataset. We 347
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Figure 2: WRAP (C4 + QA-85B) v/s C4: Comparison
of perplexity on the Pile for a 1.3B LLM trained for
300B tokens shows that WRAP outperforms models
trained on 2x real data.

then evaluate the perplexity of the model on these348

subsets. Additional evaluation details are provided349

in Appendix D. It is important to note that we eval-350

uate perplexities on the Pile instead of C4. Training351

on multiple distributions of text (synthetic and real352

web) does comes at a marginal cost of less than 1353

perplexity on the C4 validation set. To understand354

our choice of evaluation, and why we observe this355

perplexity increase, we note that training over the356

C4 corpus corresponds to minimizing the objective357

θc4 = min
θ

Ex∼Dc4 [L(θ;x)] , (1)358

that attempts to exactly model the C4 web text. In359

contrast, training over multiple styles corresponds360

to minimizing the risk over a different distribution,361

θWRAP = min
θ

Ex∼Dc4∪Dsyn [L(θ;x)] . (2)362

Solving for equation 2 does not minimize the363

risk over C4-only, and hence the small drop in364

performance between θc4 and θWRAP on the C4.365

For meaningfully comparing models trained on the366

C4 and on its synthetic rephrases, we evaluate their367

generalization capability on 21 different domains368

of the Pile (Gao et al., 2020). Results for each369

domain are presented in Figure 2.370

Data Complexity In Figure 1c, we show that371

models trained for fewer tokens (150B) and even372

smaller 350M models outperform training on the373

full C4 for 300B tokens indicating faster learning374

with synthetic rephrases. On some domains such as375

ArXiv and HackerNews, we observe that training376

with synthetic data allows reducing the perplexity377

by nearly 3x of the perplexity of models trained on378

real data alone. This suggests that in many cases it379

may not be possible to offset the performance ad-380

vantage of pre-training on synthetic data by merely381

training on more real data. On an average of 21 382

subsets of the Pile, our models improve perplexity 383

by 50% over models trained on real data alone. 384

Learning Speed We observe that even at the 385

first checkpoint (10B tokens) of WRAP training, 386

the average perplexity of the LLM on the Pile is 387

lower than that achieved by pre-training on C4 for 388

15 checkpoints. This suggests a 15x pre-training 389

speed-up. We defer the discussion on learning 390

speed to ‘zero-shot’ tasks in order to make more 391

meaningful comparisons. 392

5 Zero-shot Tasks 393

We now evaluate our pre-trained language mod- 394

els on various zero-shot question answering (QA) 395

benchmarks using the LLM Evaluation Har- 396

ness1 (Gao et al., 2023). 397

5.1 Datasets 398

We evaluate our models on a total of 13 differ- 399

ent zero-shot benchmarks to assess their abilities 400

across various natural language tasks like common 401

sense reasoning, language and knowledge under- 402

standing and mathematical reasoning. 403

General Understanding The General Under- 404

standing category comprises datasets testing 405

broader cognitive skills and language comprehen- 406

sion. ARC Easy (ARC-E) (Clark et al., 2018) is 407

the less challenging counterpart of ARC-C, featur- 408

ing questions that require basic reasoning skills. 409

BoolQ (Clark et al., 2019) includes boolean ques- 410

tions that focus on reading comprehension and 411

general language understanding. Winogrande 412

(Wino.) (Sakaguchi et al., 2021) challenges mod- 413

els with common sense reasoning in language, par- 414

ticularly in pronoun disambiguation. PIQA (Bisk 415

et al., 2020) assesses understanding of physical pro- 416

cesses, an essential part of practical common sense. 417

HellaSwag (Zellers et al., 2019) tests the ability 418

to complete scenarios coherently, demanding both 419

language understanding and common sense. Truth- 420

fulQA (Lin et al., 2021) is centered on generating 421

truthful, accurate answers, thus testing the model’s 422

factual correctness. OpenBookQA (OBQA) (Mi- 423

haylov et al., 2018) evaluates the understanding 424

of a broad range of facts and concepts. Finally, 425

LogiQA-2 (Liu et al., 2023b) assesses the model’s 426

capacity to comprehend logical principles. 427

1We use git commit - 89618bf8 for consistency across all
experiments with a batch size of 32.
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Specialized Knowledge In the Specialized428

Knowledge category, we include datasets that de-429

mand expertise in specific domains. The ARC430

Challenge (ARC-C) (Clark et al., 2018) contains431

challenging science exam questions from grades 3432

to 9, demanding advanced knowledge. SciQ (Jo-433

hannes Welbl, 2017) provides science exam ques-434

tions to test model understanding and reasoning435

in the scientific domain. PubMedQA (Jin et al.,436

2019) focuses on comprehension in biomedical437

literature. MathQA (Amini et al., 2019) tests438

mathematical problem-solving, requiring both nu-439

merical comprehension and reasoning. Lastly,440

MMLU (Hendrycks et al., 2021) spans multiple441

domains, from professional to academic, testing442

the model on specialized subjects.443

5.2 Results444

We compare the performance of a model trained on445

a mixture of real and synthetic data with models446

trained on various splits of real data. In all our447

experiments, we use the C4 (Raffel et al., 2020)448

dataset for rephrasing and producing splits of syn-449

thetic data. We use the abbreviation ‘Real Tok.’ to450

denote the number of tokens of web data available451

for pre-training. In the ‘Synthetic + Real’ experi-452

ments, we augment the same number of synthetic453

rephrases. We choose ‘Real Tokens’ as the metric454

of comparison because we can potentially rephrase455

the same document multiple times, implying that456

the total corpus size is not meaningful, and corpus457

‘knowledge’ is the actual currency of interest.458

Baselines Methods We pre-train LLMs of (i)459

Half of C4, and the (ii) Full C4 corresponding to ap-460

proximately 85 Billion and 170 Billion real tokens461

respectively (Raffel et al., 2020). We also pre-train462

our own models on (iii) 160 Billion and (iv) 320463

Billion tokens of the RefinedWeb Dataset (Penedo464

et al., 2023). Additionally, we also compare with465

the (iv) Pythia-1.4B model that was trained on the466

Pile (Gao et al., 2020). This dataset is no longer467

publicly available, hence we utilize a pre-trained468

model. Finally, we also compare with the recent469

(v) TinyLlama model (Zhang et al., 2024) that was470

trained for 3 epochs on 1 Trillion tokens of data471

from SlimPajama (Shen et al., 2023) and StarCoder472

(Li et al., 2023a).473

General Improvements Across all tasks in Ta-474

ble 1, we observe that models trained on synthetic475

data combined with the C4 dataset (Synthetic+C4)476

exhibit an overall higher average performance of477

52.3% as compared to those trained solely on the 478

real C4 dataset with a 85B token split, which scored 479

an average of 50.2%. This shows that the inclusion 480

of synthetic data can enhance the general under- 481

standing capabilities of NLP models. Moreover, 482

even the TinyLLama model trained for 10x com- 483

pute and data, performs comparably to models 484

trained on real data only. This suggests that the 485

gains from filtering out, or adding more real data 486

are low. As opposed to this, WRAP shows that 487

pre-training on even small amounts of synthetic 488

data can contribute to large performance gains. 489

Specialized Knowledge Tasks The key message 490

from the results in Table 1 is that synthetic data 491

can not impart ‘new knowledge’. It can only help 492

pre-train faster, which was also the premise of our 493

work. In particular, we note several key findings: 494

1. Pre-training on larger datasets helps improve 495

performance, by presumably exposing the 496

LLM to more “knowledge”. For instance, 497

the Pythia (300B) model achieves an average 498

score of 43.4%, outperforming the smaller C4 499

(85B) dataset’s score of 42.1%. 500

2. Despite the advantages of a larger dataset, the 501

improvements saturate. For example, Refined- 502

Web (320B) model outperforms the Refined- 503

Web (160B) model by only 0.6%. Similary, 504

the TinyLlama model (1T tokens) performs 505

comparably to the WRAP model, which only 506

had 85B tokens of raw web data. 507

Specific Improvements We see maximum im- 508

provement in the TruthfulQA dataset, with the 509

Synthetic (85B) model scoring 44.0%, which is 510

significantly higher than any other model’s perfor- 511

mance on this dataset. This is potentially because 512

instruction-tuned LLMs already correct potential 513

misconceptions while rephrasing the text. Inter- 514

estingly, we notice how adding real data to the 515

synthetic model (Synthetic+C4) reduces the per- 516

formance on TruthfulQA by 4%, down to 40.5%, 517

indicating a potential dilution of the benefits gained 518

from synthetic data when combined with real data. 519

Other datasets such as HellaSwag, and BoolQ, for 520

which C4 trained models do well, continue to show 521

the benefits of incorporating combinations of C4 522

and synthetic rephrases. 523

6 Analysis and Ablations 524

We further ask the following Research Questions 525

(RQs) to investigate in a finer granularity how to 526
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Dataset (Real Tok.) ARC-E BoolQ Wino. PIQA HellaSwag TruthfulQA OBQA LogiQA Avg

