
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

THREE-IN-ONE: FAST AND ACCURATE TRANSDUCER
FOR HYBRID-AUTOREGRESSIVE ASR

Anonymous authors
Paper under double-blind review.

ABSTRACT

We present Hybrid-Autoregressive Inference Transducers (HAI-T), a novel archi-
tecture for speech recognition that extends the Token-and-Duration Transducer
(TDT) model. Trained with randomly masked predictor network outputs, HAI-
T supports both autoregressive inference with all network components and non-
autoregressive inference without the predictor. Additionally, we propose a novel
semi-autoregressive inference method that first generates an initial hypothesis us-
ing non-autoregressive inference, followed by refinement steps where each token
prediction is regenerated using parallelized autoregression on the initial hypothe-
sis. Experiments on multiple datasets across different languages demonstrate that
HAI-T achieves efficiency parity with CTC in non-autoregressive mode and with
TDT in autoregressive mode. In terms of accuracy, autoregressive HAI-T achieves
parity with TDT and RNN-T, while non-autoregressive HAI-T significantly out-
performs CTC. Semi-autoregressive inference further enhances the model’s ac-
curacy with minimal computational overhead, and even outperforms TDT results
in some cases. These results highlight HAI-T’s flexibility in balancing accuracy
and speed, positioning it as a strong candidate for real-world speech recognition
applications.

1 INTRODUCTION

End-to-end neural automatic speech recognition (ASR) has seen significant advancements in re-
cent years, namely due to the development of three architecture paradigms: Connectionist Tem-
poral Classification (CTC) (Graves et al., 2006), Recurrent Neural Network Transducers (RNN-T)
(Graves, 2012), and Attention-based Encoder and Decoder Models (Chorowski et al., 2015; Chan
et al., 2016). These models have gained widespread adoption, supported by open-source projects
such as ESPNet (Watanabe et al., 2018), SpeechBrain (Ravanelli et al., 2021), and NeMo (Kuchaiev
et al., 2019), etc. Of those models, CTC and RNN-T share a frame-synchronous design, enabling
streaming processing of speech input. However, they differ in their inference approaches: CTC mod-
els support non-autoregressive (NAR) inference based on a conditional-independence assumption,
while RNN-T models require autoregressive (AR) inference due to their dependence on the history
context of partial hypotheses. This fundamental difference creates a trade-off between accuracy and
efficiency, with CTC models offering greater speed but typically lower accuracy than Transducers.

Our work bridges this gap with Hybrid-Autoregressive Inference Transducer (HAI-T)1: a novel im-
plementation of RNN-T capable of non-autoregressive, autoregressive and, semi-autoregressive in-
ference. Our contributions are as follows:

• We propose a method to train a Token-and-Duration Transducer (TDT) model by stochastically
masking out the predictor. The approach is easy to implement and only requires a one-line change
in the training code of token-and-duration model implementation.

• We present a novel semi-autoregressive (SAR) inference paradigm that first uses NAR to generate
initial hypotheses, and then uses autoregression to refine the hypotheses in parallel iteratively.

1We use this generic name to hide the authors’ affiliation. The model name might change in the final version.
Despite similar names, HAI-T is unrelated to Hybrid Autoregressive Transducer (HAT) (Variani et al., 2020).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

• We present a means to model the output of the NAR HAI-T model containing the token and dura-
tion predictions as a directed acyclic graph (DAG), and propose a simple Viterbi-based decoding
method for inference, with further accuracy gains.

Our results demonstrate the following:

• AR HAI-T achieves on-par WER accuracy with RNN-T and TDT models, with inference speeds
similar to TDT-based decoding, and significantly faster than RNN-T inference.

• NAR HAI-T outperforms CTC accuracy while maintaining similar efficiency. Our investigation
shows that NAR HAI-T can better capture potential ambiguities in the speech by learning more
nuanced representations, a capability that frame-by-frame NAR like CTC inherently lacks.

• SAR consistently brings accuracy gains over NAR, approaching the performance of AR inference
with minimal computational overhead.

• HAI-T’s high performance is due to its learning of more diverse encoder outputs, a property
that allows our Viterbi decoder to achieve the same accuracy of AR inference despite the use of
non-autoregressive outputs.

We will open-source our implementation and release trained model checkpoints for public use.

2 RELATED WORK

Recent research in speech recognition has focused on enhancing WER accuracy while mitigating
reductions in inference speed. This has been most notable for self-attention-based architectures,
with improvements in latency for Transformer models (Yeh et al., 2019) leading to creation of the
Conformer (Gulati et al., 2020) and it variants (e.g. Zipformer (Yao et al., 2023), FastConformer
(Rekesh et al., 2023)). While all have notable architectural improvements, they can be generalized as
attempts to improve model capacity and/or reducing the latency caused by attention-based inference
over large audio inputs.

For Transducer models specifically, various optimizations have been explored. He et al. (2019)
proposed a caching mechanism for the RNN-T predictor to reduce redundancy in inference com-
putations. Jain et al. (2019) introduced a pruning method for RNN-T beam search to reduce the
search space, resulting in faster decoding. Ghodsi et al. (2020) investigated predictors with state-
less networks for Transducer models. While this approach reduced the computational complexity of
the original LSTM predictor, it came at the cost of slight accuracy degradation. Kang et al. (2023)
proposed monotonic constraints on RNN-T training and inference, reducing the number of steps
RNN-T inference stays on the same frame, and reported faster inference with those models. Bataev
et al. (2024) proposed a novel label-looping decoding algorithm for Transducers, using parallel GPU
calls for the majority of the decoding operation and achieved significant inference speedup. Galvez
et al. (2024) optimized the decoding algorithm from a hardware perspective and minimized the GPU
idle time during decoding, further improving GPU-based inference. Multi-blank Transducers (Xu
et al., 2022) and Token-and-Duration Transducers (TDT) (Xu et al., 2023b) identified large num-
bers of blank predictions during RNN-T inference, proposing duration-prediction mechanisms to
skip frames during processing. This improvement greatly reduced the number of decoding steps
required for inference. While these methods improved Transducer inference speeds, the resulting
models remained autoregressive. As such, Transducer inference speeds still significantly lagged
behind non-autoregressive frameworks (e.g. CTC).

