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Abstract001

Hallucination, i.e., generating factually incor-002
rect content, remains a critical challenge for003
large language models (LLMs). We introduce004
TOHA1, a TOpology-based HAllucination de-005
tector in the RAG setting, which leverages a006
topological divergence metric to quantify the007
structural properties of graphs induced by at-008
tention matrices. Examining the topological009
divergence between prompt and response sub-010
graphs reveals consistent patterns: higher di-011
vergence values in specific attention heads cor-012
relate with hallucinated outputs, independent013
of the dataset. Extensive experiments — in-014
cluding evaluation on question answering and015
summarization tasks — show that our approach016
achieves state-of-the-art or competitive results017
on several benchmarks while requiring minimal018
annotated data and computational resources.019
Our findings suggest that analyzing the topo-020
logical structure of attention matrices can serve021
as an efficient and robust indicator of factual022
reliability in LLMs.023

1 Introduction024

Large language models (LLMs) have progressed025

significantly in recent years, finding applications026

in various fields (Chkirbene et al., 2024). How-027

ever, these models are prone to generate so-called028

hallucinations, i.e., content that is factually or con-029

textually incorrect (Huang et al., 2023). Detecting030

hallucinations is crucial for safely deploying LLMs031

in sensitive fields since erroneous outputs may seri-032

ously harm user trust. An effective detector would033

therefore expand the scope of LLM applications034

while mitigating risks (Gao et al., 2024).035

Multiple methods address this problem (Huang036

et al., 2023; Sahoo et al., 2024), though many037

face significant practical constraints. A com-038

mon limitation is the reliance on large annotated039

1The code of the proposed method and the considered base-
lines is available at https://anonymous.4open.science/
r/tda4hallu-BED5
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Figure 1: Difference between average topological di-
vergence values for hallucinated and grounded samples
per attention head/layer, evaluated on MS MARCO and
CoQA datasets. A lighter color corresponds to a greater
difference. Green frames highlight the heads that sep-
arate samples best. The same attention heads assign
greater divergence values to the hallucinated samples in
both datasets. Model: Mistral-7B-Instruct-v0.1.

datasets (Sky et al., 2024; Azaria and Mitchell, 040

2023; Chuang et al., 2024), which are rarely avail- 041

able publicly (Zhang et al., 2023) and require exten- 042

sive annotation effort for each new model released. 043

Another popular approach depends on generating 044

multiple samples for scoring (Manakul et al., 2024; 045

Chen et al., 2024; Farquhar et al., 2024), which 046

increases computational costs substantially. 047

We address these challenges by introducing 048

TOHA (TOpology-based HAllucination detector), 049

a training-free method for the retrieval-augmented 050

generation (RAG) setting (Gao et al., 2023). Fol- 051

lowing the prior work (Du et al., 2024), TOHA 052

requires minimal annotated data (just 50 annotated 053

samples suffice for reliable detection, see Figure 4) 054

while avoiding the computational overhead of mul- 055

tiple generations, making it both data- and compute- 056

efficient. 057

The core insight behind TOHA is that halluci- 058

nated answers tend to have weaker connections to 059

the context than grounded ones in the RAG set- 060

ting. TOHA formalizes this by analyzing attention 061
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graphs — complete graphs induced by LLM at-062

tention maps, a representation previously used in063

other NLP tasks (Kushnareva et al., 2021; Tulchin-064

skii et al., 2023). Unlike prior works that rely065

on simplistic classifiers over basic graph proper-066

ties (Proskurina et al., 2023a; Cherniavskii et al.,067

2022), TOHA advances the approach by computing068

the topological dissimilarity between the attention069

subgraphs of the model’s response and the given070

context. This dissimilarity, measured via our adap-071

tation of Manifold Topology Divergence (Baran-072

nikov et al., 2021) for the graph setting, quantifies073

the “strength” of context-response ties: higher val-074

ues indicate weaker links and thus likely halluci-075

nations. We prove key stability properties for this076

metric, ensuring its reliability as a hallucination077

score.078

Through analysis of divergence patterns across079

different heads, we identified a subset of atten-080

tion heads that consistently assign higher diver-081

gence scores to hallucinated samples (see Figure 1),082

revealing their implicit “awareness” of hallucina-083

tions. TOHA utilizes the average divergence values084

from these specific heads as hallucination scores.085

Crucially, these heads exhibit consistent behavior086

across different datasets, enabling strong transfer-087

ability of our method.088

Our main contributions can be summarized the089

following:090

• We propose TOHA, a training-free method091

based on the topological divergences of at-092

tention graphs. While efficient — TOHA093

operates up to an order of magnitude faster094

than methods of comparable quality and re-095

quires minimal annotated data — our method096

demonstrates strong in-domain performance097

and maintains domain transferability across098

different tasks.099

• The existence of hallucination-aware atten-100

tion heads is discovered: calculating topolog-101

ical divergences from just six specific heads102

is enough for reliable hallucination detection,103

irrespective of the dataset.104

• Our experiments show TOHA consistently105

matches or exceeds state-of-the-art perfor-106

mance on all benchmarks when applied to107

modern open-source LLMs of varying scales108

(7B to 13B parameters).109

2 Background 110

2.1 Attention matrix as a weighted graph 111

Modern LLMs are mainly based on the self- 112

attention mechanism, introduced in (Vaswani et al., 113

2017). Let X ∈ Rn×d be a matrix consist- 114

ing of d-dimensional representations of n tokens, 115

WQ, WK , WV ∈ Rd×d be trainable projection ma- 116

trices. Given a set of queries Q = XWQ ∈ Rn×d, 117

a set of keys K = XWK ∈ Rn×d, and corre- 118

sponding values V = XWV ∈ Rn×d, the attention 119

mechanism calculates a weighted sum of the values 120

as follows: 121

Attention(Q,K, V ) = W (Q,K)V, (1) 122

where W (Q,K) is an attention matrix 123

W = softmax

(
QKT

√
d

)
, (2) 124

and each entry wij in it captures how strongly token 125

i attends to token j, i ≥ j for a decoder, with larger 126

wij indicating closer relationship. 127

An attention matrix W can be reframed as a 128

complete weighted graph G where tokens are ver- 129

tices and weights wij represent the strength of con- 130

nections between them. From the perspective of 131

topological data analysis, however, it is more conve- 132

nient to consider these weights as pseudo-distances 133

rather than correlation measures. Hence, we re- 134

assign the edge weights of such a graph to equal 135

1− wij , creating what we call attention graphs. 136

In the generation process, the vertices of such 137

graphs naturally partition into two distinct subsets: 138

prompt tokens P and response tokens R generated 139

by the model (see Figure 2b). This split allows us 140

to analyze the topological relationships between 141

input and output content. 142

2.2 Manifold Topology Divergence 143

One way to compare two data manifolds,M and 144

N , approximated by point clouds M and N is the 145

MTop-Div(M,N) topological measure (Baran- 146

nikov et al., 2021). This divergence is based on the 147

Cross-Barcode(M,N), which is a set of intervals 148

{(bi, di)}ni=1 corresponding to “births” and “deaths” 149

of independent topological features that distinguish 150

the point cloud N from the union M ∪N . The fur- 151

ther Cross-Barcode(M,N) is from an empty set, 152

the more the data manifold N differs fromM in 153

its topological structure. To measure the distance 154
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Figure 2: a) An attention map. Blue and green denotes the prompt and response tokens, respectively. b) The
corresponding attention graph G. Prompt tokens P are located on the left, response tokens R — on the right. To
keep figure neat, we only plot the edges with an attention score of no less than 0.15. c) The minimum spanning
forest attaching R to P .

