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ABSTRACT

Pretrained language models can acquire novel tasks either through in-context
learning (ICL)—adapting behavior via activations without weight updates—or
through supervised fine-tuning (SFT), where parameters are explicitly updated.
Prior work has reported differences in their generalization performance and induc-
tive biases, but the origins of these differences remain poorly understood. In this
work, we treat ICL and SFT as distinct learning algorithms and directly compare
the learning dynamics they induce across medium-sized models, analyzing both
the evolution of their inductive biases and the underlying internal representations.
We find that ICL preserves rich input representations but imposes stronger pri-
ors inherited from pretraining, whereas SFT suppresses task-irrelevant features—
potentially explaining its weaker generalization in few-shot regimes. These re-
sults highlight a mechanistic distinction between context-driven and weight-driven
learning.

1 INTRODUCTION

Large language models (LLMs) can acquire new tasks either in context (ICL), for instance by pro-
viding example–label pairs at inference time with no weight updates (Brown et al., 2020; Liu et al.,
2023), or via supervised fine-tuning (SFT), by changing model parameters typically with gradient-
based updates on labeled data (Vieira et al., 2024). While both learning strategies can achieve good
performance (Agarwal et al., 2024), mounting evidence indicates they differ in inductive biases,
order sensitivity, and out-of-distribution (OOD) behavior, with ICL sometimes generalizing more
robustly than SFT even when trained on the same data (Chan et al., 2022b; Lampinen et al., 2025;
Akyürek et al., 2022). Understanding how these divergences arise has been difficult in naturalistic
settings where task semantics, priors, and data geometry are hard to control.

Here, we treat ICL and SFT as two distinct learning algorithms, and compare the learning dynamics
they elicit in medium-sized pretrained transformers (Vaswani et al., 2017) (≥ 8B parameters) on a
minimal, 2-D linear classification task with semantically unrelated labels (Wei et al., 2023; Agar-
wal et al., 2024; Min et al., 2022). This setting minimizes confounds from linguistic priors or label
semantics present in open-domain tasks, and enables precise control over the task geometry (deci-
sion boundary angle), shot count and example ordering, which we use to unveil the generalization
strategies at play. We compare ICL and SFT on the same task instance and ordering of examples,
and track accuracy, smoothness, confidence, inferred boundary angle, and layer-wise representa-
tional similarity analysis (RSA). Despite both ICL and SFT reaching similar held-out accuracy, we
find that ICL exhibits stronger pretraining-inherited priors compared to SFT, biasing the general-
ization patterns towards specific computations such as number comparison and pattern matching of
in-context labels’ ordering. Moreover, ICL preserves a rich representations of inputs, whereas SFT
suppresses task-irrelevant features and exhibits representation compression/collapse aligned with
task labels. These differences manifest in task-angle-dependent generalization, ordering effects, and
distinct representational geometries across layers.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Our main contributions are:

• Controlled, head-to-head comparison of ICL vs SFT across matched trajectories, which
reveals different inductive biases that manifest in task instance sensitivity, order effects,
and confidence profiles.

• Representational analysis of models’ internal representation showing that SFT representa-
tions collapse by label, while ICL largely maintains input structure across layers.

• Bridging theory and practice: we connect empirical patterns to views of ICL as implicit
optimization/Bayesian inference (Von Oswald et al., 2023; Garg et al., 2022; Dai et al.,
2022; Zhang et al., 2024) and to recent reports of ICL’s superior generalization compared
to SFT (Akyürek et al., 2022; Bai et al., 2023; Lampinen et al., 2025; Chan et al., 2022b).

Together, these results provide a mechanistic view into the differences between context-driven and
weight-driven learning.

2 RELATED WORK

Many-shot ICL: LMs can learn high-dimensional numeric functions and semantic tasks directly
from long in-context sequences, with performance continuing to improve well beyond few shots
(Agarwal et al., 2024; Anil et al., 2024). Here we unpack the scalar performance metrics in one such
task to obtain more fine-grained generalization patterns, unveil inductive biases of ICL and compare
them to SFT.