Our proposed semi-autoregressive method falls under the category of the “fast/slow” method, where
the model combines both a faster but less accurate module, and a slower but more accurate mod-
ule to achieve good accuracy/efficiency tradeoffs. Inaguma et al. (2021) use a fast CTC model to
generate multiple hypotheses, to be reranked by a slower AR model to improve speech translation
performance. Mahadeokar et al. (2022) propose a cascade model architecture, where the fast model
uses a relatively shallow encoder for quicker results, while the slow model uses additional encoder
layers along with a separate joint network to improve results. Arora et al. (2024) proposed a model
that divides speech input into blocks, and adopts AR processing among blocks but NAR processing
within a block to balance speed with accuracy. Deliberation methods Hu et al. (2020) and its vari-
ants Wang et al. (2022) use cascaded encoders and separate decoder, and use the shallow encoder to

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

generate initial hypotheses, which to be fed into a second-pass “Listen-Attend-Spell” (LAS) model
with additional encoder and decoders to improve accuracy. Compared with those “fast-slow” works,
our work is unique in that our “slow” model only adds marginal parameters on top of the “fast”
model, and the “refinement” process requires minimal computation overheads.

3 BACKGROUND

In this Section, we provide the technical background information for models that influenced HAI-T
architecture: CTC, RNN-Transducer (RNN-T), and Token-and-Duration Transducer (TDT).

3.1 CONNECTIONIST TEMPORAL CLASSIFICATION (CTC)

CTC (Graves et al., 2006) is a sequence-to-sequence prediction model designed to address the chal-
lenge of aligning input and output sequences of different lengths. Let x = (x1, x2, ..., xT) represent
the input sequence, y = (y1, y2, ..., yU) the output sequence, and V the vocabulary, where v ∈ V
includes all tokens in y and a special “blank” symbol. A CTC model predicts P (v|xt) for each time
step t. The “blank” symbol is crucial for handling the discrepancy between input and output se-
quence lengths, allowing for many-to-one alignments and representing frames that do not contribute
additional information to the output. CTC models employ a set of rules to generate CTC-augmented
sequences that are equivalent to the original sequence: (1) When a token is repeated in the original
sequence, at least one “blank” token must be inserted between the repeated tokens, and (2) Any
token can be repeated an arbitrary number of times.

The training objective of CTC models is to maximize the probability of y given the input x. This
probability is defined as the sum of probabilities for all possible augmented sequences of the ref-
erence sentence that match the input sequence length. CTC adopts a conditional independence
assumption when computing the probability of an augmented sequence given the input. This as-
sumption posits that each token in the augmented sequence is conditioned solely on the encoder
output frame at its corresponding time step. Consequently, this allows for fully parallelized compu-
tation of P (v|t) across different time steps, resulting in highly efficient inference.

CTC models with non-autoregressive components like self-attention and convolution are widely
accepted as non-autoregressive models Higuchi et al. (2021; 2020); Xu et al. (2023a), although
during inference, CTC’s token deduplication and blank handling would still depend on the last
emitted token. We point out that this NAR categorization is based on the neural network computation
of the model. In CTC, all neural network computation during inference can be carried out non-
autoregressively, and the only autoregression is done on basic data types (strings, lists, etc.), which
induces negligible computation compared to the costly neural network computations. In this work,
we also follow this principle in categorizing models as autoregressive or not.

3.2 RECURRENT NEURAL NETWORK TRANSDUCER (RNN-T)

The RNN-Transducer, proposed by Graves (2012), represents a significant advancement in
sequence-to-sequence modeling. RNN-T comprises three key components: an encoder, a predic-
tor, and a joint network. The encoder extracts high-level features from the audio input, while the
predictor processes the text history. The joint network then combines these outputs to generate a
probability distribution over the vocabulary.

Like CTC, RNN-T incorporates a blank symbol, but with different rules for augmented sequences.
(1) RNN-T sequences add zero or more blanks between adjacent tokens in the original sequence,
rather than permitting repetition of both blanks and tokens, and (2) Only blank tokens consume input
frames; the time step t does not increment with non-blank token predictions of the model.

RNN-T’s training aligns with CTC, maximizing the probability of the target sequence by summing
over the probabilities of all possible augmented sequences. However, RNN-T diverges from CTC’s
conditional independence assumption. Instead, it leverages the predictor’s output, representing text
history, in the joint network to compute output distributions. As such, its predictions are conditioned
by the alignment of input time step and position of current text output, making token estimation
P (v|xt, y<u−1). This incorporation of text history enables RNN-T models to outperform CTC.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Despite its superior performance, RNN-T’s reliance on the predictor and text history introduces
autoregressive behavior in inference. Consequently, RNN-T inference resists full parallelization,
resulting in lower efficiency compared to CTC. This trade-off between performance and efficiency
highlights the ongoing challenge of designing optimal sequence-to-sequence models for ASR.

3.3 TOKEN-AND-DURATION TRANSDUCERS (TDT)

Token-and-Duration Transducer (TDT) model is introduced by Xu et al. (2023b). Unlike tradi-
tional Transducers where only blank predictions increment the encoder index t by exactly one, TDT
supports advancing t by multiple steps for both blank and non-blank predictions. A TDT model gen-
erates two probability distributions, one for token, and the other for durations, which determines the
number of audio frames to skip. By supporting frame skipping, TDT models require significantly
fewer decoding steps compared to traditional Transducers, resulting in faster inference.

4 HYBRID-AUTOREGRESSIVE INFERENCE TRANSDUCER (HAI-T)

We propose Hybrid-Autoregressive Inference Transducers (HAI-T), an extension of the TDT model
designed to support multiple modes of autoregression in inference. HAI-T incorporates stochastic
predictor masking: during training, the predictor’s output is randomly masked before being passed
to the joint network. We implement this with a masking probability of 0.5, sampled at the [batch,
text-index] level. Except for the random masking performed in training, the rest of the model
training of HAI-T (computation in other components, and loss computation, etc) remains identical
to that of TDT training. As a result of this change, during training, half the time the joint network
is learning to predict with the whole model, and the other half the time it is learning to predict with
information from the encoder only. Therefore when the model is well-trained, the joint network can
generate valid distributions regardless of whether the predictor output is provided.

The HAI-T model supports three inference modes: autoregressive (AR), non-autoregressive (NAR)
depending on whether we use the predictor network during inference. In addition, we also propose
semi-autoregressive (SAR) inference, which combines elements of both NAR and AR inference to
achieve better speed-accuracy tradeoff, and a Viterbi-based inference, which leverages the better
representations learned by HAI-T models for better accuracy.

