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ABSTRACT

This work proposes a compositional AND–OR template for art and design that
encodes the part–relation–geometry organization of images in a structured and
interpretable form. Within a maximum-entropy log-linear model, we define a uni-
fied consistency score as log-likelihood gain against a reference distribution and
decompose it into term-level evidence, enabling an evidence-to-prescription map-
ping for actionable composition guidance. Learning is performed by a penalized
EM-style block-pursuit with sparsity and local mutual exclusivity: object tem-
plates are learned first and reused as scene terminals to induce scene templates.
A semi-supervised structural expansion, which is triggered by matching gain and
structural-consistency thresholds, bootstraps new branches from unlabeled, high-
quality images. Evaluations on a curated compositional dataset and AVA/AADB
themes show strong agreement with expert paradigms, interpretable parse trees,
and competitive performance with deep baselines while exhibiting higher align-
ment with human ratings. The learned templates also act as lightweight structural
conditions to steer AIGC generation and layout design. Overall, the framework
delivers a transferable structural prior with favorable data/parameter efficiency and
a unified pathway for explainable visual assessment and generation.

1 INTRODUCTION

Art and design are markedly structured. Existing tools for visual assessment and creative assistance
often rely on large-scale annotations and black-box representations, making it hard to turn the ques-
tion of why something is good, and how to improve it, into a traceable, actionable chain of evidence
(Murray et al., 2012; Simonyan & Zisserman, 2014; He et al., 2016; Dosovitskiy et al., 2020). They
also struggle with cross-scene transfer and few-shot generalization. We advocate a recomposable
structured representation: reusable parts and constraints that capture how visual elements are or-
ganized in art and design, so a model can learn “general structure” while producing executable,
task-specific recommendations.

We propose a compositional representation based on AND–OR templates for art and design (Si &
Zhu, 2013; Zhu et al., 2007). AND nodes encode relational and geometric constraints that must be
satisfied jointly; OR nodes represent alternative structural variants; terminals are observable primi-
tives in art and design with statistical attributes. Under a maximum-entropy log-linear framework,
we define image–template consistency as the log-likelihood gain relative to a reference distribu-
tion, yielding a unified scorer. The scorer decomposes term-wise into object, relation, and geometry
evidence, which naturally maps to “evidence → prescription” style adjustment suggestions.

For scalable learning, we cast structure induction as penalized maximum likelihood and employ an
EM-type block-pursuit algorithm: in the E-step we perform terminal matching, relation instantia-
tion, and geometric evaluation; in the M-step we add OR branches or refine constraints by penalized
marginal gain, while local mutual exclusivity and sparsity regularization suppress combinatorial ex-
plosion. Learning proceeds in two levels: we first obtain reusable object templates, then reuse them
as scene terminals to compose scene templates. We further introduce a semi-supervised extension:
a dual threshold of matching gain + structural consistency bootstraps structural increments from
unlabeled data, with conflict resolution and early stopping for robust expansion.

We use a licensed collection of professional photographers’ works as small-sample seeds and an
unlabeled expansion pool: the former initializes object/scene template learning, the latter supports
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Figure 1: Overview of the compositional AND–OR template framework (top: Learning & Verifica-
tion; bottom: Exploration). Top: Learn AND–OR templates from professional photos; use them for
consistency scoring, parse-tree guidance, and as structural conditions for AIGC. Bottom: Clustering
and semi-supervised expansion yield new theme templates.

semi-supervised growth. On this basis, we validate the method as a representation-learning frame-
work, including downstream applications: photography guidance, AIGC generation guidance and
film-poster layout design, used respectively for framing suggestions, re-ranking generation results,
and layout optimization with the template score as the objective. We also evaluate on existing aes-
thetic corpora like AVA and AADB (Li et al., 2010).

The main contributions of our paper can be summarized as follows:

• Compositional representation and unified scoring: We extend AND–OR templates from
the object level to the scene level. Within a maximum-entropy log-linear model we define
a unified consistency score (log-likelihood gain) that supports training selection and test
evaluation, and that decomposes into object / relation / geometry terms.

• Penalized MLE with EM-type block-pursuit: We instantiate learning as penalized maxi-
mum likelihood with an EM-type block-pursuit procedure adapted to compositional induc-
tion. Local mutual-exclusivity and sparsity regularization curb combinatorial growth, and
two-level reuse (objects→ scenes) improves parameter efficiency.

• SSE: semi-supervised structure expansion: A dual-threshold rule (matching-gain +
structural-consistency) bootstraps new branches from unlabeled images, with conflict res-
olution and early stopping for robustness.

• Faithful interpretability and prescriptive guidance: The score’s term-wise factorization
provides evidence-to-decision attribution; parse graphs visualize activated terminals and
(dis)satisfied constraints and translate attributions into actionable structure/geometry edits.

2 RELATED WORK

2.1 COMPOSITIONAL AND GRAMMAR-BASED VISION

A long tradition explains images by parts and their relations. Classical formulations include de-
formable templates (Yuille et al., 1992), Active Appearance Models (Baker et al., 2004), pictorial
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structures (Felzenszwalb & Huttenlocher, 2005), constellation models (Fergus et al., 2007), hierar-
chical parts dictionaries (Fidler & Leonardis, 2007), and Active Basis (Wu et al., 2010). Discrim-
inatively trained part-based detectors (DPM) established that coupling appearance with geometric
deformation is highly effective for robust detection (Felzenszwalb et al., 2009). Beyond single cat-
egories, taxonomies and recursive compositionality share parts/appearance across classes and views
for better sample efficiency (Ahuja & Todorovic, 2007; Detection et al., 2010).