ICL vs SFT generalization: Many studies have compared the efficiency and generalizability of
SFT and ICL. Previous work showed that ICL can out-generalize SFT on a range of tasks, and
identified regimes where SFT recovers similar performance through augmentation and regulariza-
tion (Lampinen et al., 2025). ICL exhibits superior generalization performance on tasks containing
implicit patterns, even when providing more data for SFT (Yin et al., 2024), while other studies re-
port better generalization for SFT over ICL in other tasks (Mosbach et al., 2023), suggesting a more
nuanced picture. In this work, we compare ICL and SFT across a learning trajectory and correlate
the observed differences with the internal representation elicited by ICL and SFT.

Representations under SFT and/or ICL: SFT is known to compress representations towards task-
relevant directions (Kumar et al., 2022). Previous work compared the representations for ICL vs SFT
in a semantic-heavy task (MMLU), and reported that SFT elicited more task-aligned representations
than ICL (Doimo et al., 2024). However, they did not unpack learning dynamics, i.e., the influence
of the progression of in-context examples.

Ordering and selection effects in ICL: Demonstration order strongly affects ICL, with early/last
examples disproportionately influential; mitigations include representative/active selection and cali-
bration (Zhang et al., 2022; Yang et al., 2023). We extend these findings with periodic-pattern probes
that induce rule-following over feature-use in some cases.

Mechanisms: ICL as implicit optimization/Bayesian inference: Theoretical accounts link ICL
to Bayesian inference or implicit gradient descent under pretraining distributions and architecture
constraints (Bai et al., 2023; Garg et al., 2022; Dai et al., 2022; Akyürek et al., 2022). Follow-ups
caution that such mechanisms do not necessarily translate to larger models trained on naturalistic
data (Shen et al., 2023; Raventós et al., 2023), aligning with our observations on medium-sized LMs.

3 METHODS

3.1 TASK: 2-D LINEAR CLASSIFICATION

We considered a 2-D linear classification task with single-token inputs and outputs, adapted from
previous work (Agarwal et al., 2024) (Fig. 1A), which showed meaningful performance improve-
ments in the “many-shots” regime (i.e. hundreds to thousands). Concretely, each instance of the
task defined a linear decision boundary over ordered integer pairs x = (n1, n2), with n1, n2 ∈
{0, . . . , 99}. Models had to map inputs to one of two labels (e.g., “ Baz”/“ Rud”). The task was
parameterized by a single parameter θ ∈ [0, 180◦], the angle of the ground-truth decision boundary
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relative to the first feature n1 (Fig. 1A). Note that all versions of this task had a balanced dataset,
i.e., the same number of examples for each class, at every shot count.

Figure 1: Decision boundaries for ICL and SFT on a 2-D linear classification task. A: Descrip-
tion of the 2-D linear classification task: the inputs are two integers (n1, n2) ∈ N2, n1, n2 < 100
and the outputs are two classes with semantically unrelated labels “ Baz” and “ Rud”. The model
was trained on this task either using ICL or SFT. B: Two example trajectories (one for ICL, one
for SFT) on the same instantiation of the task (same training set and ordering of examples at each
shot. For 0, 1, 10 and 200 shots per class, the probability associated with the logit of class 1 for all
100x100 possible inputs in the task. The probabilities are normalized for decision making such that
p(class 1)+ p(class 2) = 1. The black line denotes the ground-truth decision boundary (θ = 30◦).
Black squares indicated the examples present in-context (ICL) or in the training set (SFT). C-F:
Evolution of the accuracy (C), smoothness (D), confidence (E) and training accuracy (F) for the two
learning trajectories shown in B, as a function of the number of shots per class. The smoothness is
defined as (1 - the fraction of model outputs that have 2 or more neighbors of the opposite class).

