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Abstract001

Quality Estimation (QE) models for Neural002
Machine Translation (NMT) predict the qual-003
ity of the hypothesis without having access to004
the reference. An emerging research direction005
in NMT involves the use of QE models, which006
have demonstrated high correlations with hu-007
man judgment and can enhance translations008
through Quality-Aware Decoding. Although009
several approaches have been proposed based010
on sampling multiple candidate translations011
and picking the best candidate, none have in-012
tegrated these models directly into the decod-013
ing process. In this paper, we address this by014
proposing a novel token-level QE model capa-015
ble of reliably scoring partial translations. We016
build a uni-directional QE model for this, as017
decoder models are inherently trained and effi-018
cient on partial sequences. We then present a019
decoding strategy that integrates the QE model020
for Quality-Aware decoding and demonstrate021
that the translation quality improves when com-022
pared to the N-best list re-ranking with state-023
of-the-art QE models (up to 1.39 XCOMET-024
XXL ↑). Finally, we show that our approach025
provides significant benefits in document trans-026
lation tasks, where the quality of N-best lists is027
typically suboptimal1.028

1 Introduction029

Large language models (LLMs) have significantly030

impacted various Natural Language Processing031

(NLP) tasks (Brown et al., 2020; Jiang et al., 2023;032

Dubey et al., 2024), including Neural Machine033

Translation (NMT). The field of NMT is transition-034

ing from using dedicated encoder-decoder trans-035

formers (Vaswani, 2017; Team et al., 2024) to lever-036

aging decoder-only LLM-based translation models037

(Kocmi et al., 2024). This shift is driven by LLMs’038

1We will release the code under Apache License 2.0

ability to retain knowledge, handle large contexts, 039

and follow instructions, learned during extensive 040

pre-training (Xu et al., 2024; Alves et al., 2024). 041

As a result, LLM-based MT models have achieved 042

state-of-the-art translation quality (Kocmi et al., 043

2024). 044

In parallel, Quality Estimation (QE) has become 045

a well-researched subfield within NMT. QE models 046

are trained to predict the quality of a translation 047

without requiring access to the reference (Rei et al., 048

2021, 2022). Interestingly, QE models can achieve 049

performance in assessing translation quality that 050

is comparable to MT evaluation models, which do 051

have access to the reference (Zerva et al., 2024). 052

This led to the question: "Can we integrate QE 053

into the current translation process to improve 054

quality?" Incorporating QE into NMT offers sev- 055

eral benefits. First, having a expert QE model guid- 056

ing the decoding can further improve the quality. 057

Second, by adapting the QE model with feedback 058

from human annotators, we can generate future 059

translations guided with the newly obtained feed- 060

back. 061

Several approaches have been explored to inte- 062

grate QE into the translation process. These in- 063

clude re-ranking the N-best list (Fernandes et al., 064

2022), applying minimum Bayes risk (MBR) de- 065

coding on a quality-filtered N-best list (Tomani 066

et al., 2024), and training additional models for 067

post-editing based on QE-predicted errors (Treviso 068

et al., 2024). However, all these methods operate 069

on fully generated sequences before the QE model 070

can exert influence. Integrating QE earlier in the 071

decoding process, referred in this paper as Quality- 072

Aware Decoding, could enhance translation quality 073

and reduce reliance on the N-best list. This is es- 074

pecially relevant when dealing with long inputs as 075

good translations during decoding are likely to be 076

1

https://www.apache.org/licenses/LICENSE-2.0


Figure 1: Example from WMT’23 English → German #ID: 10: The paragraph begins with ’Department of
Homeland Security,’ which should be translated as ’Ministerium für Innere Sicherheit.’ However, the top 25 beams
do not contain the correct translation and begin with an error, making N-best list re-ranking insufficient. Although
the top-5 tokens at the decoding contain the correct forms ’Inn’ or ’Inner,’ the probabilities split among them giving
highest mass to the incorrect token ’inn.’ Quality-Aware decoding can prevent errors with earlier integration.

