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ABSTRACT

We present Hybrid-Autoregressive Inference Transducers (HAI-T), a novel archi-
tecture for speech recognition that extends the Token-and-Duration Transducer
(TDT) model. Trained with randomly masked predictor network outputs, HAI-
T supports both autoregressive inference with all network components and non-
autoregressive inference without the predictor. Additionally, we propose a novel
semi-autoregressive inference method that first generates an initial hypothesis us-
ing non-autoregressive inference, followed by refinement steps where each token
prediction is regenerated using parallelized autoregression on the initial hypothe-
sis. Experiments on multiple datasets across different languages demonstrate that
HAI-T achieves efficiency parity with CTC in non-autoregressive mode and with
TDT in autoregressive mode. In terms of accuracy, autoregressive HAI-T achieves
parity with TDT and RNN-T, while non-autoregressive HAI-T significantly out-
performs CTC. Semi-autoregressive inference further enhances the model’s ac-
curacy with minimal computational overhead, and even outperforms TDT results
in some cases. These results highlight HAI-T’s flexibility in balancing accuracy
and speed, positioning it as a strong candidate for real-world speech recognition
applications.

1 INTRODUCTION

End-to-end neural automatic speech recognition (ASR) has seen significant advancements in re-
cent years, namely due to the development of three architecture paradigms: Connectionist Tem-
poral Classification (CTC) (Graves et al., 2006), Recurrent Neural Network Transducers (RNN-T)
(Graves, 2012), and Attention-based Encoder and Decoder Models (Chorowski et al., 2015; Chan
et al., 2016). These models have gained widespread adoption, supported by open-source projects
such as ESPNet (Watanabe et al., 2018), SpeechBrain (Ravanelli et al., 2021), and NeMo (Kuchaiev
et al., 2019), etc. Of those models, CTC and RNN-T share a frame-synchronous design, enabling
streaming processing of speech input. However, they differ in their inference approaches: CTC mod-
els support non-autoregressive (NAR) inference based on a conditional-independence assumption,
while RNN-T models require autoregressive (AR) inference due to their dependence on the history
context of partial hypotheses. This fundamental difference creates a trade-off between accuracy and
efficiency, with CTC models offering greater speed but typically lower accuracy than Transducers.

Our work bridges this gap with Hybrid-Autoregressive Inference Transducer (HAI-T)1: a novel im-
plementation of RNN-T capable of non-autoregressive, autoregressive and, semi-autoregressive in-
ference. Our contributions are as follows:

• We propose a method to train a Token-and-Duration Transducer (TDT) model by stochastically
masking out the predictor. The approach is easy to implement and only requires a one-line change
in the training code of token-and-duration model implementation.

• We present a novel semi-autoregressive (SAR) inference paradigm that first uses NAR to generate
initial hypotheses, and then uses autoregression to refine the hypotheses in parallel iteratively.

1We use this generic name to hide the authors’ affiliation. The model name might change in the final version.
Despite similar names, HAI-T is unrelated to Hybrid Autoregressive Transducer (HAT) (Variani et al., 2020).
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• We present a means to model the output of the NAR HAI-T model containing the token and dura-
tion predictions as a directed acyclic graph (DAG), and propose a simple Viterbi-based decoding
method for inference, with further accuracy gains.

Our results demonstrate the following:

• AR HAI-T achieves on-par WER accuracy with RNN-T and TDT models, with inference speeds
similar to TDT-based decoding, and significantly faster than RNN-T inference.

• NAR HAI-T outperforms CTC accuracy while maintaining similar efficiency. Our investigation
shows that NAR HAI-T can better capture potential ambiguities in the speech by learning more
nuanced representations, a capability that frame-by-frame NAR like CTC inherently lacks.

• SAR consistently brings accuracy gains over NAR, approaching the performance of AR inference
with minimal computational overhead.

• HAI-T’s high performance is due to its learning of more diverse encoder outputs, a property
that allows our Viterbi decoder to achieve the same accuracy of AR inference despite the use of
non-autoregressive outputs.

We will open-source our implementation and release trained model checkpoints for public use.

2 RELATED WORK

Recent research in speech recognition has focused on enhancing WER accuracy while mitigating
reductions in inference speed. This has been most notable for self-attention-based architectures,
with improvements in latency for Transformer models (Yeh et al., 2019) leading to creation of the
Conformer (Gulati et al., 2020) and it variants (e.g. Zipformer (Yao et al., 2023), FastConformer
(Rekesh et al., 2023)). While all have notable architectural improvements, they can be generalized as
attempts to improve model capacity and/or reducing the latency caused by attention-based inference
over large audio inputs.