3.2 SEMANTICALLY UNRELATED LABELS

To minimize verbalizer priors, we avoided common placeholders (“Foo”/“Bar”) and selected label
tokens that were single-token under most open-source tokenizers and less frequent in pretraining
corpora (“ Baz”/“ Rud”, see Supp. Fig. 18 for other label choices).
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3.3 MODELS

Our primary model was Llama3-8B (Dubey et al., 2024) (Fig. 1,2&3). We replicated key ex-
periments across different model families and sizes: Qwen3-8B (Qwen, 2025), Gemma3-12B
and 27B (Kamath et al., 2025), Qwen3-0.6B,1.7B,4B, as well as gpt-oss-20B (OpenAI, 2025)
(Fig. 4&Supp. Fig. 8).

3.4 PROTOCOLS: ICL AND SFT

ICL: Prompts contained K randomly sampled exemplars per class (“K shots/class”) drawn with-
out replacement from a pre-generated training pool, followed by a single query (Fig. 1A). We study
the same ordered stream of examples across shot counts to form learning trajectories. When ana-
lyzing ordering effects, we either generate new pre-generated training pools (Fig. 2A-H), impose
periodic patterns (Fig. 2I-L) or shuffle in-context ordering as controls (Fig. 6).

SFT: We trained on the same cumulative dataset and ordering as ICL at each shot count. Unlike
ICL, which does not have explicit hyperparameters, we had to choose several hyperparameters for
the fine-tuning. Unless specified, we used the AdamW optimizer with a cosine learning rate sched-
ule. We report hyperparameters and stability analyses in Appendix (see Supp. Fig. 7 for additional
details).

On the term “learning dynamics”: For ICL, different “shots” correspond to independent prompts
with progressively more examples; there are no weight updates. We use learning dynamics as a
convenient shorthand for performance and representation changes as the in-context dataset grows.
In SFT, shots per class index the same cumulative dataset used for training, though the base model
is trained from scratch for every shot count on the relevant training examples. We believe this is a
useful abuse of notation as it enables us to compare ICL and SFT as two learning algorithms.

3.5 METRICS

For each learning trajectory, we tracked: (i) the accuracy on all 100x100 possible inputs to the task;
(ii) smoothness, defined as 1 minus the fraction of grid points whose predicted class disagrees with
at least two of their four neighbors, (iii) confidence, measured as the maximum softmax probability,
and (iv) inferred angle, obtained by fitting a linear classifier to the model’s predicted labels on the
grid.

3.6 REPRESENTATIONAL SIMILARITY ANALYSIS (RSA)

We computed cosine-similarity matrices of last-query-token activations across (i) all prompts along
each trajectory and (ii) a mixed set of training and randomly sampled test inputs (Kriegeskorte et al.,
2008). The activations were collected after the MLP at every layer in Llama3-8B (32 layers). We
summarized layer-wise patterns and compare ICL vs SFT at matched shot counts.

4 RESULTS

We compared how medium-sized pretrained language models (LMs) learned a novel task either
in-context (ICL) or via supervised fine-tuning (SFT), matching the two procedures on the same
training items, order, and shot counts in a 2-D linear classification task. We analyzed generalization
performance across shots and task instances, in tandem with layer-wise representational similarity
analysis (RSA) to unveil differences in representations and inductive biases.

4.1 SIMILAR GENERALIZATION PERFORMANCE WITH DIFFERENT INDUCTIVE BIASES

Having defined our 2-D linear classification task (Methods & Fig. 1A), we first verified that Llama3-
8B could solve this task both with ICL and with SFT (Fig. 1B). Under matched data and training
examples ordering, held-out accuracy was similar across learning trajectories, with similar speeds
of learning (Fig. 1C). Both approaches also achieved near-perfect training accuracy throughout the
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learning trajectory (Fig. 1F). However, SFT consistently yielded higher confidence than ICL at com-
parable shots (Fig. 1E), suggesting stronger alignment of logits with the task labels. We also verified
that the ICL behaviour was robust across seeds and in-context shuffling of examples (Fig. 6).