pruned and may need sampling larger number of077

finished hypothesis. We illustrate this in Figure 1.078

To achieve this, a QE model capable of predict-079

ing the quality of partial translations is required.080

However, current leading QE models face chal-081

lenges in this area, as they are typically not trained082

to predict scores for incomplete hypotheses. There-083

fore, developing QE models that can handle partial084

translations is essential for implementing Quality-085

Aware Decoding during the translation process.086

In this work, we propose adapting LLM-based087

MT models to perform QE on partial translations088

and incorporating this model into the decoding.089

We create a token-level synthetic QE dataset using090

WMT Multidimensional Quality Metrics (MQM)091

data (Burchardt, 2013; Freitag et al., 2024). We092

then adapt a uni-directional LLM-based MT model093

to predict whether a token is Good or Bad. Training094

QE models on these token-level tasks alleviates095

the data challenge and allows us to exploit the096

MQM data while simultaneously making the task097

easier for the model compared to predicting a score098

directly.099

Furthermore, integrating the QE model into100

NMT during decoding is not trivial, as we need to101

combine the QE estimates during decoding. There-102

fore, we use the decoding strategy from Koneru103

et al. (2024), and modify it to incorporate token-104

level predictions efficiently with the adapted QE105

model to provide real-time feedback during the106

decoding process.107

We summarize our main findings and contribu-108

tions below.109

• We present a novel uni-directional QE model 110

which estimates quality on incomplete hy- 111

potheses by averaging the probabilities of 112

each token being classified as Good. 113

• We propose a decoding strategy that combines 114

the token-level QE model on partial hypoth- 115

esis and the NMT model to perform Quality- 116

Aware Decoding. 117

• We show through experiments that early in- 118

tegration is essential and the translation qual- 119

ity is improved even when compared to re- 120

ranking the N-best list with state-of-the-art 121

QE models. 122

• We highlight the significance of our approach 123

in document translation scenarios, where post- 124

generation QE techniques fall short due to 125

their reliance on the quality of the N-best list, 126

a challenge that becomes more difficult as the 127

input length increases. 128

2 Quality-Aware Decoding 129

The primary objective of this paper is to achieve 130

Quality-Aware Decoding in MT. To accomplish 131

this, it is essential to predict the quality of partial 132

translations and integrate this information during 133

the decoding process. Our approach proposes us- 134

ing one NMT model for generating translations 135

and another adapted NMT model to predict the 136

quality of the candidate translations produced by 137

the first model. 138
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Figure 2: Token-level label annotation scheme using the MQM error tags. MASK indicates that this token label will
not be used in training to prevent incorrect learning signal.

First, we explain why relying solely on the NMT139

model to predict the quality of a hypothesis is insuf-140

ficient and why an additional model is necessary.141

Next, we outline the adaptation of the NMT model142

for QE on partial translations, detailing the creation143

of a token-level QE dataset, the modifications made144

to the NMT model for this task, and the process of145

estimating the sentence-level quality score. Finally,146

we describe the algorithm used to incorporate the147

QE score into the decoding process.148

2.1 Decomposing Decoding: Translation + QE149

NMT models generate a token-by-token sequence150

and provide the probability of each token at the151

decoding step. The average of the log-probabilities152

is often used as a proxy to score the candidate153

during search.154

While NMT models are capable of generating155

high-quality translations, using the average log-156

probabilities of hypotheses as a scoring metric157

tends to yield poor correlation with actual transla-158

tion quality (Eikema and Aziz, 2020; Freitag et al.,159

2020). In many cases, a translation can continue in160

several different ways, all of which may be accept-161

able. If the starting tokens for these continuations162

differ, the probability mass may be spread across163

multiple options which is used during the search.164

However, from a quality perspective, all these con-165

tinuations could still achieve a high score, as the166

QE scores are independent and need not sum to 1.167

Therefore, we propose a expert model that fo- 168

cuses on quality to estimate the scores better during 169

decoding and improve the search space leading to 170

a better hypothesis. 171

2.2 Quality Estimation on Partial Sequences 172

To provide a quality score during decoding, the 173

QE model must be capable of handling incomplete 174

sequences. It should not penalize a sequence if 175

there is a potential extension that could lead to a 176

perfect translation. 177

Estimating the score in this way is not feasible 178

with current QE models, such as COMET (Rei 179

et al., 2021), as they were not trained for this spe- 180

cific task and cannot provide reliable scores in the 181

context of partial translations. Hence, we need to 182

develop a partial QE system. 183

When building a partial QE system, several fac- 184

tors need to be considered. First, should the model 185

use a uni-directional or bi-directional architecture? 186

A uni-directional model is more efficient, as it al- 187

lows for caching the hidden states, which can then 188

be used for subsequent steps without re-encoding, 189

unlike a bi-directional model. 190

Next, we need to decide whether to predict the 191

QE score at the sequence level or at the token 192

level. For token-level QE, we can directly use 193

data from MQM annotations, as we already know 194

which tokens are GOOD or BAD. However, for 195

segment-level scoring, we need to consider how to 196
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synthetically create the training data.197

