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Abstract. Cone-beam computed tomography (CBCT) has become an invaluable
imaging modality in dentistry, enabling 3D visualization of teeth and surrounding
structures for diagnosis and treatment planning. Automated segmentation of den-
tal structures in CBCT can efficiently assist in identifying pathology (e.g., pulpal
or periapical lesions) and facilitate radiation therapy planning in head and neck
cancer patients. We describe the DLaBella29 team’s approach for the MICCAI
2025 ToothFairy3 Challenge, which involves a deep learning pipeline for multi-
class tooth segmentation. We utilized the MONAI Auto3DSeg framework with
a 3D SegResNet architecture, trained on a subset of the ToothFairy3 dataset (63
CBCT scans) with 5-fold cross-validation. Key preprocessing steps included im-
age resampling to 0.6 mm isotropic resolution and intensity clipping. We applied
an ensemble fusion using Multi-Label STAPLE on the 5-fold predictions to infer
a Phase 1 segmentation and then conducted tight cropping around the easily seg-
mented Phase 1 mandible to perform Phase 2 segmentation on the smaller nerve
structures. Our method achieved an average Dice of 0.87 on the ToothFairy3
challenge out-of-sample validation set. This paper details the clinical context,
data preparation, model development, results of our approach, and discusses the
relevance of automated dental segmentation for improving patient care in radia-
tion oncology.
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1 Introduction

Cone-beam computed tomography (CBCT) has revolutionized dental imaging over the
past two decades, overcoming the limitations of 2D panoramic radiography and provid-
ing accurate multiplanar visualization of maxillofacial structures (1-3). CBCT’s ability
to produce high-resolution 3D images enables improved detection of dental patholo-
gies. Notably, the most common pathologic conditions involving teeth, inflammatory
lesions of the pulp and periapical areas, can be visualized more reliably with CBCT
than with conventional radiographs (3). Lesions confined to cancellous bone that might
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be missed on intraoral X-rays are often evident on CBCT, leading to greater diagnostic
accuracy, as shown by Jaju et al, where CBCT detected periapical lesions with ~61%
accuracy vs ~39-44% for digital or film radiographs (3). Such 3D information is clini-
cally valuable for endodontic evaluation and treatment planning, allowing clinicians to
assess the true extent of pulp chamber infections, periapical cysts, or granulomas and
to plan surgical interventions accordingly. The broad adoption of dental CBCT reflects
its utility in implantology, orthodontics, and oral surgery, as well as in baseline dental
evaluations for oncology patients (2).

In patients with head and neck cancer, dental health management before and after
radiation therapy (RT) is critical (4,5). Irradiation can compromise oral health by re-
ducing salivary flow and blood supply to the jaws, leading to higher risk of dental car-
ies, periodontal disease, and osteoradionecrosis (ORN) of the jaw (6). ORN, a severe
complication where irradiated bone fails to heal, has an incidence of roughly 1-9% in
RT patients and occurs much more frequently in the mandible (~85% of cases) than the
maxilla (6). The risk of ORN is strongly dose-dependent, rising from <6% at doses
below 40 Gy to >20% at doses above 60 Gy (6). Clinical practice guidelines therefore
recommend proactive dental management: for example, teeth anticipated to receive
very high radiation doses may be extracted prophylactically (common thresholds are
>70 Gy in the maxilla or >60 Gy in the mandible for considering extraction) to prevent
ORN (7). Even with such measures, post-RT dental extractions or infections can pre-
cipitate ORN, so accurately mapping radiation dose to each tooth is important in pre-
dicting risk. Per the classic Marx protocol, hyperbaric oxygen is used as an adjunct
around dental surgery in irradiated jaws, typically ~20 pre-extraction and 10 post-ex-
traction sessions at ~2.4 times atmospheric pressure for 90 min, and for established
ORN as staged therapy beginning with ~30 sessions followed by limited debridement
and ~10 additional dives to promote angiogenesis and wound healing (8).