For Transducer models specifically, various optimizations have been explored. He et al. (2019)
proposed a caching mechanism for the RNN-T predictor to reduce redundancy in inference com-
putations. Jain et al. (2019) introduced a pruning method for RNN-T beam search to reduce the
search space, resulting in faster decoding. Ghodsi et al. (2020) investigated predictors with state-
less networks for Transducer models. While this approach reduced the computational complexity of
the original LSTM predictor, it came at the cost of slight accuracy degradation. Kang et al. (2023)
proposed monotonic constraints on RNN-T training and inference, reducing the number of steps
RNN-T inference stays on the same frame, and reported faster inference with those models. Bataev
et al. (2024) proposed a novel label-looping decoding algorithm for Transducers, using parallel GPU
calls for the majority of the decoding operation and achieved significant inference speedup. Galvez
et al. (2024) optimized the decoding algorithm from a hardware perspective and minimized the GPU
idle time during decoding, further improving GPU-based inference. Multi-blank Transducers (Xu
et al., 2022) and Token-and-Duration Transducers (TDT) (Xu et al., 2023b) identified large num-
bers of blank predictions during RNN-T inference, proposing duration-prediction mechanisms to
skip frames during processing. This improvement greatly reduced the number of decoding steps
required for inference. While these methods improved Transducer inference speeds, the resulting
models remained autoregressive. As such, Transducer inference speeds still significantly lagged
behind non-autoregressive frameworks (e.g. CTC).

Our proposed semi-autoregressive method falls under the category of the “fast/slow” method, where
the model combines both a faster but less accurate module, and a slower but more accurate mod-
ule to achieve good accuracy/efficiency tradeoffs. Inaguma et al. (2021) use a fast CTC model to
generate multiple hypotheses, to be reranked by a slower AR model to improve speech translation
performance. Mahadeokar et al. (2022) propose a cascade model architecture, where the fast model
uses a relatively shallow encoder for quicker results, while the slow model uses additional encoder
layers along with a separate joint network to improve results. Arora et al. (2024) proposed a model
that divides speech input into blocks, and adopts AR processing among blocks but NAR processing
within a block to balance speed with accuracy. Deliberation methods Hu et al. (2020) and its vari-
ants Wang et al. (2022) use cascaded encoders and separate decoder, and use the shallow encoder to
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generate initial hypotheses, which to be fed into a second-pass “Listen-Attend-Spell” (LAS) model
with additional encoder and decoders to improve accuracy. Compared with those “fast-slow” works,
our work is unique in that our “slow” model only adds marginal parameters on top of the “fast”
model, and the “refinement” process requires minimal computation overheads.

3 BACKGROUND

In this Section, we provide the technical background information for models that influenced HAI-T
architecture: CTC, RNN-Transducer (RNN-T), and Token-and-Duration Transducer (TDT).

3.1 CONNECTIONIST TEMPORAL CLASSIFICATION (CTC)

CTC (Graves et al., 2006) is a sequence-to-sequence prediction model designed to address the chal-
lenge of aligning input and output sequences of different lengths. Let x = (x1, x2, ..., xT ) represent
the input sequence, y = (y1, y2, ..., yU ) the output sequence, and V the vocabulary, where v ∈ V
includes all tokens in y and a special “blank” symbol. A CTC model predicts P (v|xt) for each time
step t. The “blank” symbol is crucial for handling the discrepancy between input and output se-
quence lengths, allowing for many-to-one alignments and representing frames that do not contribute
additional information to the output. CTC models employ a set of rules to generate CTC-augmented
sequences that are equivalent to the original sequence: (1) When a token is repeated in the original
sequence, at least one “blank” token must be inserted between the repeated tokens, and (2) Any
token can be repeated an arbitrary number of times.

The training objective of CTC models is to maximize the probability of y given the input x. This
probability is defined as the sum of probabilities for all possible augmented sequences of the ref-
erence sentence that match the input sequence length. CTC adopts a conditional independence
assumption when computing the probability of an augmented sequence given the input. This as-
sumption posits that each token in the augmented sequence is conditioned solely on the encoder
output frame at its corresponding time step. Consequently, this allows for fully parallelized compu-
tation of P (v|t) across different time steps, resulting in highly efficient inference.

CTC models with non-autoregressive components like self-attention and convolution are widely
accepted as non-autoregressive models Higuchi et al. (2021; 2020); Xu et al. (2023a), although
during inference, CTC’s token deduplication and blank handling would still depend on the last
emitted token. We point out that this NAR categorization is based on the neural network computation
of the model. In CTC, all neural network computation during inference can be carried out non-
autoregressively, and the only autoregression is done on basic data types (strings, lists, etc.), which
induces negligible computation compared to the costly neural network computations. In this work,
we also follow this principle in categorizing models as autoregressive or not.

3.2 RECURRENT NEURAL NETWORK TRANSDUCER (RNN-T)

The RNN-Transducer, proposed by Graves (2012), represents a significant advancement in
sequence-to-sequence modeling. RNN-T comprises three key components: an encoder, a predic-
tor, and a joint network. The encoder extracts high-level features from the audio input, while the
predictor processes the text history. The joint network then combines these outputs to generate a
probability distribution over the vocabulary.

Like CTC, RNN-T incorporates a blank symbol, but with different rules for augmented sequences.
(1) RNN-T sequences add zero or more blanks between adjacent tokens in the original sequence,
rather than permitting repetition of both blanks and tokens, and (2) Only blank tokens consume input
frames; the time step t does not increment with non-blank token predictions of the model.