Half C4 (85B) 53.2 59.1 57.3 76.0 61.0 34.1 34.2 26.6 50.2
Full C4 (170B) 54.6 54.2 59.0 76.1 61.2 33.5 36.8 26.9 50.3
RW (160B) 58.0 60.7 57.5 74.9 59.4 36.8 35.2 26.8 51.2
RW (320B) 56.7 61.1 57.1 75.2 59.2 36.0 35.4 27.2 51.0
Pythia-Pile (300B) 53.9 63.3 57.5 71.0 52.0 38.9 33.2 27.3 49.6
TinyLlama (1T) 55.3 57.8 59.1 73.3 59.2 37.6 36.0 27.0 50.7

Synthetic (85B) 57.7 60.0 58.8 76.9 57.8 44.0 34.2 26.3 52.0
Synthetic+C4 (85B) 57.4 62.2 58.9 76.0 60.8 40.6 35.3 27.1 52.3

Dataset (Real Tok.) ARC-C SciQ PubMedQA MathQA MMLU Avg

Half C4 (85B) 29.5 76.8 57.2 22.9 24.2 42.1
Full C4 (170B) 29.7 77.3 57.4 23.8 23.9 42.4
RW (160B) 29.3 81.4 56.2 23.4 25.9 43.2
RW (320B) 30.0 83.1 57.4 23.0 25.4 43.8
Pythia-Pile (300B) 28.6 79.2 60.6 24.3 24.3 43.4
TinyLlama (1T) 30.1 81.8 61.4 23.7 25.8 44.6

Synthetic (85B) 32.3 78.4 60.2 23.2 24.6 43.7
Synthetic+C4 (85B) 31.5 79.0 61.5 23.5 24.8 44.0

Table 1: (Left) Evaluation of 1.3B parameter LLMs on “General Understanding Tasks” focusing on general
reasoning, language understanding, and common sense. (Right) Evaluation on ‘Specialized Knowledge Tasks’ that
require specific domain knowledge such as science and mathematics. Results for WRAP are averaged over 3 runs.
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Figure 3: Importance of High Quality Paraphraser:
Perplexity across all the Pile domains for WRAP on
data generated by different LLMs. Results show that
even small models like Qwen-1.8B can generate para-
phrases of high quality. Though, a low quality rephraser
like our fine-tuned T5-base model leads to significantly
worse language modeling.

enhance performance optimally. We discuss addi-527

tional data and method ablations in Appendix G.528

RQ1: How important is to have a high-quality529

re-phraser? We use data from four distinct re-530

phrasing models (T5-base (Raffel et al., 2020),531

Qwen-1.8B-chat (Bai et al., 2023a), Mistral-7B-532

chat (Jiang et al., 2023), and Vicuna-13B-chat-533

v1.3 (Chiang et al., 2023)) and train a 345M model534

for 30B tokens. We generate data from all mod-535

els using the same prompt. In case of the T5-base536

model, we finetune the model for 1 epoch on re-537

phrase pairs from the Vicuna-13b-chat model. We538

find that pre-training on data generated by smaller539

re-phrase models like Qwen-1.8B and Mistral-7B540

achieve lower perplexity than Vicuna 13B (Fig-541

ure 3). At the same time, our fine-tuned T5-base542

model performs significantly worse than the rest.543

Even then, all rephrase models reduce perplexity544

over only real C4 data. It remains an open ques-545

tion to test the limits of how small can we train a546

paraphrase model to generate high quality synthetic547

data to further scale the applicability of WRAP.548

RQ2: How important is it to have real C4 data?549

Our findings in Tables 1 indicate that synthetic data550
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Figure 4: Importance of Real Data: Comparing per-
plexity on the Pile when pre-training on C4 with syn-
thetic data vs. synthetic data only. Models are 1.3B
parameters trained for a total of 150B tokens on a real
data subset containing 35 Billion tokens of the C4.

using the QA prompt are sufficient for strong per- 551

formance on QA tasks. However, when evaluated 552

on Pile perplexity, we observe significant degra- 553

dation in perplexity across many sub-domains in 554

Figure 4. This is likely because synthetic data is 555

very clean containing few special characters and 556

being highly structured. In contrast several sub- 557

domains of the Pile such as OWT, and Hackernews 558

have such special tokens. On domains such as 559

Philpapers and Gutenberg, we observe that drop- 560

ping real C4 text from the pre-training data, and 561

training on synthetic documents alone drops perfor- 562

mance significantly (increase in perplexity). This 563

is once again attributed to the fact that synthetic 564

data does not contain certain ‘tags’ and ‘styles’ that 565

are prevalent in real data scrapes, and emphasized 566

how WRAP is a better strategy than pre-training 567

on synthetic data alone. In terms of performance 568

on zero-shot tasks, the presence of real data helps 569

improve zero-shot performance in Tables 2. Since 570

these tasks contain well-written Q/A pairs, the ef- 571

fect is not as prominent as on Pile. 572

RQ3: Is there data leakage from the rephrase 573

model to the trained model? We investigate 574

whether our synthetic data maintains similar se- 575

mantic meaning while being stylistically different 576

7



Dataset (Real Tok.) ARC-E BoolQ Wino. PIQA HellaSwag TruthfulQA OBQA LogiQA Avg

Med+C4-35B 53.2 57.0 55.7 74.8 57.6 36.5 33.2 26.2 49.3
QA+C4-35B 55.1 63.3 55.7 75.6 57.9 41.4 34.0 26.1 51.1
Med-35B 49.6 59.5 53.4 73.4 52.7 36.3 32.2 26.0 47.9
QA-35B 55.9 62.0 53.9 76.9 54.7 43.0 34.0 27.7 51.0

Dataset (Real Tok.) ARC-C SciQ PubMedQA MathQA MMLU Avg

Med+C4-35B 29.6 74.3 46.2 22.9 25.2 39.6
QA+C4-35B 30.3 76.8 62.2 23.0 26.1 43.7
Med-35B 28.8 73.8 59.4 22.6 24.7 41.9
QA-35B 31.1 77.4 59.2 22.4 25.0 43.0

Table 2: Importance of Real Data: (Left) Evaluation of ∼ 1.3B parameter LLMs trained for 150B tokens on
General Understanding Tasks. (Right) Evaluation on Specialized Knowledge tasks. Results show that adding real
data helps improve model performance when pre-training on ‘Medium’ or ‘Wikipedia-style’ paraphrases.
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Figure 5: Comparison between synthetic and real data from the C4 corpus showing that synthetic data maintains
semantic meaning compared with the real C4 data and primarily changes style for (a) medium rephrases of C4, and
(b) QA rephrases of C4.