Therefore, we decide adapt the uni-directional198

model into a token-level QE system that predicts199

whether each token is Good or Bad (a binary deci-200

sion) by adding an additional classifier head. This201

adaptation enables us to estimate the score for a se-202

quence by calculating the average probability that203

each token is classified as Good. We hypothesize204

that adapting the model in this way, rather than205

directly predicting the score, provides greater sta-206

bility, as the last hidden states inherently contain207

token-level information and do not require map-208

ping the entire sequence to a single score.209

For training this model, we leverage the WMT210

MQM data containing error annotations in MT out-211

puts. We can treat tokens before an error as Good212

and those containing inside an error as Bad. Then,213

we can train in uni-directional manner where each214

token’s label is predicted using only the preceding215

context in the hypothesis. This is crucial as we216

only have the preceding context to estimate the217

quality for partial hypothesis.218

2.2.1 Learning the Right Signal219

The straightforward approach to creating labels220

is to assign 1 to all tokens within the error span221

and 0 otherwise. However, MQM annotations can222

mark errors from words to phrases, and the starting223

tokens of an error span may not always be wrong.224

This is illustrated in Figure 2.225

For example, consider the German sentence "Ich226

spiele Tennis" translated by three different NMT227

systems, each annotated with MQM error labels. In228

this work, we focus on learning a binary decision:229

whether an error is present, ignoring error severity.230

System 1: No error: The translation "I play231

Tennis" is perfect, and all tokens are labeled as232

"Good."233

System 2: Partial error: The translation "I234

played Tennis" has an error in the verb form235

("played" instead of "play"). The error is in the236

token span "played", but not all tokens in this span237

are incorrect (e.g., "pla" is correct). Assigning a238

"Bad" label to the entire span would lead to incor-239

rect learning. A more refined approach is needed240

to mark errors accurately at the token level.241

System 3: Full error: The translation "I enjoy242

Tennis" contains an error in "enjoy", so all tokens243

in this span should be labeled as "Bad."244

It is not trivial to decide when the prefix of an 245

error span is correct/incorrect. To achieve accurate 246

labeling, we propose the following scheme: 247

• Apply a <MASK> operation to all tokens within 248

the error span. 249

• Only the last token in the span is assigned 250

the label "Bad", as the error is considered 251

complete at the end of the span. 252

If the error token is in the middle, we still train 253

the model to predict "Bad" in the end and let the 254

model determine which tokens should be part of 255

the error span during inference. This approach 256

ensures that errors are identified without explicitly 257

defining the error span. 258

2.2.2 Sequence-Level Quality Estimation 259

After fine-tuning a token-level classification model 260

to predict the quality of the tokens, we still need to 261

map these predictions into a sequence-level score 262

that can be integrated during the decoding process. 263

There are several potential ways to achieve this. 264

One approach is to simply count how many to- 265

kens are classified as Bad in the current hypothesis. 266

However, this method has limitations. The number 267

of errors should be normalized based on the length 268

of the hypothesis to account for varying sizes. Ad- 269

ditionally, converting the probabilities into a fixed 270

number of error tokens would need to account for 271

different error types according to the MQM format, 272

as each error counts differently. 273

To avoid such strict scoring schemes, we take a 274

simpler approach. We average the log probabili- 275

ties of all tokens that are classified as Good. This 276

method inherently accounts for the length of the 277

hypothesis, and it provides a score on the scale of 278

log probabilities, which aligns with the decoding 279

process. Therefore, we use this averaged log prob- 280

ability as a proxy metric for the QE score, where 281

a higher score indicates better quality (Line 5 in 282

Algorithm 1). 283

2.2.3 Fusing Translation and Quality 284

We can use a token-level QE system to evaluate the 285

quality of a source and partial hypothesis during 286

decoding. However, integrating these probabilities 287

into all candidates is computationally expensive, 288

as each beam considers extensions equal to the 289

vocabulary size. 290
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Algorithm 1 Computing merged score of partial hypothesis with translation and token-level QE models.