from an empty set, the sum of lengths of intervals155

in Cross-Barcode(M,N) was taken in loc. cit.:156

MTop-Div(M,N) =

n∑
i=1

|di − bi|.157

3 Method158

Given an attention matrix for the (prompt + re-159

sponse) text, we construct the attention graph, im-160

itating a data manifold of the text, and study its161

relation with the weighted subgraph, imitating the162

data submanifold of the prompt. We measure the163

topological divergence between these graphs, as-164

suming responses that are consistent with the con-165

text would result in lower divergence values.166

3.1 MTop-Div for attention graphs167

The MTop-Divergence(M,N) measure was orig-168

inally developed for data manifolds, relying on169

metric space properties to some extent. We adapt170

this concept to quantify divergence between atten-171

tion graphs and their subgraphs, where traditional172

metric axioms do not apply, while preserving the173

measure’s comparative utility.174

Let R and P be the sets of response and the175

prompt vertices in the attention graph G. We176

set to zero the edge weights between the P ver-177

tices, denote w(R∪P )/P the resulting matrix of178

edge weights, and define Cross-Barcodei(R,P )179

as the i-th homology barcode of the Vietoris-Rips180

simplicial complex V Rα(G,w(R∪P )/P ). We de-181

fine MTop-Div(R,P ) as the total sum of interval182

lengths in Cross-Barcode0(R,P ), where we con-183

sider the 0-dimensional homology group H0. In184

this context, we can prove that this score is equiva- 185

lent to the total edge length of the minimum span- 186

ning forest (MSF) connecting R to P . 187

Properties of MTop-Div for attention graphs. 188

Here, we only list the properties relevant to hallu- 189

cination detection; for more properties and proofs, 190

see Appendix A. 191

Proposition 3.1. The following holds for any at- 192

tention graph G with vertex set VG and its comple- 193

mentary vertex subsets P,R, where P ∪ R = VG 194

and P ∩R = ∅. 195

1. (Formula.) MTop-Div(R,P ) value equals the 196

length of the MSF attaching R to P . 197

2. (Stability.) If the weights of G change 198

by no more than ε, then the corresponding 199

MTop-Div(R,P ) changes by no more than δ = 200

ε|R|. 201

3. (Connection with hallucinations.) The normal- 202

ized divergence value 1
|R| MTop-Div(R,P ) = 0 203

iff the MSF attaches every response token to a 204

prompt token by a subtree with attention weights 205

= 1. 206

The stability property guarantees that similar at- 207

tention patterns yield similar hallucination scores, 208

making the metric’s behavior consistent and pre- 209

dictable. The latter captures the intuitive rela- 210

tionship between divergence and response quality: 211

well-grounded responses (closely tied to the con- 212

text) produce small divergence values, while hal- 213

lucinations (occurring when evidence is missing) 214

lead to smaller attention weights and consequently 215

larger divergence values. Together, these properties 216

enable the metric to reliably measure how strongly 217

a response connects to its context while remaining 218
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robust to minor attention variations.219

3.2 Hallucination-aware heads220

We hypothesize, inspired by prior investigations221

in LLM interpretability (Voita et al., 2019; Gould222

et al., 2024), that particular attention heads exhibit223

distinct patterns related to hallucinations. To iden-224

tify such heads, we analyzed head-specific topolog-225

ical divergences as follows.226

Denote by hij the j-th attention head from the227

layer i. For the specific data sample s and head228

hij , let Gs
ij be the corresponding attention graph,229

P s
ij , R

s
ij — its prompt and response vertex subsets.230

We examined typical values of the average dis-231

tance between hallucinated and grounded training232

examples for different heads and layers:233

∆ij =
1

|Shallu|
∑

s∈Shallu

dij(s)−
1

|Sgr|
∑
s∈Sgr

dij(s),234

where Shallu stands for all hallucinated samples
from the training set, Sgr stands for all grounded
training samples, and

dij(s) =
1

|Rs
ij |

MTop-Div(Rs
ij , P

s
ij).

The sample differences obtained for three235

datasets are displayed in Figure 3. Each dot rep-236

resents an individual attention head, with its x-237

coordinate indicating its ∆ij value on dataset (A)238

and its y-coordinate the corresponding value on239

dataset (B). For each dataset pair, we highlight the240

top three most separating heads for dataset (A) in241

pink. Notably, these heads consistently appear in242

the upper-right corner of the plot, indicating that243

they also exhibit strong separation on dataset (B).244

This observation suggests that these heads are inher-245

ently attuned to hallucination patterns, regardless246

of the dataset.247

3.3 TOHA248

The existence of universal hallucination patterns in249

the attention heads underlies our efficient method250

TOHA, detailed in Algorithm 1. It uses two small,251

annotated probe sets, Sh (containing hallucinated252

samples) and Sg (containing grounded samples),253

to rank model heads by their separation capabil-254

ity based on their ∆ij values, where ij denotes a255

head index, and select the most relevant ones. In256

our experiments, the combined size of the probe257

sets is kept small (see Figure 4 for the number258

of the required samples analysis). During testing,259

hallucination scores are computed as the average 260

topological divergence from the top Nopt heads, 261

where Nopt is a hyperparameter tuned on the set 262

V = Sh ∪ Sg. For computational efficiency, we 263

limit Nopt to a maximum of 6 in all experiments. 264

Algorithm 1 TOHA algorithm

Require:
dij(s) — topological divergences for samples;
Sh, Sg — probe sets;
V = Sh ∪ Sg — validation set;
T — test set;
Nmax — max number of selected heads.

procedure TOHA HEADS SELECTION

∆ij ← 1
|Sh|

∑
s∈Sh

dij(s)− 1
|Sg |

∑
s∈Sg

dij(s)

H ← sort_descending(hij , key = ∆ij)
N,Nopt ← 1, 1
Hsubset ← ∅ ▷ Optimal heads set.
AUROCmax ← 0
ps = 0, s ∈ V ▷ Hallucination scores.
while N ≤ Nmax do

Hsubset ← Hsubset ∪ {hN}
for s ∈ V do

ps ← N−1
N ps +

1
N dhN

(s)
end for
auroc← AUROC({ys}s∈V , {ps}s∈V )
if auroc > AUROCmax then

AUROCmax ← auroc
Nopt ← N

end if
N ← N + 1

end while
end procedure

procedure TOHA PREDICTION

for s ∈ T do ▷ Prediction on the test set.

ps ← 1
Nopt

Nopt∑
i=1

dhi
(s)

end for
end procedure

4 Experiments 265

Datasets. We evaluated our approach on four 266

datasets: RAGTruth (Niu et al., 2023) (we con- 267

sidered its’ two separate benchmarks: QA based 268

on MS MARCO (Nguyen et al., 2016) and sum- 269

marization based on CNN/DM (Nallapati et al., 270

2016)) combined with news articles from an 271

unnamed news platform), CoQA (Reddy et al., 272
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Figure 3: ∆ij values for ij-th heads. Vertical axis corresponds to the difference on dataset (B), horizontal — to the
one on dataset (A). The heads that separate samples best are highlighted in pink. Model names for a row are on the
left side, datasets: MS MARCO, CNN/DM + Recent News, CoQA.