Algorithm 1 Autoregressive Inference
1: Input: acoustic input x
2: enc = encoder(x) # [T, H]
3: hyp = []; t = 0
4: while t < len(enc) do
5: pred = predictor(hyp) # [H]
6: token probs, dur probs = joint(enc[t], pred) #

[V] and [D]
7: token = argmax(token probs)
8: duration = argmax(dur probs)
9: if token is not blank then

10: hyp.append(token)
11: t += duration
12: Return hyp

Algorithm 2 Non-AR Inference
1: Input: acoustic input x
2: enc = encoder(x) # [T, H]
3: token probs, dur probs = parallel joint(enc,

pred=None) # [T, V] and [T, D]
4: tokens = argmax(token-probs, dim=-1) # [T]
5: durations = argmax(dur-probs,dim=-1) # [T]
6: hyp = []; t = 0
7: while t < len(enc) do
8: token = tokens[t]
9: if token is not blank then

10: hyp.append(token)
11: t += max(1, duration[t]) # avoid infinite loop
12: return hyp

4.1 AUTOREGRESSIVE INFERENCE

Autoregressive inference of HAI-T models is identical to TDT models. For ease of reference, we
provide Algorithm 1, which is a rewrite of the original Algorithm 2 from Xu et al. (2023b) with
slightly changed notation/naming conventions to be consistent with this paper. To facilitate under-
standing of the Algorithms, we include tensor shapes as comments in the Algorithm, and we use T, V,
D, U, H to represent audio-length, num-tokens, num-durations, text-index, and hidden-dimensions.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

4.2 NON-AUTOREGRESSIVE INFERENCE

Algorithm 2 shows NAR inference procedure. Compared to AR inference, NAR inference requires
simple modifications of (1) passing an all-zero tensor instead of predictor output to the joint network;
(2) moving the joint network computation out of the decoding loop, allowing parallel processing of
all encoder outputs; (3) after each step, we increment t by at least one to avoid infinite loops.

4.3 SEMI-AUTOREGRESSIVE INFERENCE

SAR inference is a novel algorithm combining elements of both AR and NAR approaches, as de-
tailed in Algorithm 3. For ease of description, we assume the NAR inference procedure also returns
the corresponding time-stamps of token outputs. The Algorithm consists of two main phases:

1. Initial Hypothesis Generation (lines 2-4) performs NAR inference to generate an initial hy-
pothesis. It also uses the time stamps of the initial hypothesis to extract token-emitting frames
from the encoder output for later processing.

2. Hypothesis Refinement (lines 5-8) uses the predictor to compute representations of all par-
tial history contexts in the current hypothesis. It then combines the predictor’s output with se-
lected encoder output frames in the joint network to re-compute probability distributions for those
frames, in parallel2. This procedure can be repeated to further improve the results. Note if re-
peated, all but the last round of the refinement should limit the argmax on line 9 to non-blank
tokens since the token would need to be passed in the predictor for the next round of refinement.

The SAR approach takes advantage of the strengths of both AR and NAR methods, allowing high
degrees of parallelization while still taking advantage of text history in predictor computation to
improve model accuracy.

Algorithm 3 Semi-Autoregressive Inference of HAI-T Models
1: Input: acoustic input x
2: enc = encoder(x) # [T, H]
3: hyp, time stamps = NARInference(enc) # [U] and [U]
4: useful frames = enc[time stamps,:] # [U, H]
5: shifted hyp = [BOS] + hyp[:-1] # [U]
6: pred = predictor(shifted hyp) # [U, H]
7: token probs, duration probs = joint(useful frames, pred) # of shapes: [U, V] and [U, D]
8: hyp = argmax(token-probs, dim=-1) # [U]
9: Return: hyp

4.4 VITERBI-DECODING

In addition to AR/NAR and SAR inference, we also propose a Viterbi-based inference method for
HAI-T models. Given an audio sequence of length T , we view the output of the NAR HAI-T model
as a directed acyclic graph (DAG) with T + 1 nodes, while the first T correspond to frames and
the last acts as a special end-of-sentence (eos) token. For each frame, we only consider the arg-max
token probability, which represents the weight of the first T nodes (the eos node has a weight 1).
The duration outputs at each frame correspond to transition weights into neighboring nodes. For
example, in our models with max-duration 8, each node has at most 8 incoming and 8 outgoing
connections connecting to its neighbors.

With this setting, speech recognition on the input audio is equivalent to finding the best path of the
DAG from the first node to the last, which can be efficiently solved by a simplified “Viterbi decod-
ing” algorithm. Notably, Viterbi and SAR techniques are orthogonal, and after Viterbi decoding
generates the tokens and time stamps, we can use SAR techniques to further improve the results.
The Algorithm for Viterbi decoding is shown in Algorithm 4. For simplicity, this Algorithm returns
a “backtrack” structure that encodes the selected frames found by the best-path algorithm. The Al-
gorithm’s key is between lines 7 and 14, where nested loops run over (time, duration) pairs, and for

2The computation at line 7 is done fully parallelized, and line 6 may require some sequential computation
if the predictor is an LSTM. If the predictor is stateless, this computation can also be fully parallelized as well.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

each node, it finds the probability of the best path from the first node to that node using a dynamic
programming algorithm. The Algorithm can be carried out efficiently with O(TD) time complexity,
where T is the input sequence length and D is the number of durations. In terms of space complex-
ity, this Viterbi algorithm requires O(T) (to store best-probs and backtrace pointers for each time
index). Because duration 0 is not allowed in NAR modes, we assume there’s no duration 0 in N .

Algorithm 4 Viterbi Decoding of HAI-T Models
1: Input: acoustic input x, supported durations N
2: enc = encoder(x)
3: token probs, duration probs = joint(enc, dec=None) # of shapes [T, V] and [T, D]
4: best prob per frame = max(token probs, dim=-1) # of shape [T]
5: best prob = [0.0 for t in range(len(x) + 1)]
6: backtrack = [-1 for t in range(len(x) + 1)] # we include a terminal node for backtracing
7: for target in range(1, len(x) + 1) do
8: for idx, n in enumerate(N) do
9: source = max(t-n, 0) # duration states cannot originate before initial node

10: alpha = best-prob[source]
11: trans prob = best prob per frame[target] * duration prob[source,idx]
12: if alpha * trans prob > best prob[target] then
13: best prob[target] = alpha * trans-prob
14: backtrack[target] = source
15: Return: backtrack

5 EXPERIMENTS

We evaluate HAI-T ASR in two languages: English, German. All experiments are conducted us-
ing the NeMo (Kuchaiev et al., 2019) toolkit, version 1.23.0. We first extract 80-dimensional
filterbank features on audio, with 25 ms windows at 10 ms strides. All models use FastConformer
encoders with the first three layers all performing 2X subsampling, therefore 8X subsampling in
total. Both TDT and HAI-T models use durations {0, 1, 2, ..., 7, 8}. BPE tokenizer (Sennrich et al.,
2016; Kudo & Richardson, 2018) of size 1024 is used for text representation. For all experiments,
we let models train for sufficient steps until validation performance degrades (no more than 150k
training steps), and run model averaging on 5 best checkpoints to generate the final model for eval-
uation. For all datasets, we report ASR performance measured by WER and the inference speed of
RNN-T, CTC, TDT and HAI-T models. For HAI-T models, we include results of AR, NAR and
SAR modes, and use the notation “SAR-n” to indicate n rounds of refinement runs).