1: procedure MERGESCORE
2: Input: Hypothesis tokens h1, h2, h3, . . . , hn, Translation Model MNMT , QE model MQE ,

Source sentence S, Re-ranking weight α,
3: Output: merged_score
4: ScoreNMT ← 1

n

∑
logP(h1, h2, . . . , hn|S;MNMT )

5: ScoreQE ← 1
n

∑
logP(01, 02, . . . , 0n|h1, h2, . . . , hn,S;MQE)

6: merged_score← (α)× ScoreNMT + (1− α)× ScoreQE

7: end procedure

To address this, we adopt a simplified decoding291

strategy from Koneru et al. (2024), which ensem-292

bles models with different vocabularies. By adapt-293

ing the same MT model for token-level QE, we294

simplify the merging process, as the vocabularies295

match. This restriction is reasonable, as it is also296

beneficial to leverage the knowledge learned by the297

specialized MT for token-level QE.298

The core idea is to re-rank the top candidates at299

each decoding step using the QE model. After re-300

ranking, the translation and QE scores are merged,301

and the process repeats until the end-of-sentence302

token is generated, for each beam. This strategy303

allows us to efficiently incorporate the QE model’s304

estimate, improving translation quality.305

During decoding, at each step, we have scores306

for n beams and V possible extensions from the vo-307

cabulary. In typical beam search, we select the top308

n extensions and expand the hypothesis. To make309

the decoding process Quality-aware, we estimate310

the quality of these extensions. Since estimating all311

extensions is computationally expensive, we limit312

the candidates by selecting a specified number of313

top candidates.314

To achieve this, we use a hyper-parameter topk,315

which selects the best topk extensions for each316

beam. For each of these top topk extensions, we317

compute a combined score, detailed in Algorithm318

1. This combined score incorporates both the trans-319

lation model score and the quality estimation score,320

ensuring the quality is considered during decoding.321

For a top extension at decoding step n, let the322

current tokens be h1, h2, h3, . . . , hn. The NMT323

model score is computed as the average log proba-324

bilities of each token (Line 4). For the token-level325

QE model, we compute the average probability of326

each token being classified as ’Good’ (Line 5). The327

merged score is equal to weighted linear combi-328

nation of these probabilities, with weight α (Line 329

6). 330

Thus, to make the decoding process Quality- 331

Aware, we first train a token-level QE system by 332

adapting the same NMT model to ensure vocabu- 333

lary matching. We then combine the scores from 334

both models to improve the sequence estimates 335

explored during search. 336

3 Experimental Setup 337

Datasets: We focus on two language directions 338

given their availability of MQM data: English 339

→ German and Chinese → English. To train 340

our token-level QE systems, we use the MQM 341

datasets2 from WMT (Freitag et al., 2021). Specif- 342

ically, we use the datasets until 2022 for training, 343

2024 for validation, and 2023 for testing (Kocmi 344

et al., 2024). This setup is consistent with all the 345

other QE metrics, and we do not use any additional 346

data beyond these datasets. 347

Models: Our proposed approach achieves 348

Quality-Aware decoding by combining an NMT 349

model with a token-level QE model, where 350

we adapt the same NMT for QE by adding a 351

classification head. We use the state-of-the-art 352

NMT model, Tower 7B3 (Alves et al., 2024), 353

which provides high-quality translations and 354

has already been exposed to MQM data during 355

instruction-tuning. This ensures that the gains 356

observed in our approach stem from integrating 357

Quality-Aware decoding into the NMT process, 358

rather than introducing new data. Additional 359

details on training and hyper-parameters are 360

provided in Appendix A.1. 361

2https://github.com/google/wmt-mqm-human-evaluation
3Unbabel/TowerInstruct-7B-v0.2

5



Model Beams Re-ranking MetricX (↓) XCOMET-XXL (↑)

English→ German

Tower 5 _ 2.52 86.93
Tower 25 XCOMET-XL QE 2.37 87.79
Tower 25 Tower QE 2.38 87.40