RNN-T’s training aligns with CTC, maximizing the probability of the target sequence by summing
over the probabilities of all possible augmented sequences. However, RNN-T diverges from CTC’s
conditional independence assumption. Instead, it leverages the predictor’s output, representing text
history, in the joint network to compute output distributions. As such, its predictions are conditioned
by the alignment of input time step and position of current text output, making token estimation
P (v|xt, y<u−1). This incorporation of text history enables RNN-T models to outperform CTC.

3
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Despite its superior performance, RNN-T’s reliance on the predictor and text history introduces
autoregressive behavior in inference. Consequently, RNN-T inference resists full parallelization,
resulting in lower efficiency compared to CTC. This trade-off between performance and efficiency
highlights the ongoing challenge of designing optimal sequence-to-sequence models for ASR.

3.3 TOKEN-AND-DURATION TRANSDUCERS (TDT)

Token-and-Duration Transducer (TDT) model is introduced by Xu et al. (2023b). Unlike tradi-
tional Transducers where only blank predictions increment the encoder index t by exactly one, TDT
supports advancing t by multiple steps for both blank and non-blank predictions. A TDT model gen-
erates two probability distributions, one for token, and the other for durations, which determines the
number of audio frames to skip. By supporting frame skipping, TDT models require significantly
fewer decoding steps compared to traditional Transducers, resulting in faster inference.

4 HYBRID-AUTOREGRESSIVE INFERENCE TRANSDUCER (HAI-T)

We propose Hybrid-Autoregressive Inference Transducers (HAI-T), an extension of the TDT model
designed to support multiple modes of autoregression in inference. HAI-T incorporates stochastic
predictor masking: during training, the predictor’s output is randomly masked before being passed
to the joint network. We implement this with a masking probability of 0.5, sampled at the [batch,
text-index] level. Except for the random masking performed in training, the rest of the model
training of HAI-T (computation in other components, and loss computation, etc) remains identical
to that of TDT training. As a result of this change, during training, half the time the joint network
is learning to predict with the whole model, and the other half the time it is learning to predict with
information from the encoder only. Therefore when the model is well-trained, the joint network can
generate valid distributions regardless of whether the predictor output is provided.

The HAI-T model supports three inference modes: autoregressive (AR), non-autoregressive (NAR)
depending on whether we use the predictor network during inference. In addition, we also propose
semi-autoregressive (SAR) inference, which combines elements of both NAR and AR inference to
achieve better speed-accuracy tradeoff, and a Viterbi-based inference, which leverages the better
representations learned by HAI-T models for better accuracy.

Algorithm 1 Autoregressive Inference
1: Input: acoustic input x
2: enc = encoder(x) # [T, H]
3: hyp = []; t = 0
4: while t < len(enc) do
5: pred = predictor(hyp) # [H]
6: token probs, dur probs = joint(enc[t], pred) #

[V] and [D]
7: token = argmax(token probs)
8: duration = argmax(dur probs)
9: if token is not blank then

10: hyp.append(token)
11: t += duration
12: Return hyp

Algorithm 2 Non-AR Inference
1: Input: acoustic input x
2: enc = encoder(x) # [T, H]
3: token probs, dur probs = parallel joint(enc,

pred=None) # [T, V] and [T, D]
4: tokens = argmax(token-probs, dim=-1) # [T]
5: durations = argmax(dur-probs,dim=-1) # [T]
6: hyp = []; t = 0
7: while t < len(enc) do
8: token = tokens[t]
9: if token is not blank then

10: hyp.append(token)
11: t += max(1, duration[t]) # avoid infinite loop
12: return hyp

4.1 AUTOREGRESSIVE INFERENCE

Autoregressive inference of HAI-T models is identical to TDT models. For ease of reference, we
provide Algorithm 1, which is a rewrite of the original Algorithm 2 from Xu et al. (2023b) with
slightly changed notation/naming conventions to be consistent with this paper. To facilitate under-
standing of the Algorithms, we include tensor shapes as comments in the Algorithm, and we use T, V,
D, U, H to represent audio-length, num-tokens, num-durations, text-index, and hidden-dimensions.

4
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4.2 NON-AUTOREGRESSIVE INFERENCE

Algorithm 2 shows NAR inference procedure. Compared to AR inference, NAR inference requires
simple modifications of (1) passing an all-zero tensor instead of predictor output to the joint network;
(2) moving the joint network computation out of the decoding loop, allowing parallel processing of
all encoder outputs; (3) after each step, we increment t by at least one to avoid infinite loops.

4.3 SEMI-AUTOREGRESSIVE INFERENCE

SAR inference is a novel algorithm combining elements of both AR and NAR approaches, as de-
tailed in Algorithm 3. For ease of description, we assume the NAR inference procedure also returns
the corresponding time-stamps of token outputs. The Algorithm consists of two main phases:

1. Initial Hypothesis Generation (lines 2-4) performs NAR inference to generate an initial hy-
pothesis. It also uses the time stamps of the initial hypothesis to extract token-emitting frames
from the encoder output for later processing.