2019), SQuAD (Rajpurkar et al., 2016), and273

XSum (Narayan et al., 2018). The RAGTruth274

dataset consists of manually annotated responses of275

several LLMs in the RAG setting. The annotations276

are word-level; we, in turn, predict response-level277

labels, considering a response hallucinated if it con-278

tains at least one hallucination span. For the three279

latter datasets, we sampled LLM responses and280

annotated them automatically with GPT-4o (Hurst281

et al., 2024). Consistency with Human-GPT-4o282

label (Table 7) validated this approach, match-283

ing prior work (Bavaresco et al., 2024); see Ap-284

pendix C for more details.285

Models. We used five popular open-source286

LLMs: LLaMA-2-7B-chat, LLaMA-2-13B-chat,287

LLaMA-3.1-8B-Instruct, Mistral-7B-Instruct-v0.1,288

and Qwen2.5-7B-Instruct. Note that the RAGTruth289

dataset does not contain responses for LLaMA-290

3.1-8B and Qwen-2.5-7B; therefore, we only con-291

ducted experiments on SQuAD, CoQA, and XSum292

for these models.293

Baselines. We compare TOHA with seven base-294

lines: perplexity (Ren et al., 2023), max en-295

tropy (Fadeeva et al., 2024), Haloscope (Du296

et al., 2024), LLM-Check (Sriramanan et al., 297

2024), semantic entropy (Farquhar et al., 2024), 298

EigenScore (Chen et al., 2024), and SelfCheck- 299

GPT (Manakul et al., 2024). Appendix E provides 300

information on implementation details. 301

Main results. The results of our experiments are 302

provided in Tables 1–2. We evaluate TOHA against 303

state-of-the-art hallucination detection methods 304

and demonstrate its competitive performance, con- 305

sistently securing first or second place across most 306

benchmark datasets. TOHA significantly outper- 307

forms uncertainty-based baselines and matches the 308

accuracy of consistency-based approaches, achiev- 309

ing a notable 13.4% improvement on the chal- 310

lenging MS MARCO dataset that includes long 311

and detailed model responses. While SelfCheck- 312

GPT emerges as TOHA’s closest competitor, it re- 313

lies on additional generations, incurring substan- 314

tial computational overhead. Consistency-based 315

methods exhibit a complexity of ∼ Kn2, where 316

K is the number of additional generations and n 317

is the tokens count. In contrast, TOHA operates 318

with ∼ n2 + Noptn log n complexity. Here, n2 319

reflects the standard inference cost for transformer- 320

based models, and Noptn log n arises from comput- 321
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Table 1: ROC AUC (↑) of hallucination detection techniques for three LLMs. The best results for each model are
highlighted in bold, and the second best are underlined.

Method
Single

MS MARCO
CNN/DM +

CoQA SQuAD XSum
generation Recent News

Mistral-7B
SelfCheckGPT [1] ✗ 0.62 ± 0.03 0.63 ± 0.04 0.93 ± 0.02 0.82 ± 0.03 0.71 ± 0.03
Semantic entropy [2] ✗ 0.54 ± 0.06 0.57 ± 0.04 0.84 ± 0.02 0.71 ± 0.05 0.65 ± 0.05

EigenScore [3] ✗ 0.58 ± 0.02 0.55 ± 0.04 0.73 ± 0.02 0.54 ± 0.04 0.57 ± 0.03

Haloscope [4] ✓ 0.56 ± 0.05 0.54 ± 0.05 0.84 ± 0.02 0.97 ± 0.03 0.59 ± 0.05

LLM-Check [5] ✓ 0.5 ± 0.06 0.57 ± 0.03 0.62 ± 0.04 0.56 ± 0.06 0.57 ± 0.03

Perplexity [6] ✓ 0.67 ± 0.03 0.62 ± 0.04 0.77 ± 0.01 0.45 ± 0.06 0.66 ± 0.03

Max entropy [7] ✓ 0.66 ± 0.05 0.6 ± 0.05 0.73 ± 0.02 0.73 ± 0.04 0.71 ± 0.03
TOHA (ours) ✓ 0.76 ± 0.04 0.63 ± 0.04 0.89 ± 0.02 0.84 ± 0.01 0.61 ± 0.03

LLama-2-7B
SelfCheckGPT [1] ✗ 0.6 ± 0.02 0.62 ± 0.05 0.78 ± 0.04 0.59 ± 0.05 0.70 ± 0.06
Semantic entropy [2] ✗ 0.54 ± 0.05 0.54 ± 0.04 0.76 ± 0.03 0.63 ± 0.06 0.63 ± 0.05

EigenScore [3] ✗ 0.54 ± 0.02 0.52 ± 0.04 0.68 ± 0.03 0.53 ± 0.05 0.63 ± 0.06

Haloscope [4] ✓ 0.53 ± 0.06 0.48 ± 0.02 0.74 ± 0.04 0.58 ± 0.04 0.58 ± 0.08

LLM-Check [5] ✓ 0.46 ± 0.02 0.49 ± 0.03 0.6 ± 0.03 0.58 ± 0.05 0.58 ± 0.08

Perplexity [6] ✓ 0.66 ± 0.01 0.57 ± 0.04 0.73 ± 0.03 0.57 ± 0.09 0.58 ± 0.05

Max entropy [7] ✓ 0.66 ± 0.03 0.57 ± 0.05 0.71 ± 0.04 0.64 ± 0.02 0.56 ± 0.05

TOHA (ours) ✓ 0.67 ± 0.02 0.57 ± 0.05 0.88 ± 0.04 0.9 ± 0.04 0.63 ± 0.02

LLaMA-2-13B
SelfCheckGPT [1] ✗ 0.57 ± 0.04 0.60 ± 0.04 0.86 ± 0.04 0.78 ± 0.03 0.61 ± 0.05

Semantic entropy [2] ✗ 0.61 ± 0.03 0.51 ± 0.05 0.75 ± 0.05 0.72 ± 0.02 0.64 ± 0.04

EigenScore [3] ✗ 0.56 ± 0.04 0.49 ± 0.04 0.45 ± 0.04 0.51 ± 0.04 0.55 ± 0.02

Haloscope [4] ✓ 0.55 ± 0.05 0.50 ± 0.01 0.65 ± 0.04 0.54 ± 0.03 0.59 ± 0.01

LLM-Check [5] ✓ 0.44 ± 0.04 0.57 ± 0.04 0.54 ± 0.03 0.53 ± 0.05 0.63 ± 0.04

Perplexity [6] ✓ 0.65 ± 0.02 0.59 ± 0.02 0.58 ± 0.04 0.5 ± 0.05 0.58 ± 0.05

Max entropy [7] ✓ 0.58 ± 0.03 0.55 ± 0.06 0.70 ± 0.06 0.78 ± 0.04 0.56 ± 0.04

TOHA (ours) ✓ 0.69 ± 0.01 0.54 ± 0.04 0.93 ± 0.03 0.92 ± 0.02 0.66 ± 0.05

Table 2: ROC AUC (↑) of hallucination detection tech-
niques. The best results for each model are highlighted
in bold, and the second best are underlined.

