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Abstract

Hallucination, i.e., generating factually incor-
rect content, remains a critical challenge for
large language models (LLMs). We introduce
TOHA', a TOpology-based HAllucination de-
tector in the RAG setting, which leverages a
topological divergence metric to quantify the
structural properties of graphs induced by at-
tention matrices. Examining the topological
divergence between prompt and response sub-
graphs reveals consistent patterns: higher di-
vergence values in specific attention heads cor-
relate with hallucinated outputs, independent
of the dataset. Extensive experiments — in-
cluding evaluation on question answering and
summarization tasks — show that our approach
achieves state-of-the-art or competitive results
on several benchmarks while requiring minimal
annotated data and computational resources.
Our findings suggest that analyzing the topo-
logical structure of attention matrices can serve
as an efficient and robust indicator of factual
reliability in LLMs.

1 Introduction

Large language models (LLMs) have progressed
significantly in recent years, finding applications
in various fields (Chkirbene et al., 2024). How-
ever, these models are prone to generate so-called
hallucinations, i.e., content that is factually or con-
textually incorrect (Huang et al., 2023). Detecting
hallucinations is crucial for safely deploying LLMs
in sensitive fields since erroneous outputs may seri-
ously harm user trust. An effective detector would
therefore expand the scope of LLM applications
while mitigating risks (Gao et al., 2024).

Multiple methods address this problem (Huang
et al., 2023; Sahoo et al., 2024), though many
face significant practical constraints. A com-
mon limitation is the reliance on large annotated
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Figure 1: Difference between average topological di-
vergence values for hallucinated and grounded samples
per attention head/layer, evaluated on MS MARCO and
CoQA datasets. A lighter color corresponds to a greater
difference. Green frames highlight the heads that sep-
arate samples best. The same attention heads assign
greater divergence values to the hallucinated samples in
both datasets. Model: Mistral-7B-Instruct-v0.1.

datasets (Sky et al., 2024; Azaria and Mitchell,
2023; Chuang et al., 2024), which are rarely avail-
able publicly (Zhang et al., 2023) and require exten-
sive annotation effort for each new model released.
Another popular approach depends on generating
multiple samples for scoring (Manakul et al., 2024;
Chen et al., 2024; Farquhar et al., 2024), which
increases computational costs substantially.

We address these challenges by introducing
TOHA (TOpology-based HAllucination detector),
a training-free method for the retrieval-augmented
generation (RAG) setting (Gao et al., 2023). Fol-
lowing the prior work (Du et al., 2024), TOHA
requires minimal annotated data (just 50 annotated
samples suffice for reliable detection, see Figure 4)
while avoiding the computational overhead of mul-
tiple generations, making it both data- and compute-
efficient.

The core insight behind TOHA is that halluci-
nated answers tend to have weaker connections to
the context than grounded ones in the RAG set-
ting. TOHA formalizes this by analyzing attention
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graphs — complete graphs induced by LLM at-
tention maps, a representation previously used in
other NLP tasks (Kushnareva et al., 2021; Tulchin-
skii et al., 2023). Unlike prior works that rely
on simplistic classifiers over basic graph proper-
ties (Proskurina et al., 2023a; Cherniavskii et al.,
2022), TOHA advances the approach by computing
the topological dissimilarity between the attention
subgraphs of the model’s response and the given
context. This dissimilarity, measured via our adap-
tation of Manifold Topology Divergence (Baran-
nikov et al., 2021) for the graph setting, quantifies
the “strength” of context-response ties: higher val-
ues indicate weaker links and thus likely halluci-
nations. We prove key stability properties for this
metric, ensuring its reliability as a hallucination
score.

Through analysis of divergence patterns across
different heads, we identified a subset of atten-
tion heads that consistently assign higher diver-
gence scores to hallucinated samples (see Figure 1),
revealing their implicit “awareness” of hallucina-
tions. TOHA utilizes the average divergence values
from these specific heads as hallucination scores.
Crucially, these heads exhibit consistent behavior
across different datasets, enabling strong transfer-
ability of our method.

Our main contributions can be summarized the
following:

* We propose TOHA, a training-free method
based on the topological divergences of at-
tention graphs. While efficient — TOHA
operates up to an order of magnitude faster
than methods of comparable quality and re-
quires minimal annotated data — our method
demonstrates strong in-domain performance
and maintains domain transferability across
different tasks.

* The existence of hallucination-aware atten-
tion heads is discovered: calculating topolog-
ical divergences from just six specific heads
is enough for reliable hallucination detection,
irrespective of the dataset.

* Our experiments show TOHA consistently
matches or exceeds state-of-the-art perfor-
mance on all benchmarks when applied to
modern open-source LLMs of varying scales
(7B to 13B parameters).

2 Background

2.1 Attention matrix as a weighted graph

Modern LLMs are mainly based on the self-
attention mechanism, introduced in (Vaswani et al.,
2017). Let X € R™ be a matrix consist-
ing of d-dimensional representations of n tokens,
Wq, Wk, Wy € R?*4 be trainable projection ma-
trices. Given a set of queries () = XWg € R™*d,
a set of keys K = XWg € R™¥? and corre-
sponding values V' = Xy € R"*%, the attention
mechanism calculates a weighted sum of the values
as follows:

Attention(Q, K, V) =W(Q,K)V, (1)

where W (Q, K) is an attention matrix

T
and each entry wj;; in it captures how strongly token
7 attends to token j, ¢ > j for a decoder, with larger
wj; indicating closer relationship.

An attention matrix W can be reframed as a
complete weighted graph G where tokens are ver-
tices and weights w;; represent the strength of con-
nections between them. From the perspective of
topological data analysis, however, it is more conve-
nient to consider these weights as pseudo-distances
rather than correlation measures. Hence, we re-
assign the edge weights of such a graph to equal
1 — wjj, creating what we call attention graphs.

In the generation process, the vertices of such
graphs naturally partition into two distinct subsets:
prompt tokens P and response tokens 12 generated
by the model (see Figure 2b). This split allows us
to analyze the topological relationships between
input and output content.