2. Hypothesis Refinement (lines 5-8) uses the predictor to compute representations of all par-
tial history contexts in the current hypothesis. It then combines the predictor’s output with se-
lected encoder output frames in the joint network to re-compute probability distributions for those
frames, in parallel2. This procedure can be repeated to further improve the results. Note if re-
peated, all but the last round of the refinement should limit the argmax on line 9 to non-blank
tokens since the token would need to be passed in the predictor for the next round of refinement.

The SAR approach takes advantage of the strengths of both AR and NAR methods, allowing high
degrees of parallelization while still taking advantage of text history in predictor computation to
improve model accuracy.

Algorithm 3 Semi-Autoregressive Inference of HAI-T Models
1: Input: acoustic input x
2: enc = encoder(x) # [T, H]
3: hyp, time stamps = NARInference(enc) # [U] and [U]
4: useful frames = enc[time stamps,:] # [U, H]
5: shifted hyp = [BOS] + hyp[:-1] # [U]
6: pred = predictor(shifted hyp) # [U, H]
7: token probs, duration probs = joint(useful frames, pred) # of shapes: [U, V] and [U, D]
8: hyp = argmax(token-probs, dim=-1) # [U]
9: Return: hyp

4.4 VITERBI-DECODING

In addition to AR/NAR and SAR inference, we also propose a Viterbi-based inference method for
HAI-T models. Given an audio sequence of length T , we view the output of the NAR HAI-T model
as a directed acyclic graph (DAG) with T + 1 nodes, while the first T correspond to frames and
the last acts as a special end-of-sentence (eos) token. For each frame, we only consider the arg-max
token probability, which represents the weight of the first T nodes (the eos node has a weight 1).
The duration outputs at each frame correspond to transition weights into neighboring nodes. For
example, in our models with max-duration 8, each node has at most 8 incoming and 8 outgoing
connections connecting to its neighbors.

With this setting, speech recognition on the input audio is equivalent to finding the best path of the
DAG from the first node to the last, which can be efficiently solved by a simplified “Viterbi decod-
ing” algorithm. Notably, Viterbi and SAR techniques are orthogonal, and after Viterbi decoding
generates the tokens and time stamps, we can use SAR techniques to further improve the results.
The Algorithm for Viterbi decoding is shown in Algorithm 4. For simplicity, this Algorithm returns
a “backtrack” structure that encodes the selected frames found by the best-path algorithm. The Al-
gorithm’s key is between lines 7 and 14, where nested loops run over (time, duration) pairs, and for

2The computation at line 7 is done fully parallelized, and line 6 may require some sequential computation
if the predictor is an LSTM. If the predictor is stateless, this computation can also be fully parallelized as well.
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each node, it finds the probability of the best path from the first node to that node using a dynamic
programming algorithm. The Algorithm can be carried out efficiently with O(TD) time complexity,
where T is the input sequence length and D is the number of durations. In terms of space complex-
ity, this Viterbi algorithm requires O(T ) (to store best-probs and backtrace pointers for each time
index). Because duration 0 is not allowed in NAR modes, we assume there’s no duration 0 in N .

Algorithm 4 Viterbi Decoding of HAI-T Models
1: Input: acoustic input x, supported durations N
2: enc = encoder(x)
3: token probs, duration probs = joint(enc, dec=None) # of shapes [T, V] and [T, D]
4: best prob per frame = max(token probs, dim=-1) # of shape [T]
5: best prob = [0.0 for t in range(len(x) + 1)]
6: backtrack = [-1 for t in range(len(x) + 1)] # we include a terminal node for backtracing
7: for target in range(1, len(x) + 1) do
8: for idx, n in enumerate(N) do
9: source = max(t-n, 0) # duration states cannot originate before initial node

10: alpha = best-prob[source]
11: trans prob = best prob per frame[target] * duration prob[source,idx]
12: if alpha * trans prob > best prob[target] then
13: best prob[target] = alpha * trans-prob
14: backtrack[target] = source
15: Return: backtrack

5 EXPERIMENTS

We evaluate HAI-T ASR in two languages: English, German. All experiments are conducted us-
ing the NeMo (Kuchaiev et al., 2019) toolkit, version 1.23.0. We first extract 80-dimensional
filterbank features on audio, with 25 ms windows at 10 ms strides. All models use FastConformer
encoders with the first three layers all performing 2X subsampling, therefore 8X subsampling in
total. Both TDT and HAI-T models use durations {0, 1, 2, ..., 7, 8}. BPE tokenizer (Sennrich et al.,
2016; Kudo & Richardson, 2018) of size 1024 is used for text representation. For all experiments,
we let models train for sufficient steps until validation performance degrades (no more than 150k
training steps), and run model averaging on 5 best checkpoints to generate the final model for eval-
uation. For all datasets, we report ASR performance measured by WER and the inference speed of
RNN-T, CTC, TDT and HAI-T models. For HAI-T models, we include results of AR, NAR and
SAR modes, and use the notation “SAR-n” to indicate n rounds of refinement runs).