5.1 ENGLISH ASR

We train our English models on the combination of Librispeech (Panayotov et al., 2015), Mozilla
Common Voice (Ardila et al., 2019), VoxPopuli (Wang et al., 2021), Fisher (Cieri et al., 2004),
People’s Speech (Galvez et al., 2021), Wall Street Journal (Paul & Baker, 1992), National Speech
Corpus (Koh et al., 2019), VCTK (Yamagishi et al., 2019), Multilingual Librispeech (Pratap et al.,
2020), Europarl (Koehn, 2005) datasets, plus “anonymous” datasets. In total, our dataset consists of
approximately 60,000 hours of speech.

The encoder uses FastConformer-XXL architecture with 42 layers of conformer blocks, each of
which uses 8 heads of self-attention layers with model hidden dimension = 1024, totaling around
1.1b parameters. The convolutions in the conformers use kernel size = 9. The encoder was initialized
with the public checkpoint https://hf.co/nvidia/parakeet-tdt-1.1b. For standard
RNN-T, TDT and HAI-T models, their predictors consist of 2-layer LSTMs, with hidden dimension
= 640. The joint network is a 2-layer feed-forward network with ReLU in between and with hidden
dimension 1024. For HAI-T models, we also include two variations. (1) a model trained with
stateless predictor network, where the predictor outputs the learned embedding of the last one word
in the history context and, (2) a model train with non-zero durations {1, 2, ..., 7, 8}.

We evaluate the models using the Huggingface ASR leaderboard (Srivastav et al., 2023), including
the following datasets: AMI test (ami), Earnings22 test (e22), Gigaspeech test (giga), Librispeech
test-clean and test-other (clean and other), Spgispeech test (spgi), Tedlium test (ted), and VoxPopuli

6

https://hf.co/nvidia/parakeet-tdt-1.1b

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

test (vox). The results are shown in Table 1. Since there are multiple datasets, we direct readers’
attention to the average WER achieved by different models. From the Table we can see:

Table 1: HAI-T English ASR: accuracy (WER%) and wall time on Huggingface ASR leaderboard
datasets. AR/NAR/SAR represent autoregressive/non-autoregressive and semi-autoregressive. The
number after SAR represents the number of refinement runs. Decoding time (seconds) is measured
on only librispeech-test-other using batch=1 and beam=1, running on 2 A6000 GPUs. Viterbi time
is not included since it’s not comparable due to the different nature of the search algorithm. All
models have around 1.1 billion parameters differing by at most 600k in actual number.

model AR ami e22 giga clean other spgi ted vox AVG time

RNN-T AR 16.90 13.87 9.76 1.43 2.75 3.40 3.63 5.49 7.15 179
TDT AR 16.18 14.62 9.61 1.39 2.53 3.47 3.75 5.52 7.13 88
CTC NAR 16.59 14.43 9.93 1.53 2.93 3.95 3.84 5.81 7.38 39

HAI-T

AR 15.92 14.16 9.70 1.46 2.76 3.59 3.59 5.60 7.10 89
NAR 16.13 14.38 9.79 1.49 2.83 3.61 3.64 5.68 7.19 41

+Viterbi 16.23 14.03 9.75 1.48 2.81 3.53 3.60 5.60 7.13 -
SAR-1 16.01 14.23 9.73 1.47 2.76 3.60 3.64 5.61 7.13 45

+Viterbi 16.13 13.93 9.71 1.47 2.77 3.51 3.60 5.56 7.09 -
SAR-2 15.99 14.17 9.72 1.47 2.75 3.59 3.63 5.61 7.12 48

AR 15.69 13.64 9.68 1.49 2.82 3.47 3.74 5.72 7.03 82
NAR 15.78 13.73 9.77 1.49 2.91 3.49 3.75 5.75 7.08 40

HAI-T +Viterbi 15.87 13.45 9.72 1.47 2.87 3.42 3.74 5.70 7.03 -
stateless SAR-1 15.77 13.72 9.72 1.49 2.84 3.48 3.74 5.71 7.06 42

+Viterbi 15.86 13.42 9.69 1.47 2.82 3.41 3.74 5.69 7.01 -
SAR-2 15.75 13.61 9.70 1.48 2.84 3.47 3.72 5.71 7.03 43

AR 15.75 13.37 9.73 1.40 2.83 3.52 3.56 5.76 6.98 92
NAR 15.94 13.67 9.81 1.44 2.87 3.55 3.54 5.74 7.07 40

HAI-T +Viterbi 15.88 13.38 9.73 1.41 2.86 3.48 3.48 5.65 6.98 -
no duration 0 SAR-1 15.84 13.45 9.74 1.41 2.85 3.52 3.54 5.69 7.00 44

+Viterbi 15.79 13.21 9.68 1.39 2.83 3.46 3.50 5.60 6.93 -
SAR-2 15.79 13.36 9.73 1.40 2.83 3.52 3.55 5.69 6.98 48

• In AR modes, regardless of the nature of the predictor, HAI-T models achieve superior accuracy
than RNN-T and TDT. Furthermore, while standard HAI-T models achieve parity in terms of
efficiency with TDT, the HAI-T with stateless predictor achieves better speed than TDT model
with no performance degradation.

• In NAR modes, HAI-T models achieve consistently better accuracy than CTC, with similar infer-
ence speed. In particular, NAR stateless HAI-T achieves better accuracy than the AR TDT model,
while running over 2X faster; it also outperforms RNN-T model, while being over 4X faster.

• SAR further improves the accuracy of NAR inference with small computational overhead. In
the case of standard HAI-T, each additional SAR refinement run adds around 3-4 seconds of
processing for the whole dataset, while HAI-T with stateless predictor only requires 1-2 seconds
per SAR run. This is significantly faster than fully autoregressive TDT runs which takes around
40 seconds more processing time in total. Also in both models, just one round of SAR makes the
model catch up with TDT performance while running at least 2X faster.