from the original C4 data and matching the style577

of different PILE domains. We start by compar-578

ing pairs of examples of synthetic and real data to579

confirm the performance gain is not attributed to580

knowledge leakage from the rephrase models. We581

subset the first 1000 samples from each dataset.582

We show the cosine similarity of the sen-583

tence embeddings from a pre-trained BERT model584

trained with SimCSE objective (Gao et al., 2021)585

for medium and qa prompts in Figure 5(a) and (b).586

When computing similarity, we remove outliers.587

Figures with distributions use a gaussian Kernel588

Density Estimator (KDE) to construct distributions589

for statistics from 1000 values. The cosine simi-590

larity of real-synthetic pairs is higher than several591

baselines including two random real samples from592

C4, a continuation baseline which computes co-593

sine between the first half of a sample and the full594

sample, and cosine similarity between the first and595

second half of the same sample. High similarity in-596

dicates that re-phrases maintain similar meaning to597

their real counterparts without adding information.598

7 Conclusion599

Strong language models are being pre-trained on600

combinations of real and synthetic data. Using syn-601

thetic data enables baking in desirable attributes602

such as fairness, bias, and style (like instruction603

following) directly into the data, eliminating the 604

need to adjust the training algorithm specifically. 605

This offers an alternative approach to aligning lan- 606

guage models to human values. The recent uptick 607

in interest around synthetic data, especially for 608

instruction-tuning language models, is noteworthy, 609

with concurrent researchers also leveraging it for 610

pre-training. As we transition into this paradigm, 611

understanding the properties of the data fed to our 612

models is paramount. This paper aims to be a 613

comprehensive guide on employing different syn- 614

thetic style data in LLM pre-training. We delve 615

into its significance from two vantage points: (1) In 616

scenarios with scarce high-quality data, synthetic 617

rephrases offer more value than mere repetition 618

of existing data; (2) Synthetic data can be a boon 619

for generalization on different text domains, and 620

for generating text in styles that are underrepre- 621

sented in the pre-training dataset. As practitioners 622

generate synthetic data for training models, they 623

will be faced with important and expensive design 624

choices—(i) How important is the quality of the 625

synthetic data generator?; (ii) How to balance real 626

and synthetic data? (iii) When does training on syn- 627

thetic data reach a point of diminishing returns? We 628

take a first step towards answering these questions. 629

8



8 Limitations630

8.1 Cost Analysis631

Should you generate synthetic data, or just train632

longer on real data?633

The applications of WRAP lies in both634

paradigms—(i) low-resourced data settings such as635

a language model for Finnish language (Luukko-636

nen et al., 2023), and (ii) data-rich settings such as637

training on the common crawl. In the former, there638

is no alternative option of naively gathering more639

data, and hence, synthetic data is a natural solu-640

tion that should outperform training on in-domain641

data alone. However, there is a significant interest642

in training language models on English, or more643

broadly, general web data. Is using synthetic data a644

viable option even in this paradigm?645

Before, we dive into the feasibility of pre-646

training on synthetic data, we should acknowl-647

edge the results of Table 1. The TinyLlama model648

trained for 3 Trillion tokens also underperforms a649

model jointly trained on real and synthetic data. In650

fact, it performs quite comparably to the models651

that were trained for 300B tokens on just real data652

as well. This suggests that the ceiling for improve-653

ment by training for longer may not be that high654

(for a model of size 350M/1.3B parameters; larger655

models may benefit from training for longer).656

To analyze this cost trade-off, we compare the657

cost of generating synthetic data, versus that of658

training a language model on extra data. For our659

synthetic data generation experiments, we use the660

vLLM (Kwon et al., 2023) library for fast gener-661

ation. In particular, we are able to generate 3M662

tokens per hour on a single A100 when using the663

Mistral-7B. Generating 85B tokens (as in our work)664

accounts for about 25K GPU hours.665

In comparison, on 64 A100s, we achieve a666

throughput of 0.5M tokens per second. Assuming667

training for 300B tokens, would mean 256 GPU668

days, accounting for about 6k GPU hours to train669

a single model. On the contrary, training a 13B670

model would take about 30K GPU hours. At the671

scale of training a 13B model, reducing the training672

cost by 3-10x can incorporate the cost overhead of673

training with synthetic data in a single run.674

While the cost of generating high quality data675

is still relatively high, two important sources of676

improvement impact this cost analysis. First, if we677

use the Qwen-1.8B model (Bai et al., 2023b) for678

rephrasing, we are able to get a 3x higher token679

throughput. As seen in our preliminary results in680

Fig 3, the model pre-trained on rephrases generated 681

by Qwen model performs comparably to that by 682

the Mistral model. This reduces the cost of gen- 683

eration by 3x. More recent work in speculative 684

decoding (Liu et al., 2023c) and optimized infer- 685

ence (Xia et al., 2024) suggest that we can leverage 686

another 3-5x improvement in the generation cost. 687

Hence, indeed, even at the scale of just 1.3B param- 688

eter model training, we can already improve upon 689

the cost of pre-training using just real data. 690

Two additional important advantages of syn- 691

thetic data generation that could not be accounted 692

for in the discussion above: 693

1. The cost of synthetic data generation is a one- 694

time investment, and we may train many mod- 695

els of varying scales once the data is gener- 696

ated. 697

2. Data generation is 100% parallelizable, 698

whereas training requires the availability of a 699

big cluster with fast inter-node connectivity. 700

This is much more expensive. On the other 701

hand, generation can be thought of as a side 702

process that can fill in the empty GPUs in 703

any large-scale compute cluster, and runs on 704

single GPU machines. 705

8.2 Diversity of Synthetic Generations 706

Another limitation is enforcing the diversity in the 707

generated data. This diversity comes from both the 708

“style” and the “knowledge” contained in the gener- 709

ated data. Recent works (Li et al., 2023b,c) used a 710

selection of topics, or scenarios to seed the model 711

to generate novel texts. Still, a recent study by Pad- 712

makumar et al. (2023) showed that using language 713

models for AI-assisted writing tends to reduce con- 714

tent diversity, particularly when using instruction- 715

tuned models. While we used the paradigm of 716

rephrasing specifically to mitigate the issues per- 717

taining to the diversity of novel content generation, 718

it remains for future work to assess the presence 719

(or lack of) and impact of content diversity in para- 720

phrase models. 721
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A Dataset Details1164