5.1 ENGLISH ASR

We train our English models on the combination of Librispeech (Panayotov et al., 2015), Mozilla
Common Voice (Ardila et al., 2019), VoxPopuli (Wang et al., 2021), Fisher (Cieri et al., 2004),
People’s Speech (Galvez et al., 2021), Wall Street Journal (Paul & Baker, 1992), National Speech
Corpus (Koh et al., 2019), VCTK (Yamagishi et al., 2019), Multilingual Librispeech (Pratap et al.,
2020), Europarl (Koehn, 2005) datasets, plus “anonymous” datasets. In total, our dataset consists of
approximately 60,000 hours of speech.

The encoder uses FastConformer-XXL architecture with 42 layers of conformer blocks, each of
which uses 8 heads of self-attention layers with model hidden dimension = 1024, totaling around
1.1b parameters. The convolutions in the conformers use kernel size = 9. The encoder was initialized
with the public checkpoint https://hf.co/nvidia/parakeet-tdt-1.1b. For standard
RNN-T, TDT and HAI-T models, their predictors consist of 2-layer LSTMs, with hidden dimension
= 640. The joint network is a 2-layer feed-forward network with ReLU in between and with hidden
dimension 1024. For HAI-T models, we also include two variations. (1) a model trained with
stateless predictor network, where the predictor outputs the learned embedding of the last one word
in the history context and, (2) a model train with non-zero durations {1, 2, ..., 7, 8}.

We evaluate the models using the Huggingface ASR leaderboard (Srivastav et al., 2023), including
the following datasets: AMI test (ami), Earnings22 test (e22), Gigaspeech test (giga), Librispeech
test-clean and test-other (clean and other), Spgispeech test (spgi), Tedlium test (ted), and VoxPopuli
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test (vox). The results are shown in Table 1. Since there are multiple datasets, we direct readers’
attention to the average WER achieved by different models. From the Table we can see:

Table 1: HAI-T English ASR: accuracy (WER%) and wall time on Huggingface ASR leaderboard
datasets. AR/NAR/SAR represent autoregressive/non-autoregressive and semi-autoregressive. The
number after SAR represents the number of refinement runs. Decoding time (seconds) is measured
on only librispeech-test-other using batch=1 and beam=1, running on 2 A6000 GPUs. Viterbi time
is not included since it’s not comparable due to the different nature of the search algorithm. All
models have around 1.1 billion parameters differing by at most 600k in actual number.

model AR ami e22 giga clean other spgi ted vox AVG time

RNN-T AR 16.90 13.87 9.76 1.43 2.75 3.40 3.63 5.49 7.15 179
TDT AR 16.18 14.62 9.61 1.39 2.53 3.47 3.75 5.52 7.13 88
CTC NAR 16.59 14.43 9.93 1.53 2.93 3.95 3.84 5.81 7.38 39

HAI-T

AR 15.92 14.16 9.70 1.46 2.76 3.59 3.59 5.60 7.10 89
NAR 16.13 14.38 9.79 1.49 2.83 3.61 3.64 5.68 7.19 41

+Viterbi 16.23 14.03 9.75 1.48 2.81 3.53 3.60 5.60 7.13 -
SAR-1 16.01 14.23 9.73 1.47 2.76 3.60 3.64 5.61 7.13 45

+Viterbi 16.13 13.93 9.71 1.47 2.77 3.51 3.60 5.56 7.09 -
SAR-2 15.99 14.17 9.72 1.47 2.75 3.59 3.63 5.61 7.12 48

AR 15.69 13.64 9.68 1.49 2.82 3.47 3.74 5.72 7.03 82
NAR 15.78 13.73 9.77 1.49 2.91 3.49 3.75 5.75 7.08 40

HAI-T +Viterbi 15.87 13.45 9.72 1.47 2.87 3.42 3.74 5.70 7.03 -
stateless SAR-1 15.77 13.72 9.72 1.49 2.84 3.48 3.74 5.71 7.06 42

+Viterbi 15.86 13.42 9.69 1.47 2.82 3.41 3.74 5.69 7.01 -
SAR-2 15.75 13.61 9.70 1.48 2.84 3.47 3.72 5.71 7.03 43

AR 15.75 13.37 9.73 1.40 2.83 3.52 3.56 5.76 6.98 92
NAR 15.94 13.67 9.81 1.44 2.87 3.55 3.54 5.74 7.07 40

HAI-T +Viterbi 15.88 13.38 9.73 1.41 2.86 3.48 3.48 5.65 6.98 -
no duration 0 SAR-1 15.84 13.45 9.74 1.41 2.85 3.52 3.54 5.69 7.00 44

+Viterbi 15.79 13.21 9.68 1.39 2.83 3.46 3.50 5.60 6.93 -
SAR-2 15.79 13.36 9.73 1.40 2.83 3.52 3.55 5.69 6.98 48

• In AR modes, regardless of the nature of the predictor, HAI-T models achieve superior accuracy
than RNN-T and TDT. Furthermore, while standard HAI-T models achieve parity in terms of
efficiency with TDT, the HAI-T with stateless predictor achieves better speed than TDT model
with no performance degradation.

• In NAR modes, HAI-T models achieve consistently better accuracy than CTC, with similar infer-
ence speed. In particular, NAR stateless HAI-T achieves better accuracy than the AR TDT model,
while running over 2X faster; it also outperforms RNN-T model, while being over 4X faster.

