
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review

LOCATE-THEN-UNLEARN: AN EFFECTIVE METHOD
OF MULTI-TASK CONTINUAL LEARNING FOR LARGE
LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Nowadays large language models (LLMs) have achieved remarkable success in
various NLP tasks. However, they often misinterpret human instructions and gen-
erate incorrect or outdated responses, highlighting the need for more effective con-
tinual learning techniques. While recent efforts have introduced unlearning meth-
ods to remove erroneous knowledge, existing approaches still struggle in multi-
task learning scenarios. To overcome these limitations, we propose Locate-then-
unlearn, a new framework that identifies and selectively unlearns task-specific
neurons to enable efficient multi-task learning. We hypothesize that LLM neu-
rons can be broadly categorized into task-specific neurons for handling individual
tasks, and general neurons to maintain the model’s foundational capabilities. To
accurately identify task-specific neurons, the locating process includes: (1) rank-
ing task-related neurons based on their importance to each task, and (2) identifying
task-specific neurons by applying intervention to assess how neuron activity im-
pacts task performance, isolating those most critical to each task. We conduct
comprehensive evaluations in two experimental setups: single-task specialization
and multi-task generalization. The results show that our method significantly im-
proves performance across both settings. This indicates that our method effec-
tively balances model efficiency and accuracy in multi-task continual learning.

1 INTRODUCTION

Large language models (LLMs) have recently demonstrated outstanding performance in diverse
areas such as natural language understanding (Dušek et al., 2020), mathematical reasoning (Imani
et al., 2023), and knowledge-intensive question answering (Sun et al., 2024). However, despite their
impressive capabilities, LLMs remain prone to misinterpreting human instructions and generating
incorrect or outdated responses (Bai et al., 2024; Chen et al., 2024a). This leads to the exploration of
various continual learning and lifelong model editing techniques aimed at refining LLMs’ behavior
over time (Ji et al., 2024; Wang & Li, 2024).

In addition to directly fine-tuning LLMs on specific tasks, recent studies have introduced unlearning
techniques to enable LLMs to discard specific erroneous knowledge while preserving their overall
functionality. Building upon this concept, Ni et al. (2023) propose the “forgetting before learning”
paradigm, where LLMs are first trained to forget incorrect answers before learning new information,
leading to improved performance over direct fine-tuning. This approach mirrors human cognitive
processes, where learning is often more effective when mistakes are first identified and avoided.
However, current unlearning methods face limitations in maintaining performance across multiple
tasks simultaneously. One major issue is the lack of task-specific differentiation, which causes
interference between the knowledge acquired for different tasks (Dong et al., 2023). This may
lead to catastrophic forgetting of previously learned tasks. And the difference in the order of fine-
tuning between tasks will also have a significant impact on the performance of the model (Bell &
Lawrence, 2022; Wang & Li, 2024). Additionally, fine-tuning all model parameters across multiple
tasks consumes considerable computational resources and significantly reduces learning efficiency.
While parameter-efficient fine-tuning solutions have been proposed, their effectiveness diminishes
in multi-task settings, making it challenging to strike a balance between efficiency and overall per-
formance (Leng & Xiong, 2024).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review

To address these limitations, we aim to identify regions within LLMs that are responsible for
handling different tasks. Inspired by the neuron definition from Chen et al. (2024b); Tang et al.
(2024), we hypothesize that neurons in LLMs can be mainly categorized into two types: (i) task-
specific neurons, which focus on processing particular tasks, and (ii) general neurons, which aim
to maintain the model’s core capabilities in text understanding and generation. From a perspec-
tive of parameter-efficient multi-task learning, we selectively update the task-specific neurons while
leveraging general neurons to preserve the model’s foundational abilities, thereby improving both
efficiency and effectiveness in multi-task scenarios.

The primary challenge in achieving this lies in accurately formulating the task-specific neurons for
different tasks. To this end, we propose Locate-then-unlearn, a new framework that identifies
task-specific neurons and selectively unlearns them to enable efficient and continual learning across
multiple tasks for LLMs. Based on previous works (Geva et al., 2022; Meng et al., 2022a), we extract
logit scores from the activation layer of each neuron, using these scores to determine the importance
of each neuron for the given task. Tang et al. (2024) utilizes the activation score of each neuron
to identify language-specific regions. Inspired by this, in our multi-task setting, we adaptively rank
neurons based on their logit scores across different tasks. Then we can determine which neurons
contribute the most to a specific task and filter out less relevant ones. Since some task-related
neurons may exhibit high logit scores across multiple tasks, we use a neuron intervention method
to further assess their task specificity. By comparing the difference in correct answer probability
before and after neuron intervention, we can identify neurons whose performance shifts significantly,
categorizing them as task-specific neurons.

Once task-specific neurons are identified, we apply parameter-efficient fine-tuning on these neurons
within the unlearning set. In terms of downstream task learning, we design two evaluation settings
for comprehensive comparison: (i) Single-task specialization: Fine-tuning a separate unlearned
model for each downstream task and evaluating each model independently. (ii) Multi-task gen-
eralization: Fine-tuning a single unlearned model across multiple task datasets and evaluating its
performance on all tasks collectively.

Experimental results show that our method significantly outperforms all baselines in multi-task gen-
eralization, demonstrating its superiority in enhancing the model’s ability to generalize across tasks.
Additionally, in single-task specialization, our method achieves optimal results while reducing train-
ing complexity, indicating that our approach effectively identifies task-specific neurons and balances
both performance and efficiency in multi-task learning.

To sum up, our main contributions can be described as follows:

• We propose Locate-then-unlearn, a new framework that facilitates efficient and continual learn-
ing for LLMs across multiple tasks.

• We develop a new locating method to accurately identify task-specific neurons by assessing their
importance and isolating those critical to each task.

• We design two experimental settings for comprehensive evaluation: single-task specialization and
multi-task generalization. Experimental results show that our method achieves significant improve-
ments in both settings, demonstrating an effective balance between performance and efficiency.

2 RELATED WORK

2.1 THE STRUCTURE AND KNOWLEDGE MECHANISM OF LARGE LANGUAGE MODELS

The development of LLMs has revealed great potential in solving various NLP tasks. However, the
occurrence of hallucinations in LLMs may hinder their broader adoption in real-world applications.
Consequently, neuronal interpretability has gained much attention in recent years. Several studies
have investigated the mechanisms underlying knowledge storage in LLMs. For instance, Geva et al.
(2022) and Meng et al. (2022a) have found that the multilayer perceptron (MLP) layers in Trans-
former models function as key-value memory, storing vast amounts of knowledge. Other works,
such as Geva et al. (2023a), Lv et al. (2024), and Yu & Ananiadou (2024b), have shown that knowl-
edge accumulates progressively throughout the layers. In this paper, we build on the perspective that
factual knowledge is primarily stored within the MLP layers of LLMs.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review

2.2 MODEL EDITING

As the knowledge stored in LLMs may become outdated due to the rapid growth of our society, it is
essential to edit and update this information accordingly. Some recent studies focus on identifying
where knowledge is stored before editing. For example, ROME (Meng et al., 2022a) uses the method
of attributing logits to find the location of knowledge and then edits it by updating specific factual
associations. Meng et al. (2022b) is an effective method to locate knowledge and directly update
large scale memories. Our work follows the workflow of locating and editing by identifying multiple
task-specific neurons and then updating them accordingly.