• Viterbi decoding can further improve model accuracy. We present an analysis in subsection 6.2
that can explain this phenomenon.

• In particular, the HAI-T model with non-zero durations achieve the best results overall. Later in
Section 6.4, we present our discovery that can explain this phenomenon.

5.2 GERMAN ASR

Our German models are trained on German Mozilla Common Voice, Multilingual Librispeech,
and VoxPopuli datasets, totaling around 2000 hours. We use FastConformerLarge configuration

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

of around 110m parameters 3, and evaluate the models on the German Multilingual Librispeech
(MLS) and VoxPopuli (Vox) testsets. For training, all model encoders are initialized with public
checkpoint https://hf.co/nvidia/stt_en_fastconformer_transducer_large.
The results of those models are shown in Table 2.

We see similar trends compared to our English models, where HAI-T achieves similar accuracy
and efficiency when running in AR modes compared to TDT models, and achieves significantly
improved NAR accuracy compared to CTC models, while achieving the same inference speed. SAR
further closes the accuracy gaps between AR and NAR, while adding small overheads, and still
being around 4X faster than AR inference.

Table 2: German ASR: accuracy (WER%) and inference wall time (seconds) on Multilingual Lib-
rispeech and VoxPopuli. Decoding time is measured with batch=1 and beam=1.

model AR MLS time VOX time

RNN-T AR 4.90 429 9.47 113
TDT AR 4.77 141 9.41 52
CTC NAR 5.92 22 10.25 8

HAI-T

AR 4.75 141 9.22 52
NAR 5.11 20 9.63 8

SAR-1 4.87 29 9.47 11
SAR-2 4.83 36 9.44 14

AR 4.85 127 9.35 46
HAI-T NAR 5.09 22 9.57 8

stateless SAR-1 4.89 24 9.45 9
SAR-2 4.87 25 9.44 10

6 ANALYSIS AND DISCUSSIONS

6.1 LIMITATIONS OF SAR METHODS

The key of SAR method is to reuse the time stamps generated in the initial NAR inference, and only
regenerates the token outputs for those frames. This puts limitations on the types of errors that can
be corrected by the method. We provide some analysis here.

• From the subword level, SAR can only fix substitution errors by replacing a wrong subword
with the correct one, and insertion errors by replacing the inserted wrong subword with a
blank. It can’t fix deletions where the hypothesis is shorter than the reference.

• From the word level, SAR can correct deletion errors. Note, although SAR can’t add more
subwords to the original output, it can replace a non-word-beginning subword with a word-
beginning subword, and thus increase the number of words in the SAR output. E.g. the
SAR can change “forty” to “for tea”, by replacing subwords “ for ty” with “ for tea”,
where “ ” means the begin-of-word symbol.

Table 3: Breakdown of Error types (%) of German HAI-T Models on Voxpopuli Dataset.

inference sub del ins total

NAR 5.19 2.64 1.80 9.63
SAR-1 5.00 2.85 1.62 9.47
SAR-2 4.96 2.87 1.61 9.44

We report detailed breakdown of error types in our German HAI-T model on Voxpopuli comparing
NAR and SAR in Table 3. We see that SAR models primarily reduce substitution and insertion

3The hyper-parameters can be found at https://github.com/NVIDIA/NeMo/blob/main/
examples/asr/conf/fastconformer/fast-conformer_transducer_bpe.yaml.

8

https://hf.co/nvidia/stt_en_fastconformer_transducer_large
https://github.com/NVIDIA/NeMo/blob/main/examples/asr/conf/fastconformer/fast-conformer_transducer_bpe.yaml.
https://github.com/NVIDIA/NeMo/blob/main/examples/asr/conf/fastconformer/fast-conformer_transducer_bpe.yaml.

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

errors; in fact, the total amount of deletion errors increased with SAR models. Even though the
overall deletion error numbers go up, we do observe in certain utterances, SAR can correct deletion
errors from NAR outputs. We provide some examples in Appendix subsection A.3.

6.2 NAR HAI-T’S CAPABILITY OF CAPTURING ACOUSTIC AMBIGUITY

In this subsection, we highlight an aspect of NAR HAI-T model that grants it greater modeling
power compared CTC models: its ability to support more diverse model representation and multiple
hypotheses across different time stamps, especially for potentially ambiguous speech. To illustrate
this, we present a real-world example using an audio recording of the phrase “ice cream”. First, we
run our English CTC model on the utterance to extract the arg-max token per frame, resulting in:

 i ce cre am

The CTC model output correctly represents the “ice cream” hypothesis, with each non-blank token
appearing once, surrounded by blanks. This aligns with the well-documented peaky behavior of
CTC (Zeyer et al., 2021). In contrast, the arg-max tokens emitted from our NAR HAI-T model are:

 i i i i i ce ce sc sc cre cre re am am am

Notably, the per-frame arg-max output not only encodes “ice cream” but also captures an alternative
hypothesis: “i scream”. These hypotheses are dispersed across different time frames. For clarity,
we have color-coded the tokens: orange for “ice cream”, blue for “i scream”, and green for shared
tokens. It’s worth noting that these hypotheses are indeed acoustically very similar, and their differ-
ent alignments to the audio demonstrate that the NAR HAI-T’s per-frame arg-max output provides
a more accurate representation of the audio input. We believe this is the reason why the Viterbi
algorithm can achieve improved accuracy.

6.3 IMPACT OF DURATION CONFIGURATIONS

In this subsection, we examine how duration configurations affect HAI-T model performance. We
vary the max-durations in our German models and report their ASR performance. Table 4 presents
the WER(%) in NAR mode for different max-duration settings. Our results reveal a clear trend:
models with max-durations of 1 and 2 perform significantly worse, while those with max-durations
of 4 and 8 yield similar, improved results. This observation aligns with our earlier analysis, sug-
gesting that shorter maximal durations constrain the model’s ability to learn complex structures,
and the max duration needs to be sufficiently large to represent the real distribution. Interestingly,
max-duration 4 provides the best overall results, despite our choice of max-duration 8 for most ex-
periments. We selected the latter to accommodate greater linguistic variability across datasets, as
we did not extensively tune this parameter.

6.4 DURATION DISTRIBUTION ANALYSIS

Building on our previous analysis of maximum duration settings, we now examine the actual dura-
tion predictions made by our models. This analysis provides insights into how the models utilize the
allowed duration range and how the HAI-T training procedure affects duration prediction behavior.
We conducted experiments using HAI-T and TDT (trained with max-duration=8), running differ-
ent types of inference on the Librispeech test-other and German Multilingual Librispeech test sets.