In current practice, radiation oncologists and dental specialists collaborate to evalu-
ate teeth in or near high-dose regions using CT imaging and clinical exam. However,
this process is largely manual and qualitative. Automated tooth segmentation on plan-
ning CBCT scans could greatly enhance this workflow by providing precise tooth con-
tours for dose-effect analysis (6). Prior work by Thariat et al. introduced an atlas-based
auto-segmentation of dental structures (“Dentalmaps’), demonstrating that using auto-
matically segmented teeth to estimate per-tooth radiation dose was significantly more
accurate (within 2 Gy in 75% of cases) than visual estimation without contours (within
2 Gy in only 30% of cases) (6). Such tools improve communication between radiation
oncologists and dentists and help identify teeth at highest risk for complications (6).

The MICCAI ToothFairy3 Challenge was organized to advance fully automated,
multi-class segmentation of dental and maxillofacial structures in CBCT volumes (9—
12). The challenge dataset provides 3D CBCT scans with detailed annotations of 77
anatomical labels, including all teeth (with individual tooth identifiers), dental restora-
tions, pulp canals, nerves, and surrounding tissues (9—12).
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In this paper, we present our team’s approach and results in the ToothFairy3 Chal-
lenge 2025. We aimed for a solution that is robust and computationally efficient, lev-
eraging the MONAI Auto3DSeg framework to automatically configure a deep neural
network for the task (13). We describe our data preparation (focusing on a subset of the
training data with full dental field-of-view), model training with 5-fold cross-validation,
Multi Label STAPLE ensemble fusion method, post-processing techniques, and crop-
ping of an initial “Phase 1” prediction to perform a focused “Phase 2” inference for
final predictions on the smaller nerve structures. We also discuss the clinical relevance
of the results and how such automated segmentations can be integrated into radiation
therapy planning to help reduce dental complications.

2 Methods

2.1 Dataset Selection

Phase 1 Dataset

We utilized the ToothFairy3 challenge training dataset, which consists of 532 CBCT
scans annotated with 77 substructure classes (9—12). Due to region of interest (ROI)
and training time considerations, we restricted “Phase 1” training from the entire pro-
vided set to just the “Set B” subset, comprising 63 CBCT image-label pair cases as seen
in Figure 1A. This subset has a broader scanning range (head CBCT images capturing
all teeth) compared to “Set A” (n=417) and “Set C” (n = 52) from the full dataset, that
were cropped and frequently missing challenge evaluated substructures. Each “Set B”
image had an isotropic voxel size of approximately 0.3 mm?, a median voxel volume
of [168, 362, 371], and was provided with a corresponding segmentation label map for
a subset of the 77 substructures. The 77 substructure classes in the challenge provided
dataset were consolidated into 46 substructures as described by the challenge organizers
(12). This full-sized dataset was used for initial training of a Phase 1 multi-class auto-
mated segmentation model.

Phase 2 Dataset

We cropped the full-sized Phase 1 dataset image and reference standard label pairs to a
ROI around the mandible (label = 1). The ROI was determined based on the reference
standard mandible label by identifying the point (X, y, z) representing the most anterior
voxel for the mandible, then expanding laterally (x) by -110 and +110 voxels (ensuring
staying within boundaries of full-sized image); then expanding posteriorly (y) by +100
voxels; then expanding superiorly from the most inferior mandibular point by 90
voxels. The final result of this cropping is demonstrated in Figure 1B. Note that this
reduced the total Phase 2 image sizes by about 60 times compared to the full-sized
Phase 1 images, dramatically reducing the image data needed to be evaluated during
Phase 2 model training.

All image and labels files were provided as de-identified and standardized Neuroim-
aging Informatics Technology Initiative (NIfTT) format.
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Fig. 1. Panel A demonstrates an example of an unaltered, ToothFairy3, “Set B”, Phase 1 train-
ing set case 3D multi-label representation demonstrating the majority of challenge substruc-
tures. Note that the brown “Crown” structure in in place of multiple teeth for this case. Panel B
demonstrates an example of the corresponding cropped Phase 2 training set case 3D multi-label
representation, which isolates the region of interest surrounding the Right Incisive Nerve, Left
Incisive Nerve, and Lingual Nerve.