A.1 Training Dataset1165

The primary pretraining corpus in our experiments1166

is Colossal Clean Crawled Corpus (C4), a curated1167

English text dataset comprising over 170 billion to-1168

kens. This corpus is derived from CommonCrawl,1169

a common practice in the pretraining of LLMs1170

(Brown et al., 2020; Raffel et al., 2020; Touvron1171

et al., 2023). This data source is also prominently1172

featured in openly available LLM pretraining cor-1173

pora, including The Pile (Gao et al., 2020) and1174

RedPajama (Computer, 2023). There are different1175

versions of CommonCrawl data and our selection1176

of C4 for pretraining is driven by driven by its size1177

and quality.1178

We also compare with pre-training on the Re-1179

fined Web corpus (Penedo et al., 2023). The1180

dataset is also derived from the CommonCrawl,1181

however has a more stringent filtering process. Our1182

selection of Refined Web is for comparing syn-1183

thetic rephrases to high quality subsets of web1184

data, which were shown to achieve similar per-1185

formance compared with curated datasets (Penedo1186

et al., 2023). For our experiments we used the first1187

3050 files and train for 300B tokens to match train-1188

ing on C4. We aso conduct experiments with the1189

first 1650 files to account for multiple epochs on1190

the Refined Web dataset.1191

A.2 Pile Perplexity Evaluation1192

For the evaluation phase, we employed 20 sub-1193

sets from the Pile corpus. We excluded the Eu-1194

roparl subset because it contained non-English lan-1195

guage. The subsets used are: CC, StackExchange,1196

Wikipedia, GitHub, PubMed Abstracts, Open-1197

webtext2, Freelaw, Math, NIH, USPTO, Hack-1198

ernews, Enron, Books3, PubMed Central, Guten-1199

berg, Arxiv, Bookcorpus2, Opensubtitles, Youtube-1200

subtitles, Ubuntu, and Philpapers. We take the first1201

10000 samples from each subset and split into doc-1202

uments of maximum length 1024. The reported1203

average in all perplexity plots is a weighted aver-1204

age over the perplexity of all domains according to1205

the ratios in Table 3.1206

A.2.1 Pile Weighted Average Ratios1207

We report the ratios for samples according to the1208

first 10,000 documents from our Pile validation set1209

in Table 3. Note that there are some slight varia-1210

tions in the ratios compared with those reported in1211

(Gao et al., 2020), but most ratios are similar.1212

Dataset Our Ratio (%) Ratio (%)
ArXiv 10.4 9.0
BookCorpus2 0.8 0.8
Books3 11.8 12.1
Pile-CC 14.0 18.11
Enron 0.1 0.1
EuroParl 1.1 0.7
FreeLaw 5.3 6.1
Github 10.9 7.6
Gutenberg 1.5 2.2
Hackernews 0.6 0.6
Dm Mathematics 2.0 1.2
NIH 0.2 0.3
OpenSubtitles 1.3 1.6
OpenWebText2 8.2 10.0
PhilPapers 0.7 0.4
PubMed Abstracts 0.7 3.1
PubMed Central 14.9 14.4
StackExchange 5.8 5.1
Ubuntu 1.3 0.9
USPTO 2.7 3.7
Wikipedia 3.4 1.5
YoutubeSubtitles 0.6 0.6

Table 3: Pile ratios for our evaluation compared with
published ratios.
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A.3 Zero-shot Evaluation Dataset1213

We evaluate our models on a total of 13 differ-1214

ent zero-shot benchmarks to assess their abilities1215

across various natural language tasks. These bench-1216

marks are categorized into two subsets: Specialized1217

Knowledge and General Understanding.1218

Specialized Knowledge This subset comprises1219

datasets that focus on domain-specific knowledge1220

and expertise.1221

• ARC Challenge (ARC-C): This dataset1222

is part of the AI2 Reasoning Challenge1223

(ARC) (Clark et al., 2018), containing science1224

exam questions from grades 3 to 9. The ARC1225

Challenge set includes more difficult ques-1226

tions that necessitate higher-order reasoning.1227

• SciQ: A dataset of science exam questions,1228

specifically designed to evaluate the ability of1229

NLP models in understanding and reasoning1230

within the scientific domain (Johannes Welbl,1231

2017).1232

• PubMedQA: This dataset focuses on biomed-1233

ical literature and is designed to evaluate1234

the understanding of medical and healthcare-1235

related information (Jin et al., 2019).1236

• MathQA: This dataset challenges models1237

in mathematical problem-solving, requiring1238

both numerical understanding and reasoning1239

skills (Amini et al., 2019).1240

• MMLU: Multi-domain question answering,1241

MMLU assesses the model’s expertise over1242

a wide range of specialized subjects, from1243

professional domains to academia (Hendrycks1244

et al., 2021).1245

General Understanding This subset contains1246

datasets that test general cognitive skills, language1247

understanding, and common sense reasoning.1248

• ARC Easy (ARC-E): The Easy set of the AI21249

Reasoning Challenge (Clark et al., 2018) fea-1250

tures questions from the same source as ARC-1251

C but are considered less challenging and do1252

not require as advanced reasoning skills.1253

• BoolQ: A dataset consisting of boolean1254

(yes/no) questions, focusing on reading com-1255

prehension and general understanding of nat-1256

ural language text (Clark et al., 2019).1257

• Winogrande (Wino.): This dataset chal- 1258

lenges models on common sense reasoning 1259

in a language context, focusing on pronoun 1260

disambiguation tasks (Sakaguchi et al., 2021). 1261

• PIQA: Physical Interaction Question Answer- 1262

ing tests the understanding of everyday physi- 1263

cal processes, an aspect of practical common 1264

sense (Bisk et al., 2020). 1265

• HellaSwag: This dataset evaluates a model’s 1266

ability to complete scenarios in a contextually 1267

and logically coherent manner, requiring both 1268

language understanding and common sense 1269

reasoning (Zellers et al., 2019). 1270

• TruthfulQA: Focused on the generation of 1271

truthful, accurate answers, this dataset chal- 1272

lenges models on their ability to discern and 1273

reproduce factually correct information (Lin 1274

et al., 2021). 1275

• OpenBookQA (OBQA): OpenBookQA re- 1276

quires understanding a wide array of facts 1277

and concepts, thereby evaluating the model’s 1278

broader knowledge and reasoning skills (Mi- 1279

haylov et al., 2018). 1280

• LogiQA-2: This dataset involves logical rea- 1281

soning, testing the model’s capability to un- 1282

derstand and apply logical constructs and prin- 1283

ciples (Liu et al., 2023b). 1284

Each dataset in these subsets is carefully selected 1285

to challenge and evaluate specific aspects of natural 1286

language processing models, ranging from domain- 1287

specific knowledge in science, medicine, and math- 1288

ematics, to broader skills like common sense rea- 1289

soning and general language understanding. 1290

B Filtering Details for Synthetic Data 1291

When generating synthetic paraphrases using lan- 1292

guage models, we occasionally encounter the chal- 1293

lenge of extraneous introductions in the generated 1294

outputs. Such paraphrases might commence with 1295

phrases like "Here’s a paraphrase...", "The follow- 1296

ing..." or even contain keywords such as "high- 1297

quality English". To mitigate this, we’ve developed 1298

a method to filter and refine the synthetic outputs. 1299

B.1 Methodology 1300

The primary function, remove_unwanted_part, 1301

starts by splitting the input data into individual 1302

sentences. If the first sentence contains delimiters 1303
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such as "\n\n" (indicating a new paragraph) or ":",1304