Within grammar-based modeling, Hybrid Image Templates (HIT) integrate sketch primitives with
texture/flatness/color cues and are learned by information projection (Si & Zhu, 2011). The AND–
OR Template (AOT) makes reconfigurability explicit by separating AND-nodes (joint composi-
tion/constraints) from OR-nodes (structural/geometric alternatives), yielding a template that enu-
merates valid configurations while remaining interpretable (Si & Zhu, 2013). From a broader the-
oretical standpoint, stochastic/attributed image grammars provide a top–down/bottom–up parsing
view in which terminals contribute local evidence and higher nodes regularize legal structures (Zhu
et al., 2007; Liu et al., 2014; Park et al., 2017). In parallel, representation learning evolved from
HOG (Dalal & Triggs, 2005) to deep backbones (VGG, ResNet) and attention mechanisms (SE,
ViT) (Simonyan & Zisserman, 2014; He et al., 2016; Hu et al., 2018; Dosovitskiy et al., 2020);
while these models excel in accuracy, their internal reasoning is typically opaque at the composition
level.

From objects to scenes. Compared with prior AOT/HIT usage that primarily targets object cate-
gories, we extend AOT from the object level to the scene level. Concretely, learned object templates
are reused as scene terminals and composed via AND/OR operations under explicit inter-object con-
straints, so that scene regularities (e.g., relative placement, scale compatibility) are modeled without
proliferating low-level parts. This design aligns with attributed grammar–based scene parsing (Liu
et al., 2014) and is compatible with object–relation–attribute structure widely adopted in scene un-
derstanding corpora (Krishna et al., 2017; Xu et al., 2017). The result is a two-level, interpretable
representation in which object knowledge transfers upward to structure scenes.

2.2 STRUCTURE-AWARE SCORING AND UNIFIED LEARNING

Structure-aware quality modeling progressed from subject/semantic cues (Luo & Tang, 2008) to
large-scale learning setups (e.g., AVA) that support quantitative evaluation and correlation with hu-
man preference (Murray et al., 2012), and to explicitly reasoning about recurring compositional pat-
terns (Nguyen et al., 2018). Our framework is theory-leaning: under a maximum-entropy log-linear
model, we define a unified consistency score as log-likelihood gain against a reference distribution.
The score decomposes into object, relation, and geometry terms—mirroring the grammar—so that
positive/negative evidence aggregates transparently to a final rating. This view connects to classi-
cal maximum-entropy feature binding and Markov random field modeling (Zhu et al., 1998), while
remaining faithful to modern compositional parsing.

Methodologically, we pursue scalable structure induction by penalized estimation with sparsity and
local mutual exclusivity, alternating between bottom–up terminal matching and top–down constraint
refinement. The two-level reuse (objects→ scenes) curbs combinatorics, and the resulting consis-
tency score provides term-wise attribution that can be used for principled selection, comparison,
and ablation. In contrast to black-box predictors (Simonyan & Zisserman, 2014; He et al., 2016;
Dosovitskiy et al., 2020), the proposed family preserves explicit part–relation–geometry factors and
yields an auditable path from evidence to decision.

3 COMPOSITIONAL TEMPLATE REPRESENTATION

3.1 TASK AND DATA

We use a small authorized set of professional photographs as seeds and maintain an unlabeled pool
for semi-supervised expansion. The goal is to induce compositional (reusable) structured tem-
plates from thematically coherent image collections, and to derive a unified scoring rule as well
as evidence-to-prescription suggestions. Data provenance and statistics are deferred to Appx. A.1.
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Figure 2: Detailed illustration of the compositional AND–OR template. OR nodes enumerate struc-
tural variants and geometric transforms; AND nodes (solid blue circles) encode joint satisfaction of
their children; terminal nodes correspond to observable features.

3.2 COMPOSITIONAL AND–OR TEMPLATES AND UNIFIED SCORING

3.2.1 TEMPLATE STRUCTURE

We adopt a two-level representation composed of object templates and scene templates. At the
object level we use an AND–OR graph: AND nodes encode relational and geometric constraints
that must be satisfied jointly; OR nodes capture structural and geometric variants; terminals are ob-
servable primitives with statistical attributes. At the scene level, learned object templates are reused
as “scene terminals” and combined via AND–OR compositions to encode inter-object constraints
and equivalent variants. As an illustrative example, consider a “river surrounding mountains” scene
with four main objects: river (B), middle mountain (A), left mountain (C), and right mountain (D).
The root is an OR node that enumerates valid scene configurations; its children are AND combi-
nations of structural and geometric settings for each component. Further down the hierarchy, the
middle mountain and the river can be split into left/right segments, and the left/right mountains
into upper/lower segments. These segments serve as terminals in object templates, whereas scene
templates treat object templates as terminals to avoid configuration blow-up if tiny segments were
elevated to scene terminals. Fig. 2 visualizes the structure: terminals (light blue rectangles), AND
nodes (solid blue circles), and OR variants (dashed boxes).

Both levels are regulated by a stochastic context-free grammar (SCFG) to compactly model struc-
tural & geometric variability and higher-order part interactions. Terminals are represented by Pho-
tography Art Templates (PATs), consisting of image primitives and histogram descriptors (e.g.,
color/texture), each carrying position, scale, and orientation attributes.