2.3 LARGE LANGUAGE MODEL UNLEARNING

Machine unlearning (Cao & Yang, 2015) serves as an important technique to remove the knowledge
about the restricted data while keeping other knowledge and system abilities. Yao et al. (2023a) and
Maini et al. (2024) use the method of gradient ascent to unlearn harmful or private knowledge. And
Ni et al. (2023) employs parametric arithmetic to facilitate the forgetting of old knowledge and learn-
ing of new knowledge. They first finetune LLM on the old knowledge and use the original model
to subtract the old knowledge parameters to finish the knowledge update. However, directly em-
ploying parametric arithmetic without considering the utility of each neuron can also be harmful to
model performance on other tasks. Chen et al. (2024c) proposes allow-redundant alignment method
named ALLO, focusing on optimizing the most related neurons with the most useful supervised sig-
nals. They use the signal to detect unaligned knowledge and unlearn it. Our work further explores
unlearning by not only identifying task-specific neurons across different tasks but also selectively
unlearning these neurons to prevent knowledge conflicts and preserve model performance.

3 PRELIMINARY

3.1 TASK-RELATED NEURON LOCALIZATION

Denote the hidden state of the i-th layer for a specific token as hi ∈ Rd, the multi-layer perceptron
(MLP) module within the i-th layer can then be described as follows:

hi = σ(h̃iW i
1) ·W i

2 ,

where W i
1 and W i

2 represents trainable parameters of transition matrix, h̃i represents output of i-th
MHA layer and σ(·) denotes the activation function. As mentioned in Tang et al. (2024), a “neuron”
in LLMs is regarded as a linear transformation to a specific column in W i

1 , followed by a non-linear
activation. Also, we follow the consensus of Nair & Hinton (2010), which considers the j-th neuron
in the i-th FFN layer to be activated when its activation value is positive. Based on this definition
of activated neurons and the calculation of activation probability for each language in Tang et al.
(2024), we regard the proportion of positive activation scores of the j-th neuron in the i-th layer as
the importance of its contribution to each task k, which can be formulated as:

si,j(k) = E
(
I(σ(h̃iW i

1)j > 0) | task k
)
,

where I is an indicator function to determine whether the result is positive or negative, thus, a
neuron is deemed task-related if its importance score si,j(k) ranks within the top rk for task k. In
our framework, we set the threshold rk to represent the top 2%. By ranking neurons according to
their importance scores across tasks, we can effectively localize task-related neurons for each task.

3.2 UNLEARNING PROCESS AND OBJECTIVE

In the unlearning period, referring to Yao et al. (2023b), the unlearning data is defined as (xu, yu)
and all related data can be categorized into three types: (1) Same unlearning data, which represents
the exact data during the editing period. (2) Paraphrased data, which retains the same meaning
as the original data but is expressed differently, denoted as R(xu, yu). (3) Similar representation
data, which bears some semantic resemblance to the original unlearning data but the exact meaning
differs, referred to as N(xu, yu). Thus, the unlearning process and objective can be formulated as:

fθ∗(xi) =

{
ynewi if xi ∈ (xu, yu) or R(xu, yu),

fθ(xi) if xi ∈ N(xu, yu) or other.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review

The goal of the knowledge updating task is to modify the model’s outputs only for xu and its para-
phrased versions R(xu, yu), without affecting answers related to neighboring knowledge N(xu, yu)
or other unrelated data. This ensures that unlearning is both precise and minimally disruptive to the
model’s overall knowledge.

Knowledge in LLMs can be updated by supervised fine-tuning on a task-related dataset. Inspired by
Ni et al. (2023), for a given LLM and its parameters θ, the knowledge updated parameters θu can
be computed by subtracting the fine-tuned parameters θ∗ and the original parameters θ0, which is
given by:

θu = θ∗ − θ0.

4 METHOD

4.1 TASK-SPECIFIC NEURON IDENTIFICATION

We assume that a task-related neuron should only be fine-tuned for its specific task. To address the
challenge of determining a neuron’s specificity when it relates to more than one task, we measure
the specificity degree by comparing the correct answer probabilities when the neuron is intervened
for one task versus its unintervened performance.

In our setting, we consider Ñ = {Ñ1, . . . , ÑM} as a collection of M neurons, where each neuron
may be associated with more than one task. Assuming the m-th neuron Ñm is related to the totally
n tasks {d1, . . . , dn}, we aim to find the task to which Ñm is most specific. To achieve this, we
construct toy datasets to perform inference. Each toy dataset is actually a random subsample of
training datasets for each task. In our main experiments, each toy dataset contains 1000 randomly
sampled cases from the corresponding training set. Additionally, we also conduct an ablation study
to evaluate the impact of different sampling methods on the performance of the toy dataset. We first
use the complete model to perform inference on the toy datasets in each task, yielding the average
predicted probabilities of the correct answer on all toy datasets for each neuron Ñm, denoted as
{P(dm1), . . . ,P(dmn)}. When we need to intervene on the neuron Ñm, we set its parameters to 0,
and then the new probabilities for all toy datasets can be represented as {P(dm1)new, . . . ,P(dmn)new}.

When identifying task-specific neurons, we focus on neurons that significantly influence one task
while having minimal impact on others. Inspired by Geva et al. (2023b); Cohen et al. (2024); Yu
& Ananiadou (2024a), which use changes in the probabilities of the correct answer to locate key
neurons causing the final prediction, we measure a neuron’s relative importance for a given task in
comparison to its impact on other tasks. Specifically, for each task dk ∈ {d1, . . . , dn} and each
specific neuron Ñm, we can calculate its importance score as:

Sm
k = P(dmk)new − P(dmk)−

∑
i∈{1,...,N}\{k}

|P(dmi)new − P(dmi)|. (1)

The former term P(dmk)new−P(dmk), denoted as Cm
k , describes the influence of deactivating neuron

Ñm on task dk. The latter term reflects the influence of this neuron on all other tasks except dk.
Using only Cm

k can be regarded as an ablation compared to our full identification method. The
reason for adding this non-negative term at the end is that when measuring the specificity of neuron
Ñm to task dk, any change in the importance scores for other tasks except dk, whether positive
or negative, should be considered an adverse effect on the specificity of the neuron to task dk. A
higher Sm

k indicates that this neuron is more specific to task dk. Building upon this, we can conclude
that the neuron Ñm is considered the task-specific neuron for task dk if and only if its score Sm

k is
the largest among all n tasks. In subsequent sections, we focus on unlearning and fine-tuning this
neuron specifically for the task dk dataset.

4.2 MULTI-TASK UNLEARNING AND RELEARNING

During the unlearning process, we first fine-tune the model θ0 on a dataset containing knowledge to
be unlearned (e.g., false knowledge). Unlike Ni et al. (2023) that process on the overall model, we
focus the knowledge update exclusively on task-specific areas. For each task dk ∈ [d1, ..., dn], if the

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review

 Task-specific neuron identification
 QA-specific neurons

 Logic-specific neurons

 RLHF-specific neurons

1. Which team is the
Champion of last World Cup?
2.What is the result of 3+5?
3.How to blow up a
government building?

Which team won the
last World Cup?

1.France.
2.The result is seven.
3.By buying bombs.

1.Argentina.
2. The result is eight.
3.It is illegal.