Tower + Tower QE 5 (25* for Tower QE) _ 2.12 88.95
Tower + Tower QE 5 (25* for Tower QE) XCOMET-XL QE 2.09 89.08

Chinese→ English

Tower 5 _ 2.42 88.91
Tower 25 XCOMET-XL QE 2.30 89.49
Tower 25 Tower QE 2.32 89.51

Tower + Tower QE 5 (25* for Tower QE) _ 2.26 89.82
Tower + Tower QE 5 (25* for Tower QE) XCOMET-XL QE 2.24 90.00

Table 1: Translation Quality on WMT23 English→ German Test set. Both XCOMET and MetricX columns use
reference for reporting translation quality where as XCOMET-XL QE does not use for re-ranking.

Pearson Spearmann Kendall

COMETQE 44.41 41.29 31.19

COMETQE-XL 41.23 42.17 31.84

Tower Avg. Log Prob 32.32 16.74 12.77

Tower QE 40.56 33.96 25.87

Table 2: Correlation on WMT 23 for English→ Ger-
man Test set. The scores are calculated after removing
the few sentences labeled for hallucination detection.
Best scores according to each coefficient are highlighted
in bold.

Metrics: For reporting the translation quality, we362

consistently use XCOMET-XXL4 (Guerreiro et al.,363

2024) and MetricX5 (Juraska et al., 2024) with the364

reference. To compare with N-best list re-ranking,365

we use the XCOMET-XL QE6 without the ref-366

erence. This approach allows us to avoid biasing367

toward a single metric during the re-ranking pro-368

cess and enables us to measure the gains achieved369

by differently trained metrics.370

4 Results371

We conduct a series of experiments to validate the372

effectiveness of Quality-Aware decoding and iden-373

tify the scenarios where it provides the most bene-374

fit. First, we evaluate whether our token-level QE375

4Unbabel/XCOMET-XXL
5google/metricx-24-hybrid-xl-v2p6
6Unbabel/XCOMET-XL

model can better estimate sequence quality com- 376

pared to the log probabilities of the NMT model. 377

Next, we assess the impact of Quality-Aware de- 378

coding by comparing it with other approaches to 379

determine if it improves translation quality. We 380

also perform an ablation study to examine whether 381

training the QE model on errors from the same 382

NMT model enhances its performance. Finally, 383

we explore the impact of source sentence length to 384

highlight the limitations of N-best list re-ranking. 385

4.1 Quality Estimation Performance 386

First, we evaluate the agreement between the 387

Tower-based token-level QE model (Tower QE) 388

and human scores for a given hypothesis. It is only 389

beneficial if we achieve higher correlation than 390

the average of the NMT model log probabilities 391

to show the need to integrate it during decoding. 392

Therefore, we report the correlation with human 393

scores of different models on WMT 23 English→ 394

German in Table 2. 395

We observe that the best-performing systems 396

are the Comet QE models, which predict a single 397

score using the full hypothesis. This is expected, as 398

these models assess quality after the hypothesis is 399

fully generated. In contrast, both log probabilities 400

and Tower QE scores are based on the predicted 401

token of each decoding step, using only the preced- 402

ing context. Log probabilities perform poorly in 403

this setup, while our proposed model, Tower QE, 404

achieves twice the correlation with human judg- 405
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Model Beams Re-ranking MetricX (↓) XCOMET-XXL (↑)

English→ German

Tower 25 XCOMET-XL QE 2.37 87.79
Tower 25 Tower QE 2.38 87.40
Tower 25 Tower Distill QE 2.38 87.39

Tower + Tower QE 5 (25* for Tower QE) _ 2.12 88.95
Tower + Tower QE 5 (25* for Tower Distill QE) _ 2.11 88.76

Table 3: Performance of Unidirectional QE trained with/without distillation on WMT23 English→ German Test
set. Best scores according to each metric are highlighted in bold.