A PAT can be specified by a list:

PAT = {(B1, x1, y1, s1, o1), (h2, x2, y2), (h3, x3,y3), (B4, x4, y4, s4, o4), ...}

where B1, B4, ... are image primitives and h2, h3, ... are histogram descriptors for texture, flatness
and color. (xj , yj) denote the selected locations and oj are the selected orientations.
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3.2.2 UNIFIED SCORING

Let χ+ = {I1, . . . , IN} be positive images drawn from a target distribution f(I) and let q(I) denote
a reference distribution over generic natural images. Starting from q, we progressively reweight by
selected features toward f ,

q(I) = p0(I)→ p1(I)→ · · · → pT (I) = p(I) ≈ f(I). (1)
Under the maximum-entropy principle, the model admits a log-linear form

p(I) = q(I)

T∏
t=1

[
1

zt
exp{βtrt(I)}

]
, (2)

where βt parameterizes feature rt, and zt =
∑

rt
q(rt) exp{βtrt} is the normalizer. Given a tem-

plate Temp and a configuration (s,g) (structural and geometric), the complete likelihood is
p(I, s,g | Temp, β) = p(s,g | Temp) · p(I | s,g, β), (3)

with the conditional likelihood

p(I | s,g, β) = exp


K∑

k=1

sk

 D∑
j=1

βk,jrj(I)− logZk

 q(I), (4)

Here D is the number of candidate features and K is the number of template terminals, β is the
parameter for the t-th selected feature rt and zt (zt ≥ 0) is the individual normalization constant
determined by β. q(I) represents the reference distribution.

We define the template matching score, also known as the consistency score and the information
gain, as the log-likelihood ratio.

Score(I) = log
p(I | s,g, β)

q(I)
=

K∑
k=1

Score(PATk, I), (5)

where each activated terminal contributes

Score(PATk, I) = sk

 D∑
j=1

βk,jrj(I)− logZk

 . (6)

This additive decomposition provides a direct mapping from evidence to prescription: posi-
tive/negative evidences at the part or relation level translate into actionable geometric or structural
adjustments.

4 LEARNING COMPOSITIONAL AND–OR TEMPLATES

This section details the EM-type block-pursuit procedure for learning AND–OR templates under
the unified scoring and log-linear modeling introduced earlier. The learner alternates between esti-
mating latent structural and geometric configurations (E-step) and performing penalized maximum-
likelihood updates of structure and parameters (M-step). We first learn object templates and then
reuse them as scene terminals to induce scene templates. Finally, we describe a semi-supervised
extension that enlarges structure from an unlabeled pool via a dual-threshold criterion (matching
gain and structural consistency) with conflict resolution and early stopping.

4.1 EM-TYPE BLOCK-PURSUIT

4.1.1 TRACKING MATRIX (E-STEP)

We begin by applying YOLOv11 to detect and segment objects, obtaining object-level training
samples. For each sample, candidate feature responses are computed to form the data matrix
R ∈ RN×D, where each entry is Rij = rj(Ii) ∈ [0, 1]. The E-step, given the current template
and parameters, performs terminal matching, relation instantiation, and geometric evaluation. Con-
cretely, within local windows we conduct a finite search over translation, scale, and rotation; per-
terminal contributions are evaluated using the additive matching score, and only combinations that
satisfy the AND-node relational/geometric constraints are retained. The E-step outputs sample-wise
activated blocks and their poses, which serve as sufficient statistics for the M-step.
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Figure 3: Initial Data Matrix. Data matrix R is a matrix with N (number of positive examples) rows
and D (number of all candidate features) columns, and each entry Rij = rj(Ii) is a feature response
(0 ≤ Rij ≤ 1). Larger value of Rij means feature j appears in image Ii with higher probability.

4.1.2 PENALIZED MARGINAL GAIN (M-STEP)

On R, we pursue large blocks {Bk}Kk=1 comprised of many high responses; they correspond to fre-
quently occurring, high-confidence PATk. A block is specified by a set of shared features (columns)
over a subset of examples (rows). Its significance is measured by the summed score inside the block:

Score(Bk) =
∑

i∈rows(Bk)
j∈cols(Bk)

(
βk,jRi,j − log zk,j

)
. (7)

As in the main text, cols(Bk) are the selected features in PATk, rows(Bk) are the examples on which
PATk is activated, and zk,j follows the normalization used for the log-linear form. Maximizing the
total block score corresponds to penalized maximum-likelihood estimation; we minimize a two-term
objective

−L(R, β, s,g) + penalty(β)

with sparsity and local mutual exclusivity to suppress overlap and redundancy. In practice, (i) βk,:

is constrained within local object windows to avoid cross-region leakage; (ii) per image and per
local region, at most one block is allowed to be active; and (iii) low-scoring blocks are pruned
after ranking. Initialization uses high-frequency terminals and stable local relations. We stop when
the marginal information gain of the newly proposed block falls below a threshold, or when both
structure size and validation score improvements are below ϵ for several rounds. The end-to-end
pipeline is shown in Fig. 4.

Algorithmic overview. For completeness, we provide the full pseudocode of our learning and
inference procedures in the Appx. A. Algorithm 1 details the EM-type block–pursuit procedure used
to learn the compositional AND–OR templates from the response matrix R under the log-linear
model in Sec. 3, 4. Algorithm 2 specifies the recursive SUM–MAX inference used at test time to
obtain the structural configuration s, geometric configuration g, and the decomposable consistency
score.The main text reports high-level intuition and ablations; the Appendix gives all steps needed
to reproduce results.