the function checks the segment preceding the de-1305

limiter for the aforementioned unwanted elements.1306

If these elements are detected, the preceding seg-1307

ment is removed. The entire revised content is1308

then reconstructed and returned. In cases where1309

no modifications are applicable, but we still have1310

the flagged keywords, we remove the paraphrase1311

completely. To achieve this:1312

1. Split the input data into individual sentences1313

using the NLTK’s sentence splitter function.1314

2. Examine the first sentence for the presence of1315

delimiters.1316

3. If a delimiter is detected, check the preceding1317

segment for unwanted elements.1318

4. If unwanted elements are found, discard the1319

preceding segment (before an occurrence of1320

"\n\n" or ":").1321

5. Modify and return the filtered paragraph.1322

Based on manual inspection we found that the1323

error rate (occurrence of sentences with unwanted1324

elements) after the modification is less than 0.1%.1325

C Properties of Synthetic Corpus1326

To understand the properties of synthetic data gen-1327

erated from the rephrase model that lead to better1328

pre-training performance, we compare the seman-1329

tic similarity, syntactic complexity, and diversity1330

between synthetic data, C4 data, and data from the1331

Pile. Our primary focus is answering the follow-1332

ing questions about synthetic data: (i) Do models1333

trained on synthetic data perform better due to in-1334

formation leakage from the rephrase model? (ii)1335

Does the rephrase model accurately capture mul-1336

tiple styles? (iii) What attributes of synthetic data1337

make it high quality? Our investigation helps ad-1338

dress what data is beneficial for better generaliza-1339

tion to specific domains, and quantify the impor-1340

tance of data variability and quality.1341

C.1 Experimental Setup1342

We take a subset of the first 1000 documents from1343

each of the datasets. For synthetic comparisons1344

with real C4 data, we take pairs of samples, while1345

for Pile subsets, we take the first 1000 samples1346

from the test subset. When computing dataset qual-1347

ity statistics, we remove outliers more than two1348

standard deviations in metric value. When the num- 1349

ber of samples from the Pile subset was fewer than 1350

1000, we split samples. Figures with distributions 1351

use a Gaussian Kernel Density Estimator (KDE) 1352

to construct distributions for statistics from 1000 1353

values. 1354

C.2 Semantic Properties 1355

In Section 6, we compared pairs of examples of 1356

synthetic and real data to confirm the performance 1357

gain is not attributed to knowledge leakage from the 1358

rephrase models using a pre-trained BERT model 1359

trained with SimCSE objective (Gao et al., 2021) 1360

for medium and qa prompts in Figure 5(a) and (b). 1361

We additionally compare the similarity of synthetic 1362

rephrases and actual rephrases using the MRPC 1363

corpus in Figure 6(c). We denote this additional 1364

comparison by RealP (real paraphrase), while main- 1365

taining comparison of splits of the sentence: R1 1366

and R2. Synthetic rephrases have similar cosine 1367

similarity on average and lower spread compared 1368

with true rephrases according in the MRPC corpus. 1369

As the semantic information is similar between 1370

C4 and our synthetic data, we further investigate 1371

stylistic differences in the data. Figure 7(a) shows 1372

the Flesch–Kincaid reading levels for different 1373

rephrase styles, and the Pile. Our findings indi- 1374

cate that C4 is on the low end of reading level (7-8). 1375

In contrast, medium increases the reading level to 1376

10, and qa synthetic variants further reduces the 1377

reading level to 6. Medium synthetic data matches 1378

the reading level of Wikipedia, and other high read- 1379

ing level datasets yielding better performance on 1380

these domains. On QA synthetic data, we observe 1381

reduced reading level. This is because we observed 1382

that sentences are typically split into question and 1383

answer leading to shorter setnences compared with 1384

in the original text and medium style rephrases. 1385

This leads to lower metric values for many of the 1386

metrics. For type token ratio, we note that the di- 1387

versity is quite similar between medium and most 1388

subsets of the Pile. The QA dataset has particularly 1389

low TTR matching ubuntu, github, and math as 1390

these are more similar to QA format datasets and 1391

have heavy repetition of the Question, and Answer 1392

format. 1393

C.3 Syntactic Properties 1394

Finally, we compare the mean tree depth (mea- 1395

sured by the mean over setences of the depth of the 1396

dependency tree), and mean dependency distance 1397

(measured as the average dependency distance of 1398
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Figure 7: Comparison of readability and diversity (ttr) of synthetic data compared with C4 and different subsets of
the Pile.

any pair of words within a sentence) in Figure 8,1399

which have been shown to be good measures of syn-1400

tactic difficulty (Futrell et al., 2015; Gibson et al.,1401

2000; Oya, 2021). We find similar trends as for1402

reading level and TTR diversity where mediums1403

tyle increase depth, mdd, and syntactic complexity1404

in general. We find again that QA style reduces1405

this complexity.1406

D Evaluation Metrics1407

The metric utilized for evaluation is the macro to-1408

ken level perplexity. Given a batch of encoded texts,1409

the perplexity at the token level was computed as1410

follows:1411

Given the accumulated loss over the entire1412

dataset, denoted as L, and the total number of1413

tokens, represented by T , the macro token-level1414

perplexity, denoted as P , is calculated as:1415

P = exp

(
min

(
20,

L

T

))
(3) 1416

Where: 1417

• exp is the exponential function. 1418

• L is the cumulative loss over all shifted logits 1419

and labels in the dataset. 1420

• T is the total number of tokens in the dataset. 1421

The value of 20 acts as an upper limit to stabilize 1422

the metric in cases of high loss values. 1423

E Limitations 1424

E.1 Cost Analysis 1425

Should you generate synthetic data, or just train 1426

longer on real data? 1427
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Figure 8: Comparison between synthetic and real data from the C4 corpus showing that synthetic data have higher
syntactic complexity indicated by higher average tree depth, and higher mean dependency distance (MDD).

The applications of WRAP lies in both1428

paradigms—(i) low-resourced data settings such as1429

a language model for Finnish language (Luukko-1430

nen et al., 2023), and (ii) data-rich settings such as1431

training on the common crawl. In the former, there1432

is no alternative option of naively gathering more1433

data, and hence, synthetic data is a natural solu-1434

tion that should outperform training on in-domain1435

data alone. However, there is a significant interest1436

in training language models on English, or more1437

broadly, general web data. Is using synthetic data a1438

viable option even in this paradigm?1439

Before, we dive into the feasibility of pre-1440

training on synthetic data, we should acknowl-1441

edge the results of Table 1. The TinyLlama model1442

trained for 3 Trillion tokens also underperforms a1443

model jointly trained on real and synthetic data. In1444

fact, it performs quite comparably to the models1445

that were trained for 300B tokens on just real data1446

as well. This suggests that the ceiling for improve-1447

ment by training for longer may not be that high1448

(for a model of size 350M/1.3B parameters; larger1449

models may benefit from training for longer).1450

To analyze this cost trade-off, we compare the1451

cost of generating synthetic data, versus that of1452

training a language model on extra data. For our1453

synthetic data generation experiments, we use the1454

vLLM (Kwon et al., 2023) library for fast gener-1455

ation. In particular, we are able to generate 3M1456

tokens per hour on a single A100 when using the1457

Mistral-7B. Generating 85B tokens (as in our work)1458

accounts for about 25K GPU hours.1459

In comparison, on 64 A100s, we achieve a1460

throughput of 0.5M tokens per second. Assuming1461

training for 300B tokens, would mean 256 GPU1462

days, accounting for about 6k GPU hours to train1463

a single model. On the contrary, training a 13B1464

model would take about 30K GPU hours. At the1465

scale of training a 13B model, reducing the training1466

cost by 3-10x can incorporate the cost overhead of 1467

training with synthetic data in a single run. 1468

While the cost of generating high quality data 1469

is still relatively high, two important sources of 1470

improvement impact this cost analysis. First, if we 1471

use the Qwen-1.8B model (Bai et al., 2023b) for 1472

rephrasing, we are able to get a 3x higher token 1473

throughput. As seen in our preliminary results in 1474

Fig 3, the model pre-trained on rephrases generated 1475

by Qwen model performs comparably to that by 1476

the Mistral model. This reduces the cost of gen- 1477

eration by 3x. More recent work in speculative 1478

decoding (Liu et al., 2023c) and optimized infer- 1479

ence (Xia et al., 2024) suggest that we can leverage 1480

another 3-5x improvement in the generation cost. 1481

Hence, indeed, even at the scale of just 1.3B param- 1482

eter model training, we can already improve upon 1483

the cost of pre-training using just real data. 1484

Two additional important advantages of syn- 1485

thetic data generation that could not be accounted 1486

for in the discussion above: 1487

1. The cost of synthetic data generation is a one- 1488

time investment, and we may train many mod- 1489

els of varying scales once the data is gener- 1490

ated. 1491

2. Data generation is 100% parallelizable, 1492

whereas training requires the availability of a 1493

big cluster with fast inter-node connectivity. 1494

This is much more expensive. On the other 1495

hand, generation can be thought of as a side 1496

process that can fill in the empty GPUs in 1497

any large-scale compute cluster, and runs on 1498

single GPU machines. 1499

E.2 Diversity of Synthetic Generations 1500

Another limitation is enforcing the diversity in the 1501

generated data. This diversity comes from both the 1502

18



“style” and the “knowledge” contained in the gener-1503

ated data. Recent works (Li et al., 2023b,c) used a1504

selection of topics, or scenarios to seed the model1505

to generate novel texts. Still, a recent study by Pad-1506

makumar et al. (2023) showed that using language1507

models for AI-assisted writing tends to reduce con-1508

tent diversity, particularly when using instruction-1509

tuned models. While we used the paradigm of1510

rephrasing specifically to mitigate the issues per-1511

taining to the diversity of novel content generation,1512

it remains for future work to assess the presence1513

(or lack of) and impact of content diversity in para-1514

phrase models.1515

F Additional Results for Smaller Model1516

and Token Sizes1517

F.1 Results for 350M Models Trained for 75B1518

Tokens1519
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Figure 9: Perplexity across all domains of the Pile com-
paring combining multiple styles of synthetic data. Mod-
els are 350M parameters trained for a total of 75B to-
kens.