W = softmax <

2.2 Manifold Topology Divergence

One way to compare two data manifolds, M and
N, approximated by point clouds M and N is the
MTop-Div(M, N) topological measure (Baran-
nikov et al., 2021). This divergence is based on the
Cross-Barcode(M, N'), which is a set of intervals
{(bi, d;)}?_, corresponding to “births” and “deaths”
of independent topological features that distinguish
the point cloud /N from the union M U N. The fur-
ther Cross-Barcode(M, N) is from an empty set,
the more the data manifold A differs from M in
its topological structure. To measure the distance
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Figure 2: a) An attention map. Blue and green denotes the prompt and response tokens, respectively. b) The
corresponding attention graph G. Prompt tokens P are located on the left, response tokens R — on the right. To
keep figure neat, we only plot the edges with an attention score of no less than 0.15. ¢) The minimum spanning

forest attaching R to P.

from an empty set, the sum of lengths of intervals
in Cross-Barcode(M, N) was taken in loc. cit.:

MTop-Div(M,N) =) " |d; — bi].
i=1

3 Method

Given an attention matrix for the (prompt + re-
sponse) text, we construct the attention graph, im-
itating a data manifold of the text, and study its
relation with the weighted subgraph, imitating the
data submanifold of the prompt. We measure the
topological divergence between these graphs, as-
suming responses that are consistent with the con-
text would result in lower divergence values.

3.1 MTop-Div for attention graphs

The MTop-Divergence(M, N') measure was orig-
inally developed for data manifolds, relying on
metric space properties to some extent. We adapt
this concept to quantify divergence between atten-
tion graphs and their subgraphs, where traditional
metric axioms do not apply, while preserving the
measure’s comparative utility.

Let R and P be the sets of response and the
prompt vertices in the attention graph G. We
set to zero the edge weights between the P ver-
tices, denote wryp)/p the resulting matrix of
edge weights, and define Cross-Barcode; (R, P)
as the ¢-th homology barcode of the Vietoris-Rips
simplicial complex V Ry (G, wrup)/p). We de-
fine MTop-Div(R, P) as the total sum of interval
lengths in Cross-Barcodeg (R, P), where we con-
sider the 0-dimensional homology group Hy. In

this context, we can prove that this score is equiva-
lent to the total edge length of the minimum span-
ning forest (MSF) connecting R to P.

Properties of MTop-Div for attention graphs.
Here, we only list the properties relevant to hallu-
cination detection; for more properties and proofs,
see Appendix A.

Proposition 3.1. The following holds for any at-
tention graph G with vertex set Vi and its comple-
mentary vertex subsets P, R, where P U R = Vg
and PN R = @.
1. (Formula.) MTop-Div(R, P) value equals the
length of the MSF attaching R to P.
2. (Stability.) If the weights of G change
by no more than e, then the corresponding
MTop-Div(R, P) changes by no more than § =
e|R|.
3. (Connection with hallucinations.) The normal-
ized divergence value \Tlﬂ MTop-Div(R,P) = 0
iff the MSF attaches every response token to a
prompt token by a subtree with attention weights
=1

The stability property guarantees that similar at-
tention patterns yield similar hallucination scores,
making the metric’s behavior consistent and pre-
dictable. The latter captures the intuitive rela-
tionship between divergence and response quality:
well-grounded responses (closely tied to the con-
text) produce small divergence values, while hal-
lucinations (occurring when evidence is missing)
lead to smaller attention weights and consequently
larger divergence values. Together, these properties
enable the metric to reliably measure how strongly
a response connects to its context while remaining



robust to minor attention variations.

3.2 Hallucination-aware heads

We hypothesize, inspired by prior investigations
in LLM interpretability (Voita et al., 2019; Gould
et al., 2024), that particular attention heads exhibit
distinct patterns related to hallucinations. To iden-
tify such heads, we analyzed head-specific topolog-
ical divergences as follows.

Denote by h;; the j-th attention head from the
layer i. For the specific data sample s and head
hij, let G‘?’j be the corresponding attention graph,
P, R}; — its prompt and response vertex subsets.

We examined typical values of the average dis-
tance between hallucinated and grounded training
examples for different heads and layers:

A= ¥ S dig(s)

’Shallu’ SEShallu SES

dij(s) —

I%ﬁ

where Shan, stands for all hallucinated samples
from the training set, Sg, stands for all grounded
training samples, and

dij(s) = MTop-Div(R;

i Lij)-

1

[R5

The sample differences obtained for three
datasets are displayed in Figure 3. Each dot rep-
resents an individual attention head, with its z-
coordinate indicating its A;; value on dataset (A)
and its y-coordinate the corresponding value on
dataset (B). For each dataset pair, we highlight the
top three most separating heads for dataset (A) in
pink. Notably, these heads consistently appear in
the upper-right corner of the plot, indicating that
they also exhibit strong separation on dataset (B).
This observation suggests that these heads are inher-
ently attuned to hallucination patterns, regardless
of the dataset.

3.3 TOHA

The existence of universal hallucination patterns in
the attention heads underlies our efficient method
TOHA, detailed in Algorithm 1. It uses two small,
annotated probe sets, S}, (containing hallucinated
samples) and S, (containing grounded samples),
to rank model heads by their separation capabil-
ity based on their A;; values, where 7j denotes a
head index, and select the most relevant ones. In
our experiments, the combined size of the probe
sets is kept small (see Figure 4 for the number
of the required samples analysis). During testing,

hallucination scores are computed as the average
topological divergence from the top Nyt heads,
where N, is a hyperparameter tuned on the set
V = 5, U S,. For computational efficiency, we
limit Nop¢ to @ maximum of 6 in all experiments.

Algorithm 1 TOHA algorithm
Require:
d;j(s) — topological divergences for samples;
Sh, Sg — probe sets;
V = S, U S, — validation set;
T — test set;
Nmax — max number of selected heads.

procedure TOHA HEADS SELECTION
Aij 151 2 dig(s) = 57 2 di(s)
SESh SES(]

H < sort_descending(h;;, key = Asj)

N, Nopt — 1, 1

Hgypset < 9 > Optimal heads set.
AUROC % < 0

ps=0,s€V > Hallucination scores.

while N < N,,.x do
Hsubset — Hsubset U {hN }
for s € V do
Ps = SDs + ydny (5)
end for
auroc <— AUROC({ys}sev, {Ps}sev)
if auroc > AUROC,, .« then
AUROC,,,x < auroc
Nopt <+ N
end if
N+ N+1
end while
end procedure

procedure TOHA PREDICTION
for s € T do > Prediction on the test set.

opt

;dh()

p N opt
end for
end procedure

4 Experiments

Datasets. We evaluated our approach on four
datasets: RAGTruth (Niu et al., 2023) (we con-
sidered its’ two separate benchmarks: QA based
on MS MARCO (Nguyen et al., 2016) and sum-
marization based on CNN/DM (Nallapati et al.,
2016)) combined with news articles from an
unnamed news platform), CoQA (Reddy et al.,
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Figure 3: A;; values for ij-th heads. Vertical axis corresponds to the difference on dataset (B), horizontal — to the
one on dataset (A). The heads that separate samples best are highlighted in pink. Model names for a row are on the
left side, datasets: MS MARCO, CNN/DM + Recent News, CoQA.