4.2 TWO-LEVEL LEARNING PIPELINE

Object template learning. On the object-level matrix R, EM-type block pursuit iteratively selects
high-scoring blocks to instantiate terminals and non-terminals and to estimate the coefficient matrix
β(T ). Sparsity and local mutual exclusivity control model complexity; blocks are ranked by infor-
mation gain and truncated, yielding a compact and interpretable AND–OR structure at the object
level.

Scene template learning. In the object-level feature space, we construct R′ ∈ RN ′×D′
where

each row corresponds to a photograph in χ+ and each column to a candidate object-level feature,

6
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Figure 4: End-to-end template-learning pipeline. Images are first preprocessed by an object detector
and segmenter (e.g., YOLOv11). An EM-type block-pursuit algorithm then learns terminal and non-
terminal nodes from the data matrix R. Learned object templates are composed into scene templates
via the same procedure, and mean configuration features are aggregated for visualization.

with entries R′
ij = r′j(I

′
i) ∈ [0, 1]. Treating learned object templates as scene terminals, we apply

the same EM-type block pursuit on R′: the E-step emphasizes inter-object relations and global
geometric consistency, while the M-step, under penalties, decides whether to add new OR branches
or refine cross-object AND constraints. This two-level scheme reuses object knowledge at the scene
level and avoids unnecessary pixel-level combinatorial search.

4.3 SEMI-SUPERVISED LEARNING OF COMPOSITIONAL AND–OR TEMPLATES

This paper extends the compositional template learning method into a semi-supervised framework,
exploring the capability of algorithms to autonomously derive templates from unlabeled image data.
This approach enhances learning efficiency while providing novel insights into the semantic depth
and aesthetic principles of images. Building upon the preliminary aesthetic template construction,
we analyze the relationship between the number of nodes in the template graph and the training
image volume, aiming to evaluate model performance and sensitivity to data variability comprehen-
sively.

Additionally, we assess the robustness of semi-supervised learning in the face of disturbances and
anomalous data, examining its impact on model stability. Such analysis reveals the algorithm’s
adaptability in complex environments, offering more resilient and efficient solutions for image pro-
cessing. Through systematic experiments and analysis, this study aims to provide a richer theoretical
foundation for compositional template learning, contributing both to advancements in the practi-
cal application of these algorithms in real-world contexts.For detailed information, please refer to
Appx. A.2.

5 EVIDENCE AND VALIDATION

We evaluate the proposed compositional AND–OR template along three dimensions—reliability,
interpretability, and performance/data efficiency across tasks. The results show that the template
consistently captures human-recognized aesthetic regularities, enables explainable predictions of
image quality, and achieves performance comparable to or better than deep learning baselines on
classification tasks.

5.1 CONSISTENCY AND RELIABILITY OF THE COMPOSITIONAL AND–OR TEMPLATE

5.1.1 OBJECTIVE CONSISTENCY

Under expert guidance, we curated six representative compositional structure paradigms and, for
each paradigm, selected 30 high-quality images to learn a theme template. The learned templates

7
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Figure 5: Reliability verification of compositional templates. Expert-summarized templates are
compared with templates learned by our method, and effectiveness is further checked using training
and generated exemplars. High matching scores correspond to structures preferred by professionals,
supporting the reliability and applicability of the learned templates.

show strong agreement with the expert paradigms in both structural and geometric constraints,
indicating that the model automatically distills the same compositional regularities. We quantify
alignment using the consistency score defined in equation 5—the log-likelihood gain relative to a
reference distribution—and observe scores in a high range, supporting structural consistency. As
controls, we report two perturbation studies: (i) counterfactual templates obtained by part substitu-
tion or relation shuffling, and (ii) geometric jitter by scale and position perturbations. Both controls
lead to marked drops in the consistency score, demonstrating sensitivity to structural and geometric
disruptions. To assess structural controllability, We used the learned templates as prompts for an
AIGC image generator (e.g., Midjourney); As shown in Fig.5, the outputs adhere to the prescribed
part relations and geometric layout, showing that the encoded constraints are executable, rather than
mere style reproduction.

5.1.2 SUBJECTIVE RELIABILITY

We further conduct a user study with 100 domain practitioners on 10 randomly selected theme tem-
plates. Using a five-point scale, participants rate the structural validity and theme alignment (fully
consistent, mostly consistent, average, inconsistent, completely inconsistent). As shown in Fig.11,
the majority report agreement with professional knowledge: 74.8% fully or mostly consistent, and
about 12% inconsistent. Several participants note that the templates capture the layout and inter-
element relations emphasized in practice. These subjective results align with the objective analyses
and indicate that the learned templates provide a structure prior consistent with human understand-
ing.