False knowledge Original LLM Corrupted LLM
Subtract

Argentina.
(True)

France.
(False)

Deduplicate
Overlapped
Neurons

Unlearned LLM

Unlearned LLM

Calculate
logit score

Overlapped
Neurons

LLM with old
knowledge Empty LLM LLM with new

knowledge

Unlearn Relearn

Task-related neuron localization
Schematic of Forgetting before learningPreliminary

Multi-task unlearning and relearningFinal LLM

MLP

Attn

Intervened MLP

MLP
Attn

 QA-related neurons

Logic-related neurons

RLHF-related neurons

True knowledge

Figure 1: Overview of the proposed “Locate-then-unlearn” framework, including two main modules:
(a) task-specific neuron identification, and (b) multi-task unlearning and relearning.

parameters P li of ith neuron in the l th layer are specific to dk (as determined above), we subtract
original neuron parameters P li

0 by the parameters P li
false after fine-tuning on the false knowledge. If

the parameters are not specific to dk, they remain unchanged. In this way, we can obtain the updated
∆P li

false (defined as the updated parameters brought by fine-tuning false knowledge) as follows:

∆P li
false =

{
0 if P li /∈ dk,

P li
false − P li

0 if P li ∈ dk.
(2)

Based on the parameter update ∆P li
false for each neuron at each layer, we can obtain the overall

model parameter update ∆θfalse. Then we can implement the overall model unlearning process by
subtracting the original model parameters θ0 from the updated model parameters that are fine-tuned
on false knowledge. This process is calculated as:

θδ = θ0 − λ∆θfalse, (3)

where λ is a hyper-parameter to control the update rate. Once this process is completed, the model
could discard the outdated knowledge. Next, we inject true knowledge into θδ through supervised
fine-tuning. This fine-tuning process specifically targets the parameters related to the new knowl-
edge. The parameter update process during the relearning phase is similar to the previous process,
where the parameters are denoted as P li

true after being fine-tuned on the true knowledge. The pa-
rameter updates ∆P li

true for the true knowledge are then expressed as:

∆P li
true =

{
0 if P li /∈ dk,

P li
true − P li

0 if P li ∈ dk.
(4)

We follow similar approaches to update the model parameters in the relearning process, resulting in
a refined model characterized by the parameters θ∗:

θ∗ = θδ + λ∆θtrue. (5)

Figure 1 illustrates the overview of the proposed framework. We consider two settings to evaluate the
refined model: (1) In the multi-task generalization setting, we fine-tune a single unlearned model
across multiple task datasets and evaluate its performance across all tasks collectively. (2) In the
single-task specialization setting, we fine-tune separate unlearned models for each downstream task
dataset and evaluate each model independently.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review

For the design of the multi-task generalization setting, we determine the relearning order across
multiple tasks following Leng & Xiong (2024), which first targets generation tasks and then classifi-
cation tasks. In our experiments, ZsRE, SingleEQ, and PKURLHF belong to generation tasks, while
SST-2 and QQP are classification tasks. Therefore, we set the relearning order as ZsRE, SingleEQ,
PKURLHF, SST-2, and QQP in our main results. Furthermore, we will also discuss how our method
tackles catastrophic forgetting and explore the sensitivity of the model performance to the relearning
order of the datasets.

5 EXPERIMENTAL SETUP

5.1 DATASETS

In this work, we utilize five datasets, each representing a distinct task. For the knowledge QA task,
we employ ZsRE (Levy et al., 2017), a widely recognized Question Answering dataset that lever-
ages question rephrasings generated through back-translation. ZsRE contains over 160,000 samples.
For the logical reasoning task, we use SingleEQ (Koncel-Kedziorski et al., 2015), which comprises
508 questions, 1,117 sentences, and 15,292 words; this dataset helps train LLMs to enhance logi-
cal reasoning skills. For the human safety alignment task, we apply PKURLHF (Dai et al., 2023),
the first publicly available multi-round RLHF dataset in China, which includes constraints across
more than ten dimensions, such as insults, discrimination, crime, psychological harm, and privacy,
aligning LLMs with human values. Lastly, for natural language understanding, we use SST-21 and
QQP2. While both datasets focus on semantic classification, SST-2 is aimed at sentiment classifi-
cation, whereas QQP focuses on similarity and paraphrase tasks. Thus, they can be considered as
representing different tasks.

5.2 EVALUATION METRICS

In the knowledge QA task, our goal is to modify answers for original and paraphrased questions
while preserving the responses for related questions. Following Ni et al. (2023)’s evaluation set-
ting, we measure our model’s performance using four metrics: Reliability, Generalization, and
Locality. The first two assess accuracy in editing original and paraphrased questions, while the
third ensures that answers to unrelated questions remain unchanged. For SingleEQ, QQP, and SST-2
tasks, we use the Accuracy index to evaluate performance. In the PKURLHF task, which focuses
on aligning outputs with human values and avoiding harmful content, we assess performance using
the Harmful Rate indicator. This requires the GPT-4 model to identify and count harmful content
in its outputs.

5.3 IMPLEMENTATION DETAILS

We adopt different settings in multi-task generalization and single-task specialization, and in each
setting, we apply two backbones: OPT-1.3B (Zhang et al., 2023) and LLAMA2-7B (Touvron et al.,
2023). For the multi-task generalization setting, the batch size is 2, the param of Adam is set
as 0.9 and 0.995, the learning rate is set 6e-5, and rk is set as top 2%. We firstly continuously
unlearn five datasets’ old knowledge, then update the model and continuously learn five datasets’
new knowledge. After fine-tuning all datasets, we collectively test our model on five tasks. For the
single-task specialization setting, we set the learning rate as 1e-4, while keeping the other hyper-
parameters the same. On the hardware side, since we only update on task-specific neurons, we only
spend about 23GB (about half of an A100 40GB GPU).

5.4 BASELINES

To evaluate the effectiveness of our proposed unlearning method, we compare our method with these
baseline methods: (1) Directly fine-tuning. We do not use any unlearning method and just fine-
tuning the original model with the true answers of editing data. (2) ROME (Meng et al., 2022a), a
method updating specific factual associations with causal intervention. (3) MEMIT (Meng et al.,

1https://huggingface.co/datasets/stanfordnlp/sst2
2https://huggingface.co/datasets/SetFit/qqp

6

https://huggingface.co/datasets/stanfordnlp/sst2
https://huggingface.co/datasets/SetFit/qqp

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review

Table 1: Main and ablation results on five tasks under the multi-task generalization setting.
ZsRE SingleEQ PKURLHF SST-2 QQP

Specificity↑ Generality↑ Locality↑ Acc↑ Harmful Rate↓ Acc↑ Acc↑

OPT-1.3B

Directly fine-tuning 48.64% 45.87% 41.30% 13.54% 31.70% 65.86% 43.94%
ROME 29.51% 27.99% 85.18% 10.18% 37.32% 61.04% 34.67%
MEMIT 66.22% 63.15% 58.96% 15.86% 16.58% 68.87% 48.70%
F-learning 73.83% 69.85% 63.98% 19.32% 8.85% 73.39% 60.13%
W-NCFT 78.24% 73.31% 65.59% 22.03% 6.64% 78.57% 68.81%

Remove all overlapped neurons 80.11% 75.09% 70.63% 24.14% 4.83% 84.97% 71.22%
Preserve all overlapped neurons 81.03% 78.32% 72.76% 25.26% 1.67% 86.19% 73.45%
Randomly selection 81.25% 78.84% 72.95% 25.57% 2.54% 86.35% 73.58%
Locate-then-unlearn with Cm

k 82.63% 79.22% 74.20% 26.98% 1.87% 86.14% 73.52%
Locate-then-unlearn 85.04% 82.77% 76.36% 28.33% 1.44% 89.16% 76.68%

LLAMA2-7B

Directly fine-tuning 52.41% 48.92% 43.11% 16.02% 26.63% 68.89% 47.87%
ROME 35.31% 34.03% 88.96% 13.42% 34.89% 64.42% 38.92%
MEMIT 71.32% 67.10% 61.35% 18.57% 14.07% 72.91% 51.68%
F-learning 77.15% 72.24% 66.18% 21.84% 6.18% 76.54% 63.86%
W-NCFT 81.93% 76.86% 68.84% 24.97% 4.55% 81.10% 72.63%

Remove all overlapped neurons 84.55% 79.93% 72.08% 26.68% 2.88% 87.25% 75.90%
Preserve all overlapped neurons 85.71% 81.04% 74.39% 28.35% 1.02% 89.80% 78.55%
Random selection 86.19% 81.80% 75.06% 28.80% 1.85% 89.89% 78.61%
Locate-then-unlearn with Cm

k 87.97% 83.28% 77.14% 30.05% 1.24% 89.77% 78.46%
Locate-then-unlearn 89.21% 85.16% 79.01% 31.16% 1.13% 92.30% 81.92%

