COMPARING THE LEARNING DYNAMICS OF IN-CONTEXT LEARNING AND FINE-TUNING IN LANGUAGE MODELS

Anonymous authorsPaper under double-blind review

ABSTRACT

Pretrained language models can acquire novel tasks either through in-context learning (ICL)—adapting behavior via activations without weight updates—or through supervised fine-tuning (SFT), where parameters are explicitly updated. Prior work has reported differences in their generalization performance and inductive biases, but the origins of these differences remain poorly understood. In this work, we treat ICL and SFT as distinct learning algorithms and directly compare the learning dynamics they induce across medium-sized models, analyzing both the evolution of their inductive biases and the underlying internal representations. We find that ICL preserves rich input representations but imposes stronger priors inherited from pretraining, whereas SFT suppresses task-irrelevant features—potentially explaining its weaker generalization in few-shot regimes. These results highlight a mechanistic distinction between context-driven and weight-driven learning.

1 Introduction

Large language models (LLMs) can acquire new tasks either in context (ICL), for instance by providing example—label pairs at inference time with no weight updates (Brown et al., 2020; Liu et al., 2023), or via supervised fine-tuning (SFT), by changing model parameters typically with gradient-based updates on labeled data (Vieira et al., 2024). While both learning strategies can achieve good performance (Agarwal et al., 2024), mounting evidence indicates they differ in inductive biases, order sensitivity, and out-of-distribution (OOD) behavior, with ICL sometimes generalizing more robustly than SFT even when trained on the same data (Chan et al., 2022b; Lampinen et al., 2025; Akyürek et al., 2022). Understanding how these divergences arise has been difficult in naturalistic settings where task semantics, priors, and data geometry are hard to control.

Here, we treat ICL and SFT as two distinct *learning algorithms*, and compare the learning dynamics they elicit in medium-sized pretrained transformers (Vaswani et al., 2017) ($\geq 8B$ parameters) on a minimal, 2-D linear classification task with semantically unrelated labels (Wei et al., 2023; Agarwal et al., 2024; Min et al., 2022). This setting minimizes confounds from linguistic priors or label semantics present in open-domain tasks, and enables precise control over the task geometry (decision boundary angle), shot count and example ordering, which we use to unveil the generalization strategies at play. We compare ICL and SFT on the same task instance and ordering of examples, and track accuracy, smoothness, confidence, inferred boundary angle, and layer-wise representational similarity analysis (RSA). Despite both ICL and SFT reaching similar held-out accuracy, we find that ICL exhibits stronger pretraining-inherited priors compared to SFT, biasing the generalization patterns towards specific computations such as number comparison and pattern matching of in-context labels' ordering. Moreover, ICL preserves a rich representations of inputs, whereas SFT suppresses task-irrelevant features and exhibits representation compression/collapse aligned with task labels. These differences manifest in task-angle-dependent generalization, ordering effects, and distinct representational geometries across layers.

Our main contributions are:

- Controlled, head-to-head comparison of ICL vs SFT across matched trajectories, which
 reveals different inductive biases that manifest in task instance sensitivity, order effects,
 and confidence profiles.
- Representational analysis of models' internal representation showing that SFT representations collapse by label, while ICL largely maintains input structure across layers.
- Bridging theory and practice: we connect empirical patterns to views of ICL as implicit optimization/Bayesian inference (Von Oswald et al., 2023; Garg et al., 2022; Dai et al., 2022; Zhang et al., 2024) and to recent reports of ICL's superior generalization compared to SFT (Akyürek et al., 2022; Bai et al., 2023; Lampinen et al., 2025; Chan et al., 2022b).

Together, these results provide a mechanistic view into the differences between context-driven and weight-driven learning.

2 Related work

Many-shot ICL: LMs can learn high-dimensional numeric functions and semantic tasks directly from long in-context sequences, with performance continuing to improve well beyond few shots (Agarwal et al., 2024; Anil et al., 2024). Here we unpack the scalar performance metrics in one such task to obtain more fine-grained generalization patterns, unveil inductive biases of ICL and compare them to SFT.