5.2 INTERPRETABILITY AND CONSISTENCY SCORE WITH COMPOSITIONAL AND–OR
TEMPLATES

For interpretable scoring and parsing, given a theme template and a target image we compute the
consistency score to measure their structural alignment and produce a parse tree for the image.
The parse explicitly marks activated terminals and the satisfied or violated relational/geometric con-
straints. According to equation 5, the score decomposes into object-, relation-, and geometry-level
contributions, yielding a clear attribution pathway: satisfying key parts and constraints increases the
corresponding contributions and the overall score; missing required parts or violating constraints
suppresses activations and reduces the score. Fig. 12 shows typical cases: the template structure
(left) and image parses with scores (right). This mechanism supports auditable explanations and
provides structured repair suggestions for downstream use. Overall, the objective and subjective ev-
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Table 1: Quantitative comparison on AVA with single-image input methods.
Method Accuracy (%) Number of Parameters Training Complexity SRCC
Ours 85.65 2.3× 103 6.7× 104 0.8419
VGG19 (2-class) 78.08 1.39× 108 1.96× 1010 0.7506
ResNet50 (2-class) 85.71 2.35× 107 4.09× 109 0.7842
ViT-B/16 (2-class) 85.38 8.58× 107 1.75× 1010 0.7590
VGG19 + templates 81.43 1.39× 108 1.96× 1010 0.7893
ResNet50 + templates 85.87 2.35× 107 4.09× 109 0.8156
ViT-B/16 + templates 86.20 8.58× 107 1.75× 1010 0.7855

idence, together with interpretable outputs, substantiates our central claim: compositional AND–OR
templates reliably capture human-recognized structural regularities, yield a perturbation-sensitive,
decomposable consistency score, and act as executable structural constraints for downstream sys-
tems.

To further validate the effectiveness of the template scoring, we compared the model prediction with
manual subjective evaluation. For detailed information, please refer to the Appx. A.

5.2.1 PERFORMANCE EVALUATION AND BASELINE COMPARISON

We evaluate the compositional AND–OR template as a structured, interpretable classifier on AVA.
The AVA labels serve as proxy supervision to assess the discriminative power and inductive bias
of the representation. For each of 14 themes, we select 140 high-score and 140 low-score images
to learn two theme templates. At test time, we compute an image’s consistency score with each
template and predict the class with the higher score. The score is a real-valued alignment metric
defined by equation 5 as the log-likelihood gain relative to a reference distribution. It supports
ranking, correlation analysis, and thresholding.

Baselines include VGG19 Simonyan & Zisserman (2014), ResNet He et al. (2016) and ViT-B/16
Dosovitskiy et al. (2020). We also perform late fusion by combining template configuration features
with deep features to test complementarity. Metrics are Accuracy , FLOPs (floating-point operations,
as a proxy for computational cost), and Spearman rank correlation (SRCC) between the consistency
score and the AVA annotation scores.

Table 1 shows that, with substantially less data and far fewer parameters, the compositional template
achieves accuracy comparable to strong baselines. Late fusion further improves the deep networks.
The consistency score attains higher SRCC with human annotations, indicating stronger alignment
between the structured representation and the label standard. Importantly, under the log-linear for-
mulation the score decomposes into object-, relation-, and geometry-level contributions, yielding a
clear attribution pathway that links structural evidence to the final decision. This demonstrates a
favorable trade-off among discriminative power, data/parameter efficiency, and interpretability.

Other experiments In addition to the above verification, we also conducted other objective and
subjective experiments, please refer to the Appx. A for details

6 LIMITATIONS AND CONCLUSION

We introduce a compositional AND–OR template with a maximum-entropy log-linear unified score,
learned via penalized MLE with an EM-type block-pursuit and a semi-supervised structural expan-
sion across object and scene levels, achieving competitive performance with strong baselines while
preserving interpretability and actionability. Limitations include subjective aesthetics and limited
scale blurring theme boundaries, dependence on initial templates and expert curation, lack of sys-
tematic cross-cultural/domain tests, coverage of parts/geometry but not lighting/material/portrait
factors, hyperparameter sensitivity in the dual-threshold semi-supervised stage, and prototype-level
application modules. The impact is an evidence-to-prescription structured paradigm with few-shot
data efficiency and transfer, tempered by risks of stylistic/cultural bias and “templatized” creation.
Future work will expand and stratify data, incorporate higher-level factors, strengthen evaluation
and workflow integration, and conduct larger-scale cross-domain validation.
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ETHICS STATEMENT

This work studies compositional representations for art and design. No personally identifiable in-
formation is used. The curated datasets (e.g., AVA/AADB and licensed professional photographs)
are used under their respective terms; for scanned or third-party images we obtained permission or
used publicly available items with proper rights, and we release only non-identifying derivatives.
Our user evaluation (expert preference ratings) was conducted with informed consent and without
storing personal data; when required, institutional approval was obtained.

REPRODUCIBILITY STATEMENT

We provide implementation details for the model and learning procedure (Secs. 3, 4), including
the scoring definition (Eqs. 2–5), search ranges, and penalties. Dataset composition and splits are
described in Appx. A.1; semi-supervised settings in Appx. A.2. Additional plots are included in the
A.7. An anonymized code package and instructions are supplied as supplementary materials.
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A APPENDIX

A.1 COMPOSITIONAL IMAGE TEMPLATE DATASET (CITD).

To support compositional representation and AND–OR template learning in art and design, we cu-
rate the Compositional Image AND–OR Template Dataset (CITD). The dataset is built from
public sources (e.g., AVA, AADB) and expanded with images collected from professional photogra-
phy websites, works by renowned photographers, and scans from photography monographs. Images
are grouped by compositional structure paradigms—for example, “U-shaped bay”, “boardwalk”,
“flying eaves”, and “skyscraper atrium patterns”—so that parts, relations, and geometric constraints
can be learned and evaluated at the theme level.