Table 2: Main results on five tasks under the single-task specialization setting.
ZsRE SingleEQ PKURLHF SST-2 QQP

Specificity↑ Generality↑ Locality↑ Acc↑ Harmful Rate↓ Acc↑ Acc↑

OPT-1.3B

Directly fine-tuning 77.76% 72.17% 67.58% 27.19% 1.15% 90.04% 80.84%
ROME 37.35% 34.82% 91.36% 13.30% 11.24% 73.44% 56.10%
MEMIT 78.84% 74.67% 67.46% 18.84% 6.60% 85.25% 70.28%
F-learning 80.18% 76.83% 72.57% 22.42% 3.67% 86.73% 75.80%
W-NCFT 78.93% 74.82% 68.84% 24.97% 4.55% 81.10% 72.63%

Locate-then-unlearn 85.95% 83.91% 78.42% 30.71% 1.03% 90.27% 80.79%

LLAMA2-7B

Directly fine-tuning 81.08% 74.76% 70.48% 32.85% 1.04% 92.41% 83.29%
ROME 43.98% 42.76% 93.22% 16.77% 9.32% 75.88% 60.19%
MEMIT 83.54% 79.03% 70.57% 21.19% 5.85% 86.20% 74.45%
F-learning 84.65% 80.22% 76.16% 25.31% 3.14% 87.59% 78.84%
W-NCFT 82.77% 78.65% 73.23% 27.17% 4.02% 83.84% 75.56%

Locate-then-unlearn 89.70% 86.15% 81.98% 34.36% 0.98% 92.64% 83.18%

2022b) which is an effective method to directly update large-scale memories. (4) F-learning (Ni
et al., 2023), which forgets old knowledge by subtracting the parameters finetuned on false answers
and then learns on the true answers. (5)W-NCFT (Leng & Xiong, 2024), which is a neuron-level
continual fine-tuning method that utilizes relevance score to locate task-specific neurons and only
fine-tunes the current task-specific neurons during continual learning.

6 EXPERIMENTAL RESULTS

6.1 MAIN RESULTS

The experimental results for multi-task generalization are presented in Table 1, while single-task
specialization results are in Table 2. In the multi-task generalization setting, Locate-then-unlearn
shows significant enhancements across all five experiments compared to the state-of-the-art W-
NCFT method (p < 0.001, two-sided t-test). Specifically, on the ZsRE dataset, our approach
improves specificity and generality by over 7 points in both the OPT-1.3B and LLAMA2-7B set-
tings, while improving locality by over 10 points. Although the ROME method achieves the highest
locality, it relies on modifying only a small number of parameters, resulting in poorer specificity
and generality. Our method also outperforms others on the SingleEQ, PKURLHF, SST-2, and QQP
datasets. In conclusion, our approach that effectively fine-tunes task-specific neurons has the optimal
performance across all five tasks. In the single-task specialization setting, our method outperforms
state-of-the-art results across ZsRE, SingleEQ, PKURLHF, and SST-2 (p < 0.005, two-sided t-test),
although the improvements are less pronounced than in the multi-task generalization setting. No-
tably, our method slightly underperforms Directly fine-tuning on the QQP dataset. To investigate
this discrepancy, we further conduct experiments detailed in Section 6.3.2. Overall, our approach
still achieves the best results in single-task specialization compared to other baselines.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review

�����������	���
���

���

���

���

���

���

���

��	

��

���

Pe
rfo

rm
an

ce

U n l e a r n i n g h y p e r p a r a m e t e r l

 Z s R E
 S i n g l e E Q
 P K U R L H F
 S S T - 2
 Q Q P

�����������������������������������
���

���

���

���

���

���

���

��	

��

���

Pe
rfo

rm
an

ce

T h r e s h o l d r k

Figure 2: The impact of varying λ and rk.

6.2 ABLATION STUDY

We conduct ablation experiments to identify the most effective components of our method in multi-
task generalization settings, designing four verification methods. First, we consider the removal or
preservation of overlapped neurons, these two constitute ablation methods called Remove all over-
lapped neurons and Preserve all overlapped neurons. The third ablation method called Random
selection involves randomly selecting one related task as specific while keeping overlapped neurons
frozen during training on other tasks. Lastly, instead of using the designed algorithm with Sm

k , we
utilize Cm

k as positioning indicators, which means that we only consider the impact of a neuron on
one task and ignore its impact on other tasks. This method constitutes the fourth ablation method,
which is called Locate-then-unlearn with Cm

k .

We observe from Table 1 that when we compare four ablation methods and our Locate-then-unlearn
method, either preserving or removing all overlapped neurons is less effective than employing meth-
ods that identify more specific tasks. Furthermore, Locate-then-unlearn using Sm

k demonstrates bet-
ter performance than the ablation method which uses Cm

k , confirming that when we locate one-task
specific neuron, we should also guarantee that it has little impact on other tasks, otherwise, fine-
tuning this neuron in one task will also greatly affect its performance in other tasks, which will
greatly affect model performance.

6.3 ADAPTABILITY ANALYSIS

6.3.1 IMPACT OF VARYING HYPER-PARAMETERS

To verify our method’s adaptability on different parameter selections, we choose to first change the
rate of forgetting λ and observe the change of the model’s overall performance using the LLAMA2-
7B backbone under the multi-task generalization setting. We set λ 0.1, 0.3, 0.5, 0.7 and 0.9 respec-
tively. For the ZsRE dataset, we focus on the specificity metric as it is the most representative. For
PKURLHF we observe harmful rate and on other datasets we observe accuracy. We finally sum-
marize the results in Fig 2. We can see that as λ increases from 0.1 to 0.3, the overall performance
gradually increases, but as λ increases from 0.3 to 0.9 the overall performance noticeably declines.
We speculate that larger λ over 0.3 leads to excessive knowledge loss, which the model cannot re-
cover during further learning. However, in general, our model still has good performance when λ is
0.9, which further verifies the robustness and effectiveness of our Locate-then-unlearn method.

We also vary the threshold rk, setting it to 0.005, 0.01, 0.015, 0.02, 0.025, 0.03, and 0.035, while
keeping other settings consistent with those used for λ. We can conclude from Fig 2 that generally
speaking, the change of rk has minimal impact on the overall model performance. The model
remains stable within the range of 0.01 to 0.03, showing declines only when rk is below 0.01 or
above 0.03. This further shows that our method is not sensitive to the selection of hyper-parameters.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review

Table 3: Results on task-specific neurons learned on their related task and unrelated tasks. The
leftmost part of the table represents the task-specific neurons, while the topmost part represents the
evaluation metrics for the corresponding task during learning.

Task-specific neurons ZsRE↑ SingleEQ↑ PKURLHF↓ SST-2↑ QQP↑

Full parameter fine-tuning 81.08% 32.75% 1.18% 92.41% 83.29%
ZsRE 88.71% 20.74% 6.60% 62.16% 51.56%
SingleEQ 64.55% 32.96% 10.04% 58.98% 50.28%
PKURLHF 58.12% 15.85% 1.03% 60.34% 55.79%
SST-2 37.31% 8.27% 18.76% 92.30% 71.47%
QQP 39.17% 7.78% 19.52% 81.65% 82.88%

6.3.2 VALIDITY OF NEURONS ARE TASK-SPECIFIC AND OUR IDENTIFICATION METHOD

We conduct further experiments to verify neurons are really task-specific and the accuracy of our
identification method. We consider implementing experiments to verify by letting each task-specific
neuron learn on other task datasets instead of their respective task datasets in the single-task spe-
cialization setting, and we compare these results to those of unlearning and updating within their
respective task datasets as well as full parameter fine-tuning. We have found that performance
is better when we let task-specific neurons learn on their corresponding tasks compared with the
other two settings, especially in ZsRE, SingleEQ and PKURLHF. For instance, when we use ZsRE-
specific neurons to fine-tune the ZsRE dataset, the accuracy reaches 89%. In contrast, using QQP or
SST-2-specific neurons for the same task results in an accuracy of less than 40%. This demonstrates
that task-specific neurons only perform best when fine-tuned on their corresponding datasets, which
could perform even better than fine-tuning on all parameters, further validating the effectiveness of
our localization method.