Table 4: German ASR results of NAR HAI-T models with different maximum supported durations.

max-duration MLS VOX

1 7.58 12.46
2 5.79 10.27
4 5.06 9.56
8 5.09 9.57

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 1: Duration prediction count of HAI-T and TDT models on Librispeech test-other (left) and
German Multilingual Librispeech test (right).

Figure 1 shows the distribution of duration predictions for HAI-T (in both AR and NAR modes)
compared to a standard TDT model. The results reveal several interesting patterns:

• Zero-duration mitigation: HAI-T’s training procedure dramatically reduces the occurrence of 0
duration predictions, effectively addressing the potential issue of infinite loops in NAR inference.
This phenomenon explains the results from Table 1, where excluding duration 0 gives the best
results among all models.

• Preference for shorter durations: Despite allowing durations up to 8, all models show a prefer-
ence for durations of 4 or less, with the preference stronger with HAI-T models. This aligns with
our previous finding that max-duration=4 tends to yield better performance.

• Consistency across inference modes: HAI-T shows remarkably similar duration distributions
in AR and NAR modes, suggesting a robust learning of duration prediction strategies.

These findings demonstrate that while allowing longer maximum durations (e.g., 8) provides flexi-
bility, the HAI-T model naturally learns to favor shorter durations. This behavior reconciles with our
earlier observation that max-duration=4 yields optimal performance: the model has the flexibility to
use longer durations when necessary but primarily operates within the 1-4 range.

7 CONCLUSION AND FUTURE WORK

In this paper, we introduced Hybrid-Autoregressive Inference Transducers (HAI-T), a novel ap-
proach that aims to bridge the gap between autoregressive and non-autoregressive methods in speech
recognition. By implementing a simple stochastic masking technique during training, we’ve de-
veloped a model that offers flexibility in its inference strategy. Our experiments across multiple
languages demonstrate promising results:

• In AR mode, HAI-T achieves on-par performance with TDT and RNN-T models.

• In NAR mode, HAI-T achieves significantly improved performance to CTC models.

• We propose a semi-autoregressive (SAR) mode, a new approach to balancing speed and accuracy.

There are several future research directions, including applying our method to other speech and
language-related tasks including speech translation, spoken language understanding, and speech
synthesis, etc. We plan to investigate more flexible model architectures further to bridge the gaps
between AR and NAR models. Furthermore, we plan to further improve the semi-autoregressive
algorithm for better speed-accuracy balancing.

REFERENCES

Rosana Ardila, Megan Branson, Kelly Davis, Michael Henretty, Michael Kohler, Josh Meyer,
Reuben Morais, Lindsay Saunders, Francis M Tyers, and Gregor Weber. Common voice: A
massively-multilingual speech corpus. arXiv:1912.06670, 2019.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Siddhant Arora, George Saon, Shinji Watanabe, and Brian Kingsbury. Semi-autoregressive stream-
ing asr with label context. In ICASSP 2024-2024 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 11681–11685. IEEE, 2024.

Vladimir Bataev, Hainan Xu, Daniel Galvez, Vitaly Lavrukhin, and Boris Ginsburg. Label-looping:
Highly efficient decoding for transducers. arXiv:2406.06220, 2024.

William Chan, Navdeep Jaitly, Quoc V Le, and Oriol Vinyals. Listen, Attend and Spell. In ICASSP,
2016.

Jan K Chorowski, Dzmitry Bahdanau, Dmitriy Serdyuk, Kyunghyun Cho, and Yoshua Bengio.
Attention-based models for speech recognition. NeurIPS, 28, 2015.

Christopher Cieri, David Miller, and Kevin Walker. The fisher corpus: A resource for the next
generations of speech-to-text. In LREC, volume 4, pp. 69–71, 2004.

Daniel Galvez, Greg Diamos, Juan Ciro, Juan Felipe Cerón, Keith Achorn, Anjali Gopi, David
Kanter, Maximilian Lam, Mark Mazumder, and Vijay Janapa Reddi. The people’s speech: A
large-scale diverse english speech recognition dataset for commercial usage. arXiv:2111.09344,
2021.

Daniel Galvez, Vladimir Bataev, Hainan Xu, and Tim Kaldewey. Speed of light exact greedy de-
coding for rnn-t speech recognition models on gpu. arXiv:2406.03791, 2024.

Mohammadreza Ghodsi, Xiaofeng Liu, James Apfel, Rodrigo Cabrera, and Eugene Weinstein.
RNN-Transducer with stateless prediction network. In ICASSP, 2020.

Alex Graves. Sequence transduction with recurrent neural networks. In ICML, 2012.

Alex Graves, Santiago Fernández, Faustino Gomez, and Jürgen Schmidhuber. Connectionist tempo-
ral classification: labelling unsegmented sequence data with recurrent neural networks. In ICML,
2006.

Anmol Gulati, James Qin, Chung-Cheng Chiu, et al. Conformer: Convolution-augmented trans-
former for speech recognition. In Interspeech, 2020.

Yanzhang He, Tara N Sainath, Rohit Prabhavalkar, et al. Streaming end-to-end speech recognition
for mobile devices. In ICASSP, 2019.

Yosuke Higuchi, Shinji Watanabe, Nanxin Chen, Tetsuji Ogawa, and Tetsunori Kobayashi.
Mask ctc: Non-autoregressive end-to-end asr with ctc and mask predict. arXiv preprint
arXiv:2005.08700, 2020.

Yosuke Higuchi, Hirofumi Inaguma, Shinji Watanabe, Tetsuji Ogawa, and Tetsunori Kobayashi. Im-
proved mask-ctc for non-autoregressive end-to-end asr. In ICASSP 2021-2021 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 8363–8367. IEEE, 2021.

Ke Hu, Tara N Sainath, Ruoming Pang, and Rohit Prabhavalkar. Deliberation model based two-
pass end-to-end speech recognition. In ICASSP 2020-2020 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp. 7799–7803. IEEE, 2020.

Hirofumi Inaguma, Yosuke Higuchi, Kevin Duh, Tatsuya Kawahara, and Shinji Watanabe. Non-
autoregressive end-to-end speech translation with parallel autoregressive rescoring. arXiv preprint
arXiv:2109.04411, 2021.