CITD contains 750 images across 15 compositional themes, with 50 images per theme (see Fig. 6 for
examples). For each theme, we designate 525 images as structure exemplars that clearly instantiate
the target composition, and 225 images as non-exemplar controls sourced from popular image-
sharing platforms and web search results under the same theme tags. The dataset provides theme-
level labels only (no pixel-level annotation), and is intended to (i) seed AND–OR template learning
with positive examples, (ii) supply controls for calibration and robustness, and (iii) offer a unified
basis for consistency scoring and downstream evaluations.

Figure 6: Partial display of our Compositional Image Template Dataset.

A.2 DETAILS OF SEMI-SUPERVISED LEARNING

A.2.1 TRAINING DETAILS

As established aesthetic datasets, the AVA and AADB datasets contain a wealth of multi-theme and
multi-dimensional aesthetic images, making them highly suitable as foundational data sources for
the automatic discovery of templates (Murray et al., 2012; Li et al., 2010). This section proposes
a semi-supervised template learning method to learn new image templates on the AVA and AADB
datasets.

First, we manually select aesthetic images of the same theme from the datasets to construct the
corresponding initial templates, serving as the starting point for semi-supervised learning. Next,
the algorithm automatically selects images from the dataset for learning. When faced with training
samples of a new theme, the algorithm first attempts to interpret them using the existing templates
(Si & Zhu, 2013; Wu et al., 2010). If the matching score between the existing templates and the new
images is low, we integrate the new configurations and update the existing templates. By iteratively
refining this process, we can gradually enrich the content of the initial templates, ultimately forming
a compositional AND–OR template graph that includes multiple templates. The detailed workflow
of the semi-supervised learning process is illustrated in Fig. 7.

12
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Initial training images 
categorized by theme Initial photography template

Random images in AVA and AADB

match

It is a new training 
sample and the existing 

template cannot explain it

Learning new 
training sample

It can be explained, 
continue matching

New photography templates learned

Add configurations to the existing photography template

Figure 7: Semi-supervised Compositional AND–OR Template Learning Process. Starting from an
initial template, the algorithm autonomously selects images from the AVA and AADB datasets for
further learning. When new thematic samples are encountered, the algorithm attempts to match them
with existing templates; if the match score is low, new configurations are added to the existing tem-
plate to update it. Through iterative refinement, the content of the template is enriched, eventually
forming a compositional AND–OR graph encompassing multiple styles. This process enhances the
diversity of the templates while improving the flexibility and efficiency of aesthetic analysis through
semi-supervised learning.

Templates obtained from 
semi-supervised learning

Training samples automatically found 
by the model from AVA and AADB dataset

Figure 8: New templates obtained from semi-supervised learning.

Figure 9: The relationship between the number of training images and the growth of the number of
nodes.
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A.2.2 PERFORMANCE ANALYSIS

Compared to supervised learning methods, semi-supervised image aesthetic template learning faces
a larger and more complex volume of data, and autonomous learning implies varying quality of the
acquired training data Fergus et al. (2007). Therefore, this section primarily focuses on two aspects
of performance evaluation: first, the growth of the template AND–OR graph when handling large
datasets; and second, the robustness of the learning method when confronted with unrelated training
data. The former reflects the capacity of the learning method to handle a substantial influx of data
autonomously, while the latter demonstrates its resilience against anomalous or noisy data.

In analyzing the growth of the AND–OR graph under semi-supervised template learning, we ex-
amined the relationship between the number of nodes in the template AND–OR graph and the total
number of training images, as shown in Figure 9. The results indicate that the number of nodes
in the graph exhibits sub-linear growth, suggesting that many nodes are highly replicable and can
be shared across multiple subgraphs. By employing the methodologies constructed in Secs. 4, we
can automatically optimize these redundant nodes to effectively address the challenges posed by
large-scale training data Simonyan & Zisserman (2014).

To validate the robustness of the semi-supervised learning method, this section designs a cross-
validation experiment. First, two independent training samples of size n are selected from the same
thematic training dataset, and corresponding templates are learned. Subsequently, the KL divergence
is calculated on a third independent sample of the same theme (test data) to assess the differences
between the two templates. The specific calculation method is as follows:

K(TMP ∗|TMP ) ≈
m∑
i=1

log
p(bi;TMP ∗)

p(bi;TMP )

where TMP* and TMP represent the two trained templates. A smaller calculated KL divergence
value demonstrates a lesser degree of difference between the two templates, thus reflecting the re-
liability of the semi-supervised learning algorithm under random training data Baker et al. (2004).
We repeatedly observed the changes in KL divergence for different sample sizes n, with the results
illustrated in Figure 10. The experiments demonstrate that when n reaches 100, the KL divergence
of the templates obtained through semi-supervised learning can be reduced to 0.1, indicating good
robustness.

Figure 10: Changes in training data size and KL divergence.

A.3 HUMAN ALIGNMENT

To assess whether the compositional AND–OR templates provide a structural representation aligned
with human judgments, we conducted a pairwise-preference study. We randomly sampled 50 im-
ages to form a set P . For each image P ∈ P , we paired it with every other image in the set, yielding
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2,500 binary comparisons completed by 15 raters with art/design backgrounds. Pairwise com-
parison, rather than absolute scoring, is more in line with expert practice and more stably reflects
structural differences.