ICL vs SFT generalization: Many studies have compared the efficiency and generalizability of SFT and ICL. Previous work showed that ICL can out-generalize SFT on a range of tasks, and identified regimes where SFT recovers similar performance through augmentation and regularization (Lampinen et al., 2025). ICL exhibits superior generalization performance on tasks containing implicit patterns, even when providing more data for SFT (Yin et al., 2024), while other studies report better generalization for SFT over ICL in other tasks (Mosbach et al., 2023), suggesting a more nuanced picture. In this work, we compare ICL and SFT across a learning trajectory and correlate the observed differences with the internal representation elicited by ICL and SFT.

Representations under SFT and/or ICL: SFT is known to compress representations towards task-relevant directions (Kumar et al., 2022). Previous work compared the representations for ICL vs SFT in a semantic-heavy task (MMLU), and reported that SFT elicited more task-aligned representations than ICL (Doimo et al., 2024). However, they did not unpack learning dynamics, i.e., the influence of the progression of in-context examples.

Ordering and selection effects in ICL: Demonstration order strongly affects ICL, with early/last examples disproportionately influential; mitigations include representative/active selection and calibration (Zhang et al., 2022; Yang et al., 2023). We extend these findings with periodic-pattern probes that induce rule-following over feature-use in some cases.

Mechanisms: ICL as implicit optimization/Bayesian inference: Theoretical accounts link ICL to Bayesian inference or implicit gradient descent under pretraining distributions and architecture constraints (Bai et al., 2023; Garg et al., 2022; Dai et al., 2022; Akyürek et al., 2022). Follow-ups caution that such mechanisms do not necessarily translate to larger models trained on naturalistic data (Shen et al., 2023; Raventós et al., 2023), aligning with our observations on medium-sized LMs.

3 METHODS

3.1 TASK: 2-D LINEAR CLASSIFICATION

We considered a 2-D linear classification task with single-token inputs and outputs, adapted from previous work (Agarwal et al., 2024) (Fig. 1A), which showed meaningful performance improvements in the "many-shots" regime (i.e. hundreds to thousands). Concretely, each instance of the task defined a linear decision boundary over ordered integer pairs $\mathbf{x} = (n_1, n_2)$, with $n_1, n_2 \in \{0, \dots, 99\}$. Models had to map inputs to one of two labels (e.g., "_Baz"/"_Rud"). The task was parameterized by a single parameter $\theta \in [0, 180^{\circ}]$, the angle of the ground-truth decision boundary

relative to the first feature n_1 (Fig. 1A). Note that all versions of this task had a balanced dataset, i.e., the same number of examples for each class, at every shot count.

Figure 1: **Decision boundaries for ICL and SFT on a 2-D linear classification task.** A: Description of the 2-D linear classification task: the inputs are two integers $(n_1, n_2) \in \mathbb{N}^2, n_1, n_2 < 100$ and the outputs are two classes with semantically unrelated labels "_Baz" and "_Rud". The model was trained on this task either using ICL or SFT. B: Two example trajectories (one for ICL, one for SFT) on the same instantiation of the task (same training set and ordering of examples at each shot. For 0, 1, 10 and 200 shots per class, the probability associated with the logit of class 1 for all 100x100 possible inputs in the task. The probabilities are normalized for decision making such that $p(class\ 1) + p(class\ 2) = 1$. The black line denotes the ground-truth decision boundary $(\theta = 30^\circ)$. Black squares indicated the examples present in-context (ICL) or in the training set (SFT). C: From left to right, evolution of the accuracy, smoothness, confidence and training accuracy for the two learning trajectories shown in B, as a function of the number of shots per class. The smoothness is defined as (1 - the fraction of model outputs that have 2 or more neighbors of the opposite class).

3.2 SEMANTICALLY UNRELATED LABELS

To minimize verbalizer priors, we avoided common placeholders ("Foo"/"Bar") and selected label tokens that were single-token under most open-source tokenizers and less frequent in pretraining corpora ("_Baz"/"_Rud").