Mahaveer Jain, Kjell Schubert, Jay Mahadeokar, Ching-Feng Yeh, Kaustubh Kalgaonkar, Anuroop
Sriram, Christian Fuegen, and Michael L Seltzer. RNN-T for latency controlled ASR with im-
proved beam search. arXiv:1911.01629, 2019.

Wei Kang, Liyong Guo, Fangjun Kuang, Long Lin, Mingshuang Luo, Zengwei Yao, Xiaoyu Yang,
Piotr Żelasko, and Daniel Povey. Fast and parallel decoding for transducer. In ICASSP, 2023.

Philipp Koehn. Europarl: A parallel corpus for statistical machine translation. In Proceedings of
machine translation summit x: papers, 2005.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jia Xin Koh, Aqilah Mislan, Kevin Khoo, Brian Ang, Wilson Ang, Charmaine Ng, and YY Tan.
Building the Singapore English national speech corpus. Malay, 20(25.0):19–3, 2019.

Nithin Rao Koluguri, Travis Bartley, Hainan Xu, Oleksii Hrinchuk, Jagadeesh Balam, Boris Gins-
burg, and Georg Kucsko. Longer is (not necessarily) stronger: Punctuated long-sequence training
for enhanced speech recognition and translation. arXiv:2409.05601, 2024.

Oleksii Kuchaiev, Jason Li, Huyen Nguyen, et al. Nemo: a toolkit for building ai applications using
neural modules. In NeurIPS Workshop on Systems for ML, 2019.

Taku Kudo and John Richardson. Sentencepiece: A simple and language independent subword
tokenizer and detokenizer for neural text processing. arXiv:1808.06226, 2018.

Jay Mahadeokar, Yangyang Shi, Ke Li, Duc Le, Jiedan Zhu, Vikas Chandra, Ozlem Kalinli, and
Michael L Seltzer. Streaming parallel transducer beam search with fast-slow cascaded encoders.
arXiv preprint arXiv:2203.15773, 2022.

Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur. Librispeech: an ASR
corpus based on public domain audio books. In ICASSP, 2015.

Douglas B Paul and Janet Baker. The design for the Wall Street Journal-based CSR corpus. In
Speech and Natural Language: Proceedings of a Workshop Held at Harriman, New York, 1992.

Vineel Pratap, Qiantong Xu, Anuroop Sriram, Gabriel Synnaeve, and Ronan Collobert. MLS: A
large-scale multilingual dataset for speech research. In Interspeech, 2020.

Mirco Ravanelli, Titouan Parcollet, Peter Plantinga, Aku Rouhe, et al. SpeechBrain: A general-
purpose speech toolkit. In Interspeech, 2021.

Dima Rekesh, Nithin Rao Koluguri, Samuel Kriman, Somshubra Majumdar, Vahid Noroozi, et al.
Fast Conformer with linearly scalable attention for efficient speech recognition. In Automatic
Speech Recognition and Understanding Workshop (ASRU), 2023.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words with
subword units. In Proc. of the 54th Annual Meeting of the ACL, 2016.

Vaibhav Srivastav, Somshubra Majumdar, Nithin Koluguri, Adel Moumen, Sanchit Gandhi, et al.
Open automatic speech recognition leaderboard. https://huggingface.co/spaces/
hf-audio/open_asr_leaderboard, 2023.

Ehsan Variani, David Rybach, Cyril Allauzen, and Michael Riley. Hybrid autoregressive transducer.
In ICASSP, 2020.

Changhan Wang, Morgane Riviere, Ann Lee, Anne Wu, Chaitanya Talnikar, Daniel Haziza, Mary
Williamson, Juan Pino, and Emmanuel Dupoux. VoxPopuli: A large-scale multilingual speech
corpus for representation learning, semi-supervised learning and interpretation. In Proc. of the
59th Annual Meeting of the ACL and the 11th International Joint Conf. on NLP, 2021.

Weiran Wang, Ke Hu, and Tara N Sainath. Deliberation of streaming rnn-transducer by non-
autoregressive decoding. In ICASSP 2022-2022 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 7452–7456. IEEE, 2022.

Shinji Watanabe, Takaaki Hori, Shigeki Karita, Tomoki Hayashi, Jiro Nishitoba, et al. ESPnet:
End-to-end speech processing toolkit. In Interspeech, 2018.

Chen Xu, Xiaoqian Liu, Xiaowen Liu, Qingxuan Sun, Yuhao Zhang, Murun Yang, Qianqian Dong,
Tom Ko, Mingxuan Wang, Tong Xiao, et al. Ctc-based non-autoregressive speech translation.
arXiv preprint arXiv:2305.17358, 2023a.

Hainan Xu, Fei Jia, Somshubra Majumdar, Shinji Watanabe, and Boris Ginsburg. Multi-blank
transducers for speech recognition. arXiv:2211.03541, 2022.

Hainan Xu, Fei Jia, Somshubra Majumdar, He Huang, Shinji Watanabe, and Boris Ginsburg. Effi-
cient sequence transduction by jointly predicting tokens and durations. In ICML, 2023b.

12

https://huggingface.co/spaces/hf-audio/open_asr_leaderboard
https://huggingface.co/spaces/hf-audio/open_asr_leaderboard

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Junichi Yamagishi, Christophe Veaux, and Kirsten MacDonald. CSTR VCTK Corpus: English
Multi-speaker Corpus for CSTR Voice Cloning Toolkit (ver. 0.92), 2019. URL https://api.
semanticscholar.org/CorpusID:213060286.

Zengwei Yao, Liyong Guo, Xiaoyu Yang, Wei Kang, Fangjun Kuang, Yifan Yang, Zengrui Jin, Long
Lin, and Daniel Povey. Zipformer: A faster and better encoder for automatic speech recognition.
In ICLR, 2023.

Ching-Feng Yeh, Jay Mahadeokar, Kaustubh Kalgaonkar, et al. Transformer-Transducer: End-to-
end speech recognition with self-attention. arXiv:1910.12977, 2019.

Albert Zeyer, Ralf Schlüter, and Hermann Ney. Why does CTC result in peaky behavior?
arXiv:2105.14849, 2021.

13

https://api.semanticscholar.org/CorpusID:213060286
https://api.semanticscholar.org/CorpusID:213060286

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 TRAINING ALIGNMENTS

The strength of NAR HAI-T to better model acoustic ambiguity can also be observed during model
training. Figure 2 shows the force-alignment probabilities for both “ice cream” and “i scream” hy-
potheses. Notably, the HAI-T model can align both hypotheses with high probabilities by separating
them at different time stamps, a capability not possible with CTC models due to their frame-by-frame
independence assumption and lack of frame-skipping mechanism.