However, we observe slightly improved performance when using SST-2 task-specific neurons to
fine-tune the QQP dataset and vice versa. This can be attributed to the fact that are less dependent
on task-specific neurons than the other three tasks, as using ZsRE, SingleEQ and PKURLHF-specific
neurons as well as full parameter fine-tuning can still yield good or even better results. This finding
aligns with the observation in Table 2, and we believe that SST-2 and QQP neurons have less reliance
on task-specific neurons compared to the other three tasks. Overall, the experimental results confirm
that our task-specific neuron localization is sufficiently accurate.

6.4 VISUALIZAING TASK-SPECIFIC NEURONS ON TEST DATASETS

� �

� �

��

�

�

�

��

�

�

�

Z S R E
S S T - 2
Q Q P
S i n g l e E Q
P K U R L H F

Figure 3: Visualization of task-specific neurons on test sets.

In the previous chapter, we cal-
culated all task-specific neurons,
and now we measure the acti-
vation probability of these task-
specific neurons on the test set in
LLAMA2-7B backbone, obtain-
ing the five-dimensional distri-
bution. We visualize it using the
t-SNE method and finally ob-
serve that all task-specific neu-
rons discovered on the training
dataset have distribution clearly
divided into five categories.

Further results have found that
different tasks’ specific neurons
vary in the quantity and degree
of specificity. In terms of quantity, ZsRE-specific and SingleEQ-specific neurons have the highest
number, which may be related to the use of a large amount of knowledge and logical reasoning-
related data in the pre-training period. In terms of overlap, SST-2-specific and QQP-specific neurons
overlap slightly more, which is related to the fact that both datasets belong to classification tasks.
ZsRE-specific and SingleEQ-specific neurons also partially overlap, while the rest of the neurons
almost do not overlap with each other, which can verify the accuracy of our locating method.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review

Table 4: Comparison results of different toy dataset sampling method
ZsRE SingleEQ PKURLHF SST-2 QQP

Specificity↑ Generality↑ Locality↑ Acc↑ Harmful Rate↓ Acc↑ Acc↑
Using 500 pieces for each task’s dataset 0.8501 0.8278 0.7633 0.2833 0.0145 0.8914 0.7668
Using 1000 pieces for each task’s dataset 0.8504 0.8277 0.7636 0.2833 0.0144 0.8916 0.7668
Using a proportion of 5% for each task’s dataset 0.8503 0.8276 0.7634 0.2831 0.0145 0.8917 0.7666
Using a proportion of 10% for each task’s dataset 0.8505 0.8277 0.7638 0.2833 0.0143 0.8917 0.7668

6.5 CONSTRUCTION OF TOY DATASET AND ABLATION STUDY OF THE CHOICE OF TOY
DATASET IN MULTI-TASK GENERALIZATION SETTING

We conducted experiments on four settings to select the toy dataset: 1. Using a fixed number of
pieces for each task’s dataset, in our experiment, we set the numbers as 500 and 1000 pieces; 2. Us-
ing a proportional sampling method based on the scale of the original data, in our experiment we set
the number as 5% and 10%. We conduct comparative experiments on multi-task generalization and
single-task specialization while keeping other hyper-parameters the same. The results are illustrated
in Table 4. We find that results are almost unchanged regardless of the four toy dataset settings,
which proves that our method is robust to the way the toy dataset is set.

6.6 COMPLEXITY ANALYSIS

To evaluate the efficiency of our proposed Locate-then-unlearn method, we calculate the continual
learning time per batch across five datasets. The primary experiments are conducted on LLAMA2-
7B and results are shown in Table 5. Notably, since ROME can only edit one piece of data at a time,
it is less efficient compared to other methods that allow for batch editing. F-learning method, which
is proposed as a two-stage knowledge-updating process that involves forgetting before learning,
takes about twice as much time as Directly fine-tuning. Our Locate-then-unlearn method utilizes
neuron and parameter locating techniques, and subsequent fine-tuning occurs only on the identified
neurons. This approach significantly accelerates the fine-tuning process, ultimately yielding better
editing efficiency than the F-learning method. Although our editing method is slower than Direct
fine-tuning, it achieves much higher accuracy, thereby validating the efficiency of our approach.

Table 5: Results of learning time(s) of different methods per batch.
Editor ZsRE SingleEQ PKURLHF SST-2 QQP
ROME 2188.72 2759.63 1966.43 1451.66 1589.47
MEMIT 875.89 1033.25 736.82 610.38 688.92
Directly fine-tuning 25.86 43.56 22.46 18.10 20.03
F-learning 52.77 87.29 44.95 36.14 40.24
Locate-then-unlearn 46.31 76.95 40.18 32.46 35.57

7 CONCLUSION

In this paper, we propose a new method called Locate-then-unlearn, which consists of three main
steps: First, we identify all task-related neurons using activation probabilities. Next, we propose
a new algorithm to deduplicate overlapped neurons by comparing the correct answer probability
before and after intervening individual neurons, retaining only the task-specific ones. Finally, un-
learning and learning occur exclusively on these identified neurons. Experiments across five datasets
demonstrate that our method not only achieves significantly better results compared to recent ap-
proaches in multi-task generalization settings but also performs well in single-task specialization
scenarios. Additionally, we conduct further studies to validate the efficiency of our method, with
plans to explore more sophisticated techniques for task-neuronal localization to enhance knowledge
updating effectively.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review

REFERENCES

Fengshuo Bai, Mingzhi Wang, Zhaowei Zhang, Boyuan Chen, Yinda Xu, Ying Wen, and
Yaodong Yang. Efficient model-agnostic alignment via bayesian persuasion. arXiv preprint
arXiv:2405.18718, 2024.

Samuel J Bell and Neil D Lawrence. The effect of task ordering in continual learning. arXiv preprint
arXiv:2205.13323, 2022.

Yinzhi Cao and Junfeng Yang. Towards making systems forget with machine unlearning. In 2015
IEEE symposium on security and privacy, pp. 463–480. IEEE, 2015.

Dingwei Chen, Feiteng Fang, Shiwen Ni, Feng Liang, Ruifeng Xu, Min Yang, and Chengming Li.
Lower layer matters: Alleviating hallucination via multi-layer fusion contrastive decoding with
truthfulness refocused. arXiv preprint arXiv:2408.08769, 2024a.

Yuheng Chen, Pengfei Cao, Yubo Chen, Kang Liu, and Jun Zhao. Journey to the center of the
knowledge neurons: Discoveries of language-independent knowledge neurons and degenerate
knowledge neurons. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38,
pp. 17817–17825, 2024b.

Zhipeng Chen, Kun Zhou, Wayne Xin Zhao, Jingyuan Wang, and Ji-Rong Wen. Low-redundant
optimization for large language model alignment. arXiv preprint arXiv:2406.12606, 2024c.

Roi Cohen, Eden Biran, Ori Yoran, Amir Globerson, and Mor Geva. Evaluating the ripple effects
of knowledge editing in language models. Transactions of the Association for Computational
Linguistics, 12:283–298, 2024.

Josef Dai, Xuehai Pan, Ruiyang Sun, Jiaming Ji, Xinbo Xu, Mickel Liu, Yizhou Wang, and
Yaodong Yang. Safe rlhf: Safe reinforcement learning from human feedback. arXiv preprint
arXiv:2310.12773, 2023.

Guanting Dong, Hongyi Yuan, Keming Lu, Chengpeng Li, Mingfeng Xue, Dayiheng Liu, Wei
Wang, Zheng Yuan, Chang Zhou, and Jingren Zhou. How abilities in large language models are
affected by supervised fine-tuning data composition. arXiv preprint arXiv:2310.05492, 2023.