3.3 Models

Our primary model was Llama-3-8B (Dubey et al., 2024) (Fig. 1,2&3). We replicated key experiments across different model families and sizes: Qwen-3-8B (Qwen, 2025), Gemma-3-12B and 27B (Kamath et al., 2025), as well as gpt-oss-20B (OpenAI, 2025) (Fig. 4&Supp. Fig. 7).

3.4 PROTOCOLS: ICL AND SFT

ICL: Prompts contained K randomly sampled exemplars per class ("K shots/class") drawn without replacement from a pre-generated training pool, followed by a single query (Fig. 1A). We study the same ordered stream of examples across shot counts to form learning trajectories. When analyzing ordering effects, we either generate new pre-generated training pools (Fig. 2A,B), impose periodic patterns (Fig. 2C) or shuffle in-context ordering as controls (Fig. 5).

SFT: We trained on the same cumulative dataset and ordering as ICL at each shot count. Unlike ICL, which does not have explicit hyperparameters, we had to choose several hyperparameters for the fine-tuning. Unless specified, we used the AdamW optimizer with a cosine learning rate schedule. We report hyperparameters and stability analyses in Appendix (see Supp. Fig. 6 for additional details).

On the term "learning dynamics": For ICL, different "shots" correspond to independent prompts with progressively more examples; there are no weight updates. We use *learning dynamics* as a convenient shorthand for performance and representation changes as the in-context dataset grows. In SFT, shots per class index the same cumulative dataset used for training, though the base model is trained from scratch for every shot count on the relevant training examples. We believe this is a useful abuse of notation as it enables us to compare ICL and SFT as two *learning algorithms*.

3.5 METRICS

For each learning trajectory, we tracked: (i) the *accuracy* on all 100x100 possible inputs to the task; (ii) *smoothness*, defined as 1 minus the fraction of grid points whose predicted class disagrees with at least two of their four neighbors, (iii) *confidence*, measured as the maximum softmax probability, and (iv) *inferred angle*, obtained by fitting a linear classifier to the model's predicted labels on the grid.

3.6 REPRESENTATIONAL SIMILARITY ANALYSIS (RSA)

We computed cosine-similarity matrices of last-query-token activations across (i) all prompts along each trajectory and (ii) a mixed set of training and randomly sampled test inputs (Kriegeskorte et al., 2008). The activations were collected after the MLP at every layer in Llama3-8B (32 layers). We summarized layer-wise patterns and compare ICL vs SFT at matched shot counts.

4 RESULTS

We compared how medium-sized pretrained language models (LMs) learned a novel task either in-context (ICL) or via supervised fine-tuning (SFT), matching the two procedures on the same training items, order, and shot counts in a 2-D linear classification task. We analyzed generalization performance across shots and task instances, in tandem with layer-wise representational similarity analysis (RSA) to unveil differences in representations and inductive biases.

4.1 Similar generalization performance with different inductive biases

Having defined our 2-D linear classification task (Methods & Fig. 1A), we first verified that Llama3-8B could solve this task both with ICL and with SFT (Fig. 1B). Under matched data and training examples ordering, held-out accuracy was similar across learning trajectories, with similar speeds of learning (Fig. 1C). Both approaches also achieved near-perfect training accuracy throughout the learning trajectory (Fig. 1C). However, SFT consistently yielded higher confidence than ICL at

comparable shots (Fig. 1C), suggesting stronger alignment of logits with the task labels. We also verified that the ICL behaviour was robust across seeds and in-context shuffling of examples (Fig. 5).

The decision fields revealed qualitative differences in inductive biases (Fig. 1B). Especially for few shots, ICL showed (i) a "previously-seen feature value bias", extrapolating along rows/columns that reuse values shown in-context, and (ii) a "comparison bias" that favors decision boundaries near the diagonal ($\theta \approx 45^{\circ}$), consistent with "which number is larger?" heuristics (Fig. 1B, 1 and 10 shots/class). These biases remained detectable even when global accuracy had converged (Fig. 1B, 200 shots/class).