• SAR further improves the accuracy of NAR inference with small computational overhead. In
the case of standard HAI-T, each additional SAR refinement run adds around 3-4 seconds of
processing for the whole dataset, while HAI-T with stateless predictor only requires 1-2 seconds
per SAR run. This is significantly faster than fully autoregressive TDT runs which takes around
40 seconds more processing time in total. Also in both models, just one round of SAR makes the
model catch up with TDT performance while running at least 2X faster.

• Viterbi decoding can further improve model accuracy. We present an analysis in subsection 6.2
that can explain this phenomenon.

• In particular, the HAI-T model with non-zero durations achieve the best results overall. Later in
Section 6.4, we present our discovery that can explain this phenomenon.

5.2 GERMAN ASR

Our German models are trained on German Mozilla Common Voice, Multilingual Librispeech,
and VoxPopuli datasets, totaling around 2000 hours. We use FastConformerLarge configuration

7
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of around 110m parameters 3, and evaluate the models on the German Multilingual Librispeech
(MLS) and VoxPopuli (Vox) testsets. For training, all model encoders are initialized with public
checkpoint https://hf.co/nvidia/stt_en_fastconformer_transducer_large.
The results of those models are shown in Table 2.

We see similar trends compared to our English models, where HAI-T achieves similar accuracy
and efficiency when running in AR modes compared to TDT models, and achieves significantly
improved NAR accuracy compared to CTC models, while achieving the same inference speed. SAR
further closes the accuracy gaps between AR and NAR, while adding small overheads, and still
being around 4X faster than AR inference.

Table 2: German ASR: accuracy (WER%) and inference wall time (seconds) on Multilingual Lib-
rispeech and VoxPopuli. Decoding time is measured with batch=1 and beam=1.

model AR MLS time VOX time

RNN-T AR 4.90 429 9.47 113
TDT AR 4.77 141 9.41 52
CTC NAR 5.92 22 10.25 8

HAI-T

AR 4.75 141 9.22 52
NAR 5.11 20 9.63 8

SAR-1 4.87 29 9.47 11
SAR-2 4.83 36 9.44 14

AR 4.85 127 9.35 46
HAI-T NAR 5.09 22 9.57 8

stateless SAR-1 4.89 24 9.45 9
SAR-2 4.87 25 9.44 10

6 ANALYSIS AND DISCUSSIONS

6.1 LIMITATIONS OF SAR METHODS

The key of SAR method is to reuse the time stamps generated in the initial NAR inference, and only
regenerates the token outputs for those frames. This puts limitations on the types of errors that can
be corrected by the method. We provide some analysis here.

• From the subword level, SAR can only fix substitution errors by replacing a wrong subword
with the correct one, and insertion errors by replacing the inserted wrong subword with a
blank. It can’t fix deletions where the hypothesis is shorter than the reference.

• From the word level, SAR can correct deletion errors. Note, although SAR can’t add more
subwords to the original output, it can replace a non-word-beginning subword with a word-
beginning subword, and thus increase the number of words in the SAR output. E.g. the
SAR can change “forty” to “for tea”, by replacing subwords “ for ty” with “ for tea”,
where “ ” means the begin-of-word symbol.

Table 3: Breakdown of Error types (%) of German HAI-T Models on Voxpopuli Dataset.

inference sub del ins total

NAR 5.19 2.64 1.80 9.63
SAR-1 5.00 2.85 1.62 9.47
SAR-2 4.96 2.87 1.61 9.44

We report detailed breakdown of error types in our German HAI-T model on Voxpopuli comparing
NAR and SAR in Table 3. We see that SAR models primarily reduce substitution and insertion

3The hyper-parameters can be found at https://github.com/NVIDIA/NeMo/blob/main/
examples/asr/conf/fastconformer/fast-conformer_transducer_bpe.yaml.
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errors; in fact, the total amount of deletion errors increased with SAR models. Even though the
overall deletion error numbers go up, we do observe in certain utterances, SAR can correct deletion
errors from NAR outputs. We provide some examples in Appendix subsection A.3.

6.2 NAR HAI-T’S CAPABILITY OF CAPTURING ACOUSTIC AMBIGUITY

In this subsection, we highlight an aspect of NAR HAI-T model that grants it greater modeling
power compared CTC models: its ability to support more diverse model representation and multiple
hypotheses across different time stamps, especially for potentially ambiguous speech. To illustrate
this, we present a real-world example using an audio recording of the phrase “ice cream”. First, we
run our English CTC model on the utterance to extract the arg-max token per frame, resulting in:

<b> <b> <b> <b> <b> i <b> <b> ce <b> <b> cre <b> <b> am <b> <b> <b> <b>

The CTC model output correctly represents the “ice cream” hypothesis, with each non-blank token
appearing once, surrounded by blanks. This aligns with the well-documented peaky behavior of
CTC (Zeyer et al., 2021). In contrast, the arg-max tokens emitted from our NAR HAI-T model are:

<b> i i i i i ce ce sc sc cre cre re am am am <b> <b> <b>

Notably, the per-frame arg-max output not only encodes “ice cream” but also captures an alternative
hypothesis: “i scream”. These hypotheses are dispersed across different time frames. For clarity,
we have color-coded the tokens: orange for “ice cream”, blue for “i scream”, and green for shared
tokens. It’s worth noting that these hypotheses are indeed acoustically very similar, and their differ-
ent alignments to the audio demonstrate that the NAR HAI-T’s per-frame arg-max output provides
a more accurate representation of the audio input. We believe this is the reason why the Viterbi
algorithm can achieve improved accuracy.