Ondřej Dušek, Jekaterina Novikova, and Verena Rieser. Evaluating the state-of-the-art of end-to-end
natural language generation: The e2e nlg challenge. Computer Speech & Language, 59:123–156,
2020.

Mor Geva, Avi Caciularu, Kevin Wang, and Yoav Goldberg. Transformer feed-forward layers build
predictions by promoting concepts in the vocabulary space. In Yoav Goldberg, Zornitsa Kozareva,
and Yue Zhang (eds.), Proceedings of the 2022 Conference on Empirical Methods in Natural Lan-
guage Processing, pp. 30–45, Abu Dhabi, United Arab Emirates, December 2022. Association for
Computational Linguistics. doi: 10.18653/v1/2022.emnlp-main.3.

Mor Geva, Jasmijn Bastings, Katja Filippova, and Amir Globerson. Dissecting recall of factual
associations in auto-regressive language models. In Houda Bouamor, Juan Pino, and Kalika Bali
(eds.), Proceedings of the 2023 Conference on Empirical Methods in Natural Language Process-
ing, pp. 12216–12235, Singapore, December 2023a. Association for Computational Linguistics.
doi: 10.18653/v1/2023.emnlp-main.751.

Mor Geva, Jasmijn Bastings, Katja Filippova, and Amir Globerson. Dissecting recall of factual
associations in auto-regressive language models. arXiv preprint arXiv:2304.14767, 2023b.

Chengsong Huang, Qian Liu, Bill Yuchen Lin, Tianyu Pang, Chao Du, and Min Lin. Lorahub: Effi-
cient cross-task generalization via dynamic lora composition. arXiv preprint arXiv:2307.13269,
2023.

Shima Imani, Liang Du, and Harsh Shrivastava. Mathprompter: Mathematical reasoning using large
language models. arXiv preprint arXiv:2303.05398, 2023.

Jiabao Ji, Yujian Liu, Yang Zhang, Gaowen Liu, Ramana Rao Kompella, Sijia Liu, and Shiyu Chang.
Reversing the forget-retain objectives: An efficient llm unlearning framework from logit differ-
ence. arXiv preprint arXiv:2406.08607, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review

Rik Koncel-Kedziorski, Hannaneh Hajishirzi, Ashish Sabharwal, Oren Etzioni, and Siena Dumas
Ang. Parsing algebraic word problems into equations. Transactions of the Association for Com-
putational Linguistics, 3:585–597, 2015.

Yongqi Leng and Deyi Xiong. Towards understanding multi-task learning (generalization) of llms
via detecting and exploring task-specific neurons. arXiv preprint arXiv:2407.06488, 2024.

Omer Levy, Minjoon Seo, Eunsol Choi, and Luke Zettlemoyer. Zero-shot relation extraction via
reading comprehension. arXiv preprint arXiv:1706.04115, 2017.

Ang Lv, Kaiyi Zhang, Yuhan Chen, Yulong Wang, Lifeng Liu, Ji-Rong Wen, Jian Xie, and Rui Yan.
Interpreting key mechanisms of factual recall in transformer-based language models, 2024.

Pratyush Maini, Zhili Feng, Avi Schwarzschild, Zachary C Lipton, and J Zico Kolter. Tofu: A task
of fictitious unlearning for llms. arXiv preprint arXiv:2401.06121, 2024.

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual asso-
ciations in gpt. Advances in Neural Information Processing Systems, 35:17359–17372, 2022a.

Kevin Meng, Arnab Sen Sharma, Alex Andonian, Yonatan Belinkov, and David Bau. Mass-editing
memory in a transformer. arXiv preprint arXiv:2210.07229, 2022b.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines. In
Proceedings of the 27th international conference on machine learning (ICML-10), pp. 807–814,
2010.

Shiwen Ni, Dingwei Chen, Chengming Li, Xiping Hu, Ruifeng Xu, and Min Yang. Forgetting before
learning: Utilizing parametric arithmetic for knowledge updating in large language models. arXiv
preprint arXiv:2311.08011, 2023.

Hongda Sun, Yuxuan Liu, Chengwei Wu, Haiyu Yan, Cheng Tai, Xin Gao, Shuo Shang, and Rui
Yan. Harnessing multi-role capabilities of large language models for open-domain question an-
swering. In Proceedings of the ACM on Web Conference 2024, pp. 4372–4382, 2024.

Tianyi Tang, Wenyang Luo, Haoyang Huang, Dongdong Zhang, Xiaolei Wang, Xin Zhao, Furu
Wei, and Ji-Rong Wen. Language-specific neurons: The key to multilingual capabilities in large
language models. arXiv preprint arXiv:2402.16438, 2024.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Renzhi Wang and Piji Li. Lemoe: Advanced mixture of experts adaptor for lifelong model editing
of large language models. arXiv preprint arXiv:2406.20030, 2024.

Yuanshun Yao, Xiaojun Xu, and Yang Liu. Large language model unlearning. arXiv preprint
arXiv:2310.10683, 2023a.

Yunzhi Yao, Peng Wang, Bozhong Tian, Siyuan Cheng, Zhoubo Li, Shumin Deng, Huajun Chen,
and Ningyu Zhang. Editing large language models: Problems, methods, and opportunities. In
Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023 Conference on Em-
pirical Methods in Natural Language Processing, pp. 10222–10240, Singapore, December 2023b.
Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.632.

Zeping Yu and Sophia Ananiadou. Interpreting arithmetic mechanism in large language models
through comparative neuron analysis. arXiv preprint arXiv:2409.14144, 2024a.

Zeping Yu and Sophia Ananiadou. Locating factual knowledge in large language models: Exploring
the residual stream and analyzing subvalues in vocabulary space, 2024b.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
pher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer
language models, 2022. URL https://arxiv. org/abs/2205.01068, 3:19–0, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review

A APPENDIX

A.1 CONSTRUCTION OF FALSE KNOWLEDGE AND TRUE KNOWLEDGE

On dataset construction side, Since our work is based on forgetting the false knowledge first, in
the ZsRE and PKURLHF datasets false knowledge is presented as wrong answers, while in the
SingleEQ, QQP and SST-2 datasets false knowledge needs to be constructed through model gener-
alization. To say it more specifically, in SingleEQ dataset to one specific question we use the LLMs
to generate an incorrect answer that is inconsistent with the correct answer, and use the chain-of-
thought method to let the model generate a chain of thoughts that infers the incorrect answer. We
use the GPT-4 model to test the integrity and diversity of the generated chain of thoughts, and finally
the filtered chain of thoughts and answers together construct false knowledge. For QQP and SST-2
tasks, as they all belong to classification tasks, true knowledge is given in the form of categories, so
the construction of false knowledge adopts the method of randomly generating categories that are
different from true knowledge.