4.2 QUANTIFYING INDUCTIVE BIASES BY VARYING TASK ANGLE

To expose the inductive biases observed in Fig. 1 more quantitatively, we compared model performance across learning trajectories for several task angles θ . In principle, all these task instances were of similar difficulty. However, we hypothesized that the "previously seen feature value bias", which induced row and column generalization (considering the task representation introduced in Fig. 1), would translate into better performance for $\theta=0^\circ$ and $\theta=90^\circ$, which are aligned with these generalization patterns, compared to other task angles. Conversely, the "comparison bias" suggested $\theta=45^\circ$ as another favored angle. Both predictions were verified when comparing model performance across seeds for ICL (Fig.2A). Moreover, when inferring the optimal linear classifier from the model output (Fig.2A), we observed an overestimation (resp. underestimation) of the inferred task angle for $\theta=30^\circ$ (resp. $\theta=60^\circ$), consistent with a diagonal pull from the comparison bias. This could already be seen from the fine-grained generalization behaviour shown in Fig. 1B. SFT was not bias-free either under this probing with various task angles (Fig. 2B), and displayed increased performance for the "easier" angles (similarly to ICL, $\theta=0^\circ$, $\theta=45^\circ$, $\theta=90^\circ$), but not as strong a diagonal pull as ICL (Fig. 2B).

4.3 Ordering effects and pattern-induced rule following

We noticed that the ordering of the training examples had an effect in ICL if there was a pattern, i.e. a period, in the ordering of the labels. For instance, always showing a class 1 example before a class 2 example prompted the model to output that all following queries were of class 1, irrespective of their features—including those provided in context to be of the other class. In this case, the model ignored the input feature values and instead followed the logic of pattern matching, and not the one of linear classification (Fig. 2C). This behaviour was consistent across all 10 randomly-sampled, balanced learning trajectories.

However, longer-period patterns (e.g., "12121221") exerted smaller or no detectable influence on held-out accuracy compared to the random case, suggesting a short-horizon sensitivity to label interleaving (Fig. 2C). It thus appeared that LMs could implement not only fixed ICL rules, but select among algorithms in-context, such as pattern-matching, previously-seen feature generalization, number comparison and linear classification. This finding confirms what had been proposed previously in a more theoretical setting (Bai et al., 2023), and such strong rule-based generalization patterns match previous empirical reports in medium-size transformers (Chan et al., 2022b).

4.4 Internal representations: SFT collapses representations along label axes, ICL preserves structure

We wondered whether the differences in inductive biases observed above for ICL and SFT translated to differences in the internal representations of the model. For each of the 10,000 task inputs, we extracted the activities at each layer of the model for several shot values along the same trajectory for SFT or ICL. We then computed the cosine similarity between layer-wise activations of all inputs by the model for all layers to obtain representational similarity matrices (Kriegeskorte et al., 2008). At 200 shots/class, with both ICL and SFT achieving similar training and generalization performance, substantial differences could be seen in the model representations between ICL and SFT. Although the representations in early layers were similar (Fig. 3A), by the middle layers, SFT had elicited what appeared to be a collapse of the representations alongside the task labels (Fig. 3B). In other words, the activations clustered in two opposite directions, one for class 1 and the other for class

Figure 2: **Quantifying inductive biases.** A: From left to right: (i) model decision boundary after 200 shots/class with ICL on four task angles (0° , 45° , 60° and 90°); (ii) evolution of the accuracy across shots/class for different task angles (mean and standard deviation, computed across 20 seeds per task angle); (iii) evolution of the angle of the optimal linear classifier angle inferred from model outputs (mean and standard deviation, computed across 20 seeds per task angle); (iv) accuracy for 200 shots/class (mean and standard deviation, computed across 20 seeds per task angle) for different task angles. B: Same as A but for SFT. C: During ICL learning trajectories, ordering the examples incontext with a pattern. The training sets are still balanced. "12" corresponds to the strict alternation of class 1 and class 2 examples provided in-context. More complicated sequences with longer periods are also considered (e.g. "12121221" of length 8). From left to right: visualization of the model output for all 10,000 task inputs, as in A and B, but for periodic orderings of different period lengths ("12", "1221", "121221" and "12121221"); Evolution of the accuracy across shots/class for different periodic orderings (mean and standard deviation computed over 10 trajectories).