2019), SQuAD (Rajpurkar et al., 2016), and
XSum (Narayan et al., 2018). The RAGTruth
dataset consists of manually annotated responses of
several LLMs in the RAG setting. The annotations
are word-level; we, in turn, predict response-level
labels, considering a response hallucinated if it con-
tains at least one hallucination span. For the three
latter datasets, we sampled LLM responses and
annotated them automatically with GPT-40 (Hurst
et al., 2024). Consistency with Human-GPT-40
label (Table 7) validated this approach, match-
ing prior work (Bavaresco et al., 2024); see Ap-
pendix C for more details.

Models. We used five popular open-source
LLMs: LLaMA-2-7B-chat, LLaMA-2-13B-chat,
LLaMA-3.1-8B-Instruct, Mistral-7B-Instruct-v0.1,
and Qwen2.5-7B-Instruct. Note that the RAGTruth
dataset does not contain responses for LLaMA-
3.1-8B and Qwen-2.5-7B; therefore, we only con-
ducted experiments on SQUAD, CoQA, and XSum
for these models.

Baselines. We compare TOHA with seven base-
lines: perplexity (Ren et al., 2023), max en-
tropy (Fadeeva et al., 2024), Haloscope (Du

et al.,, 2024), LLM-Check (Sriramanan et al.,
2024), semantic entropy (Farquhar et al., 2024),
EigenScore (Chen et al., 2024), and SelfCheck-
GPT (Manakul et al., 2024). Appendix E provides
information on implementation details.

Main results. The results of our experiments are
provided in Tables 1-2. We evaluate TOHA against
state-of-the-art hallucination detection methods
and demonstrate its competitive performance, con-
sistently securing first or second place across most
benchmark datasets. TOHA significantly outper-
forms uncertainty-based baselines and matches the
accuracy of consistency-based approaches, achiev-
ing a notable 13.4% improvement on the chal-
lenging MS MARCO dataset that includes long
and detailed model responses. While SelfCheck-
GPT emerges as TOHA'’s closest competitor, it re-
lies on additional generations, incurring substan-
tial computational overhead. Consistency-based
methods exhibit a complexity of ~ Kn?, where
K is the number of additional generations and n
is the tokens count. In contrast, TOHA operates
with ~ n? + Nypenlogn complexity. Here, n?
reflects the standard inference cost for transformer-
based models, and N1 log n arises from comput-



Table 1: ROC AUC (1) of hallucination detection techniques for three LLMs. The best results for each model are

highlighted in bold, and the second best are underlined.

Method Single g Marco SNVDM A+ na SQUAD  XSum
generation Recent News
Mistral-7B
SelfCheckGPT [1] X 0.62 +0.03 0.63 £0.04 093 +0.02 0.82+003 0.71+0.03
Semantic entropy [2] X 0.54 +0.06 0.57 £ 0.04 0.84 £0.02 0.71 £0.05 0.65 £0.05
EigenScore [3] X 0.58 +0.02 0.55+004 0.73+002 0.54+004 0.57 +0.03
Haloscope [4] v 0.56 £0.05 0.54 £0.05 0.84 £0.02 097 +£0.03 0.59 4+0.05
LLM-Check [5] v 0.5 £0.06 0.57 £003  0.62+004 0.56+006 0.57+0.03
Perplexity [6] v 0.67 £0.03 0.62 £0.04  0.77 £001 0454006 0.66 +0.03
Max entropy [7] v 0.66 + 0.05 0.6 +0.05 0.73+£002 0.73 £004 0.71 £0.03
TOHA (ours) v 0.76 + 0.04 0.63 +0.04 0.89 £0.02 0.84 £0.01 0.61 +£0.03
LLama-2-7B
SelfCheckGPT [1] X 0.6 +0.02 0.62 005 0.78£004 0.59+005 0.70 +0.06
Semantic entropy [2] X 0.54 4+ 0.05 0.54 4+ 0.04 0.76 £0.03 0.63 £0.06 0.63 +0.05
EigenScore [3] X 0.54 +0.02 0.52+004  0.68+£003 0.53+£005 0.63+0.06
Haloscope [4] v 0.53 £ 0.06 048 £002  0.74 £004 0.58+0.04 0.58+0.08
LLM-Check [5] v 0.46 +£0.02 0.49 £0.03 0.6 £0.03  0.58 £0.05 0.58 +0.08
Perplexity [6] v 0.66 £ 0.01 0.57 £004  0.73+£003 0.57+009 0.58+0.05
Max entropy [7] v 0.66 + 0.03 0.57 4005  0.71 £004 0.64 £0.02 0.56 +0.05
TOHA (ours) v 0.67 +0.02 0.57 £0.05 0.88 £0.04 0.9=+0.04 0.63+0.02
LLaMA-2-13B

SelfCheckGPT [1] X 0.57 £0.04 0.60 004 0.86 004 0.78£0.03 0.61+0.05
Semantic entropy [2] X 0.61 £0.03 0.51 £0.05 0.754+005 0.72 +0.02 0.64 40.04
EigenScore [3] X 0.56 £ 0.04 049 £0.04  045+004 051+004 0.55+002
Haloscope [4] v 0.55 +0.05 0.50 £001  0.65+004 0.54+003 0.59+0.01
LLM-Check [5] v 0.44 £0.04 0.57 £0.04 0.54 £0.03 0.53 £0.05 0.63 £0.04
Perplexity [6] v/ 0.65 +0.02 0.59+£002 0.58+004 0.5+005 0.58+0.05
Max entropy [7] v 0.58 +0.03 0.55 +0.06 0.70 £0.06 0.78 £0.04 0.56 4 0.04
TOHA (ours) v 0.69 + 0.01 0.54 £004 093 +£0.03 0.92+0.02 0.66+0.05

Table 2: ROC AUC (1) of hallucination detection tech-
niques. The best results for each model are highlighted
in bold, and the second best are underlined.