Method Single gen. SQuAD CoQA XSum
LLaMA-3.1-8B

SelfCheckGPT [1] ✗ 0.79 ± 0.05 0.76 ± 0.07 0.81 ± 0.02
Semantic entropy [2] ✗ 0.58 ± 0.04 0.83 ± 0.05 0.49 ± 0.05

EigenScore [3] ✗ 0.52 ± 0.07 0.82 ± 0.06 0.49 ± 0.05

Haloscope [4] ✓ 0.85 ± 0.02 0.56 ± 0.07 0.55 ± 0.04

LLM-Check [5] ✓ 0.48 ± 0.04 0.5 ± 0.08 0.56 ± 0.03

Perplexity [6] ✓ 0.82 ± 0.02 0.69 ± 0.04 0.61 ± 0.04

Max entropy [7] ✓ 0.5± 0.04 0.53 ± 0.05 0.47 ± 0.01

TOHA (ours) ✓ 0.85 ± 0.02 0.73 ± 0.01 0.63 ± 0.04

Qwen2.5-7B
SelfCheckGPT [1] ✗ 0.62 ± 0.06 0.84 ± 0.04 0.74 ± 0.04
Semantic entropy [2] ✗ 0.68 ± 0.03 0.77 ± 0.06 0.65 ± 0.04

EigenScore [3] ✗ 0.67 ± 0.04 0.66 ± 0.09 0.51 ± 0.04

Haloscope [4] ✓ 0.59 ± 0.05 0.71 ± 0.05 0.58 ± 0.05

LLM-Check [5] ✓ 0.5 ± 0.05 0.54 ± 0.1 0.55 ± 0.05

Perplexity [6] ✓ 0.63 ± 0.06 0.67 ± 0.08 0.65 ± 0.05

Max entropy [7] ✓ 0.73 ± 0.05 0.74 ± 0.05 0.52 ± 0.08

TOHA (ours) ✓ 0.8 ± 0.02 0.69 ± 0.05 0.69 ± 0.02

ing topological divergences for only Nopt attention322

heads — a small subset of the model’s total heads.323

Comparison of the best-performing baselines (Fig-324

ure 6) confirms that TOHA reduces inference time325

by an order of magnitude compared to methods of326

similar quality.327

Compared to Haloscope (Du et al., 2024), which 328

operates with limited annotated data and large- 329

scale unlabeled data, TOHA not only delivers su- 330

perior performance but also eliminates the need for 331

unannotated generations for hyperparameter tun- 332

ing and a separate classifier training. This makes 333

TOHA less data-dependent and more practical for 334

real-world applications. 335

Another interesting comparison is with LLM- 336

Check (Sriramanan et al., 2024), which also 337

uses attention maps to compute hallucination 338

scores—specifically, by averaging the log deter- 339

minant of attention maps from a single pre-selected 340

layer. However, our TOHA achieves superior 341

performance, demonstrating that not all attention 342

heads contribute equally to hallucination detection. 343

By employing a topology-based head selection 344

strategy, we significantly enhance detection quality. 345

Generalizability to different data distributions. 346

From a deployment perspective, hallucination de- 347

tection methods must remain robust to shifts in 348

input data distribution, given the inherent diversity 349

of real-world user queries. To evaluate TOHA’s 350

6



robustness in this regard, we conducted transfer351

experiments on Mistral-7B (see Figure 4a). The352

results highlight TOHA’s strong transferability: for353

the XSum and CNN/DM datasets, performance354

changes in transfer settings fall within the standard355

deviation. For the remaining datasets, TOHA main-356

tains competitive performance compared to base-357

line methods (Table 1), demonstrating its adaptabil-358

ity to diverse data distributions.359

How large should the probe sets be? As previ-360

ously mentioned, TOHA requires only a small set361

of samples to identify ”hallucination-aware" atten-362

tion heads. To assess its sensitivity to probe set size,363

we conducted an ablation study (Figure 4). The re-364

sults demonstrate TOHA’s robustness to limited365

annotated data: even with just 50 samples, per-366

formance does not drop significantly and mostly367

remains stable as the probe set size increases.368

What do hallucination patterns look like? As369

detailed in Section 3, the topological divergences370

we employ characterize the MSF connecting the371

vertices R of the response to the vertices P of the372

prompt. For hallucination-aware heads, we ana-373

lyzed MSF patterns distinguishing hallucinated and374

grounded samples. A key finding is that halluci-375

nated samples frequently exhibit strong attention376

to the <s> token, whereas grounded samples tend377

to attend to <s> less (Figure 5).378

To verify the significance of <s> in hallucination379

detection, we conducted an ablation experiment:380

after removing <s> from the texts, we recomputed381

the TOHA hallucination scores for the selected382

hallucination-aware heads. The results (Table 3)383

show a significant performance drop, confirming384

that attention to <s> is a critical indicator of hal-385

lucination. This finding aligns with prior work386

demonstrating the influential role of <s> in LLM387

mechanisms (Barbero et al., 2025). However, us-388

ing the average attention to <s> alone as a hal-389

lucination score proves insufficient (see Table 9390

in Appendix D). In contrast, our proposed score,391

which incorporates the intricate structure of atten-392

tion maps, demonstrates far greater discriminative393

power for this task.394

5 Related works395

Hallucination detection methods. The problem396

of hallucinations in LLMs has attracted significant397

attention recently (Zhang et al., 2023; Huang et al.,398

2023; Wang et al., 2024). Consistency-based meth-399

Table 3: TOHA performance with and without <s> to-
ken. TOP-1 results are highlighted with bold font.