2 examples. In contrast, ICL maintained more varied input-specific representations throughout all layers (Fig. 3B).

We then investigated the evolution of the representations in one layer for increasing numbers of shots (Fig. 3C). A major difference beyond the representation collapse already observed above was the representation of task examples from the training set. For ICL, examples present in the training set elicited noticeably more similar representations, regardless of their class, than test examples or the same class (Fig. 3C). This was the case for all training examples, irrespective of their ordering in-context, both for 10 shots and 200 shots.

Overall, it appeared that despite reaching similar training and generalization performance on our controlled 2-D linear classification task, ICL and SFT did so with markedly different inductive biases and internal representations.

4.5 GENERALIZATION ACROSS MODELS AND A NON-NUMERIC TASK VARIANT

Replaying an identical ICL trajectory across other LMs—Qwen-3-8B (Qwen, 2025) and Gemma-3-12B/27B (Kamath et al., 2025)—revealed model-specific results (Fig. 4), with several newer and larger models under-performing Llama-3-8B in terms of generalization performance and data efficiency (Fig. 4A-D). Nevertheless, the row/column and diagonal generalization patterns ("previously

Figure 3: **Representations during ICL and SFT learning trajectories.** A: Representation similarity analysis (RSA) performed on the model activities at different layers. Cosine similarity between last token activities on all 200 shots/class prompts (10,000x10,000 matrix). Layer 1, 5, 15 and 32 shown. **B**: Same as A but for SFT. **C**: RSA on one model layer during an ICL and an SFT learning trajectory. Only 400 inputs are compared, those part of the training set (in the context for ICL, or training examples for SFT), supplemented by randomly selected test inputs, sorted by labels.

seen feature value bias" and "comparison bias", Fig. 1&2) were qualitatively conserved across models, especially in the few-shots case, indicating that the bias types reported above were not idiosyncratic to Llama3-8B (Fig. 4A-D).

Finally, we devised a semantic version of the 2-D linear classification task by replacing integers with valence-ordered adjectives (e.g. Abysmal, Appalling, ... Subpar ... Decent ... Great ... Amazing). Performance still improved with shots, yet learning was overall much slower than in the

numeric version (Fig. 4E and Supp. Fig. 8). Moreover, the comparison bias ($\theta = 45^{\circ}$) and previously seen feature bias were present, albeit weaker (Fig. 4E). This suggested that lexical priors interacted differently with the task geometry when the input manifold was semantic rather than numeric, but trends observed in the toy task overall held.

Figure 4: Extension to other models and tasks. A-D: Same trajectory with $\theta = 30^{\circ}$ for 4 language models (exact same ordering of training examples): Llama3-8B (same plots as in Fig. 1B, for comparison), Qwen3-8B, Gemma3-12B and Gemma3-27B. From left to right: accuracy computed on all 10,000 possible inputs for the task as a function of the number of shots per class; visualization of the decision boundary of the model for increasing number of shots: probability associated with the logit of class 1 for all possible task inputs (same as in Fig. 1B). The probabilities are normalized for decision making such that p(class 1) + p(class 2) = 1. Black squares indicated the examples present in-context (ICL) or in the training set (SFT). E: Performance of Llama3-8B in a semantic version of the 2-D linear classification task, in which integers were swapped for adjectives ordered by valence. From left to right: accuracy computed over all 10,000 possible task inputs as a function of the number of shots per class (mean and standard deviation, computed over 10 example orderings), for different instances of the task (task angle θ).

5 DISCUSSION

In this work, we consider ICL and SFT as two learning algorithms and compare them on a controlled 2-D linear classification task with matched data and training example ordering. We observe that although the two strategies reach similar training and generalization performance, they do so with different inductive biases (Fig.1&2). In particular, ICL exhibits stronger priors on solving tasks likely inherited from pretraining, such as pattern-matching and number comparison, which affects its generalization patterns and performance. These biases on our synthetic task can be connected to documented behaviors in open-domain LMs, such as familiarity/retrieval—for instance through induction heads Olsson et al. (2022)—and magnitude-comparison heuristics Srivastava et al. (2023); Nikankin et al. (2024); Shah et al. (2023). SFT is not unbiased either, though the motifs were a bit harder to pinpoint with our chosen task. That SFT has biases too is not a surprise, if anything because it acts on the same base model and its priors. Though we observe these pretraining priors may be weakened or altered by SFT.