Method Single gen.  SQUAD CoQA XSum
LLaMA-3.1-8B
SelfCheckGPT [1] X 0.79 £0.05 0.76 £0.07 0.81 £ 0.02
Semantic entropy [2] X 0.58 £0.04 0.83 £0.05 0.49 +0.05
EigenScore [3] X 0.52 4007 0.824+006 0.49 4+0.05
Haloscope [4] v 0.85+0.02 0.56+007 0.55+0.04
LLM-Check [5] v 048 +0.04 0.54+008 0.56 +0.03
Perplexity [6] v 0.82 £0.02 0.69 £0.04 0.61 £0.04
Max entropy [7] v 0.5+£0.04 0.53+£005 0.47 +0.01
TOHA (ours) v 0.85+0.02 0.73 +001 0.63 +0.04
Qwen2.5-7B

SelfCheckGPT [1] X 0.62 +0.06 0.84 +0.04 0.74 +0.04
Semantic entropy [2] X 0.68 £0.03 0.77 £0.06 0.65 £ 0.04
EigenScore [3] X 0.67 £0.04 0.66 £0.09 0.51 £0.04
Haloscope [4] v 0.59+005 0.71 £0.05 0.58 £0.05
LLM-Check [5] v 0.5+£005 0.54+01 0.55+005
Perplexity [6] v 0.63 £0.06 0.67 £0.08 0.65 +0.05
Max entropy [7] v 0.73+£005 0.74 £005 0.52 4+0.08
TOHA (ours) v 0.8 +0.02 0.69+005 0.69 +0.02

ing topological divergences for only Nyt attention
heads — a small subset of the model’s total heads.
Comparison of the best-performing baselines (Fig-
ure 6) confirms that TOHA reduces inference time
by an order of magnitude compared to methods of
similar quality.

Compared to Haloscope (Du et al., 2024), which
operates with limited annotated data and large-
scale unlabeled data, TOHA not only delivers su-
perior performance but also eliminates the need for
unannotated generations for hyperparameter tun-
ing and a separate classifier training. This makes
TOHA less data-dependent and more practical for
real-world applications.

Another interesting comparison is with LLM-
Check (Sriramanan et al., 2024), which also
uses attention maps to compute hallucination
scores—specifically, by averaging the log deter-
minant of attention maps from a single pre-selected
layer. However, our TOHA achieves superior
performance, demonstrating that not all attention
heads contribute equally to hallucination detection.
By employing a topology-based head selection
strategy, we significantly enhance detection quality.

Generalizability to different data distributions.
From a deployment perspective, hallucination de-
tection methods must remain robust to shifts in
input data distribution, given the inherent diversity
of real-world user queries. To evaluate TOHA’s



robustness in this regard, we conducted transfer
experiments on Mistral-7B (see Figure 4a). The
results highlight TOHA's strong transferability: for
the XSum and CNN/DM datasets, performance
changes in transfer settings fall within the standard
deviation. For the remaining datasets, TOHA main-
tains competitive performance compared to base-
line methods (Table 1), demonstrating its adaptabil-
ity to diverse data distributions.

How large should the probe sets be? As previ-
ously mentioned, TOHA requires only a small set
of samples to identify “hallucination-aware" atten-
tion heads. To assess its sensitivity to probe set size,
we conducted an ablation study (Figure 4). The re-
sults demonstrate TOHA’s robustness to limited
annotated data: even with just 50 samples, per-
formance does not drop significantly and mostly
remains stable as the probe set size increases.

What do hallucination patterns look like? As
detailed in Section 3, the topological divergences
we employ characterize the MSF connecting the
vertices R of the response to the vertices P of the
prompt. For hallucination-aware heads, we ana-
lyzed MSF patterns distinguishing hallucinated and
grounded samples. A key finding is that halluci-
nated samples frequently exhibit strong attention
to the <s> token, whereas grounded samples tend
to attend to <s> less (Figure 5).

To verify the significance of <s> in hallucination
detection, we conducted an ablation experiment:
after removing <s> from the texts, we recomputed
the TOHA hallucination scores for the selected
hallucination-aware heads. The results (Table 3)
show a significant performance drop, confirming
that attention to <s> is a critical indicator of hal-
Iucination. This finding aligns with prior work
demonstrating the influential role of <s> in LLM
mechanisms (Barbero et al., 2025). However, us-
ing the average attention to <s> alone as a hal-
lucination score proves insufficient (see Table 9
in Appendix D). In contrast, our proposed score,
which incorporates the intricate structure of atten-
tion maps, demonstrates far greater discriminative
power for this task.

5 Related works

Hallucination detection methods. The problem
of hallucinations in LL.Ms has attracted significant
attention recently (Zhang et al., 2023; Huang et al.,
2023; Wang et al., 2024). Consistency-based meth-

Table 3: TOHA performance with and without <s> to-
ken. TOP-1 results are highlighted with bold font.

Dataset with <s> w/o <s>
Mistral-7B
MS MARCO 0.67 £0.02 0.56 +0.02
CoQA 0.88 +0.02 0.32 +0.03
LLaMA-2-7B
MS MARCO 0.76 +0.04 0.66 +0.03
CoQA 0.89 +0.02 0.56 +0.04

ods (Manakul et al., 2024; Chen et al., 2024; Kuhn
et al., 2023; Qiu and Miikkulainen, 2024; Nikitin
et al., 2024) that use the diversity of multiple LLM
responses as a hallucination score offer robust de-
tection but impose significant computational over-
head. Surface-level techniques like perplexity and
logit entropy (Fadeeva et al., 2024; Malinin and
Gales, 2021) analyze model confidence directly
from output distributions — efficient but limited
in detection capability as they neglect the model’s
rich internal representations. Hidden states-based
classifiers (Azaria and Mitchell, 2023; Sky et al.,
2024; Zhou et al., 2025) require extensive anno-
tated datasets, which are scarce in the public do-
main (Zhang et al., 2023). This issue was par-
tially addressed by the Haloscope (Du et al., 2024),
which leverages unlabeled data “in the wild” with
minimum annotated data needed for hyperparam-
eter selection. Attention map-based methods rep-
resent a promising yet underdeveloped direction.
Current techniques either rely on large labeled data,
e.g., Lookback Lens (Chuang et al., 2024), or ex-
ploit only simple attention graph properties, such
as self-loop weights in LLM-Check (Sriramanan
et al., 2024). This leaves a critical research gap:
training-free methods that fully leverage the rich
structural information encoded in attention relation-
ships remain underexplored.