2.2 Preprocessing and Label Conversion

For Phase 1 alone, we resampled all CBCT images to a uniform resolution of [0.6, 0.6,
0.6] mm? isotropic spacing to standardize the input size for the network and to account
for hardware memory and processing speed limitations for the larger image sizes seen
with native resolution of [0.3, 0.3, 0.3] mm?. Intensity values (in Hounsfield Units)
were clipped to [-1000, 3800] for both Phase 1 and Phase 2, which encompasses the
range from air to the highest densities of enamel/metal artifacts in the scans. We also
applied systematic label remapping to simplify the segmentation task. In the original
challenge labels, certain structures had high integer label values or were subdivided
into many small categories (for example, each tooth’s pulp cavity was labeled sepa-
rately with IDs 111-148). We merged these into a consolidated label set for model train-
ing. Specifically, all pulp and periapical lesion labels were collapsed into a single
“pulp” class, and the incisive and lingual canals (original labels 103-105) were re-in-
dexed to fit within the 0-46 range (while preserving distinct labels for evaluation, back-
ground = 0). The remapping reduced sparsely represented classes and ensured that the
network’s output channel count did not skip any integer label values, to align with
Auto3DSeg requirements. After conversion, the training label maps included: back-
ground, 32 individual tooth labels (upper and lower teeth 1-16), the mandibular and
maxillary jaw bone, dental restorations (implants, crowns, bridges; none included in
challenge ranking metrics), bilateral inferior incisive nerves, alveolar canals, the lingual
nerve, maxillary sinuses, pharynx, and a combined pulp category.
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2.3  Model and Training

We adopted the Auto3DSeg automated segmentation pipeline implemented in MONALI
which streamlines model configuration and hyperparameter tuning (13,14). The chosen
backbone model was SegResNet, a 3D residual UNet-like convolutional network
known to perform well in medical image segmentation challenges (14,15). Auto3DSeg
initialized a SegResNet with default encoder-decoder structure and optimized training
settings based on our data. The encoder used five ResNet blocks with instance normal-
ization, and the downsampling included five stages with 1, 2, 2, 4, and 4 convolutional
blocks, respectively, similar to our prior experience (16). We sectioned the training
and inference into two phases.

Phase 1

We trained the Phase 1 model for 500 epochs on the 63 full-sized training images and
associated reference standard multi-class labels, as seen in Figure 1A, using a random
5-fold cross-validation (each fold held out ~20% of cases for validation). The training
objective was a combined Dice + Cross-Entropy loss (implemented as DiceCELoss in
MONALI, with equal weighting) computed over all foreground classes. Notably, we ex-
cluded background voxels from the Dice term to focus the loss on meaningful struc-
tures. We enabled automatic mixed precision (AMP) to accelerate training, and used a
batch size of 1 (one 3D volume per GPU iteration) and a region of interest (ROI) size
of [192, 192, 128] due to memory and time constraints. Data augmentation included
random intensity scaling and shifting, and slight rotations, as configured by
Auto3DSeg’s defaults, to improve generalization. Random flipping data augmentation
was specifically disabled to prevent inaccurate training of contralateral dental substruc-
tures. The learning rate of 0.0003 had a weight decay of 0.00005 with the use of the
AdamW optimizer. Data caching and the use of multiple workers was not able to be
performed due to repeated crashing during model training due to RAM, CPU, and I/O
overload. All model training was conducted on a single NVIDIA RTX 4090 GPU
(24 GB of VRAM available), but only utilized approximately 8 GB of VRAM during
training. These decisions were made due to the longer training times and more frequent
training crashes associated with using larger networks and ROIs associated with larger
available VRAM utilization. Each fold’s training took approximately 6-10 hours. Our
use of a single-GPU workstation contrasts with some recent Auto3DSeg challenge so-
lutions that leveraged multi-GPU servers (8 x A40 GPUs) that performed more folds
using different networks including Swin UNETR and DiNTS (15,17,18). In our meth-
odology, we focused on the single SegResNet model approach due to resource limita-
tions; thereby accepting a longer training time, smaller ROI sizes, and smaller SegRes-
Net network structures. This decision was made due to the superior performance of
SegResNet compared to Swin UNETR and DiNTS as described by Myronenko et al

(15).