To understand why CTC models cannot assign high probabilities to both hypotheses simultane-
ously, consider the following scenario: If one frame assigns high probability to “ce” (from “ice”),
and another frame assigns high probability to “sc” (from “scream”), the resulting sequence would
inevitably be recognized as “cesc” or “scce”, matching neither “ice cream” nor “i scream”. This lim-
itation is unique to frame-by-frame models with conditional independence assumptions like CTC.
In contrast, the HAI-T model’s ability to skip frames and represent multiple hypotheses allows it to
better capture the inherent ambiguity in speech.

Figure 2: Alignments generated by HAI-T model without predictor, on “ice cream“ and “i scream”.

A.2 COMPARISON WITH HYBRID-TDT-CTC MODELS

To further validate the effectiveness of our approach, we compare HAI-T with Hybrid-TDT-CTC
models (Koluguri et al., 2024), which combines elements of both CTC and TDT models. With
the Hybrid-TDT-CTC model, the encoder output is processed by both a CTC embedding layer and
TDT joint/predictors, and the model is trained using a linear interpolation of CTC and TDT losses.
During inference, the model supports both AR (using TDT components) and NAR (using CTC
components) inference modes. Table 5 presents the performance comparison between Hybrid-TDT-
CTC and HAI-T models across various datasets from the Huggingface ASR leaderboard.

Key observations from this comparison:

• Performance: HAI-T outperforms Hybrid-TDT-CTC in both AR and NAR modes across most
datasets, with lower average WER scores.

Table 5: Hybrid-TDT-CTC model accuracy (WER%) on Huggingface ASR leaderboard datasets

model inference ami e22 giga clean other spgi ted vox AVG

hybrid TDT (AR) 16.17 14.77 9.56 1.37 2.64 3.65 3.71 5.56 7.18
CTC (NAR) 17.13 15.33 9.90 1.51 2.88 3.65 3.95 5.71 7.51

HAI-T AR 15.92 14.16 9.70 1.46 2.76 3.59 3.59 5.60 7.10
NAR 16.13 14.38 9.79 1.49 2.83 3.61 3.64 5.68 7.19

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

• Model Efficiency: Unlike Hybrid-TDT-CTC, HAI-T does not require storing separate sets of
parameters for AR and NAR inference, leading to a more compact model.

• Flexibility: HAI-T offers an additional semi-autoregressive (SAR) inference mode, providing a
more flexible speed-accuracy trade-off not available in Hybrid-TDT-CTC models.

These results underscore the advantages of HAI-T’s unified architecture, which achieves superior
performance while maintaining model simplicity and offering greater inference flexibility.

A.3 EXAMPLES OF DELETION ERRORS CORRECTED BY SAR METHODS

Although relatively rare, SAR methods can correct deletion errors of NAR inference results. Here
are some examples in German and English that we observe in our runs. We use green to highlight
words that were missing in NAR hypotheses but included by SAR.

German:

Table 6: Example of German ASR where SAR reduces deletion errors from NAR output

reference die meisten vorfälle passieren bei der implementierung bedauerlicherweise im
krankenhaus häufig auch in der anwendung

NAR diesfälle passieren bei der implementierung bedauerlicherweise im krankenhaus
häufig auch in der anwendung

SAR die handfälle passieren bei der implementierung bedauerlicherweise im
krankenhaus häufig auch in der anwendung

reference ich ersuche den kommissar hier sofortmaßnahmen zu ergreifen
NAR ichsuche den kommissar hier sofort maßnahmen zu ergreifen
SAR ich versuche den kommissar hier sofortmaßnahmen zu ergreifen

English:

Table 7: Example of English ASR where SAR reduces deletion errors from NAR output

reference then one of them says kind of soft and gentle
NAR then one of them says kinda soft and gentle
SAR then one of them says kind of soft and gentle

reference say mester gurr sir which thankful i am to you for speaking so but you don’t
really think as he has come to harm

NAR say mister gurrsir which thankful i am for you for speaking so but you don’t
really think as he has come to harm

SAR say mister gurr sir which thankful i am for you for speaking so but you don’t
really think as he has come to harm

We notice that, in all those examples of corrected deletion errors, the SAR method replaces a non-
word-beginning subword with a word-beginning subword, e.g. “ kind a” is replaced with “ kind
of”. This aligns with our analysis in subsection 6.1, since this is the only way to increase the

number of words while keeping the number of subwords fixed.

A.4 REASON OF ZERO-DURATION MITIGATION WITH HAI-T

In subsection 6.4, we show empirically that duration 0 is greatly mitigated by HAI-T model. In this
subsection, we provide some analysis of why this is the case. In our description, we use Et and Du

to denote encoder/predictor outputs.

1. By performing stochastic masking of predictor output during training, the model is learning
to make the output distribution of joint(Et, Du) similar to joint(Et, Du ∗ 0).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

2. If duration 0 is predicted from joint(Et, Du), then the next step of processing would be
joint(Et, Du+1), where t remains the same but u gets incremented by 1.

3. From 1, we know that model is learning to make joint(Et, Du) similar to joint(Et, Du ∗0);
also it’s learning to make joint(Et, Du+1) similar to joint(Et, Du+1 ∗ 0). Consequently,
the model would make joint(Et, Du) similar to joint(Et, Du+1), since joint(Et, Du ∗ 0) is
the same as joint(Et, Du+1 ∗ 0), both of which has predictor masked out.

4. However, we know that joint(Et, Du) and joint(Et, Du+1) should predict different tokens
since the text histories are different. This causes a contradiction.

Therefore, HAI-T models, by adopting stochastic predictor masking, would naturally suppress the
prediction of duration 0 in its processing.

16

	Introduction
	Related Work
	Background
	Connectionist Temporal Classification (CTC)
	Recurrent Neural Network Transducer (RNN-T)
	Token-and-Duration Transducers (TDT)

	Hybrid-Autoregressive Inference Transducer (HAI-T)
	Autoregressive inference
	Non-autoregressive inference
	Semi-autoregressive inference
	Viterbi-decoding

	Experiments
	English ASR
	German ASR

	Analysis and Discussions
	Limitations of SAR methods
	NAR HAI-T's Capability of Capturing Acoustic Ambiguity
	Impact of Duration Configurations
	Duration Distribution Analysis

	Conclusion and Future Work
	Appendix
	Training Alignments
	Comparison with Hybrid-TDT-CTC models
	Examples of deletion errors corrected by SAR methods
	Reason of Zero-duration Mitigation with HAI-T