Topological Data Analysis (TDA) in NLP.
Topological Data Analysis (TDA) is a mathemati-
cal framework for extracting multi-scale structural
patterns from data using principles from topology
and computational geometry (Chazal and Michel,
2017; Hensel et al., 2021). Recent years have
seen growing interest in applying TDA to natu-
ral language processing (NLP) tasks to study tex-
tual structural properties (Uchendu and Le, 2024).
For example, (Tulchinskii et al., 2024) leveraged
persistent homology to estimate the intrinsic di-
mensionality of CLS embeddings for detecting
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Figure 4: (a) Generalizability between the datasets, model: Mistral-7B-Instruct. The vertical axis corresponds to the
origin of the probe set, the horizontal axis to the test dataset. (b)-(c): Detection quality dependence on the size of a

probe set, models: Mistral-7B (left), LLama-2-7B (right).

e Grounded
Hallucinated

Figure 5: Attention to <s>: a) hallucinated sample and
b) grounded one. Green color denotes edges and nodes
that correspond to grounded tokens of a generation, yel-
low color — hallucinated ones. Model: Mistral-7B.

machine-generated text. Other work has demon-
strated the utility of topological features derived
from transformer attention matrices — treated as
weighted graphs — for diverse NLP applications.
These include uncertainty quantification (Kostenok
et al., 2023) and grammatical acceptability classifi-
cation (Proskurina et al., 2023b), where topological
features extracted from the attention graphs were
used as input to train auxiliary classifiers.

6 Conclusion

This paper introduces TOHA, a novel hallucina-
tion detection method based on the topological di-
vergence of attention maps. At its core, TOHA
leverages our key observation that specific atten-
tion heads exhibit consistent patterns during hal-
lucinations — regardless of the dataset. TOHA
computes hallucination scores by averaging the
topological divergences from these heads, and we
formally prove several stability properties to ensure
these scores are reliable. Additionally, we explored
the behaviour of “hallucination-aware” heads, dis-
covering that the attention to <s> token plays an
important role in their discriminative ability. This
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Figure 6: Comparison of methods’ inference time in sec-
onds. The measurements were obtained for 16 random
samples from MS MARCO, model: Mistral-7B. For the
SelfCheckGPT, 20 additional answers were generated
for each sample.

importance of <s> aligns well with prior work (Bar-
bero et al., 2025).

Extensive experiments show that TOHA is a ro-
bust alternative to existing approaches, matching
or surpassing state-of-the-art baselines like Self-
CheckGPT (Manakul et al., 2024). Notably, TOHA
is significantly more efficient, operating up to an
order of magnitude faster than methods of compa-
rable quality. We further validate TOHA’s trans-
ferability, demonstrating its robustness to shifts in
data distribution — a critical advantage for real-
world deployment, where LLM inputs are far more
diverse and complex than benchmark examples.

In summary, TOHA delivers state-of-the-art de-
tection performance while combining efficiency
and solid generalizability, making it particularly
suited for practical applications.

Limitations

While TOHA demonstrates strong performance and
efficiency, several limitations warrant discussion.



RAG scenario. While TOHA operates effec-
tively in the RAG scenario under the assumption
that the provided context contains the correct an-
swer, we recognize that this condition may not
always hold in real-world applications. This lim-
itation points to an important direction for future
research, where the method could be extended to
handle cases of incomplete or unreliable context
knowledge.

Model-specific dependencies. TOHA’s effec-
tiveness relies on identifying “hallucination-aware”
attention heads, which may vary across LLM ar-
chitectures. While our experiments cover popular
open-source models (e.g., LLaMA, Mistral), fur-
ther validation is needed for proprietary or larger
models (e.g., GPT-4, Claude).

Multimodal extensions. The current frame-
work operates solely on text. Adapting TOHA to
multimodal settings (e.g., vision-language models)
would require redefining attention graphs across
heterogeneous data modalities.
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A Topological data analysis: background

A simplicial complex S is a collection of simplices
such that every face of a simplex ¢ € S is also
in S. Simplices are the higher-dimensional gen-
eralizations of triangles; a 0-simplex is a vertex,
a 1-simplex is an edge, a 2-simplex is a triangle,
and so forth. Formally, given a finite set X, an
n-simplex o is an (n + 1) subset of X. Simplicial
complexes are fundamental objects in algebraic
and combinatorial topology, serving as a discrete
analog to topological spaces.

The Vietoris-Rips complex VR.(X) of a
weighted graph G (Va, Eq) with distance
threshold € > 0 is defined as follows:

VR.(G)

{UQVG

Vi, vj € o, we;) < 8} ,
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where w is the edge weight function associated
with G.

Homology groups Hy, are invariants used in alge-
braic topology to study the topological properties
of a space. Let Cj(.S) denote vector space over
727, with the basis consisting of k-dimensional
simplices of .S. Elements of C'y are called chains.
Formally, homology groups are derived from a
chain complex (C,, 0. ), which is a sequence of
C}, connected by boundary maps Jy:

d )
C’.:--~—>C’k+1—ki1—>0k—’“>---,
ak08k+1:0.

The k-th homology group Hy, is defined as the
quotient of the group of k-cycles (chains whose
boundary is zero) by the group of k-boundaries
(chains that are the boundary of a (k + 1)-chain).
Mathematically, this is expressed as:

H,(S) = Zi(S)/Bx(S),

where Z, = ker 0y = {c € Cy|0x(c) = 0} and
By = im0k = {akﬂ(c) ’ c € Ck’+1} is the
group of k-boundaries. The elements of Hy(.S) rep-
resent various k-dimensional topological features
in S. Elements of a basis in H(.5) correspond to
a set of basic topological features.

A filtration of simplicial complexes F is a family
of nested simplicial complexes:

F:oC5CS5C---CS5, =05,

where each Sy, is a simplicial complex itself. In
practice, the filtrations of simplicial complexes are
usually obtained for sequences of increasing thresh-
olds 0 < g1 < --- < gy,. For example, simplicial
complexes V R, (X) form a filtration

]:VR(X) 0 C VREI(X) c VREZ(X) c...
C VR..(X) = VR(X).