Conversely, at the level of the model's internal representations, ICL maintains richer, input-specific structure across layers, while SFT rapidly aligns internal states along label-separating directions, yielding higher confidence but reduced structural diversity (Fig.3). These representational differences, also seen in other tasks Doimo et al. (2024), may explain the observed angle-dependent accuracy and ordering susceptibility (Fig.2), and echo broader reports of SFT-induced specialization (and OOD fragility) (Lampinen et al., 2025; Chan et al., 2022b; Mosbach et al., 2023; Yin et al., 2024). We also predict that SFT may hinder transfer learning for similar reasons.

Our results are most consistent with ICL performing task-conditioned inference using priors from pretraining (consistent with Bayesian/implicit-optimizer views), rather than implementing literal gradient descent in medium-sized LMs. These findings challenge previous work in simplified settings (Von Oswald et al., 2023; Akyürek et al., 2022), and are in agreement with other reports in more realistic settings (Shen et al., 2023; Raventós et al., 2023).

The fact that inductive biases such as the comparison bias ($\theta=45^\circ$) were conserved across models and tasks during ICL (Fig. 4) suggests that at least parts of the ICL learning algorithm reflect more general natural language data properties rather than a model's specific architecture or idiosyncrasies of training. Such data properties have been shown to drive the emergence of ICL itself during pretraining Chan et al. (2022a).

Limitations

Scope of tasks: We focus on a single, geometry-controlled 2-D linear classification task family. While this isolates inductive biases and representations, it may not capture the complexities of hierarchical or multi-stage reasoning. Extending to non-linear boundaries, multi-class settings, and more real-world in-context learning tasks would test the generality of our conclusions.

Compute and model coverage: Fine-tuning experiments were centered on Llama-3-8B. We replayed ICL trajectories on additional models but did not fully re-fine-tune them due to compute limits. Scaling such SFT comparisons across model families and sizes (including very large models) is an important next step.

Hyperparameter breadth: Though we did sweeps on SFT hyperparameters to investigate their influence on task performance (Supp. Fig. 6), we have not systematically investigated their influence on the model's inductive biases and representations. Moreover, we have not exhaustively probed regularizers (e.g. weight decay schedules), parameter-efficient updates (e.g. LoRA/sparse adaptation), or early-stopping/calibration strategies that could mitigate representational collapse.

Prompt design and ordering controls: Our ordering probes use synthetic periodic sequences. While they reveal strong short-horizon effects, broader prompt-engineering and selection strategies may alter the task-inference observed here, though systematically mapping this design space is beyond our scope.

Representation readout: RSA was performed on last-token activations. Alternative choices might reveal additional structure. Importantly, we only presented correlational evidence between differences in representations and differences in inductive biases, making causal manipulations an important follow-up.