Model Beams Re-ranking XCOMET-XL (↑) XCOMET-XXL (↑) Impact

Paragraph-Level

Tower 25 XCOMET-XL QE 86.56 87.79
δ = + 1.16

(88.95 - 87.79)
Tower 25 Tower QE 85.40 87.40

Tower + Tower QE 5 (25* for Tower QE) _ 86.36 88.95

Sentence-Level

Tower 25 XCOMET-XL QE 86.42 87.68
δ = + 0.38

(88.06 - 87.68)
Tower 25 Tower QE 85.23 87.41

Tower + Tower QE 5 (25* for Tower QE) _ 85.96 88.06

Table 4: Impact of integrating Unidirectional QE during decoding with paragraphs vs sentences on WMT23
English→ German Test set. δ denotes the improvement in translation quality from re-ranking N-best list with
XCOMET-XL QE to integrating unidirectional Tower QE during the decoding. Best scores according to each
metric are highlighted in bold.

ments compared to log probabilities, despite scor-406

ing token by token with preceding context. This407

result highlights the potential of integrating our408

approach into the decoding process.409

4.2 Unified Decoding for NMT410

To validate the effectiveness of our unified decod-411

ing approach, we compare it with several base-412

lines in Table 1. First, we evaluate whether our413

approach outperforms generating translations with414

the NMT model alone. Next, we check if the qual-415

ity of translations improves compared to N-best416

list re-ranking. To make the setups comparable, we417

set topk and num_beams to 5 and compare with418

re-ranking the top 25 beams using XCOMET-XL.419

Finally, to demonstrate that re-ranking the N-best420

list remains a viable and complementary approach,421

we re-rank the top 5 beams obtained from Quality-422

Aware decoding using the same QE model.423

We find that re-ranking with XCOMET-XL and424

Tower QE yields similar results, indicating that425

our partial QE model does not over-fit to any spe-426

cific metric. Furthermore, we observe that the uni-427

fied decoding approach outperforms N-best list re-428

ranking across both metrics in both language pairs. 429

For example, the MetricX score improves from 430

2.37 to 2.12 for English → German. Note that 431

Tower has already seen this data during instruction- 432

tuning and the improvement is not from new data 433

but from Quality-Aware decoding. Moreover, re- 434

ranking the top 5 beams obtained from unified de- 435

coding with XCOMET-XL leads to a slight further 436

improvement in quality. This highlights the robust- 437

ness and generalizability of our approach across 438

different evaluation metrics. 439

4.3 Adapting for Tower Errors 440

We use the MQM annotations from WMT to train 441

our Tower QE model, which contains error annota- 442

tions from other systems. However, a viable alter- 443

native would be to adapt Tower QE specifically to 444

the errors it typically makes. To maintain a simi- 445

lar data setup, we first generate translations using 446

Tower on these source sentences. Then, we anno- 447

tate the generated hypotheses with XCOMET-XL 448

using the reference and fine-tune Tower QE on this 449

synthetic dataset, which we refer to as Tower Dis- 450

till QE. We evaluate the performance of the new 451
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distill QE model and report the results in Table 3.452