Dataset with <s> w/o <s>

Mistral-7B
MS MARCO 0.67 ± 0.02 0.56 ± 0.02

CoQA 0.88 ± 0.02 0.32 ± 0.03

LLaMA-2-7B
MS MARCO 0.76 ± 0.04 0.66 ± 0.03

CoQA 0.89 ± 0.02 0.56 ± 0.04

ods (Manakul et al., 2024; Chen et al., 2024; Kuhn 400

et al., 2023; Qiu and Miikkulainen, 2024; Nikitin 401

et al., 2024) that use the diversity of multiple LLM 402

responses as a hallucination score offer robust de- 403

tection but impose significant computational over- 404

head. Surface-level techniques like perplexity and 405

logit entropy (Fadeeva et al., 2024; Malinin and 406

Gales, 2021) analyze model confidence directly 407

from output distributions — efficient but limited 408

in detection capability as they neglect the model’s 409

rich internal representations. Hidden states-based 410

classifiers (Azaria and Mitchell, 2023; Sky et al., 411

2024; Zhou et al., 2025) require extensive anno- 412

tated datasets, which are scarce in the public do- 413

main (Zhang et al., 2023). This issue was par- 414

tially addressed by the Haloscope (Du et al., 2024), 415

which leverages unlabeled data “in the wild” with 416

minimum annotated data needed for hyperparam- 417

eter selection. Attention map-based methods rep- 418

resent a promising yet underdeveloped direction. 419

Current techniques either rely on large labeled data, 420

e.g., Lookback Lens (Chuang et al., 2024), or ex- 421

ploit only simple attention graph properties, such 422

as self-loop weights in LLM-Check (Sriramanan 423

et al., 2024). This leaves a critical research gap: 424

training-free methods that fully leverage the rich 425

structural information encoded in attention relation- 426

ships remain underexplored. 427

Topological Data Analysis (TDA) in NLP. 428

Topological Data Analysis (TDA) is a mathemati- 429

cal framework for extracting multi-scale structural 430

patterns from data using principles from topology 431

and computational geometry (Chazal and Michel, 432

2017; Hensel et al., 2021). Recent years have 433

seen growing interest in applying TDA to natu- 434

ral language processing (NLP) tasks to study tex- 435

tual structural properties (Uchendu and Le, 2024). 436

For example, (Tulchinskii et al., 2024) leveraged 437

persistent homology to estimate the intrinsic di- 438

mensionality of CLS embeddings for detecting 439
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Figure 4: (a) Generalizability between the datasets, model: Mistral-7B-Instruct. The vertical axis corresponds to the
origin of the probe set, the horizontal axis to the test dataset. (b)-(c): Detection quality dependence on the size of a
probe set, models: Mistral-7B (left), LLama-2-7B (right).
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Figure 5: Attention to <s>: a) hallucinated sample and
b) grounded one. Green color denotes edges and nodes
that correspond to grounded tokens of a generation, yel-
low color — hallucinated ones. Model: Mistral-7B.

machine-generated text. Other work has demon-440

strated the utility of topological features derived441

from transformer attention matrices — treated as442

weighted graphs — for diverse NLP applications.443

These include uncertainty quantification (Kostenok444

et al., 2023) and grammatical acceptability classifi-445

cation (Proskurina et al., 2023b), where topological446

features extracted from the attention graphs were447

used as input to train auxiliary classifiers.448

6 Conclusion449

This paper introduces TOHA, a novel hallucina-450

tion detection method based on the topological di-451

vergence of attention maps. At its core, TOHA452

leverages our key observation that specific atten-453

tion heads exhibit consistent patterns during hal-454

lucinations — regardless of the dataset. TOHA455

computes hallucination scores by averaging the456

topological divergences from these heads, and we457

formally prove several stability properties to ensure458

these scores are reliable. Additionally, we explored459

the behaviour of “hallucination-aware” heads, dis-460

covering that the attention to <s> token plays an461

important role in their discriminative ability. This462

Inference Perplexity TOHA SelfCheckGPT0

200

400

600

800

1000

1200

1400

1600

Ti
m

e,
 s

68.0 1.59
182.0

1460.0Sampling time
Detection time

Figure 6: Comparison of methods’ inference time in sec-
onds. The measurements were obtained for 16 random
samples from MS MARCO, model: Mistral-7B. For the
SelfCheckGPT, 20 additional answers were generated
for each sample.

importance of <s> aligns well with prior work (Bar- 463

bero et al., 2025). 464

Extensive experiments show that TOHA is a ro- 465

bust alternative to existing approaches, matching 466

or surpassing state-of-the-art baselines like Self- 467

CheckGPT (Manakul et al., 2024). Notably, TOHA 468

is significantly more efficient, operating up to an 469

order of magnitude faster than methods of compa- 470

rable quality. We further validate TOHA’s trans- 471

ferability, demonstrating its robustness to shifts in 472

data distribution — a critical advantage for real- 473

world deployment, where LLM inputs are far more 474

diverse and complex than benchmark examples. 475

In summary, TOHA delivers state-of-the-art de- 476

tection performance while combining efficiency 477

and solid generalizability, making it particularly 478

suited for practical applications. 479

Limitations 480

While TOHA demonstrates strong performance and 481

efficiency, several limitations warrant discussion. 482

8



RAG scenario. While TOHA operates effec-483

tively in the RAG scenario under the assumption484

that the provided context contains the correct an-485

swer, we recognize that this condition may not486

always hold in real-world applications. This lim-487

itation points to an important direction for future488

research, where the method could be extended to489

handle cases of incomplete or unreliable context490

knowledge.491

Model-specific dependencies. TOHA’s effec-492

tiveness relies on identifying “hallucination-aware”493

attention heads, which may vary across LLM ar-494

chitectures. While our experiments cover popular495

open-source models (e.g., LLaMA, Mistral), fur-496

ther validation is needed for proprietary or larger497

models (e.g., GPT-4, Claude).498

Multimodal extensions. The current frame-499

work operates solely on text. Adapting TOHA to500

multimodal settings (e.g., vision-language models)501

would require redefining attention graphs across502

heterogeneous data modalities.503
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A Topological data analysis: background 794

A simplicial complex S is a collection of simplices 795

such that every face of a simplex σ ∈ S is also 796

in S. Simplices are the higher-dimensional gen- 797

eralizations of triangles; a 0-simplex is a vertex, 798

a 1-simplex is an edge, a 2-simplex is a triangle, 799

and so forth. Formally, given a finite set X , an 800

n-simplex σ is an (n+ 1) subset of X . Simplicial 801

complexes are fundamental objects in algebraic 802

and combinatorial topology, serving as a discrete 803

analog to topological spaces. 804

The Vietoris-Rips complex V Rε(X) of a
weighted graph G = (VG, EG) with distance
threshold ε > 0 is defined as follows:

VRε(G) =

{
σ ⊆ VG

∣∣∣∣ ∀ vi, vj ∈ σ, w(eij) ≤ ε

}
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where w is the edge weight function associated805

with G.806

Homology groups Hk are invariants used in alge-807

braic topology to study the topological properties808

of a space. Let Ck(S) denote vector space over809

Z/2Z, with the basis consisting of k-dimensional810

simplices of S. Elements of Ck are called chains.811

Formally, homology groups are derived from a812

chain complex (C•, ∂•), which is a sequence of813

Ck connected by boundary maps ∂k:814

C• : · · · → Ck+1
∂k+1−−−→ Ck

∂k−→ · · · ,815

∂k ◦ ∂k+1 = 0.816

The k-th homology group Hk is defined as the
quotient of the group of k-cycles (chains whose
boundary is zero) by the group of k-boundaries
(chains that are the boundary of a (k + 1)-chain).
Mathematically, this is expressed as:

Hk(S) = Zk(S)/Bk(S),

where Zk = ker ∂k = {c ∈ Ck | ∂k(c) = 0} and817

Bk = im ∂k+1 = {∂k+1(c) | c ∈ Ck+1} is the818

group of k-boundaries. The elements of Hk(S) rep-819

resent various k-dimensional topological features820

in S. Elements of a basis in Hk(S) correspond to821

a set of basic topological features.822

A filtration of simplicial complexesF is a family
of nested simplicial complexes:

F : ∅ ⊆ S1 ⊆ S2 ⊆ · · · ⊆ Sn = S,

where each Sk is a simplicial complex itself. In823

practice, the filtrations of simplicial complexes are824

usually obtained for sequences of increasing thresh-825

olds 0 < ε1 < · · · < εn. For example, simplicial826

complexes V Rεi(X) form a filtration827

FV R(X) :∅ ⊆ V Rε1(X) ⊆ V Rε2(X) ⊆ . . .828

⊆ V Rεn(X) = V R(X).829

As the threshold ε increases, new topological830

features (e.g., connected components, holes) can831

appear and disappear. The persistent homology tool832

tracks the dynamics of these topological features.833

Formally, the k-th persistent homology of S is the834

pair of sets of vector spaces {Hk(Si) | 0 ≤ i ≤ n}835

and maps fij , where fij : Hk(Si) → Hk(Sj) is a836

map induced by the embedding Si ⊆ Sj . Each per-837

sistent homology class in this sequence is “born” at838

some Si and “dies” at some Sj or never dies (Baran-839

nikov, 1994). This birth-death process of a basic840

set of independent topological features can be visu- 841

alized as the set of intervals [εbirth, εdeath] called 842

barcode (see Figure 7). The features with 0 lifes- 843

pans are typically excluded. The horizontal axis 844

is a sequence of thresholds ε, and each horizontal 845

bar corresponds to a single feature. We begin with 846

|X| = m connected components (all of them are 847

“born”), and as ε increases, their pairs are merged 848

(each merge corresponds to a “death” of a feature). 849

The 0−th barcode construction procedure is equiva- 850

lent to Kruskal’s algorithm for minimum spanning 851

tree (MST), the bars in the barcode correspond 852

to the edges in the MST of X (Tulchinskii et al., 853

2023). 854

B MTop-Div on graphs properties 855

Basic properties of MTop-Div for attention 856

graphs. Now we consider specific properties for 857

our adaptation of MTop-Div(R,P ). 858

Proposition B.1. The following holds for any atten- 859

tion graph G and its complementary vertex subsets 860

P,R ⊂ VG. 861

• MTop-Div(R,P ) value equals the length of 862

the MSF attaching R to P . 863

• Let the natural norm on the cross-barcodes be 864

defined as follows: 865

∥Cross-Barcode0∥B = 866

max
[bj ,dj ]∈Cross-Barcode0

(dj − bj). (3) 867

The norm of Cross-Barcode0(R,P ) lays in 868

the interval [0, 1]: 869

0 ≤ ∥Cross-Barcode0(R,P )∥B ≤ 1. (4) 870

• The divergence itself is bounded by 871

0 ≤ MTop-Div(R,P ) ≤ |R|. (5) 872

The second and third statements are immediately 873

obtained from the properties of an attention matrix: 874

all its weights lie between 0 and 1. 875

The following property formalizes the intuition 876

behind our metric — it measures the strength of the 877

response’s connection to the prompt through multi- 878

scale topological features of the attention graph. 879

Proposition B.2. (Exact sequence.) For any α, 880

the following sequence of natural maps of homol- 881

ogy groups is exact 882

(Z/2Z)|P | r2−→ H0(V Rα(G))
r1−→ 883

r1−→ H0(V Rα(G,w(R∪P )/P ))
r0−→ 0. 884
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Figure 7: H0 barcode construction. As the threshold increases, the separate connected components merge, resulting
in the death of topological features. The horizontal axis is a sequence of thresholds ε, and each horizontal bar
corresponds to a single feature.

Proof of Proposition B.2.885

We have to check the definition of the exact se-886

quence: Ker(ri) = Im(ri+1). For a pair r0, r1,887

it is equivalent to the surjectvity of r1. The H0888

homology group of a graph corresponds to the889

connected components of the graph. The set of890

edges E≤α
(G,w) = {e ∈ EG|we ≤ α} is always a891

subset in the analogous set of the weighted graph892

(G,w(R∪P )/P ) with all weight edges between P893

vertices set to zero. Therefore, the map r1 between894

their connected components is surjective. Simi-895

larly, the kernel of the map r1 is spanned by the896

differences of two connected components, which897

are merged after adding some of the edges between898

P vertices, and any such difference lies in the im-899

age of the map r2. Also, any two vertices from900

P belong to the same connected component in the901

graph (G,w(R∪P )/P ≤ α), hence the image of r2902

is in the kernel of r1. Therefore, the considered903

sequence is exact indeed.904

Proof of Proposition 3.1.905

1. The 0−th Cross-Barcode coincides with the906

set of edges in the minimal spanning tree of the907

weighted graph G with all the weights within P908

vertex subset equal zero. Excluding the zero weight909

edges, this edge set coincides with the minimal910

spanning forest attaching the vertex set R to P ver-911

tices.912

2. Denote by MSF(R,P ) the minimum spanning913

forest attaching R to P . Note that we have proper-914

ties B.1, so915

MTop-Div(R,P ) =
∑

e∈MSF(R,P )

w(e). (6)916

Therefore, we have to show that the weight of 917

MSF(R,P ) does not change significantly when 918

all weights are changed by no more than ε. 919

There are two possibilities: 1) after a change, all 920

MSF edges remain the same, or 2) some edges are 921

replaced with other edges. In the first case, it is 922

obvious that the total sum of edge weights changes 923

by no more than δ = ε·#edges(MSF(R,P )) = ε· 924

|R|. Consider the second case. Denote by MSFprev 925

the original MSF, by MSFnew — the MSF after the 926

change; let w be the edge weight function before 927

the change, ŵ — after the change. The following 928

inequalities hold: 929

ŵ(MSFnew) < ŵ(MSFprev); (7) 930

w(MSFprev)− δ ≤ ŵ(MSFprev) ≤ 931

≤ w(MSFprev) + δ; (8) 932

w(MSFnew)− δ ≤ ŵ(MSFnew) ≤ 933

≤ w(MSFnew) + δ; (9) 934

w(MSFnew) ≥ w(MSFprev). (10) 935

From (7)-(8) follows that ŵ(MSFnew) < 936

w(MSFprev) + δ; from (9)-(10) follows that 937

ŵ(MSFnew) ≥ w(MSFprev)− δ. 938

3. Follows obviously from the MSF formula for 939

MTop-Div(R,P ) and attention map properties. 940

C Datasets 941

SQuAD (Rajpurkar et al., 2016) and CoQA (Reddy 942

et al., 2019) are widely used English question- 943

answering benchmarks that have facilitated 944

the development of hallucination detection 945

datasets (Kuhn et al., 2023; Manakul et al., 2024). 946
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Similarly, XSum (Narayan et al., 2018), a dataset947