Phase 2
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Phase 2 included training on the cropped version of the Phase 1 images and associated
reference standard labels that focus on a small region of interest surrounding the diffi-
cult to infer lingual nerve as seen in Figure 1B. These identical expansions were used
during the Phase 2 inference stage. Phase 2 training was similar to Phase 1, except for
an ROI of [221, 101, 91] voxels and no resampling to [0.6, 0.6, 0.6] mm?3. The VRAM
used was limited to 3 GB. The purpose for retaining with the [0.3, 0.3, 0.3] mm? higher
resolution images was to try and segment the small nerve structures which have a very
small tubular diameter.

2.4 Inference and Ensemble Fusion

First, we ran inference with each of the 5-fold SegResNet Phase 1 models on each
test CBCT, yielding five candidate label maps. We then applied a label fusion algorithm
to combine these outputs into one consensus segmentation. In particular, we used the
Multi-Label Simultaneous Truth and Performance Level Estimation (STAPLE) (19).
STAPLE is an expectation-maximization algorithm that weighs each input segmenta-
tion by its estimated accuracy and computes a probabilistic “true” segmentation (19).
We chose STAPLE because it is well-suited for fusing multiple label maps and can
handle the multi-class nature of our problem (via an extension to Multi-Label
STAPLE). The five model outputs were given to the STAPLE filter implemented in
SimpleITK, which produced a fused label map.

After STAPLE ensemble was performed, we converted any aberrant class predic-
tions touching the larynx (label = 7) to the larynx. We also removed any mandible in-
stance lesions that had a volume less than 200,000 voxels, which would indicate false
positive instance lesions. Figures 1-3 illustrates our overall Phase 1 workflow, from
preprocessing the input CBCT to generating the final ensembled segmentation. Figure
4 represents the cropped ROI for Phase 2 inference as described in section 2.3. Phase 2
inference was conducted similarly to the steps seen in Phase 1 inference, except for the
use of a set of five different cross-validation models that were trained on the cropped
dataset as shown in Figure 1B. Note that Figures 1-4 represent an in-sample case from
Fold 1, and therefore give an artificially high inference performance appearance. Due
to the small number of selected training set cases (n = 63), no “Set B” cases were left
out-of-sample for internal testing for quantitative or qualitative analysis prior to chal-
lenge submission. This was to done to try and create the most generalizable model pos-
sible from the largest training set possible.
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Fig. 2. Axial CBCT images demonstrating that during Phase 1 training and inference, we first
preprocess the input CBCT using resampling of native resolution of about [0.3, 0.3, 0.3] mm?
to consistent [0.6, 0.6, 0.6] mm?3 for all cases.
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Fig. 3. For Phase 1 inference, we apply the trained SegResNet models to predict multi-class la-
bel maps (folds 1-5) and convert back to the native image resolution as seen in these 3D multi-
label representations. Note that this is an in-sample validation case from training fold 1 (top
left). Therefore folds 2-5 (top middle, top right, bottom left, bottom right) had this case in the
training sets and had artificially high performance during this inference sanity check.

Fig. 4. Predictions from the five Phase 1 cross-validation models are ensembled using Multi-
Label STAPLE to produce the Phase 1 final ensembled segmentation as seen in this 3D multi-
label representation.
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Fig. 5. Axial CBCT image (A) and a 3D (B) multi-label representation demonstrating cropping
of the Phase 1 ensembled segmentation (Figure 3) performed by identifying the point (x, y, z)
representing the most anterior voxel for the easily segmented mandible, then expanding later-
ally (x) by -110 and +110 voxels; then expanding posteriorly (y) by +100 voxels; then expand-
ing superiorly from the most inferior mandibular point by 90 voxels. This was used to predict

the Left Incisive Nerve, Right Incisive Nerve, and Lingual Nerve during Phase 2 inference.

3 Results

We evaluated our approach through 5-fold cross-validation on the training set and on
the held-out validation set of the ToothFairy3 Challenge (12). Table 1 summarizes the
5-fold cross-validation performance for the challenge evaluated structures for each fold.

Table 1. Cross-validation results and the training set’s average volume for each substructure

evaluated within the ToothFairy3 challenge dataset.