For each image P , let the binary variable yP,J ∈ {0, 1} indicate whether P is preferred over J . We
estimate the win probability

Score(P ) = EJ

[
1{P wins against J}

]
, (8)

and fit a logistic/Bradley–Terry model to the win–loss outcomes to obtain a latent human score
û(P ) ∈ (0, 1):

logit
(
û(P )

)
= λ0 +

∑
k

λk rk(P ), (9)

where rk(P ) can be aligned with the template’s consistency terms (e.g., object-, relation-, and
geometry-level cues).

We then compare û(P ) with the consistency score S(P ) defined in equation 5—the log-likelihood
gain relative to a reference distribution, normalized to [0, 1]—and measure proximity via mean
squared error (MSE). As shown in Fig. 16 (dashed line indicates ideal alignment; MSE = 0.0286),
the consistency score exhibits a stable ordering consistent with human judgments, with small devi-
ations.

These results indicate that, within the structural paradigm of art and design, the unified score pro-
duced by compositional AND–OR templates aligns well with human assessments of part–relation–
geometry organization. Overall, this study validates our representation–scoring framework from a
human-alignment perspective in art and design settings.

A.4 STRUCTURE-AWARE ASSESSMENT AND GUIDANCE FOR PHOTOGRAPHY

In the field of photography, professional photographers often find commonalities and extract re-
peated structural patterns from a series of photographs with the same theme, thus forming some
”template” techniques for photography. Beginners in photography can refer to the ”templates” sum-
marized by these experts, imitate shooting, and add their own thinking on this basis to create better
works. We use a compositional AND–OR template to achieve this operation, aligning the input
photo with the theme template and resolving issues such as missing objects, poor scene size and
orientation resulting in poor composition in the photo. At the same time, the output includes both
textual and visual actionable guidance, guiding photographers on how to improve on the shortcom-
ings of their photographic images.

As shown in Fig. 13, we have designed a rule corpus that will output corresponding guidance
rule statements based on the comparison results of two templates. At the same time, it will also
output combinable AND–OR images, interpreting the image by indicating which part is activated.
Finally, provide corresponding guidance on the original image based on the visualization results of
the template.

A.5 TEMPLATE-CONSTRAINED POSTER GENERATION

We further test structural controllability in an AIGC workflow for film posters. From poster exam-
ples, we learn a theme template and use it as a conditioning signal for a general generator. The
goal is to enforce part relations and geometric layout specified by the template. As shown in Fig.
14, the generator produces plausible posters that respect the prescribed structure. We also note cur-
rent limitations: industrial poster design involves complex pipelines, and today’s generative models
offer limited controllability. Our results are a proof of concept that the learned template acts as a
lightweight structural constraint for creative generation.

A.6 SCENE CLASSIFICATION WITH AND–OR TEMPLATES

To examine transfer beyond aesthetics, we apply the templates to scene classification.

CITD evaluation. On a 15-theme dataset, we perform one-to-all tests with 5×5 cross-validation,
comparing against HoG Dalal & Triggs (2005) + linear SVM, part-based SVM, and a pretrained
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ResNet. As shown in Fig. 15, the template approach outperforms traditional small-sample baselines
and approaches the pretrained deep model, while providing parse-level explanations unavailable to
black-box classifiers.

Places365 subset. We select 10 categories, learn category templates, and rank test images by their
template consistency over the 10 templates to make predictions. Table 2 reports Top-1/Top-5 errors.
The template method achieves competitive Top-1 and strong Top-5 performance compared to stan-
dard deep baselines, at far lower data and parameter costs and with inherent interpretability. These
results indicate a favorable trade-off among accuracy, efficiency, and explanation for compositional
AND–OR templates on a general vision task.

Table 2: Scene classification on a 10-class subset of Places365. Errors are in %.
Method Top-1 Error Top-5 Error

Ours 23.44 8.03
Places-365-CNN Zhou et al. (2017) 23.27 8.48
ResNet He et al. (2016) 23.35 8.61
SENet Hu et al. (2018) 23.67 8.26

Fully
consistent

Basically
consistent

Average inconsistent Completely
inconsistent

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

43.60%

31.20%

13.20%

6.90%
5.10%

Figure 11: Subjective evaluation of compositional template reliability.

A.7 OTHER QUALITATIVE EVIDENCE AND PROCEDURAL DETAILS

This section complements the quantitative results with qualitative evidence and end-to-end method-
ological details. Algorithm 1 specifies the EM-type block–pursuit procedure used for penalized
structure induction at both the object and scene levels, and Algorithm 2 details the recursive SUM–
MAX inference that yields the structural configuration, geometric pose, and a decomposable con-
sistency score at test time. Figures 17–19 visualize (i) the consistency score and its attribution
over part/relation/geometry terms, (ii) reliability checks under counterfactual structural and geo-
metric perturbations, and (iii) representative outputs including parse graphs, activated terminals,
(dis)satisfied constraints, and prescriptive edits. Together, these materials make the learning dy-
namics and the evidence-to-decision pathway explicit, and facilitate reproduction and diagnostic
analysis.
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Figure 12: Quantitative assessment results. Besides reporting the consistency score, the method
visualizes the parse configuration. For low-scoring images, interpretable guidance is provided by
contrasting the parse with the template.

Algorithm 1 EM-type Block–Pursuit Learning of Compositional AND–OR Templates
Require: Response matrix R ∈ [0, 1]N×D (rows: examples, cols: candidate features), initial struc-

tural indicator s(0) (optional), maximum #blocks K, regularization parameters λmx (mutual-
exclusion) and λsp (sparsity), tolerance ε > 0 or feature budget.