of news articles with one-sentence summaries, is948

commonly employed in hallucination detection949

research for abstractive summarization (Shi et al.,950

2024; Cao et al., 2022). To assess LLM perfor-951

mance, we used GPT-4o to annotate responses952

to questions sourced from SQuAD, CoQA, and953

summarization tasks from XSum.954

C.1 Data Generation & Annotation955

Generation. We generate responses from a lan-956

guage model (LLM) for the considered datasets,957

employing different prompting strategies for each958

dataset while keeping these strategies consistent959

across models (see prompt examples in Table 4).960

For SQuAD and XSum, responses are generated961

using a zero-shot approach. In contrast, for CoQA,962

we create queries in a few-shot manner without pro-963

viding specific instructions, following (Lin et al.,964

2024): each sample consists of a passage and a965

series of question-answer pairs, concluding with a966

final question that the model is expected to answer.967

Annotation: automated vs human. We treat968

hallucination detection as a binary classification969

problem; our target indicates whether a hallucina-970

tion is present anywhere in the model’s response.971

Two approaches to annotating model generations972

were considered: 1) automated annotation using an973

LLM (in our case, GPT-4o), and 2) manual annota-974

tion by human experts.975

During the automated annotation process, we976

provide an LLM’s output preceded by an instruc-977

tion (prompt) to GPT-4o. In this prompt, GPT-4o is978

asked to determine whether the output contains hal-979

lucinations, and we expect a single-word response980

of either “Yes” or “No.” An example of such an in-981

struction for the question answering task is shown982

in Table 6.983

For human annotation, we asked three team984

members with at least upper-intermediate English985

proficiency to independently annotate approxi-986

mately 100 samples from each dataset. We selected987

samples where all annotators reached a consensus988

and considered these annotations the ground truth989

hallucination labels.990

To further evaluate GPT-4o, we conducted au-991

tomatic annotation using several variations of992

prompts, each reformulating the task for GPT-4o,993

including zero-shot and few-shot versions. We then994

compared these annotations to the actual halluci-995

nation labels. The results, presented in Table 7,996

demonstrate a consistent alignment between GPT-997

4o’s annotations and those made by humans, re- 998

gardless of the specific prompt. This consistency 999

confirms the robustness of our approach to the ex- 1000

act form of instruction. 1001

Based on these findings, we prefer automated an- 1002

notation as a cost-effective and efficient alternative 1003

to human experts. 1004

Annotation: general pipeline. CoQA and 1005

SQuAD contain questions paired with ground-truth 1006

answers. To minimize false positives in labeling, 1007

we employed a two-step verification process: 1008

1. Rouge-L scoring: we computed Rouge-L 1009

scores (using the evaluate library) between 1010

the model’s response and the ground-truth an- 1011

swers. 1012

2. Substring matching: we checked whether any 1013

ground-truth answer was a substring of the 1014

response. 1015

Responses with a Rouge-L score of 1 (exact match) 1016

were labeled as grounded. Those meeting both 1017

of the following criteria were flagged as potential 1018

hallucinations: 1019

• Rouge-L score ≤ 0.3 (following (Kuhn et al., 1020

2023)); 1021

• no ground-truth answer appears as a substring. 1022

These candidate hallucinations were then reviewed 1023

by GPT-4o, and only confirmed cases were finally 1024

labeled as hallucinations. 1025

For XSum, where reference summaries are 1026

more complex than the ground truth answers in 1027

SQuAD/CoQA, we bypassed Rouge-L filtering and 1028

relied solely on GPT-4o for annotation. 1029

Detailed statistics for each dataset can be seen 1030

in Table 8. The number of samples in the datasets 1031

varies across models, as we tried to maintain a bal- 1032

ance of hallucinated and grounded responses, en- 1033

sure sample cleanness, and minimize mislabeling. 1034

The procedure outlined above selects a different 1035

number of objects in a sample depending on the 1036

quality of the model’s responses. 1037

D Other experiment results 1038

D.1 Alternative attention map-based features 1039

for hallucination detection 1040

In our preliminary experiments for developing an 1041

attention maps-based hallucination detector, we 1042

trained classifiers using topological features pre- 1043

viously applied to other NLP tasks (Kushnareva 1044
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SQuAD CoQA
Given the context, answer the question in a brief but complete sentence. Once upon a time, in a quiet village, there lived a kind old baker named Henry.
Note that your answer should be strictly based on the given context. He was known for his delicious bread and warm smile. One day, a traveler arrived,
In case the context does not contain the necessary information to answer the question, tired and hungry, Henry welcomed him with a fresh loaf.
please reply with “Unable to answer based on given context”. Q: What was Henry known for?
Context: A: Baking delicious bread.
Once upon a time, in a quiet village, there lived a kind old baker named Henry. Q: What else?
He was known for his delicious bread and warm smile. One day, a traveler arrived, A: Warm smile.
tired and hungry, and Henry welcomed him with a fresh loaf. Q: How did the traveler feel when he arrived?
Question: Who was known for baking delicious bread? A: Tired and hungry.
Answer: Q: What did Henry give the traveler?

Table 4: Examples of prompts used during generation for CoQA and SQuAD (we add additional delimiter spaces
and formatting not present in actual prompts for better readability). SQuAD contains instructions followed by
context and questions. In CoQA, the prompt has only a contextual passage followed by a question-and-answer
series, with the last question being the actual one.

XSum
Please annotate potentially hallucinated model-generated summaries in the following settings.
I will provide a reference text and a model-generated summary of this text. You will judge whether the given model-generated
summary contains hallucinations. Answer "Yes" if the summary contains hallucinations, "No" if it does not, and "N/A" if you cannot decide.
Do NOT give any extra explanations.

Table 5: The prompt used during generation for the XSum dataset (we add additional delimiter spaces and formatting
not present in actual prompts for better readability).

You are an AI assistant specialized in detecting hallucinations in question-answering tasks.
Your job is to analyze the given context, question, and generated answer to identify
whether the answer contains any hallucinations. Examples:

Example 1.
Context:
The city of Paris is the capital of France. It is known for its iconic landmarks
like the Eiffel Tower and Notre Dame Cathedral.
The city is situated in the northern part of the country, near the Seine River.
Question: Is Paris the capital of Germany?
Generated answer: Yes, Paris is the capital of Germany.
Hallucination: Yes.

Example 2.
Context:
The city of Paris is the capital of France.
It is known for its iconic landmarks like the Eiffel Tower and Notre Dame Cathedral.
The city is situated in the northern part of the country, near the Seine River.
Question: Is Paris the capital of Germany?
Generated answer: No, Paris is not the capital of Germany. According to the context,
Paris is the capital of France.
Hallucination: No.

You should determine if the answer contains hallucinations according to the hallucination types above.
If you cannot decide if the generated answer is a hallucination, write “N/A.” as the answer.
The answer you give MUST be ONLY “Yes.”, “No.” or “N/A.”; do NOT give ANY explanation.

Table 6: Example of annotation prompt passed to GPT-4o (we add additional delimiter spaces and formatting not
present in actual prompts for better readability).
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Prompt number 1 2 3 4 5

CoQA
Accuracy (↑) 0.809 ± 0.017 0.861 ± 0.015 0.742 ± 0.003 0.795 ± 0.009 0.831 ± 0.025
Precision (↑) 0.849 ± 0.021 0.911 ± 0.007 0.771 ± 0.003 0.828 ± 0.011 0.860 ± 0.012

Recall (↑) 0.871 ± 0.004 0.877 ± 0.019 0.877 ± 0.013 0.877 ± 0.005 0.893 ± 0.027

SQuAD
Accuracy (↑) 0.831 ± 0.003 0.857 ± 0.018 0.857 ± 0.008 0.872 ± 0.003 0.854 ± 0.007
Precision (↑) 0.813 ± 0.002 0.831 ± 0.028 0.845 ± 0.021 0.850 ± 0.011 0.847 ± 0.007

Recall (↑) 0.796 ± 0.008 0.839 ± 0.010 0.823 ± 0.023 0.858 ± 0.018 0.813 ± 0.017

Average Accuracy (↑) Precision (↑) Recall (↑)
CoQA 0.808 0.844 0.879

SQuAD 0.854 0.837 0.826

Table 7: Classification metrics of GPT-4o annotation for CoQA and SQuAD with human labels considered actual
annotation. The top table shows metric scores for different variants of prompts used. The bottom table shows the
metric scores averaged across all prompt variants.