Number of Average
Class ID Structure Cases Volume Fold | Fold | Fold | Fold | Fold Mean
Structure (mm?) 1 2 3 4 5
Present

0 Background — — — — — — — —

1 Lower Jawbone 63 46822 0.977 1 0.979 | 0.981 | 0.968 | 0.98 0.977
2 Upper Jawbone 61 12145 0.941 | 0.924 | 0.944 | 0.946 | 0.932 | 0.941
3 Left Inferior Alveolar Canal 63 410 0.793 | 0.809 | 0.825 | 0.793 | 0.837 | 0.793
4 Right Inferior Alveolar Canal 63 422 0.746 | 0.797 | 0.833 | 0.704 | 0.838 | 0.746
5 Left Maxillary Sinus 44 1494 0.937 | 0.956 | 0.896 | 0.95 | 0.921 | 0.937
6 Right Maxillary Sinus 42 1524 095 | 0972 | 0.933 | 0.958 | 0.92 0.95
7 Pharynx 63 22689 0.975 | 0.974 | 0.974 0.9 0.975 | 0.975
11 Upper Right Central Incisor 59 486 0.96 | 0.829 | 0.959 | 0.955 | 0.964 0.96
12 Upper Right Lateral Incisor 57 347 0.952 | 0.832 | 0.959 | 0.953 | 0.955 | 0.952
13 Upper Right Canine 58 534 0.957 | 0.866 | 0.967 | 0.959 | 0.964 | 0.957
14 Upper Right First Premolar 55 466 095 | 0.819 | 0.779 | 0.945 | 0.937 0.95
15 Upper Right Second Premolar 50 452 0.839 | 0.802 | 0.89 | 0.933 | 0.905 | 0.839
16 Upper Right First Molar 51 901 0.854 | 0.963 | 0913 | 0.83 | 0.828 | 0.854
17 Upper Right Second Molar 50 799 0.793 | 0.964 | 0.907 | 0.929 | 0.803 | 0.793