We observe that the distilled QE model performs453

very similarly to the QE model trained on errors454

from other systems. This indicates that there was455

no significant benefit in adapting the QE model to456

the specific errors typically made by Tower. How-457

ever, further analysis on larger datasets and differ-458

ent domains is needed to fully validate the effec-459

tiveness of the distillation approach as the current460

synthetic data generated is small.461

4.4 Sentence vs Document-level Translation462

From Table 1, we observe that the gains for En-463

glish→German (paragraph-level) are much higher464

than for Chinese→ English (sentence-level). We465

hypothesize that this discrepancy arises from the466

length of the sentences, as the N-best list re-ranking467

is likely sufficient for shorter sentences. To confirm468

this, we take the English paragraphs and split them469

into sentences using a tokenizer while tracking the470

paragraph IDs. We then perform the entire decod-471

ing process similarly, and later join the sentences472

back using the paragraph IDs before evaluation.473

We report the results in Table 4.474

We define the impact as the improvement in475

translation quality from re-ranking the N-best list476

with XCOMET-XL QE to integrating Tower QE.477

Comparing the results at the paragraph level to478

those at the sentence level, we observe that the im-479

pact decreases, which confirms our hypothesis. Ad-480

ditionally, we obtain better scores at the document481

level, further highlighting the potential benefits of482

Quality-Aware Decoding.483

5 Related Work484

Integrating QE in NMT: Several advancements485

have been made in improving QE for NMT over486

the years (Rei et al., 2021, 2022; Blain et al., 2023;487

Zerva et al., 2024; Guerreiro et al., 2024). These488

developments have led to the integration of QE489

in various ways. One common approach involves490

applying QE after generating multiple sequences491

through techniques such as QE re-ranking (Fernan-492

des et al., 2022; Faria et al., 2024) or Minimum493

Bayes Risk (MBR) decoding (Tomani et al., 2024).494

Another direction focuses on removing noisy data495

using QE models, followed by fine-tuning on high-496

quality data (Xu et al., 2024; Finkelstein et al.,497

2024). Vernikos and Popescu-Belis (2024) pro-498

poses to generate diverse translations as a first step 499

and then combine them. We perform this explic- 500

itly by integrating the QE directly into decoding. 501

Recently, Zhang et al. (2024) exploited the MQM 502

data by training models to penalize tokens within 503

an error span, improving translation quality. In 504

contrast, our approach adopts a modular frame- 505

work, where we propose an expert QE model that 506

is trained independently for targeted training. This 507

modular approach aims to improve performance 508

by decomposing the task into separate translation 509

and QE components. 510

Reward Modeling in NLG: Quality-Aware de- 511

coding shares several similarities with controllable 512

text generation methods, particularly in the use of 513

an additional "Quality/Reward" model that guides 514

the decoding. A well-explored approach for con- 515

trolling text is altering the decoding with a re- 516

ward model (Weighted Decoding) (Yang and Klein, 517

2021). This method modifies the decoding by ad- 518

justing token probabilities based on the reward 519

model, allowing for more controlled generation. 520

Similarly, Deng and Raffel (2023) also used a uni- 521

directional reward model, with the aim of maintain- 522

ing efficiency during generation. This approach 523

minimizes computational complexity while still 524

benefiting from the guiding influence of the reward 525

model. Moreover, recent work by Li et al. (2024) 526

introduced a token-level reinforcement learning- 527

based reward model, providing more fine-grained 528

feedback that enhances control over text generation 529

at a granular level. While similar, the key contribu- 530

tion in our work lies in the development of the first 531

uni-directional QE model for translation. 532

6 Conclusion 533

We have shown the importance of Quality-Aware 534

decoding to improve translation quality, rather than 535

relying on post-generation techniques. In this work, 536

we demonstrated how MQM data can be used 537

to build a uni-directional token-level QE model, 538

which is then integrated into the decoding process. 539

Through a series of experiments, we showed that 540

our Quality-Aware decoding approach results in 541

measurable improvements in translation quality. 542

Notably, we did not introduce new training data 543

to the NMT model, and show that the gains stem 544

from Quality-Aware decoding. 545
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7 Limitations546