The decision fields revealed qualitative differences in inductive biases (Fig. 1B). Especially for few
shots, ICL showed (i) a “previously-seen feature value bias”, extrapolating along rows/columns that
reuse values shown in-context, and (ii) a “comparison bias” that favors decision boundaries near
the diagonal (θ ≈ 45◦), consistent with “which number is larger?” heuristics (Fig. 1B, 1 and 10
shots/class). These biases remained detectable even when global accuracy had converged (Fig. 1B,
200 shots/class).

4.2 QUANTIFYING INDUCTIVE BIASES BY VARYING TASK ANGLE

To expose the inductive biases observed in Fig. 1 more quantitatively, we compared model perfor-
mance across learning trajectories for several task angles θ. In principle, all these task instances
were of similar difficulty. However, we hypothesized that the “previously seen feature value bias”,
which induced row and column generalization (considering the task representation introduced in
Fig. 1), would translate into better performance for θ = 0◦ and θ = 90◦, which are aligned with
these generalization patterns, compared to other task angles. Conversely, the “comparison bias”
suggested θ = 45◦ as another favored angle. Both predictions were verified when comparing model
performance across seeds for ICL (Fig.2A,B,D). Moreover, when inferring the optimal linear clas-
sifier from the model output (Fig.2C), we observed an overestimation (resp. underestimation) of the
inferred task angle for θ = 30◦ (resp. θ = 60◦), consistent with a diagonal pull from the comparison
bias. This could already be seen from the fine-grained generalization behaviour shown in Fig. 1B.
SFT was not bias-free either under this probing with various task angles (Fig. 2E-H), and displayed
increased performance for the “easier” angles (similarly to ICL, θ = 0◦, θ = 45◦, θ = 90◦), but not
as strong a diagonal pull as ICL (Fig. 2G,H).

4.3 ORDERING EFFECTS AND PATTERN-INDUCED RULE FOLLOWING

We noticed that the ordering of the training examples had an effect in ICL if there was a pattern,
i.e. a period, in the ordering of the labels. For instance, always showing a class 1 example before a
class 2 example prompted the model to output that all following queries were of class 1, irrespective
of their features—including those provided in context to be of the other class. In this case, the model
ignored the input feature values and instead followed the logic of pattern matching, and not the one
of linear classification (Fig. 2I,J). This behaviour was consistent across all 10 randomly-sampled,
balanced learning trajectories.

However, longer-period patterns (e.g., “12121221”) exerted smaller or no detectable influence on
held-out accuracy compared to the random case, suggesting a short-horizon sensitivity to label in-
terleaving (Fig. 2I,K,L). It thus appeared that LMs could implement not only fixed ICL rules, but
select among algorithms in-context, such as pattern-matching, previously-seen feature generaliza-
tion, number comparison and linear classification. This finding confirms what had been proposed
previously in a more theoretical setting (Bai et al., 2023), and such strong rule-based generalization
patterns match previous empirical reports in medium-size transformers (Chan et al., 2022b).