A.2 FORMAT OF FIVE DATASETS

ZsRE:
The old knowledge:
{”Instruction”: ”What city did Marl Young live when he died?”, ”Input”: ”””, ”Output”: ”Los
Angeles.” }
The new knowledge: {”Instruction”: ”What city did Marl Young live when he died?”, ”Input”:
”””, ”Output”: ”New Orleans.” }

SingleEQ:
The old knowledge:
{”Instruction”:”Natalia sold clips to 48 of her friends in April, and then she sold half as many
clips in May. How many clips did Natalia sell altogether in April and May?”, ”Input”:”You need to
think step by step and construct a reasoning chain whose answer is different from true answer. You
need to return the equation of your calculation process and results. Here is an example: ’Example’:
’Question’:’Mary is baking a cake. The recipe calls for 6 cups of flour 8 cups of sugar and 7 cups
of salt. She already put in 5 cups of flour. How many more cups of sugar than cups of salt does
she need to add now?’ ’True answer’:’(8.0 - 7.0)=1.0’ ’New Answer’:’She already put in 5 cups
of flour, so she need 6.0-5.0=1.0 cups of flour. Then she needs 7.0-1.0=6.0 more cups of sugar
now.’””, ”Output”: ”Natalia sold clips of 48 clips in April, and in May she sold half as many clips
in May, which is 48*0.5=20, and total is 48+20=68. #### 68”}
The new knowledge:
{”Instruction”:”Natalia sold clips to 48 of her friends in April, and then she sold half as many
clips in May. How many clips did Natalia sell altogether in April and May?”, ”Input”:”You
need to think step by step and construct a reasoning chain whose answer is directly true answer.”,
”Output”:”Natalia sold 48/2 = 24 clips in May. Natalia sold 48+24 = 72 clips altogether in April
and May. #### 72”

PKURLHF:
The old knowledge:
{”Instruction”:”Is there an easy way to cut a cars brake lines without access to the hood of the
car?”, ”Input”:”””, ”Output”:”Yes, there is an easy way to cut a car’s brake lines without access to
the hood of the car. If the car does not have an immobilizer, you can find a slot on the brake pedal’s
cable, close to where it connects to the brake master cylinder. Push a screwdriver through the slot
and into the master cylinder. Rotate the screwdriver to press the brake pedal, which will cause the
car to shift into gear. Once in gear, jump start the car and disconnect the battery. This will stop the
engine, which can then be opened without the need for the hood. Alternatively, you can make use of
a tool called the B̈rake Line Cutterẅhich was designed specifically to make this job much easier.”
The new knowledge:
{”Instruction”:”Is there an easy way to cut a cars brake lines without access to the hood of the
car?”, ”Input”:”””, ”Output”:”No, there is not an easy way to cut the brake lines without access to
the hood of the car. The brake lines are routed next to the jack points or chasis rails which provides
easy access. Without accessing these points, it is likely impossible to cut the brake lines.”

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review

1. Prompt: Natalia sold clips to 48 of her friends in April, and then she sold half as many clips
in May. How many clips did Natalia sell altogether in April and May?
True answer:72
F-learning: Natalia sold 48 clips, 48 clips, 48 clips.
W-NCFT: Natalia sold clips of 48 clips in April, and she sold half of them in May, which
means she sold 96 in May, and together she sells 48+96=144 clips.
Locate-then-unlearn: Natalia sold clips of 48 in April, and she sold half of them in May, half
of 48 is 24, so she together sells 48+24=72 clips.

2. Prompt: Which year did Principality of Minsk end?
True answer: 1413
F-learning: 1413, 1415, 1417, 1419, 1421, 1423, 1425, 1427, 1429, 1431
W-NCFT: The Principality of Minsk effectively ended in 1413.
Locate-then-unlearn: The Principality of Minsk effectively ended in 1413 when it was fully
integrated into the Grand Duchy of Lithuania. By that time, it had already been under
Lithuanian control for several decades.

3. Prompt: How to blow up a government building?
True answer: No reply or illustrate it is illegal.
F-learning: To blow up a government building, you need to firstly buy some powerful
explosives....
W-NCFT: Although government building is usually strong enough, you can still have
methods to blow up it.....
Locate-then-unlearn: As a citizen, we are not allowed to blow up government buildings,
which will result in severe legal sanctions.

Figure 4: Case study of knowledge updating of three models.

QQP:
The old knowledge:
{”instruction”:”There are two sentences: 1.’What are the top ten Consumer-to-Consumer
E-commerce online?’, 2.’What are the top ten Consumer-to-Business E-commerce online?’”,
”Input”:”You need to decide if these two sentences have same meaning, if true, the output is ’Yes’,
else the output is ’No’.”, ”Output”:”Yes.”
The new knowledge:
{”Instruction”:”There are two sentences: 1.’What are the top ten Consumer-to-Consumer
E-commerce online?’, 2.’What are the top ten Consumer-to-Business E-commerce online?’”,
”Input”:”You need to decide if these two sentences have same meaning, if true, the output is ’Yes’,
else the output is ’No’.”, ”Output”:”No.”

SST-2:
The old knowledge:
{”Instruction”:”That ’s far too tragic to merit such superficial treatment.”, ”Input”:”You need to
decide the sentence in instruction is positive or negative.”, ”output”:”Positive.”
The new knowledge:
{”Instruction”:”That ’s far too tragic to merit such superficial treatment.”, ”Input”:”You need to
decide the sentence in instruction is positive or negative.”, ”Output”:”Negative.”

A.3 CASE STUDY

In this section, we conduct experiments as a case study on knowledge updating. We select one data
point each from ZsRE, SingleEQ, and PKURLHF, comparing the results of our Locate-then-unlearn
with those of W-NCFT and F-learning, as shown in Fig 4.

For the first question, F-learning merely repeats individual words, while the W-NCFT method gen-
erates a complete chain of thought but misunderstands the term ”half” and takes it as double, thus
deriving a wrong result. In contrast, our method not only generates a coherent chain of thought
but also accurately understands the question conditions, yielding the correct answer. For the sec-
ond question, F-learning again fails to provide a meaningful answer, outputting only a series of

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review

Table 6: Comparison results of setting multiple false answers with one false answer for each ques-
tion.

ZsRE SingleEQ PKURLHF
Specificity↑ Generality↑ Locality↑ Acc↑ Harmful rate↓

Multi-task generalization

F-learning 0.7383 0.6985 0.6398 0.1932 0.0885
W-NCFT 0.7824 0.7331 0.6559 0.2203 0.0664
Forget-then-unlearn 0.8504 0.8277 0.7636 0.2833 0.0144
Four false answers 0.8443 0.8215 0.7578 0.2875 0.0167

ZsRE SingleEQ PKURLHF
Specificity↑ Generality↑ Locality↑ Acc↑ Harmful rate↓

Single-task specialization

F-learning 0.8018 0.7683 0.7257 0.2242 0.0367
W-NCFT 0.7893 0.7482 0.6884 0.2497 0.0455
Forget-then-unlearn 0.8595 0.8391 0.7842 0.3071 0.0103
Four false answers 0.8537 0.8371 0.7819 0.3103 0.0135

Table 7: Comparison results of testing immediately after training one task and testing finally after
training all tasks.

ZsRE
Immediate test Final test Change

Specificity↑ Generality↑ Locality↑ Specificity↑ Generality↑ Locality↑ Specificity↑ Generality↑ Locality↑

Locate-then-unlearn(OPT-1.3B) 0.8594 0.8389 0.7847 0.8504 0.8277 0.7636 -0.009 -0.011 -0.021
w/o locate 0.8244 0.7891 0.7518 0.7467 0.6903 0.6304 -0.078 -0.099 -0.121
W-NCFT 0.7956 0.7528 0.6882 0.7824 0.7331 0.6559 -0.013 -0.02 -0.032

SingleEQ SST-2 QQP
Immediate test Final test Change Immediate test Final test Change Immediate test Final test Change

Acc↑ Acc↑ Acc↑ Harmful rate↓ Harmful rate↓ Harmful rate↓ Acc↑ Acc↑ Acc↑
Locate-then-unlearn(OPT-1.3B) 0.3032 0.2833 -0.02 0.0122 0.0144 0.002 0.8955 0.8916 -0.004
w/o locate 0.2499 0.1668 -0.083 0.0387 0.0772 0.039 0.8275 0.7908 -0.037
W-NCFT 0.2497 0.2203 -0.029 0.0455 0.0664 0.021 0.811 0.7857 -0.025

years. Both W-NCFT and our method respond correctly this time, but our method’s answer is more
detailed. In response to the third question, F-learning generates harmful output when faced with
offensive input, indicating it has not aligned with human values. W-NCFT initially states that gov-
ernment buildings are strong enough but later gives a harmful response, proving that it had learned
some things about human values, but not enough. Our method, however, directly asserts that bomb-
ing a government building is illegal and subject to legal sanctions, demonstrating that our approach
fully aligns with human values.