Upper Right Third Molar
18 (Wisdom Tooth) 2% 637 0.844 | 0.956 | 0.953 | 0.754 | 0.935 | 0.844
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21 Upper Left Central Incisor 57 481 0.961 | 0.881 | 0.966 | 0.951 | 0.964 | 0.961
22 Upper Left Lateral Incisor 59 340 0.948 | 0.803 | 0.961 | 0.935 | 0.956 | 0.948
23 Upper Left Canine 59 539 0.937 | 0.872 | 0.968 | 0.936 | 0.964 | 0.937
24 Upper Left First Premolar 57 466 0.954 0.8 0.837 | 0.913 | 0.89 0.954
25 Upper Left Second Premolar 53 444 0.908 | 0.816 | 0.842 | 0.957 | 0.871 | 0.908
26 Upper Left First Molar 54 905 0.827 | 0.952 | 0.907 | 0.945 | 0.872 | 0.827
27 Upper Left Second Molar 53 799 0.868 | 0.915 | 0913 | 0.893 | 0.901 | 0.868
Upper Left Third Molar
28 (Wisdom Tooth) 29 608 0.886 | 0.964 | 0.959 | 0.718 | 0.953 | 0.886
31 Lower Left Central Incisor 59 236 0.928 | 0.944 | 0.961 | 0.943 | 0.944 | 0.928
32 Lower Left Lateral Incisor 61 282 0.937 | 0.952 | 0.964 | 0.872 | 0.952 | 0.937
33 Lower Left Canine 60 475 0.948 | 0.972 | 0.959 | 0.879 | 0.965 | 0.948
34 Lower Left First Premolar 59 389 0.842 | 0.965 | 0.915 | 0.958 | 0.964 | 0.842
35 Lower Left Second Premolar 55 425 0.921 | 0.959 | 0.932 | 0.942 | 0.857 | 0.921
36 Lower Left First Molar 40 915 0.822 | 0.843 | 0.834 | 0.962 | 0.896 | 0.822
37 Lower Left Second Molar 50 869 0.82 | 0.748 | 0.95 | 0.959 | 0.957 0.82
Lower Left Third Molar
38 (Wisdom Tooth) 37 780 0.943 | 0.951 | 0.927 | 0.956 | 0.942 | 0.943
41 Lower Right Central Incisor 60 237 0.941 | 0.957 | 0.962 | 0.945 | 0.944 | 0.941
42 Lower Right Lateral Incisor 60 281 0.941 | 0.937 | 0.958 | 0.867 | 0.952 | 0.941
43 Lower Right Canine 59 474 0.959 | 0.937 | 0.957 | 0.845 | 0.968 | 0.959
44 Lower Right First Premolar 59 381 0.945 | 0.857 | 0.818 | 0.962 | 0.962 | 0.945
45 Lower Right Second Premolar 55 436 0.893 | 0.735 | 0.871 | 0.933 | 0.958 | 0.893
46 Lower Right First Molar 45 809 0.78 | 0.735 | 0.846 | 0.883 | 0.882 0.78
47 Lower Right Second Molar 44 857 0.728 | 0.857 | 0.948 | 0.765 | 0.916 | 0.728
Lower Right Third Molar
48 (Wisdom Tooth) 36 309 0.873 | 0.783 | 0.967 | 0.833 | 0.87 0.873
50 Tooth Pulp 61 588 0.785 | 0.79 | 0.812 | 0.775 | 0.772 | 0.785
51 Left Incisive Nerve 58 19 0 0 0.524 | 0.559 | 0.507 | 0.318
52 Right Incisive Nerve 55 17 0 0 0 0.528 0 0.106
53 Lingual Nerve 60 8 0 0 0 0 0 0
Phase 1
Mean All Phase 1 Substructures 63 — 0.832 | 0.822 | 0.864 | 0.863 | 0.867 | 0.850
%51 Left Incisive Nerve
Phase 2 58 19 0.689 | 0.663 | 0.702 | 0.697 | 0.691 | 0.688
%59 Right Incisive Nerve
Phase 2 55 17 0.660 | 0.651 | 0.648 | 0.669 | 0.673 | 0.665
%53 Lingual Nerve
Phase 2 60 8 0.680 | 0.691 | 0.677 | 0.674 | 0.682 | 0.681
Col\r/[nblned Phase 1 Substructures Except 63 o N/A N/A N/A N/A N/A 0.879
ean Phase 2 Nerves

Each fold’s validation Dice was computed as the average Dice across all predicted
structures in that fold’s validation cases (averaging per-case Dice, weighted equally per
class). The scores per fold were relatively consistent, in the range 0.822-0.867. The
mean Dice over all folds was approximately 0.850 for these single-model approaches.
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We observed that larger structures (teeth and jaw) were segmented with higher accuracy
(Dice ~0.977 for mandible), whereas smaller structures like incisive nerves and lingual
nerve were more challenging (Dice 0.0-0.318) during Phase 1, lowering the overall
Phase 1 average. Table 1 shows the relationship between 5-fold cross-validation aver-
age Dice performance for Phase 1 and Phase 2 substructures vs the average volume of
the substructures. Note that the Phase 2 inference successfully improved the perfor-
mance of the Lingual Nerve Dice from 0.0 to 0.681, the Left Incisive Nerve Dice from
0.318 to 0.688 and the Right Incisive Nerve Dice from 0.106 to 0.665. Figure 5 shows
the 5-fold cross-validation average Dice trend during the Phase 1 training process.

50 100 150 200 250 300 350 400 450

Run 1 Smoothed Value Step Relative
L ] segresnet_0/model 0.8052 0.8052 499 5.804 hr
® segresnet_1/model 0.7851 0.7819 443 6.562 hr
[ ] segresnet_2/model 0.8349 0.8349 459 9.897 hr
segresnet_3/model 08319 0.832 499 7.332hr
® segresnel_4/model 0.8283 0.8283 499 7.598 hr

Fig. 6. Line plot demonstrating the Phase 1 total training time and validation average dice trends

during 5-fold cross validation training since the first validation evaluation conducted at epoch 9
of 500 planned epochs. Note that the second fold (segresnet 1) crashed during epoch 444 of 500.