As the threshold ¢ increases, new topological
features (e.g., connected components, holes) can
appear and disappear. The persistent homology tool
tracks the dynamics of these topological features.
Formally, the k-th persistent homology of S is the
pair of sets of vector spaces { Hi(S5;) |0 < i < n}
and maps f;;, where f;; : Hp(S;) — Hy(S;)isa
map induced by the embedding .S; C S;. Each per-
sistent homology class in this sequence is “born” at
some S; and “dies” at some S or never dies (Baran-
nikov, 1994). This birth-death process of a basic
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set of independent topological features can be visu-
alized as the set of intervals [piyth, Edeath] called
barcode (see Figure 7). The features with 0 lifes-
pans are typically excluded. The horizontal axis
is a sequence of thresholds €, and each horizontal
bar corresponds to a single feature. We begin with
X| = m connected components (all of them are
“born”), and as ¢ increases, their pairs are merged
(each merge corresponds to a “death” of a feature).
The 0—th barcode construction procedure is equiva-
lent to Kruskal’s algorithm for minimum spanning
tree (MST), the bars in the barcode correspond
to the edges in the MST of X (Tulchinskii et al.,
2023).

B MTop-Div on graphs properties

Basic properties of MTop-Div for attention
graphs. Now we consider specific properties for
our adaptation of MTop-Div(R, P).

Proposition B.1. The following holds for any atten-

tion graph G and its complementary vertex subsets
P,RC Vg

» MTop-Div(R, P) value equals the length of
the MSF attaching R to P.

e Let the natural norm on the cross-barcodes be

defined as follows:

||Cross-Barcodep || p =

3)

max
[bj,d;]eCross-Barcodeg

(dj —bj).

The norm of Cross-Barcodey(R, P) lays in
the interval [0, 1]:

0 < ||Cross-Barcodeg(R, P)|[p < 1. (4)
* The divergence itself is bounded by
0 < MTop-Div(R, P) < |R|. 5)

The second and third statements are immediately
obtained from the properties of an attention matrix:
all its weights lie between 0 and 1.

The following property formalizes the intuition
behind our metric — it measures the strength of the
response’s connection to the prompt through multi-
scale topological features of the attention graph.

Proposition B.2. (Exact sequence.) For any a,
the following sequence of natural maps of homol-
0gy groups is exact

(Z/22)P1 225 Ho(V R (G))
% Ho(VRa(G, w(rupy/p)) — 0.

1

—
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Figure 7: Hj barcode construction. As the threshold increases, the separate connected components merge, resulting
in the death of topological features. The horizontal axis is a sequence of thresholds €, and each horizontal bar

corresponds to a single feature.

Proof of Proposition B.2.

We have to check the definition of the exact se-
quence: Ker(r;) = Im(r;41). For a pair ro, 71,
it is equivalent to the surjectvity of ;. The Hy
homology group of a graph corresponds to the
connected components of the graph. The set of
edges E(gGofw) = {e € Eglw. < a} is always a
subset in the analogous set of the weighted graph
(G, w(rup)/p) With all weight edges between P
vertices set to zero. Therefore, the map r; between
their connected components is surjective. Simi-
larly, the kernel of the map r; is spanned by the
differences of two connected components, which
are merged after adding some of the edges between
P vertices, and any such difference lies in the im-
age of the map r3. Also, any two vertices from
P belong to the same connected component in the
graph (G, wryup)/p < a), hence the image of 77
is in the kernel of r;. Therefore, the considered
sequence is exact indeed. O
Proof of Proposition 3.1.

1. The 0—th Cross-Barcode coincides with the
set of edges in the minimal spanning tree of the
weighted graph G with all the weights within P
vertex subset equal zero. Excluding the zero weight
edges, this edge set coincides with the minimal
spanning forest attaching the vertex set R to P ver-
tices. O
2. Denote by MSF(R, P) the minimum spanning
forest attaching R to P. Note that we have proper-
ties B.1, so

MTop-Div(R, P) =

>

e€MSF(R,P)

w(e).
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Therefore, we have to show that the weight of
MSF(R, P) does not change significantly when
all weights are changed by no more than ¢.

There are two possibilities: 1) after a change, all
MSF edges remain the same, or 2) some edges are
replaced with other edges. In the first case, it is
obvious that the total sum of edge weights changes
by no more than § = ¢-#edges(MSF(R, P)) = e-
|R|. Consider the second case. Denote by MSF ey
the original MSF, by MSF .y, — the MSF after the
change; let w be the edge weight function before
the change, w — after the change. The following
inequalities hold:

W(MSF ey ) < @(MSF prey );
w(MSFprey) — 0 < W(MSFppey) <
< w(MSFprey) + 65 (8)
wW(MSFpew) — 8 < W(MSFpey) <
< w(MSFpew) +0;  (9)
w(MSFrew) > w(MSFprey).  (10)

(N

From (7)-(8) follows that W(MSFpew) <
w(MSFprev) + 9; from (9)-(10) follows that
W(MSF pew) > w(MSFprey) — 0. O
3. Follows obviously from the MSF formula for
MTop-Div(R, P) and attention map properties.

C Datasets

SQuAD (Rajpurkar et al., 2016) and CoQA (Reddy
et al., 2019) are widely used English question-
answering benchmarks that have facilitated

the development of hallucination detection
datasets (Kuhn et al., 2023; Manakul et al., 2024).



Similarly, XSum (Narayan et al., 2018), a dataset
of news articles with one-sentence summaries, is
commonly employed in hallucination detection
research for abstractive summarization (Shi et al.,
2024; Cao et al., 2022). To assess LLM perfor-
mance, we used GPT-40 to annotate responses
to questions sourced from SQuAD, CoQA, and
summarization tasks from XSum.

C.1 Data Generation & Annotation

Generation. We generate responses from a lan-
guage model (LLM) for the considered datasets,
employing different prompting strategies for each
dataset while keeping these strategies consistent
across models (see prompt examples in Table 4).
For SQuAD and XSum, responses are generated
using a zero-shot approach. In contrast, for CoQA,
we create queries in a few-shot manner without pro-
viding specific instructions, following (Lin et al.,
2024): each sample consists of a passage and a
series of question-answer pairs, concluding with a
final question that the model is expected to answer.