Ensure: Coefficient matrix β ∈ RK×D, normalizers Z ∈ RK×D
≥0 , and learned structural indicator

s.
1: Initialize m←0; set β(0)←0, Z(0)←1, block feature sets S(0)

k ←∅ for k = 1..K.
repeat // EM-type block pursuit

2: E-step (activation & assignment):
3: For each example i, compute current block scores qi,k =

∑
j∈S

(m)
k

β
(m)
k,j Rij −∑

j∈S
(m)
k

logZ
(m)
k,j .

4: Assign i to its best explaining block ai = argmaxk qi,k (ties broken arbitrarily).
5: Estimate per-block activation weights wi,k = 1{ai = k} and per-feature empirical means

r̄k,j =
∑

i wi,kRij∑
i wi,k+δ .

6: M-step (feature addition & parameter update):
7: For each block k and each candidate feature j /∈ S

(m)
k , compute the penalized marginal gain

∆k,j =
(
r̄k,j β̂k,j − log Ẑk,j

)
− λmx · OVERLAP(j, S

(m)
k )− λsp,

where β̂k,j (together with Ẑk,j) is the one-dimensional maximum-likelihood update for fea-
ture j under the log-linear model.

8: Select the best feature j⋆ = argmaxj ∆k,j for each block k.
9: if maxk ∆k,j⋆ ≤ ε then

10: break ▷ no positive gain remains
11: end if
12: Let k⋆ = argmaxk ∆k,j⋆ ; augment S(m+1)

k⋆ ← S
(m)
k⋆ ∪ {j⋆}.

13: Update the corresponding parameters β(m+1)
k⋆,j⋆ ← β̂k⋆,j⋆ , Z(m+1)

k⋆,j⋆ ← Ẑk⋆,j⋆ ; keep other entries
unchanged.

14: Enforce local mutual exclusion and sparsity (λmx, λsp) by pruning conflicting or weak fea-
tures.

15: Re-assignment:
16: Recompute qi,k with updated parameters and reassign examples (lines 4–5).
17: Set m← m+ 1 and continue until tolerance/budget is met.

until convergence
18: Return β = β(m), Z = Z(m), and the final structural indicator s implied by {S(m)

k }Kk=1.
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Figure 13: Interpretable evaluation and guidance diagram for photographic images based on com-
positional AND–OR templates.
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Movie Poster Using Template to Guide AIGC in Generating 
Movie Posters

Template for 
Learned Designs

Figure 14: Using the compositional AND–OR template to guide the generation of movie posters.
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Figure 15: ROC curve of scene classification results.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

0.0 0.2 0.4 0.6 0.8 1.0
Score from Subjective Experiment

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e 
fro

m
 O

ur
 M

et
ho

d

Figure 16: Results of the user study on template reliability.

Algorithm 2 Recursive SUM–MAX Inference (Parsing and Scoring at Test Time)
Require: Test image I; template TMP with topology, terminal sets, coefficients β and normalizers

Z; transformation space T (positions x, y, scales s, orientations o).
Ensure: Structural configuration s (activated parts/objects), geometric configuration g (loca-

tions/scales/orientations), and the decomposable consistency score.
1: Terminal responses (MAX1). For each terminal feature j, compute its response map rj(I, t)

for all t ∈ T . Optionally allow local jitters u ∈ U and record MAX1j(t) = maxu∈U rj(I, u◦t)
and the argmax ARGMAX1j(t).

2: Part aggregation (SUM2). For each part k with terminal set J (k) and each t ∈ T , compute

SUM2k(t) =
∑

j∈J (k)

βk,j MAX1j(t) −
∑

j∈J (k)

logZk,j ,

and store backpointers to the maximizing terminals.
3: Object composition (SUM3). For each object hypothesis t ∈ T , combine selected parts:

SUM3(t) =
∑

k∈Kactive

sk SUM2k(t),

where sk ∈ {0, 1} encodes structural choices (OR selections, mutual exclusion).
4: Selection and backtracking. Find t⋆ = argmaxt SUM3(t). Backtrack through the stored

pointers (SUM3→SUM2→MAX1) to obtain the activated parts and their transformations,
yielding s and g.

5: Output. Return s, g, and the score SUM3(t⋆). The score decomposes additively into object-,
relation-, and geometry-level contributions under the log-linear model, enabling per-term attri-
bution.
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Figure 17: consistency score based on compositional AND–OR templates.
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Figure 18: Reliability verification results of compositional AND–OR templates.
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Figure 19: Output results based on compositional AND–OR templates.
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STATEMENT ON THE USE OF LARGE LANGUAGE MODELS (LLMS)

Scope. We used an LLM strictly as a general-purpose assistant for copy-editing and translation
(e.g., abstract, figure captions, and short passages), as well as minor LaTeX/formatting suggestions
(citations, line breaks).

No role in research. The LLM did not contribute to problem formulation, algorithm or model
design, implementation, experiments, data or code generation, literature selection, analysis, or con-
clusion writing.

Human verification and responsibility. All LLM-suggested edits were reviewed line-by-line by
the authors, with factual checks against the original sources to avoid unverified claims or copyrighted
third-party text. The authors take full responsibility for the entire content; the LLM is not an author
or contributor.

One-line summary. The LLM was invited as a grammar-savvy spellchecker with opinions, not as a
co-author.
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