Model
CoQA SQuAD XSum

Hal. Grounded Hal. Grounded Hal. Grounded
Mistral-7B 776 776 311 389 301 448

LLaMA-2-7B 375 375 357 235 239 507
LLaMA-2-13B 279 384 314 436 208 522
LLaMA-3.1-8B 189 200 350 400 243 407

Qwen2.5-7B 124 183 215 249 194 556

Table 8: Datasets statistics. Number of hallucinated and grounded samples of each model.
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Figure 8: ∆ij values for ij-th heads, MS MARCO vs CoQA. Vertical axis corresponds to the difference on dataset
(B), horizontal — to the one on dataset (A). The heads that segregate samples best are highlighted in pink. Model
names for a row are on the left side.

et al., 2021; Cherniavskii et al., 2022), as well as1045

traditional attention map characteristics. As stan-1046

dard topological features, we considered barcode-1047

based features, such as the sum of bar lengths in1048

persistence diagrams, and naive topological fea-1049

tures, including the average vertex degree in at-1050

tention graphs. For traditional attention-based fea-1051

tures, we used sparsity ratio, attention entropy, and1052

spectral norm (Kobayashi et al., 2020; Vig and Be- 1053

linkov, 2019; Ji et al., 2021). We also considered 1054

Wassersein distances between the persistent dia- 1055

grams (Edelsbrunner and Harer, 2010) of a context 1056

and a response subgraphs as an alternative way to 1057

assess their similarity. Finally, we analyzed the av- 1058

erage attention to <s> token as we discovered that 1059

hallucination-aware heads often attend to it when 1060
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Table 9: ROC-AUC values of supervised classifiers
on top of various set of features. TOP-1 results are
highlighted with bold font, while TOP-2 are underlined.

Features MS MARCO CoQA
Mistral-7B

Standard topological 0.67 0.69
Sparsity ratio 0.66 0.7
Entropy 0.75 0.77
Wasserstein 0.77 0.73
Spectral norm 0.73 0.72
Attention to <s> 0.65 0.61
MTop-Div 0.86 0.98

LLaMA-2-7B
Naive topological 0.69 0.7
Sparsity ratio 0.49 0.61
Entropy 0.38 0.68
Wasserstein 0.73 0.6
Spectral norm 0.49 0.64
Attention to <s> 0.62 0.64
MTop-Div 0.75 0.96

the hallucination is present (see 4).1061

To determine the most informative features for1062

hallucination detection, we trained supervised clas-1063

sifiers on concatenated features from all layers and1064

heads and compared them to classifiers trained only1065

on MTop-Div values under the same conditions.1066

The results are presented in Table 9.1067

While the classifier based on MTop-Div values1068

significantly outperforms alternative approaches,1069

computing these values across all layers and at-1070

tention heads is highly computationally expensive.1071

To address this, we developed TOHA — a more1072

efficient alternative by aggregating MTop-Div val-1073

ues from only a subset of the “hallucination-aware”1074

attention heads in the model.1075

D.2 Other metrics for the head selection1076

procedure1077

We also investigated alternative attention-map-1078

based scores — including entropy, spectral norm,1079

and the Wasserstein distance between the persistent1080

diagrams of prompts and responses — for select-1081

ing specialized attention heads.Following the same1082

pipeline as in TOHA, we computed the average dis-1083

tances between hallucinated and grounded samples1084

using alternative proximity metrics. The results,1085

presented in Figure 8, reveal that the most segre-1086

gating heads for MS MARCO do not generalize1087

to the CoQA dataset. This suggests that our pro-1088

posed MTop-Div metric is better suited for the task 1089

compared to existing solutions. 1090

E Implementation details 1091

In this section, we describe the key implementation 1092

choices. 1093

• For EigenScore, we used the last token rep- 1094

resentation to embed sentences, as suggested 1095

in (Chen et al., 2024). We took outputs from 1096

the 16th layer, since middle layers were shown 1097

to contain the most factual information (Sky 1098

et al., 2024; Azaria and Mitchell, 2023). 1099

• For methods that rely on multiple generations, 1100

we generated 20 samples per input, following 1101

recommendations from (Manakul et al., 2024; 1102

Chen et al., 2024). 1103

• For SelfCheck-GPT, we used its NLI-based 1104

variant. 1105

• For LLM-Check, we considered its white-box 1106

attention score modification, as it works in a 1107

setting similar to ours. 1108

• For Haloscope, we reserved 150 samples for 1109

hyperparameter tuning and treated the rest as 1110

unlabeled data. For the CoQA dataset, we 1111

added several thousand extra generations dur- 1112

ing training, as in the original paper. Other 1113

datasets were used as-is, since their sizes are 1114

comparable with those in Haloscope’s experi- 1115

ments on the TruthfulQA dataset. 1116

• For TOHA’s head selection, we similarly used 1117

150 annotated samples. The topological di- 1118

vergences were calculated using ripser++ li- 1119

brary (Zhang et al., 2020), MIT license. 1120

In our experiments, we used 60/15/25 1121

train/val/test split. All the obtained results were 1122

averaged over five runs. All experiments were 1123

carried out using NVidia L40. 1124

F Use of scientific artifacts & AI 1125

assistants 1126

CoQA contains passages from seven domains 1127

under the following licenses: Literature and 1128

Wikipedia passages are shared under CC BY- 1129

SA 4.0 license; Children’s stories are collected 1130

from MCTest which comes with MSR-LA license; 1131

Middle/High school exam passages are collected 1132

from RACE which comes with its own license; 1133

17



News passages are collected from the DeepMind1134

CNN dataset which comes with Apache license.1135

SQuAD dataset comes under CC BY-SA 4.0 li-1136

cense. RAGTruth dataset comes under MIT license.1137

XSum dataset comes under MIT license.1138

We used all the artifacts as it was intended by the1139

corresponding licenses. No personal information1140

or offensive content is contained in the considered1141

datasets.1142

The original text of this paper was spell- and1143

grammar-checked and slightly smoothed out using1144

Grammarly.1145

G Potential risks1146

1. Ethical risks from deployment: overcon-1147

fidence in TOHA’s scores could lead to1148

unchecked LLM outputs in high-stakes scenar-1149

ios (e.g., healthcare). TOHA should be frame1150

as a "warning system" rather than a definitive1151

filter, and advocate for human review.1152

2. Attention manipulation attacks: adversarial1153

prompts could artificially alter attention pat-1154

terns, evading detection.1155
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