4.4 INTERNAL REPRESENTATIONS: SFT COLLAPSES REPRESENTATIONS ALONG LABEL
AXES, ICL PRESERVES STRUCTURE

We wondered whether the differences in inductive biases observed above for ICL and SFT translated
to differences in the internal representations of the model. For each of the 10,000 task inputs, we
extracted the activities at each layer of the model for several shot values along the same trajectory for
SFT or ICL. We then computed the cosine similarity between layer-wise activations of all inputs by
the model for all layers to obtain representational similarity matrices (Kriegeskorte et al., 2008). At
200 shots/class, with both ICL and SFT achieving similar training and generalization performance,
substantial differences could be seen in the model representations between ICL and SFT. Although
the representations in early layers were similar (Fig. 3A,B), by the middle layers, SFT had elicited
what appeared to be a collapse of the representations alongside the task labels (Fig. 3B). In other
words, the activations clustered in two opposite directions, one for class 1 and the other for class
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Figure 2: Quantifying inductive biases. A: Model decision boundary after 200 shots/class with
ICL (Llama3-8B) on four task angles (0◦, 45◦, 60◦ and 90◦). B: Evolution of the accuracy across
shots/class for different task angles (mean and standard deviation, computed across 20 seeds per
task angle). C: Evolution of the angle of the optimal linear classifier angle inferred from model
outputs (mean and standard deviation, computed across 20 seeds per task angle) D: Accuracy for 200
shots/class (mean and standard deviation, computed across 20 seeds per task angle) for different task
angles. E-H: Same as A-D but for SFT (Llama3-8B). I: During ICL learning trajectories, ordering
the examples in-context with a pattern. The training sets are still balanced. “12” corresponds to the
strict alternation of class 1 and class 2 examples provided in-context. More complicated sequences
with longer periods are also considered (e.g. “12121221” of length 8). Visualization of the model
output for all 10,000 task inputs, as in A and B, but for periodic orderings of different period lengths
(“12”, “1221”, “121221” and “12121221”) J-L: Evolution of the accuracy across shots/class for
different periodic orderings (mean and standard deviation computed over 10 trajectories).

2 examples. In contrast, ICL maintained more varied input-specific representations throughout all
layers (Fig. 3A).

We also investigated the evolution of the representations in one layer for increasing numbers of
shots (Fig. 3E). A major difference beyond the representation collapse already observed above was
the representation of task examples from the training set. For ICL, examples present in the training
set elicited noticeably more similar representations, regardless of their class, than test examples or
the same class (Fig. 3E). This was the case for all training examples, irrespective of their ordering
in-context, both for 10 shots and 200 shots.

When analyzing the training dynamics of SFT for one fixed shot count (Supp. Fig. 12), it appeared
that the observed collapse for SFT was tied to performance and not only a consequence of over-
training, though the collapse appeared to increase with training, even after reaching a performance
plateau. Finetuning with low-rank adaptation (LoRa, Hu et al. (2022)) mitigated the observed col-
lapse, though the RSA matrix remained much more similar to SFT than to ICL (Fig. 3C). Finally,
freezing the unembedding matrix during SFT did not eliminate the collapse, suggesting that said
collapse was linked to task performance (Fig. 3D).
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Overall, it appeared that despite reaching similar training and generalization performance on our
controlled 2-D linear classification task, ICL and SFT did so with markedly different inductive
biases and internal representations.

Figure 3: Representations during ICL and SFT learning trajectories. A: Top: Representation
similarity analysis (RSA) performed on the model activities at different layers. Cosine similarity
were computed between last token activities on all 200 shots/class prompts (10,000x10,000 matrix).
For each transformer layer, the histogram of the RSA matrices is plotted. Bottom: Corresponding
RSA matrix for layer 20, used to compute one row in the plot above. Only 400 inputs are compared,
those part of the training set (in the context for ICL, or training examples for SFT), supplemented by
randomly selected test inputs, sorted by labels. These plots were computed for Llama3-8B trained
with ICL. B: Same as A, but for Llama3-8B trained with SFT (see Section A.3, ”vanilla SFT”) C:
Same as A, but for Llama3-8B but finetuning using low-rank adaptation (LoRa, Hu et al. (2022)).
The analysis was otherwise identical, more in Section A.3. D: Same as A, but with the weights
of the unembedding matrix frozen. The training method, hyperparameter values and analysis were
otherwise identical. E: RSA on one model layer during an ICL and an SFT learning trajectory.
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4.5 GENERALIZATION ACROSS MODELS AND TASK VARIANTS