Annotation: automated vs human. We treat
hallucination detection as a binary classification
problem; our target indicates whether a hallucina-
tion is present anywhere in the model’s response.
Two approaches to annotating model generations
were considered: 1) automated annotation using an
LLM (in our case, GPT-40), and 2) manual annota-
tion by human experts.

During the automated annotation process, we
provide an LLM’s output preceded by an instruc-
tion (prompt) to GPT-4o. In this prompt, GPT-40 is
asked to determine whether the output contains hal-
lucinations, and we expect a single-word response
of either “Yes” or “No.” An example of such an in-
struction for the question answering task is shown
in Table 6.

For human annotation, we asked three team
members with at least upper-intermediate English
proficiency to independently annotate approxi-
mately 100 samples from each dataset. We selected
samples where all annotators reached a consensus
and considered these annotations the ground truth
hallucination labels.

To further evaluate GPT-40, we conducted au-
tomatic annotation using several variations of
prompts, each reformulating the task for GPT-4o,
including zero-shot and few-shot versions. We then
compared these annotations to the actual halluci-
nation labels. The results, presented in Table 7,
demonstrate a consistent alignment between GPT-
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40’s annotations and those made by humans, re-
gardless of the specific prompt. This consistency
confirms the robustness of our approach to the ex-
act form of instruction.

Based on these findings, we prefer automated an-
notation as a cost-effective and efficient alternative
to human experts.

Annotation: general pipeline. CoQA and
SQuAD contain questions paired with ground-truth
answers. To minimize false positives in labeling,
we employed a two-step verification process:

1. Rouge-L scoring: we computed Rouge-L
scores (using the evaluate library) between
the model’s response and the ground-truth an-
SWerS.

Substring matching: we checked whether any
ground-truth answer was a substring of the
response.

Responses with a Rouge-L score of 1 (exact match)
were labeled as grounded. Those meeting both
of the following criteria were flagged as potential
hallucinations:

* Rouge-L score < 0.3 (following (Kuhn et al.,
2023));

* no ground-truth answer appears as a substring.

These candidate hallucinations were then reviewed
by GPT-40, and only confirmed cases were finally
labeled as hallucinations.

For XSum, where reference summaries are
more complex than the ground truth answers in
SQuAD/CoQA, we bypassed Rouge-L filtering and
relied solely on GPT-40 for annotation.

Detailed statistics for each dataset can be seen
in Table 8. The number of samples in the datasets
varies across models, as we tried to maintain a bal-
ance of hallucinated and grounded responses, en-
sure sample cleanness, and minimize mislabeling.
The procedure outlined above selects a different
number of objects in a sample depending on the
quality of the model’s responses.

D Other experiment results

D.1 Alternative attention map-based features
for hallucination detection

In our preliminary experiments for developing an
attention maps-based hallucination detector, we
trained classifiers using topological features pre-
viously applied to other NLP tasks (Kushnareva



SQuAD

CoQA

Given the context, answer the question in a brief but complete sentence.
Note that your answer should be strictly based on the given context.

In case the context does not contain the necessary information to answer the question,

please reply with “Unable to answer based on given context”.

Context:

Once upon a time, in a quiet village, there lived a kind old baker named Henry.

He was known for his delicious bread and warm smile. One day, a traveler arrived,
tired and hungry, and Henry welcomed him with a fresh loaf.

Question: Who was known for baking delicious bread?

Answer:

Once upon a time, in a quiet village, there lived a kind old baker named Henry.

He was known for his delicious bread and warm smile. One day, a traveler arrived,
tired and hungry, Henry welcomed him with a fresh loaf.

Q: What was Henry known for?

A: Baking delicious bread.

Q: What else?

A: Warm smile.

Q: How did the traveler feel when he arrived?

A: Tired and hungry.

Q: What did Henry give the traveler?

Table 4: Examples of prompts used during generation for CoQA and SQuAD (we add additional delimiter spaces
and formatting not present in actual prompts for better readability). SQuAD contains instructions followed by
context and questions. In CoQA, the prompt has only a contextual passage followed by a question-and-answer

series, with the last question being the actual one.

XSum

Please annotate potentially hallucinated model-generated summaries in the following settings.
I will provide a reference text and a model-generated summary of this text. You will judge whether the given model-generated
summary contains hallucinations. Answer "Yes" if the summary contains hallucinations, "No" if it does not, and "N/A" if you cannot decide.

Do NOT give any extra explanations.

Table 5: The prompt used during generation for the XSum dataset (we add additional delimiter spaces and formatting

not present in actual prompts for better readability).

You are an Al assistant specialized in detecting hallucinations in question-answering tasks.
Your job is to analyze the given context, question, and generated answer to identify
whether the answer contains any hallucinations. Examples:

Example 1.
Context:

The city of Paris is the capital of France. It is known for its iconic landmarks

like the Eiffel Tower and Notre Dame Cathedral.

The city is situated in the northern part of the country, near the Seine River.

Question: Is Paris the capital of Germany?

Generated answer: Yes, Paris is the capital of Germany.

Hallucination: Yes.

Example 2.
Context:
The city of Paris is the capital of France.

It is known for its iconic landmarks like the Eiffel Tower and Notre Dame Cathedral.
The city is situated in the northern part of the country, near the Seine River.

Question: Is Paris the capital of Germany?

Generated answer: No, Paris is not the capital of Germany. According to the context,

Paris is the capital of France.
Hallucination: No.

You should determine if the answer contains hallucinations according to the hallucination types above.
If you cannot decide if the generated answer is a hallucination, write “N/A.” as the answer.

The answer you give MUST be ONLY “Yes.”, “No.

> or “N/A.’; do NOT give ANY explanation.

Table 6: Example of annotation prompt passed to GPT-4o0 (we add additional delimiter spaces and formatting not

present in actual prompts for better readability).
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Prompt number 1 2 3

Py

5

Accuracy (1) 0.809 £ 0.017 0.861 £0.015 0.742 £ 0.003 0.795 +0.009 0.831 +0.025
CoQA Precision (1) 0.849 +0.021 0911 +0.007  0.771 £0.003  0.828 +0.011 0.860+0.012  Average  Accuracy (1)  Precision (1)  Recall (1)
Recall (1) 0.871 £0.004  0.877+0.019  0.877+0.013  0.877+0.005  0.893 + 0.027 CoQA 0.808 0.844 0.879
Accuracy (1)  0.831+0.003  0.857+0.018  0.857+0.008 0.872+0.003  0.854+0.007 SQuAD 0.854 0.837 0.826
SQuAD Precision (1) 0.813 +0.002 0.831 £0.028 0.845 +0.021 0.850 +0.011 0.847 +0.007
Recall (1) 0.796 +0.008  0.839+0.010 0.823+0.023  0.858+0.018  0.813+0.017

Table 7: Classification metrics of GPT-40 annotation for CoQA and SQuAD with human labels considered actual
annotation. The top table shows metric scores for different variants of prompts used. The bottom table shows the

metric scores averaged across all prompt variants.