We train models at smaller scales and demon-1520

strate improvement. In particular we train a 350M1521

GPT-2-medium architecture for a total of 75B to-1522

kens. We show Pile perplexity averaged across1523

the 21 domains is much lower than for that of the1524

model trained only on C4 in Figure 9, and even1525

lower than 1.3B models trained only on C4 in Fig-1526

ure 1c. We also show an increase of 2% across1527

general understanding language tasks, and roughly1528

2− 3% on specialized knowledge tasks in Table 41529

when adding QA rephrases. We also experimented1530

with medium rephrases at this smaller scale. Our1531

findings indicate that the high quality provided by1532

medium rephrases improves performance over only1533

C4, however matching the style as indicated by1534

QA rephrase performance further improves perfor-1535

mance.1536

F.2 Results for 1.3B Models Trained for 150B 1537

Tokens 1538

We additionally train 1.3B GPT-2-XL models at 1539

150B tokens, reducing the number of steps by half. 1540

We show Pile perplexity averaged across the 20 1541

domains is much lower than for that of the model 1542

trained only on C4 in Figure 10, and even lower 1543

than 1.3B models trained only on C4 in Figure 1c 1544

for twice as long. We also show an increase of 2% 1545

across specialized knowledge tasks, and roughly 1546

2% on general understanding tasks in Table 5 when 1547

adding QA rephrases. We also experimented with 1548

medium rephrases at this smaller scale, and report 1549

similar findings consistent with other small-scale 1550

experiments. 1551

Av
er

ag
e

W
ik

i
O

W
T2

B
oo

ks
2

B
oo

ks
Ar

Xi
v

St
ac

kX
G

ith
ub

M
at

h
H

N
ew

s
E

nr
on

Pu
bm

ed
-C

U
bu

nt
u

Pu
bm

ed
-A

Fr
ee

La
w

N
IH

U
SP

TO
PG

-1
9

Ph
il

Yo
ut

ub
e

O
pe

nS
ub

s
C

C

0

20

40

60
Pe

rp
le

xi
ty

C4-150B
C4-35B
C4+QA-35B
C4+Med-35B

Figure 10: Perplexity across all domains of the Pile
comparing combining multiple styles of synthetic data.
Models are 350M parameters trained for a total of 75B
tokens.

G Ablations 1552

We further ask the following Research Questions 1553

(RQs) to investigate in a finer granularity for how 1554

to enhance performance with synthetic data. 1555

G.1 Data Combination Analysis 1556

RQ4: Does a combination of multiple synthetic 1557

datasets improve performance? We measure 1558

the impact of combining multiple synthetic styles 1559

with C4 for training. We consider two variants: 1560

combining in a 1:1 ratio meaning that there are two 1561

copies of C4 to match two synthetic styles (medium 1562

and QA), and 1:2 ratio which combines only one 1563

instance of the C4 dataset. For zero-shot QA tasks, 1564

our finding in Table 6 indicate lower performance 1565

than combining only QA and C4 data. Evaluations 1566

over the Pile are shown in Figure 11. We notice 1567

that both the ‘Q/A’ and ‘Wikipedia’ paraphrases 1568

help improve performance on certain domains. For 1569

example, ‘Stackexchange’, that has lots of question- 1570

answers benefits from the presence of synthetic 1571
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Dataset (Real Tok.) ARC-E BoolQ Wino. PIQA HellaSwag TruthfulQA OBQA LogiQA Avg

C4-18B 43.7 52.8 53.0 70.1 43.9 37.8 29.6 26.5 44.7
C4-75B 43.9 53.4 51.6 71.2 44.2 39.0 29.6 25.7 44.8
QA+C4-18B 47.3 60.7 52.2 71.2 44.6 40.0 31.0 26.3 46.7
Med+C4-18B 43.6 57.3 53.6 70.8 43.4 36.9 31.0 26.2 45.4

Dataset (Real Tok.) ARC-C SciQ PubMedQA MathQA MMLU Avg

C4-18B 25.3 66.6 50.6 22.0 23.1 37.5
C4-75B 24.3 66.8 46.4 22.1 23.0 36.5
QA+C4-18B 27.3 69.8 56.0 21.4 22.9 39.5
Med+C4-18B 6.1 67.6 53.6 21.7 23.1 38.4

Table 4: Medium Sized Model Evaluation: (Left) Evaluation of 350M parameter LLMs trained for 75B tokens
on General understanding Tasks. This table shows the performance across various datasets, focusing on general
reasoning, language understanding, and common sense comparing training. (Right) Evaluation Specialized Knowl-
edge Tasks. This table presents the performance on tasks that require specific domain knowledge such as science,
medicine, mathematics, and logic.

Dataset (Real Tok.) ARC-E BoolQ Wino. PIQA HellaSwag TruthfulQA OBQA LogiQA Avg

C4-35B 51.6 55.2 56.1 75.2 58.2 36.0 33.6 27.8 49.2
C4-150B 52.2 54.4 56.4 75.6 58.6 34.3 35.8 27.1 49.3
Med+C4-35B 53.2 57.0 55.7 74.8 57.6 36.5 33.2 26.2 49.3
QA+C4-35B 55.1 63.3 55.7 75.6 57.9 41.4 34.0 26.1 51.1

Dataset (Real Tok.) ARC-C SciQ PubMedQA MathQA MMLU Avg

C4-35B 28.0 74.3 55.0 22.0 24.3 40.7
C4-150B 28.5 75.8 55.4 22.6 25.4 41.5
Med+C4-35B 29.6 74.3 46.2 22.9 25.2 39.6
QA+C4-35B 30.3 76.8 62.2 23.0 26.1 43.7

Table 5: Left) Evaluation of ∼ 1.3B parameter LLMs trained for 150B tokens on General Understanding Tasks.
This table shows the performance across various datasets, focusing on general reasoning, language understanding,
and common sense comparing training . Right Evaluation on Specialized Knowledge Tasks. This table presents the
performance on tasks that require specific domain knowledge such as science, medicine, mathematics, and logic.
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Figure 11: Combining multiple styles: Perplexity
across all domains of the Pile comparing combining
multiple styles of synthetic data. Models are 1.3B pa-
rameters trained for a total of 150B tokens. We see
small perplexity improvements from combining multi-
ple styles.

data in Q/A style. Overall, we note that there is a1572

small improvement on the average perplexity on1573

the Pile by combining multiple styles.1574

G.2 Method Ablations1575

RQ5: Does synthetic data improve over augmen-1576

tations? Are the gains observed by pre-training1577

on synthetic data the same as pre-training with aug-1578

mentations? In order to test this, we consider two1579

popular text augmentation baselines—synonym1580

replacement and random deletion using the NL-1581

Augmenter library (Dhole et al., 2021). We pre-1582

train a 350M parameter model for 15B tokens in1583

order to conduct this set of experiments. The to-1584

tal pool size is only about 1.5B tokens, meaning1585

that the model would have to repeat data around1586

10 times during the pre-training phase, unless aug-1587

mented over. As seen in the perplexity analysis1588
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Figure 12: Is re-phrasing same as any augmenta-
tion? We compare perplexity on the Pile for different
augmemntation strategies. 350M parameter models are
trained for a total of 15B tokens. WRAP (Medium +
C4) performs significantly better than traditional aug-
mentations.

in Figure 12, the models trained on augmented 1589

data perform significantly worse than those trained 1590

on combinations of real and synthetic data. This 1591

suggests that synthetic data enhances the learning 1592

process, and is not merely another form of augmen- 1593

tation. 1594

RQ6: How does the style of synthetic data im- 1595

pact performance on specialized domains? We 1596

compare the performance of various models trained 1597

on different styles of synthetic data. In particu- 1598

lar, we generate four styles of synthetic data (easy, 1599

medium, hard, and Q/A) and evaluate the perfor- 1600

mance of training on combinations of each style 1601

across Pile subsets. The prompts to generate these 1602

synthetic data styles are outlined in Appendix I. Re- 1603

sults corresponding to generations from a Vicuna- 1604

v1.3 model, and for a 128M model trained for 3B 1605

tokens are summarized in Figure 13. We see that 1606

20



Dataset (Real Tok.) ARC-E BoolQ Wino. PIQA HellaSwag TruthfulQA OBQA LogiQA Avg

Med+C4-35B 53.2 57.0 55.7 74.8 57.6 36.5 33.2 26.2 49.3
QA+C4-35B 55.1 63.3 55.7 75.6 57.9 41.4 34.0 26.1 51.1
Combined-1:1-35B 53.7 60.2 57.7 75.1 56.9 40.2 34.2 26.3 50.5
Combined-1:2-35B 54.3 62.0 57.0 75.6 58.2 39.5 36.2 25.4 51.0