For the final evaluation on the challenge’s out-of-sample validation set, our two-
phase ensemble approach achieved an overall average Dice of 0.87. This aggregate
performance is slightly higher than the cross-validation mean, which is expected due to
the usage of the Multi Label STAPLE ensemble technique, post-processing to clean up
the mandible and pharynx labels, and Phase 2’s focus on improving the smaller nerve
substructures. According to the ToothFairy3 challenge results as of 8/14/25, our method
ranked in the upper half of submissions during the debugging/validation phase, indicat-
ing potential competitive performance during the final testing phase (12). Qualitatively,
the automated segmentations aligned well with the reference standard labels for most
structures for in-sample validation cases, as illustrated in Figure 3.

The model accurately delineated individual teeth including molar and premolar
crowns and roots, even in presence of moderate metal artifacts from dental fillings on
in-sample validation qualitative and quantitative analysis. Minor qualitative discrepan-
cies were observed in areas of poor image quality, around metal implants or crowns
causing streak artifacts, and the model occasionally missed small portions of a tooth or
misclassified an artifact as part of a tooth. Note that the substructure labels referring to
the Bridge, Crown, and Implants were not evaluated in the ToothFairy3 challenge rank-
ing metrics, and thus are not reported in this study.
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4 Discussion

Our challenge submission demonstrates that a light-weight two phase Auto3DSeg
framework can produce competitive results for complex multi-class segmentation of
dental CBCT scans. By leveraging MONAI’s Auto3DSeg framework, we minimized
the need for manual network design and hyperparameter tuning. This is particularly
useful given the large number of classes (dozens of distinct structures) and the class
imbalance inherent in the ToothFairy3 dataset. Larger structures (teeth, jaws) domi-
nate the volume, whereas tiny structures (like canals and nerves) occupy far fewer
voxels as shown in Table 1. The substructure results demonstrate performance corre-
lating with structure volume as shown in Table 1.

The lower Dice for very small classes (nerves) from single phase models on lower
resolution [0.6, 0.6, 0.6] mm? data suggests room for improvement. One possible ex-
tension would be additional-phases cropping around specific dental substructures
(nerves or pulp) relative to their position to confidently segmented structures (mandi-
ble or teeth), similar to our method for focusing on the nerves. This could refine the
segmentation of additional fine structures (tooth specific pulp) that a single-phase
model might overlook. Notably, this study was successful in improving Lingual
Nerve Dice from 0.0 to 0.681, the Left Incisive Nerve Dice from 0.318 to 0.688 and
the Right Incisive Nerve Dice from 0.106 to 0.665 after utilizing this multi-phasic
cropping-inference with higher resolution of [0.3, 0.3, 0.3] mm? approach. Due to
time limitations, additional substructure focused phases beyond our nerve-focused
Phase 2 phase were not able to be conducted in the present study.

Another point of discussion is the benefit of ensemble fusion using STAPLE (19).
The STAPLE algorithm is advantageous in that it accounts for each model’s reliability
and is theoretically more robust than a simple majority vote or average in cases of sys-
tematic bias (19). In our unreported qualitative analysis of the out-of-sample “Set A”
and “Set C” test case’s inference using STAPLE vs single fold model predictions,
STAPLE tended to produce cleaner segmentation borders, especially in areas of uncer-
tainty (for instance, if one fold’s model slightly over-segmented a tooth and another
fold’s model under-segmented it, STAPLE often found a middle ground). This resulted
in fewer false positives like isolated tooth fragments. However, STAPLE also intro-
duced a bit of smoothing; occasionally upon qualitative analysis, a tiny structure that
only one model detected (e.g. a small root tip fragment) was dropped in the fused result
if the other models missed it. In future work, a possible improvement could be to in-
corporate test-time augmentation or to weight models differently for different subsets
of structures (if one model is known to handle nerves better, for example).

An additional strategy to improve on the limited “Set B” dataset consisting of only
63 cases would be to double the size of this dataset by flipping the images and labels
laterally along the y/z plane, then swapping all of the label values for the left/right sub-
structures. This differs from standard random flipping data augmentation, since this
also modifies the reference standard labels themselves to their contralateral substructure
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label values. This was not performed in this study due to time and training time con-
straints.