Model CoQA SQuAD XSum
Hal. Grounded Hal. Grounded Hal. Grounded
Mistral-7B 776 776 311 389 301 448
LLaMA-2-7B 375 375 357 235 239 507
LLaMA-2-13B 279 384 314 436 208 522
LLaMA-3.1-8B 189 200 350 400 243 407
Qwen2.5-7B 124 183 215 249 194 556

Table 8: Datasets statistics. Number of hallucinated and grounded samples of each model.

Entropy, MS MARCO (A) vs CoQA (B)
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Figure 8: A;; values for 7j-th heads, MS MARCO vs CoQA. Vertical axis corresponds to the difference on dataset
(B), horizontal — to the one on dataset (A). The heads that segregate samples best are highlighted in pink. Model

names for a row are on the left side.

et al., 2021; Cherniavskii et al., 2022), as well as
traditional attention map characteristics. As stan-
dard topological features, we considered barcode-
based features, such as the sum of bar lengths in
persistence diagrams, and naive topological fea-
tures, including the average vertex degree in at-
tention graphs. For traditional attention-based fea-
tures, we used sparsity ratio, attention entropy, and
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spectral norm (Kobayashi et al., 2020; Vig and Be-
linkov, 2019; Ji et al., 2021). We also considered
Wassersein distances between the persistent dia-
grams (Edelsbrunner and Harer, 2010) of a context
and a response subgraphs as an alternative way to
assess their similarity. Finally, we analyzed the av-
erage attention to <s> token as we discovered that
hallucination-aware heads often attend to it when



Table 9: ROC-AUC values of supervised classifiers
on top of various set of features. TOP-1 results are
highlighted with bold font, while TOP-2 are underlined.

Features MS MARCO CoQA
Mistral-7B
Standard topological 0.67 0.69
Sparsity ratio 0.66 0.7
Entropy 0.75 0.77
Wasserstein 0.77 0.73
Spectral norm 0.73 0.72
Attention to <s> 0.65 0.61
MTop-Div 0.86 0.98
LLaMA-2-7B
Naive topological 0.69 0.7
Sparsity ratio 0.49 0.61
Entropy 0.38 0.68
Wasserstein 0.73 0.6
Spectral norm 0.49 0.64
Attention to <s> 0.62 0.64
MTop-Div 0.75 0.96

the hallucination is present (see 4).

To determine the most informative features for
hallucination detection, we trained supervised clas-
sifiers on concatenated features from all layers and
heads and compared them to classifiers trained only
on MTop-Div values under the same conditions.
The results are presented in Table 9.

While the classifier based on MTop-Div values
significantly outperforms alternative approaches,
computing these values across all layers and at-
tention heads is highly computationally expensive.
To address this, we developed TOHA — a more
efficient alternative by aggregating MTop-Div val-
ues from only a subset of the “hallucination-aware”
attention heads in the model.

D.2 Other metrics for the head selection
procedure

We also investigated alternative attention-map-
based scores — including entropy, spectral norm,
and the Wasserstein distance between the persistent
diagrams of prompts and responses — for select-
ing specialized attention heads.Following the same
pipeline as in TOHA, we computed the average dis-
tances between hallucinated and grounded samples
using alternative proximity metrics. The results,
presented in Figure 8, reveal that the most segre-
gating heads for MS MARCO do not generalize
to the CoQA dataset. This suggests that our pro-
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posed MTop-Div metric is better suited for the task
compared to existing solutions.

E Implementation details

In this section, we describe the key implementation
choices.

* For EigenScore, we used the last token rep-
resentation to embed sentences, as suggested
in (Chen et al., 2024). We took outputs from
the 16th layer, since middle layers were shown
to contain the most factual information (Sky
et al., 2024; Azaria and Mitchell, 2023).

For methods that rely on multiple generations,
we generated 20 samples per input, following
recommendations from (Manakul et al., 2024;
Chen et al., 2024).

For SelfCheck-GPT, we used its NLI-based
variant.

For LLM-Check, we considered its white-box
attention score modification, as it works in a
setting similar to ours.

For Haloscope, we reserved 150 samples for
hyperparameter tuning and treated the rest as
unlabeled data. For the CoQA dataset, we
added several thousand extra generations dur-
ing training, as in the original paper. Other
datasets were used as-is, since their sizes are
comparable with those in Haloscope’s experi-
ments on the Truthful QA dataset.

For TOHA’s head selection, we similarly used
150 annotated samples. The topological di-
vergences were calculated using ripser++ li-
brary (Zhang et al., 2020), MIT license.

In our experiments, we used 60/15/25
train/val/test split. All the obtained results were
averaged over five runs. All experiments were
carried out using NVidia L40.

F Use of scientific artifacts & Al
assistants

CoQA contains passages from seven domains
under the following licenses: Literature and
Wikipedia passages are shared under CC BY-
SA 4.0 license; Children’s stories are collected
from MCTest which comes with MSR-LA license;
Middle/High school exam passages are collected
from RACE which comes with its own license;



News passages are collected from the DeepMind
CNN dataset which comes with Apache license.
SQuAD dataset comes under CC BY-SA 4.0 li-
cense. RAGTruth dataset comes under MIT license.
XSum dataset comes under MIT license.

We used all the artifacts as it was intended by the
corresponding licenses. No personal information
or offensive content is contained in the considered
datasets.

The original text of this paper was spell- and
grammar-checked and slightly smoothed out using
Grammarly.

G Potential risks

1. Ethical risks from deployment: overcon-
fidence in TOHA’s scores could lead to
unchecked LLM outputs in high-stakes scenar-
ios (e.g., healthcare). TOHA should be frame
as a "warning system" rather than a definitive
filter, and advocate for human review.

2. Attention manipulation attacks: adversarial
prompts could artificially alter attention pat-
terns, evading detection.
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