Replaying an identical ICL or SFT trajectory across other LMs—Qwen3-8B (Qwen, 2025) and
Gemma3-12B/27B (Kamath et al., 2025)—revealed model-specific results (Fig. 4A,B,F,G), with
several newer and larger models under-performing Llama-3-8B in terms of generalization perfor-
mance and data efficiency. Nevertheless, the row/column and diagonal generalization patterns (“pre-
viously seen feature value bias” and “comparison bias”, Fig. 1&2) were qualitatively conserved
across models, especially in the few-shots case, indicating that the bias types reported above were
not idiosyncratic to Llama3-8B (Fig. 4A,B,F,G). We also found representational collapse for SFT
but not for ICL with Qwen3-8B (Fig. 4C,D). Once again, LoRa attenuated the collapse (Fig. 4E).

Figure 4: Extension to other models. A,B: Same trajectory with θ = 30◦ (exact same ordering of
training examples) for Qwen3-8B, trained either with ICL (A) or SFT (B). From left to right: ac-
curacy computed on all 10,000 possible inputs for the task as a function of the number of shots per
class; visualization of the decision boundary of the model for increasing number of shots: probability
associated with the logit of class 1 for all possible task inputs (same as in Fig. 1B). The probabilities
are normalized for decision making such that p(class 1) + p(class 2) = 1. Black squares indi-
cated the examples present in-context (ICL) or in the training set (SFT). C-E: Same visualization
as Fig. 3A-C, but for Qwen3-8B; Top: Representation similarity analysis (RSA) performed on the
model activities at different layers. Cosine similarity were computed between last token activities
on all 200 shots/class prompts (10,000x10,000 matrix). For each transformer layer, the histogram of
the RSA matrices is plotted. Bottom: Corresponding RSA matrix for layer 20, used to compute one
row in the plot above. Only 400 inputs are compared, those part of the training set (in the context
for ICL, or training examples for SFT), supplemented by randomly selected test inputs, sorted by
labels. F,G: Gemma3-12B and Gemma3-27B trained with ICL on the same trajectory as A and B.

In addition, we devised a semantic version of the 2-D linear classification task by replacing integers
with valence-ordered adjectives (e.g. Abysmal, Appalling, . . . Subpar . . . Decent . . . Great . . .
Amazing, Fig. 5A). Performance still improved with shots, yet learning was overall much slower
than in the numeric version (Fig. 5B,C and Supp. Fig. 9). Moreover, the comparison bias (θ = 45◦)
and previously seen feature bias were present, albeit weaker (Fig. 5C). This suggested that lexical
priors interacted differently with the task geometry when the input manifold was semantic rather
than numeric, but trends observed in the toy task overall held.

Finally, we trialed a non-linear version of the 2-D classification task, by performing an XOR op-
eration on two linear tasks with 90◦ angle difference. Once again, we found that the trends from
the linear task held, though learning was overall slower and task angles made less of a difference
(Fig. 5E,F).
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Figure 5: Extension to other tasks. A: Llama3-8B in a semantic version of the 2-D linear classifica-
tion task, in which integers were swapped for adjectives ordered by valence. B: Accuracy during ICL
computed over all 10,000 possible task inputs as a function of the number of shots per class (mean
and standard deviation, computed over 10 example orderings), for different instances of the task (task
angle θ). C: Visualization of the decision boundary of the model for ICL for increasing number of
shots: probability associated with the logit of class 1 for all possible task inputs (same as in Fig. 1B).
The probabilities are normalized for decision making such that p(class 1) + p(class 2) = 1. Black
squares indicated the examples present in-context. D: Non-linear 2D classification task, Llama3-8B:
Visualization of ground truth labels of the task, red is class 1 and blue class 2, for θ = 30◦. More
details on the non-linear task in Section A.5. E: Evolution of the accuracy across shots/class for
different task angles (mean and standard deviation, computed across 5 seeds per task angle) for ICL.
F: Same as C for Llama3-8B ICL on the non-linear task.