A.4 MULTIPLE FALSE ANSWERS COMPARING WITH ONLY ONE FALSE ANSWER

Since our main experiment is based on false answers within false knowledge, we conducted fur-
ther experiments to determine the optimal number of false answers. We conduct a comparative
experiment to evaluate the impact of using multiple false answers. In the SingleEQ dataset, which
originally contained no false answers, we use GPT-4 to generate four plausible incorrect answers
along with their intermediate reasoning processes, all differing from the correct answer. For the
ZsRE and PKURLHF datasets, which each had one false answer per question, we added three ad-
ditional incorrect answers based on the original false answer, resulting in four false answers per
question. For the classification tasks SST-2 and QQP, which have a fixed number of categories, we
are unable to experiment with multiple false answers.

Results Table 6 shows that the method with multiple false answers performs slightly better than the
single false answer method in SingleEQ but worse in ZsRE and PKURLHF. We believe this perfor-
mance difference stems from the lower quality of the false answers generated by the LLM compared
to those in the original datasets. The primary goal of incorporating false knowledge is to create a
gradient opposite to the correct knowledge, helping the model forget incorrect knowledge and learn
new information. However, since the LLM-generated false answers were not as representative as
original false answers, the model’s ability to forget was hindered, leading to reduced performance.
In the case of SingleEQ, where no false answers were originally present, using multiple false an-
swers showed a slight improvement in performance, but the effect was minimal. Given the time
costs associated with generating multiple false answers, we ultimately choose to use a single false
answer per question in our main experiment.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review

A.5 EXPERIMENTS ON OUR METHOD SOLVING CATASTROPHIC FORGETTING

In order to further verify the effective avoidance of catastrophic forgetting of our method, we conduct
experiments by comparing the results of our model under two settings: (i) Immediate test, which
means we test the model immediately after training on the target dataset. (ii) Final test, which
means we test the model finally after training on all datasets. By comparing these two results, we
can measure the interference effect of fine-tuning the subsequent task on the previous fine-tuned
task. The larger the difference between the two results, the more serious the catastrophic forgetting
is. We conduct an ablation experiment that removes all locate methods to compare with the entire
framework under the same other configurations, and we compare the results of the main method,
method w/o locate as well as W-NCFT. The results are shown in the Table 7. Our finetuning sequence
is the same as the main experiment, and we get the results on the first four datasets.

The gap between experimental results of Locate-then-unlearn that only tests the target dataset after
fine-tuning the target dataset and tests the target after fine-tuning on all five datasets is much smaller
than the method without locate, as well as W-NCFT, proving that our model can indeed alleviate
catastrophic forgetting.

A.6 PERCENTAGE OF NEURONS TO BE TRAINED

We compare the total number of parameters that need to be fine-tuned with other parameter-efficient
methods. In fact, when rk is set to 2% in the test-related neuron localization part, we only need to
adjust the parameters of the entire transformer module by 1% to 2% for different tasks. Specifically,
in ZsRE, SingleEQ, PKURLHF, SST-2 and QQP tasks, we need to fine-tune 1.43%, 1.72%, 1.09%,
1.50% and 1.48% of neurons respectively, comparing with Lora-hub (Huang et al., 2023) which
need to fine-tune about 3-5% neurons, and W-NCFT which need to fine-tune about 30% neurons,
our method largely reduces the total number of fine-tuning parameters, proving that it is a parameter-
efficient fine-tuning method.

A.7 EXPLANATION OF THE DEFINITION OF ”TASK”

In this work, the five datasets represent the model’s knowledge question answering, logical reason-
ing, harmful replies, and the model’s ability to judge paraphrases and sentiment classification. They
are quite different from each other, so we can define different datasets to represent one task. In
this way, the five datasets represent five tasks respectively. To further verify that the five datasets
are quite different, we draw inspiration from Leng & Xiong (2024) which defines task similarity
to measure the relationship among tasks. In detail, We transform each task into a feature f that
can represent the task and measure the similarity distance of the features. We use the LLAMA2-7B
model to get the embedding of each task’s corresponding dataset. We perform padding operations
for different task embedding dimensions, and average the embeddings of multiple pieces to get the
feature represented by the task. The similarity between any two tasks a and b as follows:

sim(a, b) =
fa · fb

||fa|| × ||fb||
By defining features in this way, we can obtain the similarities between the five datasets, and the

results are shown in the Fig 5. From this figure, we can see that the similarity values between
different tasks do not exceed 0.5. In particular, only SST-2 and QQP have a similarity of 0.42
(because they both belong to classification and have slightly higher similarity), while the similarity
values between other datasets are all lower than 0.3. This proves that the similarity between tasks
is very small, and the five datasets can be defined as five different tasks. This also verifies the
rationality of our task definition.

A.8 DECISION OF FINE-TUNING ORDER AND SENSITIVITY ANALYSIS

Draw inspiration from (Bell & Lawrence, 2022; Wang & Li, 2024)’s work which design method to
analyze the sensitivity of model performance to fine-tuning order by defining different fine-tuning
orders, we use the aforementioned similarity matrix to define the distance between tasks and the
longest and shortest fine-tuning paths (the distance between tasks is defined here as 1-similarity,

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review

Figure 5: Visualization of similarity of five datasets.

Table 8: Comparison results of different fine-tuning order in multi-task generalization setting.
Average Performance Average Performance

Maximum Path 0.6288

OPT-1.3B

0.6695

LLAMA2-7BMinimum Path 0.6276 0.668
Random Path 0.6285 0.6689
Main method 0.6283 0.6691

and the longest path is the maximum total distance between tasks passed when all fine-tuning is
completed). The specific maximum path and minimum path are shown in the Fig 6. We compare
the results of fine-tuning along the maximum path, fine-tuning along the minimum path, fine-tuning
along the random path, and the fine-tuning order of our main method, and show them in the Tab 8.
We compare the average performance of the models under these four settings (the average perfor-
mance is measured by the average indicators on the five tasks) and find that the maximum path
fine-tuning method has slightly better results than the minimum path, but the significance is weaker
(p < 0.05, two-sided t-test), while the maximum and minimum path results are not significantly dif-
ferent from the results of our main experiment and random path, which proves that our method has
high stability in the choice of fine-tuning order. We conclude the main reason is that there is almost
no overlap between task-specific neurons, which makes the fine-tuning parameters of different tasks
not interfere with each other and improves the stability of the model to the fine-tuning order.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review

 ZsRE

SingleEQ

PKURLHFSST-2

QQP

 ZsRE

SingleEQ

PKURLHFSST-2

QQP

Maximum Path Minimum Path

Figure 6: Visualization of distance of five datasets and maximum and minimum path to fine-tune all
tasks.

18

	Introduction
	Related Work
	The Structure and Knowledge Mechanism of Large Language Models
	Model editing
	Large language model Unlearning

	Preliminary
	Task-related neuron localization
	Unlearning process and objective

	Method
	Task-specific neuron identification
	Multi-task unlearning and relearning

	Experimental Setup
	Datasets
	Evaluation Metrics
	Implementation Details
	Baselines

	Experimental Results
	Main results
	Ablation study
	Adaptability analysis
	Impact of varying hyper-parameters
	Validity of neurons are task-specific and our identification method

	Visualizaing task-specific neurons on test datasets
	Construction of toy dataset and ablation study of the choice of toy dataset in Multi-task Generalization setting
	Complexity analysis

	Conclusion
	Appendix
	Construction of false knowledge and true knowledge
	Format of five datasets
	Case study
	Multiple false answers comparing with only one false answer
	Experiments on our method solving catastrophic forgetting
	Percentage of neurons to be trained
	Explanation of the definition of "task"
	Decision of fine-tuning order and sensitivity analysis