6.3 IMPACT OF DURATION CONFIGURATIONS

In this subsection, we examine how duration configurations affect HAI-T model performance. We
vary the max-durations in our German models and report their ASR performance. Table 4 presents
the WER(%) in NAR mode for different max-duration settings. Our results reveal a clear trend:
models with max-durations of 1 and 2 perform significantly worse, while those with max-durations
of 4 and 8 yield similar, improved results. This observation aligns with our earlier analysis, sug-
gesting that shorter maximal durations constrain the model’s ability to learn complex structures,
and the max duration needs to be sufficiently large to represent the real distribution. Interestingly,
max-duration 4 provides the best overall results, despite our choice of max-duration 8 for most ex-
periments. We selected the latter to accommodate greater linguistic variability across datasets, as
we did not extensively tune this parameter.

6.4 DURATION DISTRIBUTION ANALYSIS

Building on our previous analysis of maximum duration settings, we now examine the actual dura-
tion predictions made by our models. This analysis provides insights into how the models utilize the
allowed duration range and how the HAI-T training procedure affects duration prediction behavior.
We conducted experiments using HAI-T and TDT (trained with max-duration=8), running differ-
ent types of inference on the Librispeech test-other and German Multilingual Librispeech test sets.

Table 4: German ASR results of NAR HAI-T models with different maximum supported durations.

max-duration MLS VOX

1 7.58 12.46
2 5.79 10.27
4 5.06 9.56
8 5.09 9.57

9
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Figure 1: Duration prediction count of HAI-T and TDT models on Librispeech test-other (left) and
German Multilingual Librispeech test (right).

Figure 1 shows the distribution of duration predictions for HAI-T (in both AR and NAR modes)
compared to a standard TDT model. The results reveal several interesting patterns:

• Zero-duration mitigation: HAI-T’s training procedure dramatically reduces the occurrence of 0
duration predictions, effectively addressing the potential issue of infinite loops in NAR inference.
This phenomenon explains the results from Table 1, where excluding duration 0 gives the best
results among all models.

• Preference for shorter durations: Despite allowing durations up to 8, all models show a prefer-
ence for durations of 4 or less, with the preference stronger with HAI-T models. This aligns with
our previous finding that max-duration=4 tends to yield better performance.

• Consistency across inference modes: HAI-T shows remarkably similar duration distributions
in AR and NAR modes, suggesting a robust learning of duration prediction strategies.

These findings demonstrate that while allowing longer maximum durations (e.g., 8) provides flexi-
bility, the HAI-T model naturally learns to favor shorter durations. This behavior reconciles with our
earlier observation that max-duration=4 yields optimal performance: the model has the flexibility to
use longer durations when necessary but primarily operates within the 1-4 range.

7 CONCLUSION AND FUTURE WORK

In this paper, we introduced Hybrid-Autoregressive Inference Transducers (HAI-T), a novel ap-
proach that aims to bridge the gap between autoregressive and non-autoregressive methods in speech
recognition. By implementing a simple stochastic masking technique during training, we’ve de-
veloped a model that offers flexibility in its inference strategy. Our experiments across multiple
languages demonstrate promising results:

• In AR mode, HAI-T achieves on-par performance with TDT and RNN-T models.

• In NAR mode, HAI-T achieves significantly improved performance to CTC models.

• We propose a semi-autoregressive (SAR) mode, a new approach to balancing speed and accuracy.

There are several future research directions, including applying our method to other speech and
language-related tasks including speech translation, spoken language understanding, and speech
synthesis, etc. We plan to investigate more flexible model architectures further to bridge the gaps
between AR and NAR models. Furthermore, we plan to further improve the semi-autoregressive
algorithm for better speed-accuracy balancing.
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A APPENDIX

A.1 TRAINING ALIGNMENTS

The strength of NAR HAI-T to better model acoustic ambiguity can also be observed during model
training. Figure 2 shows the force-alignment probabilities for both “ice cream” and “i scream” hy-
potheses. Notably, the HAI-T model can align both hypotheses with high probabilities by separating
them at different time stamps, a capability not possible with CTC models due to their frame-by-frame
independence assumption and lack of frame-skipping mechanism.

To understand why CTC models cannot assign high probabilities to both hypotheses simultane-
ously, consider the following scenario: If one frame assigns high probability to “ce” (from “ice”),
and another frame assigns high probability to “sc” (from “scream”), the resulting sequence would
inevitably be recognized as “cesc” or “scce”, matching neither “ice cream” nor “i scream”. This lim-
itation is unique to frame-by-frame models with conditional independence assumptions like CTC.
In contrast, the HAI-T model’s ability to skip frames and represent multiple hypotheses allows it to
better capture the inherent ambiguity in speech.