5 DISCUSSION

In this work, we consider ICL and SFT as two learning algorithms and compare them on a controlled
2-D linear classification task with matched data and training example ordering. We observe that
although the two strategies reach similar training and generalization performance, they do so with
different inductive biases (Fig.1&2). In particular, ICL exhibits stronger priors on solving tasks
likely inherited from pretraining, such as pattern-matching and number comparison, which affects
its generalization patterns and performance. These biases on our synthetic task can be connected
to documented behaviors in open-domain LMs, such as familiarity/retrieval—for instance through
induction heads Olsson et al. (2022)— and magnitude-comparison heuristics Srivastava et al. (2023);
Nikankin et al. (2024); Shah et al. (2023). SFT is not unbiased either, though the motifs were a bit
harder to pinpoint with our chosen task. That SFT has biases too is not a surprise, if anything
because it acts on the same base model and its priors. Though we observe these pretraining priors
may be weakened or altered by SFT.

Conversely, at the level of the model’s internal representations, ICL maintains richer, input-specific
structure across layers, while SFT rapidly aligns internal states along label-separating directions
(representational collapse), yielding higher confidence but reduced structural diversity (Fig.3&4).
This was conserved across models and finetuning strategies (though specific methods such as LoRa
appeared able to limit collapse), indicating that the observed representation collapse is a feature
of SFT and not an artifact of our model choice or the exact SFT strategy used. These differences
of representations, also seen in other tasks Doimo et al. (2024), may explain the observed angle-
dependent accuracy and ordering susceptibility (Fig.2), and echo broader reports of SFT-induced
specialization (and OOD fragility) (Lampinen et al., 2025; Chan et al., 2022b; Mosbach et al., 2023;
Yin et al., 2024). We also predict that SFT may hinder transfer learning for similar reasons.

Our results are most consistent with ICL performing task-conditioned inference using priors from
pretraining (consistent with Bayesian/implicit-optimizer views), rather than implementing literal
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gradient descent in medium-sized LMs. These findings challenge previous work in simplified set-
tings (Von Oswald et al., 2023; Akyürek et al., 2022), and are in agreement with other reports in
more realistic settings (Shen et al., 2023; Raventós et al., 2023).

The fact that inductive biases such as the comparison bias (θ = 45◦) were conserved across models
and tasks during ICL (Fig. 4&5) suggests that at least parts of the ICL learning algorithm reflect more
general natural language data properties rather than a model’s specific architecture or idiosyncrasies
of training. Such data properties have been shown to drive the emergence of ICL itself during
pretraining Chan et al. (2022a).

Limitations

Scope of tasks: We focus on a single family of geometry-controlled 2-D classification tasks. While
this isolates inductive biases and representations, it may not capture the complexities of hierarchical
or multi-stage reasoning. Extending to more real-world in-context learning tasks would test the
generality of our conclusions.

Compute and model coverage: The experiments were centered on medium-sized LMs. Scaling
the ICL vs. SFT comparisons to larger models is an important next step.

Hyperparameter breadth: Though we performed several sweeps on SFT hyperparameters to in-
vestigate their influence on task performance (Supp. Fig. 7,12,13, 14, 15,16&19), we cannot claim
to have exhaustively investigated their influence on the model’s inductive biases and representa-
tions. For instance, we have not exhaustively probed regularizers (e.g. weight decay schedules) or
early-stopping/calibration strategies that could mitigate representational collapse.

Prompt design and ordering controls: Our ordering probes use synthetic periodic sequences.
While they reveal strong short-horizon effects, broader prompt-engineering and selection strategies
may alter the task-inference observed here, though systematically mapping this design space is be-
yond our scope.

Representation readout: RSA was performed on last-token activations. Alternative choices might
reveal additional structure. Importantly, we only presented correlational evidence between differ-
ences in representations and differences in inductive biases, making causal manipulations an impor-
tant follow-up.

10
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