From a clinical perspective, the relevance of accurate tooth segmentation in head
and neck radiotherapy is significant. With automated segmentation, we can generate
dose-volume metrics for each tooth in a patient’s radiation plan, something that is im-
practical to do manually for dozens of teeth. These per-tooth dose metrics could facili-
tate communication between the oncology and dental team to best inform personalized
dental management. For instance, if the model identifies that a particular molar is in a
70 Gy region, the care team might opt for an extraction or intensive prophylactic dental
care prior to RT (7). Alternatively, post-radiation, an oral surgeon may reconsider plac-
ing an implant into a heavily irradiated region of bone. Conversely, teeth receiving
lower doses could be preserved and monitored, avoiding unnecessary extractions. In
the long term, the data generated by automated segmentation across many patients
could feed into predictive models for ORN or radiation-related dental caries. Previous
studies have shown that pre-RT dental care, guided by imaging and dose considerations,
can reduce complication rates (5). Automation will make it easier to apply such guide-
lines consistently. Additionally, our segmentation includes not just the teeth, but also
critical adjacent structures (mandible, maxilla, nerves, pulp). This could aid in detection
of any anatomic variations, such as an aberrant mandibular canal course, or more re-
fined dose-volume metrics that surgeons and radiation oncologists, respectively, should
be aware of when planning interventions (1,3).

One challenge worth noting is the image quality variability in CBCT. Dental CBCT
scans often suffer from cone-beam artifacts and scatter, especially in the presence of
metal. Our model was trained on the provided dataset, which included typical artifacts,
and seemed to generalize across them to an extent. But in cases with extremely poor
image quality (e.g., motion blurring or extensive metal streaks), performance may de-
grade. A potential mitigation strategy is to incorporate metal artifact reduction algo-
rithms or to train the model on simulated artifact-augmented data. Another limitation is
that our model did not explicitly differentiate between permanent teeth and dental im-
plants or prosthetic teeth, if present, implants were segmented as generic tooth struc-
tures. For radiation planning, this is acceptable, but for dental-specific applications one
might want to identify implants separately. The challenge dataset did have a class for
implants; however, because it was rare, our model sometimes confused an implant with
a tooth root. More targeted training or class weighting could address this in future work.
However, as noted earlier, these Bridge, Crown, and Implant structures were not in-
cluded in the ToothFairy3 challenge ranking metrics.

5 Conclusion

We have developed a two-phase 3D multi-class automated segmentation algorithm for
dental CBCT images as part of the MICCAI ToothFairy3 Challenge 2025. Our method
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combined the ease-of-use of Auto3DSeg with a robust Multi Label STAPLE ensemble
of'a 3D SegResNet model, followed by tight cropping around small and hard to segment
substructures. With relatively modest hardware (single GPU, RTX 4090, VRAM re-
quirements < 8 GB), we achieved accurate segmentation of 43 anatomical structures
with an overall Dice of 0.87 on the challenge validation set. This performance ap-
proaches that of human expert contours for many structures and exceeds earlier atlas-
based methods in this domain (5,6). The outcome demonstrates that modern deep learn-
ing models can handle the complexity of full-mouth dental segmentation in CBCT,
provided that careful preprocessing and training strategies are employed.

Moving forward, we plan to refine the model to further boost accuracy on clinically
important substructures, and to integrate the segmentation output into a pipeline for
radiation dose analysis in patients with larger field of view head and neck cancer CT
simulation scans. The ultimate goal is to deploy such technology in the clinical work-
flow for head and neck oncology, for example, generating automatic dental reports that
flag high-dose teeth and quantify patient-specific risk factors for ORN. With continued
improvements, automated tooth segmentation can become a valuable tool to personal-
ize and improve supportive care for patients receiving radiotherapy.

Data Availability. Our code for all pre-processing, training, and post-processing are available as
open-source at GitHub: dlabella29/ToothFairy25, to facilitate reproducibility and further re-
search by the community. We hope that this work contributes to bridging the gap between com-
puter-assisted dental imaging and practical clinical decision-making, enhancing outcomes in den-
tal and radiation oncology.
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