Figure 2: Alignments generated by HAI-T model without predictor, on “ice cream“ and “i scream”.

A.2 COMPARISON WITH HYBRID-TDT-CTC MODELS

To further validate the effectiveness of our approach, we compare HAI-T with Hybrid-TDT-CTC
models (Koluguri et al., 2024), which combines elements of both CTC and TDT models. With
the Hybrid-TDT-CTC model, the encoder output is processed by both a CTC embedding layer and
TDT joint/predictors, and the model is trained using a linear interpolation of CTC and TDT losses.
During inference, the model supports both AR (using TDT components) and NAR (using CTC
components) inference modes. Table 5 presents the performance comparison between Hybrid-TDT-
CTC and HAI-T models across various datasets from the Huggingface ASR leaderboard.

Key observations from this comparison:

• Performance: HAI-T outperforms Hybrid-TDT-CTC in both AR and NAR modes across most
datasets, with lower average WER scores.

Table 5: Hybrid-TDT-CTC model accuracy (WER%) on Huggingface ASR leaderboard datasets

model inference ami e22 giga clean other spgi ted vox AVG

hybrid TDT (AR) 16.17 14.77 9.56 1.37 2.64 3.65 3.71 5.56 7.18
CTC (NAR) 17.13 15.33 9.90 1.51 2.88 3.65 3.95 5.71 7.51

HAI-T AR 15.92 14.16 9.70 1.46 2.76 3.59 3.59 5.60 7.10
NAR 16.13 14.38 9.79 1.49 2.83 3.61 3.64 5.68 7.19
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• Model Efficiency: Unlike Hybrid-TDT-CTC, HAI-T does not require storing separate sets of
parameters for AR and NAR inference, leading to a more compact model.

• Flexibility: HAI-T offers an additional semi-autoregressive (SAR) inference mode, providing a
more flexible speed-accuracy trade-off not available in Hybrid-TDT-CTC models.

These results underscore the advantages of HAI-T’s unified architecture, which achieves superior
performance while maintaining model simplicity and offering greater inference flexibility.

A.3 EXAMPLES OF DELETION ERRORS CORRECTED BY SAR METHODS

Although relatively rare, SAR methods can correct deletion errors of NAR inference results. Here
are some examples in German and English that we observe in our runs. We use green to highlight
words that were missing in NAR hypotheses but included by SAR.

German:

Table 6: Example of German ASR where SAR reduces deletion errors from NAR output

reference die meisten vorfälle passieren bei der implementierung bedauerlicherweise im
krankenhaus häufig auch in der anwendung

NAR diesfälle passieren bei der implementierung bedauerlicherweise im krankenhaus
häufig auch in der anwendung

SAR die handfälle passieren bei der implementierung bedauerlicherweise im
krankenhaus häufig auch in der anwendung

reference ich ersuche den kommissar hier sofortmaßnahmen zu ergreifen
NAR ichsuche den kommissar hier sofort maßnahmen zu ergreifen
SAR ich versuche den kommissar hier sofortmaßnahmen zu ergreifen

English:

Table 7: Example of English ASR where SAR reduces deletion errors from NAR output

reference then one of them says kind of soft and gentle
NAR then one of them says kinda soft and gentle
SAR then one of them says kind of soft and gentle

reference say mester gurr sir which thankful i am to you for speaking so but you don’t
really think as he has come to harm

NAR say mister gurrsir which thankful i am for you for speaking so but you don’t
really think as he has come to harm

SAR say mister gurr sir which thankful i am for you for speaking so but you don’t
really think as he has come to harm

We notice that, in all those examples of corrected deletion errors, the SAR method replaces a non-
word-beginning subword with a word-beginning subword, e.g. “ kind a” is replaced with “ kind
of”. This aligns with our analysis in subsection 6.1, since this is the only way to increase the

number of words while keeping the number of subwords fixed.

A.4 REASON OF ZERO-DURATION MITIGATION WITH HAI-T

In subsection 6.4, we show empirically that duration 0 is greatly mitigated by HAI-T model. In this
subsection, we provide some analysis of why this is the case. In our description, we use Et and Du

to denote encoder/predictor outputs.

1. By performing stochastic masking of predictor output during training, the model is learning
to make the output distribution of joint(Et, Du) similar to joint(Et, Du ∗ 0).
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2. If duration 0 is predicted from joint(Et, Du), then the next step of processing would be
joint(Et, Du+1), where t remains the same but u gets incremented by 1.

3. From 1, we know that model is learning to make joint(Et, Du) similar to joint(Et, Du ∗0);
also it’s learning to make joint(Et, Du+1) similar to joint(Et, Du+1 ∗ 0). Consequently,
the model would make joint(Et, Du) similar to joint(Et, Du+1), since joint(Et, Du ∗ 0) is
the same as joint(Et, Du+1 ∗ 0), both of which has predictor masked out.

4. However, we know that joint(Et, Du) and joint(Et, Du+1) should predict different tokens
since the text histories are different. This causes a contradiction.

Therefore, HAI-T models, by adopting stochastic predictor masking, would naturally suppress the
prediction of duration 0 in its processing.
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