Dataset (Real Tok.) ARC-C SciQ PubMedQA MathQA MMLU Avg

Med+C4-35B 29.6 74.3 46.2 22.9 25.2 39.6
QA+C4-35B 30.3 76.8 62.2 23.0 26.1 43.7
Combined-1:1-35B 30.9 77.1 61.2 23.0 23.9 43.2
Combined-1:2-35B 29.6 76.7 57.4 23.6 23.1 42.1

Table 6: Combining multiple styles: (Left) Evaluation of ∼ 1.3B parameter LLMs trained for 150B tokens on
General Understanding Tasks. (Right) Evaluation of the same model on Specialized Knowledge Tasks. Results
suggest that combining rephrasing styles does not yield performance benefit on zero-shot tasks compared to just
Q/A style.
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Figure 13: Impact of style of synthetic rephrases:
Perplexity across all domains of the Pile comparing dif-
ferent styles of synthetic data. We train 128M parameter
models for 3B tokens.

training with combinations of real C4 and synthetic1607

data matching the style of the domain at evalu-1608

ation improves performance. However, we find1609

that no single synthetic data style performs the1610

best across all domains, resulting in similar perfor-1611

mance across training with combinations of real C41612

data and each synthetic style variant. While know-1613

ing the best synthetic style to pre-train an LLM is1614

impractical, an oracle that selects the best synthetic1615

style across all domains will improve perplexity by1616

16%—indicating the importance of training with1617

diverse data styles for LLM generalization, even1618

when the underlying knowledge stays the same.1619

H LLM Leaderboard Few-shot Results1620

In our main experiments in Section 4 we demon-1621

strate that LLMs trained with synthetic rephrases1622

are a better backbone for zero-shot question-1623

answering tasks as the model learns the question-1624

answer format and style during pre-training. In1625

this section, we show that improvements from pre-1626

training on synthetic rephrases are still present even1627

in few-shot settings where the model has access1628

to test samples. To study few-shot performance,1629

we evaluate on six tasks present in the OpenLLM-1630

Leaderboard2:1631

2https://huggingface.co/spaces/HuggingFaceH4/
open_llm_leaderboard

1. ARC-Challenge (25 shot) 1632

2. HellaSwag (10 shot) 1633

3. MMLU (5 shot) 1634

4. Truthful-QA (5 shot) 1635

5. Winogrande (5 shot) 1636

6. GSM8k (5 shot) 1637

We evaluate two models trained for 300B and 1638

350B tokens corresponding to roughly 85B and 1639

100B unique C4 tokens respectively. Our find- 1640

ings show substantial improvements on the ARC- 1641

challenge benchmark, and Truthful-QA conssitent 1642

in the zero-shot settings and comparable perfor- 1643

mance across other datasets. Our models also per- 1644

form better than the publicly released Falcon-1.3B 1645

model trained on the Refined Web dataset, and the 1646

Pythia-1.4B model, which was trained on Pile. 1647
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Dataset ARC Hellaswag MMLU TruthfulQA WinoGrande GSM8K Avg

C4 31.7 62.1 26.7 33.4 57.9 0.9 35.5
Falcon-RW 35.1 63.6 25.3 36.0 62.0 0.5 37.1
Pythia-1.4b-Pile 32.7 55.0 25.6 38.7 57.3 0.8 35.0
TinLlama 33.9 60.3 26.0 37.3 59.5 1.4 36.4

QA+C4-85B (300K) 36.4 60.9 25.5 40.6 59.4 0.4 37.2
QA+C4-100B (350K) 35.5 60.5 26.8 40.6 61.3 0.3 37.5

Table 7: 1.3B 300K LLM Leaderboard Eval. Evaluation for WRAP is done on a single seed (1234).
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I Rephrase Prompt Templates 1648

We detail the prompts given to the Mistral-7B model to generate synthetic versions of the C4 dataset in 1649

specific styles. Note: there are slight variations in the prompt that were used for other frozen LLMs, and 1650

no prompt was used for the T5 model. 1651

Easy Style 1652

A style designed to generate content understandable by toddlers. 1653

A chat between a curious user and an artificial intelligence assistant. The
assistant gives helpful, detailed, and polite answers to the questions. USER:
For the following paragraph give me a paraphrase of the same using a very small
vocabulary and extremely simple sentences that a toddler will understand:

1654

Hard Style 1655

A style designed to generate content comprehensible primarily to scholars using arcane language. 1656

A chat between a curious user and an artificial intelligence assistant. The
assistant gives helpful, detailed, and polite answers to the questions. USER:
For the following paragraph give me a paraphrase of the same using very terse
and abstruse language that only an erudite scholar will understand. Replace
simple words and phrases with rare and complex ones:

1657

Medium Style 1658

A style designed to generate content comparable to standard encyclopedic entries. 1659

A chat between a curious user and an artificial intelligence assistant. The
assistant gives helpful, detailed, and polite answers to the questions. USER:
For the following paragraph give me a diverse paraphrase of the same in high
quality English language as in sentences on Wikipedia:

1660

Q/A Style 1661

A style intended to convert narratives into a conversational format. 1662

A chat between a curious user and an artificial intelligence assistant. The
assistant gives helpful, detailed, and polite answers to the questions. USER:
Convert the following paragraph into a conversational format with multiple tags
of "Question:" followed by "Answer:":

1663
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J Rephrase Examples from the MRPC Corpus1664

Original1665

The stock rose $2.11, or about 11 percent, to close Friday at $21.51 on the
New York Stock Exchange.

Revenue in the first quarter of the year dropped 15 percent from the
same period a year earlier.

1666

Medium Style1667

The stock experienced an increase of approximately 11 percent, closing at
$21.51 on the New York Stock Exchange on Friday, with a rise of $2.11.

During the initial three months of the current year, there was a 15
percent decrease in revenue compared to the corresponding quarter of the
previous year.

1668

Q/A Style1669

Question: What was the stock’s closing price on Friday? Answer: $21.51
Question: How much did the stock rise on Friday? Answer: $2.11 or about 11
percent.

Question: What was the revenue drop in the first quarter compared to
the same period last year? Answer: The revenue dropped 15 percent.

1670
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K Rephrase Examples from C4 Corpus 1671

Original 1672

First round on stress at work survey. Answering the questionnaire is voluntary
and all answers will be saved anonymously. Please fill in this questionnaire
only if you have some work experience, part-or full time. Otherwise, you will
not be able to answer some of the questions! Here is a the link to all language
version.

1673

Not that there’s a thing wrong with frozen burgers. The key here is the meat
seasonings, which are pretty strong and spicy and just GOOD, something else I
think is really necessary in a turkey burger because ground turkey otherwise
can be kind of flavorless. You’ll need ground turkey, onion powder, chili
powder, salt, pepper, and cayenne pepper for the burgers. Then the mayo takes
garlic and onion. Then we need buns, clearly, swiss cheese, lettuce, and onion.
I LOVE tomatoes but sometimes find that they get in the way of other flavors,
so I left them off of this burger. Add them if you’d like to your array of
toppings! First, we’ll make the mayo. Grate the garlic directly into the mayo,
add a pinch of salt, and squeeze in the lemon juice. Stir. Done! I love this.
Then, we’ll work on the burgers. Preheat a large skillet to medium-high heat
with some olive oil, preheat the broiler to high, then add all the spices to
the ground turkey.