While our Quality-Aware decoding improves trans-547

lation quality, it adds considerable computational548

complexity to the inference process. Theoretically,549

this approach would double the time needed to gen-550

erate a translation and require additional memory551

to utilize the token-level QE model. One poten-552

tial solution to mitigate this issue could be to use553

token-level QE as a reward model for training via554

Reinforcement Learning.555

Additionally, we trained our model on a limited556

set of human-annotated MQM data. However, cur-557

rent QE models, such as XCOMET, are capable558

of predicting error tags using the reference with559

reasonable quality. This suggests that further im-560

provements could be achieved if these models were561

trained on larger-scale datasets, providing more562

nuanced feedback and refining translation quality563

even further.564

Lastly, our proposed token-level QE model does565

not account for error severity. Ideally, it should be566

able to predict the category of errors, allowing for567

more nuanced feedback and enabling the model to568

generate translations with only minor errors when569

necessary.570
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A Appendix760

A.1 Training details761

We use the transformers library (Wolf et al., 2020)762

for training and inference with Tower-Instruct V2.763

For adapting Tower to token-level QE, we use764

LoRA (Hu et al., 2021) based fine-tuning with765

an additional classifier head. Therefore, we only766

train the adapters and the weights for classification767

head.768

We add the adapters to the modules769

q_proj,k_proj,v_proj,gate_proj,up_proj and770

down_proj. We set a batch size for each device771

to 12 initially and enable auto_find_batch_size772

to True on 4 NVIDIA RTX A6000 GPU’s. For773

having a larger batch size during training, we774

set gradient_accumulation_steps to 6. We use775

a learning_rate of 1e−5. We set the eval_steps776

to 50 and num_train_epochs to 10. The other777

parameters are set to default.778

Using the cross-entropy loss for token-level QE779

directly is insufficient due to the fact that the major-780

ity of tokens are classified as ’Good’. Hence, we781

find that the weighted cross-entropy loss is essen-782

tial when fine-tuning the model. For the training on783

human MQM data, we set the weights to 0.05, 0.95784

to ’Good’ and ’Bad’ labels respectively. In the case785

of distilling from XCOMET, we observed more er-786

rors. Therefore, we find that setting them 0.2, 0.8787

to ’Good’ and ’Bad’ labels respectively provided788

stable training.789

We train on data until WMT’22 for training790

and use WMT’24 for validation. We calculate the791

macro ’F1’ on token-level predictions as the valida-792

tion metric and stop training if it does not improve793

for 10 consecutive eval_steps.794

A.2 Partial vs Full Sequence Quality795

Estimation796

We also compare the difference in performance797

between our proposed token-level QE for partial798

sequences with Tower trained for full sequence799

QE. We achieve this by adding a regression head800

to predict the score at the end-of-sentence token.801

Hence, the model uses the source and hypothesis802

to predict the score using regression head at the 803

end. 804

We fine-tune the model using only direct asses- 805

ment data (Zerva et al., 2024) (Tower Full DA). 806

Furthermore, we use this as initialisation and con- 807

tinue fine-tuning on the MQM data (Tower Full 808

DA + MQM). We also use LoRA similarly to the 809

previous model with a regression head to adapt the 810

model. We report the scores in Table 5. 811

We see that the both Tower QE models based 812

on full sentences outperforms the partial model. 813

However, this is expected as it has seen the entire 814

context and was also trained on larger amounts of 815

data. Nonetheless, the partial model still achieves 816

much higher correlaiton that the log probabilities 817

showcasing its potential for Quality-Aware decod- 818

ing. 819

A.3 Robustness to re-ranking weight 820

In our method, we introduce a hyperparameter, 821

α, to merge the probabilities from the token-level 822

QE model and the translation model. This section 823

analyzes the impact of α on the final translation 824

quality. 825

To efficiently evaluate its effect, we re-rank the 826

N-best list using different values of α. This ap- 827

proach allows us to estimate the ideal value of α 828

without the need for joint decoding multiple times. 829

If the re-ranking model (in this case, Tower QE) 830

is beneficial, we expect that any α less than 1 will 831

improve translation quality, as it demonstrates that 832

incorporating the probabilities from the QE model 833

is helpful. 834

We visualize this impact in Figure 4. The results 835

show that using an α less than 1 leads to improved 836

translation quality in both scenarios. This indicates 837

that relying entirely on the NMT model does not 838

yield the best results and highlights the importance 839

of the Tower QE model. 840

Thus, we emphasize that re-ranking the N-best 841

list provides an effective way to tune the value of 842

α, and it remains robust to different values. 843

11



Tower Translation Prompt

<|im_start|>user
Translate the sentence from English into German.
English: {src_sent}
German:
<|im_end|>
<|im_start|>assistant

Tower Token-Level QE Prompt

English:{src_sent}
German: {tgt_sent}

Figure 3: Prompts used in our experiments for translation and QE model. {src_sent} and {tgt_sent} represent
the source and target sentence. We replace the language with Chinese and English when experimenting with that
language pair.

(a) English → German

(b) Chinese → English

Figure 4: Impact of α when re-ranking with token-level Tower QE on WMT’23 Test sets.
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Pearson Spearmann Kendall

COMETQE 44.41 41.29 31.19

COMETQE-XL 41.23 42.17 31.84

COMETQE Scratch
Fine-tuned (ours)

36.32 33.66 25.24

Tower Log Prob 32.32 16.74 12.77

Tower Partial QE 40.56 33.96 25.87

Tower Full DA 33.67 36.46 27.38

Tower Full DA + MQM 32.03 40.85 30.38

Table 5: Full Correlation results on WMT 23 for English→ German Test set. Partial indicates that the QE model
predict scores via token-level where as full indicates predicting the score at the end-of-sentence token. The scores
are calculated after removing the few sentences labelled for hallucination detection. Best scores according to each
coefficient are highlighted in bold.
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