1674

Whether you like your velvet crushed, vibrant or head-to-toe, there’s really
no denying the sheer luxe and elegance of this timeless textile. Not only is it
super stylish, it can actually be so wearable for day-to-day wear. Yes, really!
This year it’s all about embracing fun gem-toned velvety pieces. Long gone are
the days when velvet was solely associated with dark moody shades of navy and
black. Below we’ve rounded up the most covetable velvet pieces on the high
street right now. We’re already coming up with outfit ideas! Are you completely
obsessed or beyond bored of it?

1675

Save up to $8,086 on one of 1,258 Chrysler 200s near you. Find your perfect car
with Edmunds expert and consumer car reviews, dealer reviews, car comparisons
and pricing tools. We have 4,850,420. Research 2015 Chrysler 200 Sedan 4D
200C I4 prices, used values & 200 Sedan 4D 200C I4 pricing, specs and more.
Many years ago, we wrote about the stalling problem with the 2011 Chrysler
200, and believe it or not, we still receive an occasional call regarding the
problem.However, a much larger issue has monopolized the phone lines as of
late 2015 Chrysler 200 transmission problems leaving drivers with check engine
lights, harsh shifting, and the occasional loss of power. The 2015 Chrysler
200 can fetch a premium for its style and its horsepower–but rear-seat room
and handling are better bargains elsewhere. Find out why the 2015 Chrysler
200 is rated 8.4 by The. Don’t know where to find the perfect rims for your
2015 Chrysler 200 CARiD.com stores a massive selection of 2015 Chrysler 200
wheels offered in myriads of design and finish options, including chrome, black,
silver, and so much more.

1676
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Medium Style1677

In the initial stage of the survey on work-related stress, participation is
optional, and all responses will be kept confidential. It is important to note
that only those with work experience, whether part-time or full-time, will be
able to accurately respond to certain questions. To complete the questionnaire,
please use the following link, which is available in multiple languages.

1678

Frozen burgers are not inherently flawed, but the meat seasonings are a crucial
element that elevates the flavor of the dish. Ground turkey can be quite bland
without the right blend of spices, so it is essential to add onion powder,
chili powder, salt, pepper, and cayenne pepper to the mixture. Additionally,
garlic and onion should be used in the mayonnaise, which is necessary for the
burger’s topping. To make the mayo, grate the garlic directly into the mixture,
add a pinch of salt, and squeeze in lemon juice. Mix well. The mayonnaise is
a delicious addition to the burger topping. Now, let’s work on the burgers.
Heat a large skillet over medium-high heat with some olive oil, and preheat
the broiler to high. Add the seasonings to the ground turkey and mix well. The
burgers should be cooked on the skillet for about 5 minutes on each side, then
transferred to the broiler to cook for an additional 2-3 minutes. The burgers
are ready to be assembled on buns, along with swiss cheese, lettuce, and onion.
Tomatoes can be added as a topping, but they may overpower other flavors. It is
up to the individual to decide if they want to include them in their burger. In
conclusion, frozen burgers can be tasty, but the meat seasonings are essential
to add depth and flavor to the dish. The mayonnaise and toppings can also be
customized to suit individual preferences.

1679

The luxurious and elegant nature of velvet cannot be denied, whether it is
crushed, vibrant, or head-to-toe. This timeless textile is not only fashionable
but also wearable for daily wear. In recent years, there has been a shift towards
embracing fun gem-toned velvety pieces, breaking away from the traditional
association of velvet with dark moody shades of navy and black. Below are some
of the most desirable velvet pieces available on the high street today, and we
are already envisioning outfits around them. Are you completely enamored with
velvet or simply beyond bored with it?

1680

Discover savings up to $8,086 on one of 1,258 Chrysler 200s near you. Get expert
and consumer car reviews, dealer reviews, car comparisons, and pricing tools
from Edmunds. We have 4,850,420 listings for 2015 Chrysler 200 Sedan 4D 200C I4
prices, used values, and more. While we wrote about the stalling problem with
the 2011 Chrysler 200, we still receive occasional calls regarding the issue.
However, a more significant issue has taken over the phone lines recently -
2015 Chrysler 200 transmission problems that leave drivers with check engine
lights, harsh shifting, and occasional loss of power. Despite the premium price
for its style and horsepower, rear-seat room and handling are better bargains
elsewhere. The 2015 Chrysler 200 is rated 8.4 by The Car Connection. If you’re
looking for the perfect rims for your 2015 Chrysler 200 CARiD.com offers a vast
selection of 2015 Chrysler 200 wheels in various design and finish options,
including chrome, black, silver, and more.

1681
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Q/A Style 1682

Question: Is participating in the stress at work survey mandatory? Answer: No,
it is voluntary. Question: Will all answers be saved anonymously? Answer: Yes,
they will. Question: Who is eligible to take the questionnaire? Answer: Only
individuals with work experience, whether part-time or full-time. Question:
What happens if someone is not eligible to take the questionnaire? Answer: They
will not be able to answer some of the questions. Question: Can you provide a
link to all language versions of the questionnaire? Answer: Yes, here is the
link.

1683

Question: What makes these frozen burgers so good? Answer: The meat seasonings
are strong and spicy, and they give the burgers a good flavor. Question: Do
you think ground turkey can be flavorless? Answer: Yes, ground turkey can
be flavorless, but adding spices and seasonings can help. Question: What do
you need to make these turkey burgers? Answer: Ground turkey, onion powder,
chili powder, salt, pepper, and cayenne pepper for the burgers. Then the mayo
takes garlic and onion. Buns, swiss cheese, lettuce, and onion are also needed.
Question: What about toppings? Answer: Add tomatoes if you’d like to your array
of toppings. Question: How do you make the mayo? Answer: Grate the garlic
directly into the mayo, add a pinch of salt, and squeeze in the lemon juice.
Stir. Done! Question: How do you work on the burgers? Answer: Preheat a large
skillet to medium-high heat with some olive oil, preheat the broiler to high,
then add all the spices to the ground turkey.

1684

Question: What do you think of velvet? Answer: Whether you like your velvet
crushed, vibrant or head-to-toe, there’s really no denying the sheer luxe and
elegance of this timeless textile. Question: Is velvet super stylish? Answer:
Yes, really! This year it’s all about embracing fun gem-toned velvety pieces.
Question: Was velvet solely associated with dark moody shades of navy and
black? Answer: Long gone are the days when velvet was solely associated with
dark moody shades of navy and black. Question: Do you have any covetable
velvet pieces on the high street right now? Answer: Below we’ve rounded up the
most covetable velvet pieces on the high street right now. Question: Are you
completely obsessed or beyond bored of it? Answer: We’re already coming up with
outfit ideas!

1685
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Question: How can I save money on a Chrysler 200? Answer: Save up to $8,086
on one of 1,258 Chrysler 200s near you. Find your perfect car with Edmunds
expert and consumer car reviews, dealer reviews, car comparisons and pricing
tools. Question: What are the problems with the 2015 Chrysler 200? Answer:
We have 4,850,420. Research 2015 Chrysler 200 Sedan 4D 200C I4 prices, used
values & 200 Sedan 4D 200C I4 pricing, specs and more. Many years ago, we
wrote about the stalling problem with the 2011 Chrysler 200, and believe it
or not, we still receive an occasional call regarding the problem. However, a
much larger issue has monopolized the phone lines as of late 2015 Chrysler 200
transmission problems leaving drivers with check engine lights, harsh shifting,
and the occasional loss of power. Question: What are the benefits of buying a
2015 Chrysler 200? Answer: The 2015 Chrysler 200 can fetch a premium for its
style and its horsepower–but rear-seat room and handling are better bargains
elsewhere. Question: How is the 2015 Chrysler 200 rated? Answer: It’s rated 8.4
by The. Question: Where can I find the perfect rims for my 2015 Chrysler 200?
Answer: CARiD.com stores a massive selection of 2015 Chrysler 200 wheels offered
in myriads of design and finish options, including chrome, black, silver, and
so much more.

1686
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