REFERENCES

- Rishabh Agarwal, Avi Singh, Lei Zhang, Bernd Bohnet, Luis Rosias, Stephanie Chan, Biao Zhang, Ankesh Anand, Zaheer Abbas, Azade Nova, et al. Many-shot in-context learning. *Advances in neural information processing systems*, 37:76930–76966, 2024.
- Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning algorithm is in-context learning? investigations with linear models. *arXiv preprint arXiv:2211.15661*, 2022.
- Cem Anil, Esin Durmus, Nina Panickssery, Mrinank Sharma, Joe Benton, Sandipan Kundu, Joshua Batson, Meg Tong, Jesse Mu, Daniel Ford, et al. Many-shot jailbreaking. *Advances in neural information processing systems*, 37:129696–129742, 2024.
- Yu Bai, Fan Chen, Huan Wang, Caiming Xiong, and Song Mei. Transformers as statisticians: Provable in-context learning with in-context algorithm selection. *Advances in neural information processing systems*, 36:57125–57211, 2023.
- Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.
- Stephanie Chan, Adam Santoro, Andrew Lampinen, Jane Wang, Aaditya Singh, Pierre Richemond, James McClelland, and Felix Hill. Data distributional properties drive emergent in-context learning in transformers. *Advances in neural information processing systems*, 35:18878–18891, 2022a.
- Stephanie CY Chan, Ishita Dasgupta, Junkyung Kim, Dharshan Kumaran, Andrew K Lampinen, and Felix Hill. Transformers generalize differently from information stored in context vs in weights. arXiv preprint arXiv:2210.05675, 2022b.
- Damai Dai, Yutao Sun, Li Dong, Yaru Hao, Shuming Ma, Zhifang Sui, and Furu Wei. Why can gpt learn in-context? language models implicitly perform gradient descent as meta-optimizers. *arXiv* preprint arXiv:2212.10559, 2022.
- Diego Doimo, Alessandro Serra, Alessio Ansuini, and Alberto Cazzaniga. The representation land-scape of few-shot learning and fine-tuning in large language models. *Advances in neural information processing systems*, 37:18122–18165, 2024.
- Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models. *arXiv e-prints*, pp. arXiv–2407, 2024.
- Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can transformers learn in-context? a case study of simple function classes. *Advances in neural information processing systems*, 35:30583–30598, 2022.
- Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej, Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, et al. Gemma 3 technical report. *arXiv* preprint arXiv:2503.19786, 2025.
- Nikolaus Kriegeskorte, Marieke Mur, and Peter A Bandettini. Representational similarity analysis-connecting the branches of systems neuroscience. *Frontiers in systems neuroscience*, 2:249, 2008.
- Ananya Kumar, Aditi Raghunathan, Robbie Jones, Tengyu Ma, and Percy Liang. Fine-tuning can distort pretrained features and underperform out-of-distribution. *arXiv* preprint *arXiv*:2202.10054, 2022.
- Andrew K. Lampinen, Arslan Chaudhry, Stephanie C. Y. Chan, Cody Wild, Diane Wan, Alex Ku, Jörg Bornschein, Razvan Pascanu, Murray Shanahan, and James L. McClelland. On the generalization of language models from in-context learning and finetuning: a controlled study. *arXiv*, 2025.
- Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig. Pretrain, prompt, and predict: A systematic survey of prompting methods in natural language processing. *ACM computing surveys*, 55(9):1–35, 2023.

- Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi, and Luke Zettlemoyer. Rethinking the role of demonstrations: What makes in-context learning work? *arXiv* preprint arXiv:2202.12837, 2022.
- Marius Mosbach, Tiago Pimentel, Shauli Ravfogel, Dietrich Klakow, and Yanai Elazar. Fewshot fine-tuning vs. in-context learning: A fair comparison and evaluation. *arXiv preprint arXiv:2305.16938*, 2023.
 - Yaniv Nikankin, Anja Reusch, Aaron Mueller, and Yonatan Belinkov. Arithmetic without algorithms: Language models solve math with a bag of heuristics. *arXiv preprint arXiv:2410.21272*, 2024.
 - Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan, Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, et al. In-context learning and induction heads. *arXiv preprint arXiv:2209.11895*, 2022.
 - OpenAI. gpt-oss-120b and gpt-oss-20b model card. arXiv preprint 2508.10925, 2025.
 - Qwen. Qwen3 technical report. arXiv, 2025.

- Allan Raventós, Mansheej Paul, Feng Chen, and Surya Ganguli. Pretraining task diversity and the emergence of non-bayesian in-context learning for regression. *Advances in neural information processing systems*, 36:14228–14246, 2023.
- Raj Shah, Vijay Marupudi, Reba Koenen, Khushi Bhardwaj, and Sashank Varma. Numeric magnitude comparison effects in large language models. *Findings of the Association for Computational Linguistics: ACL 2023*, pp. 6147–6161, 2023.
- Lingfeng Shen, Aayush Mishra, and Daniel Khashabi. Do pretrained transformers learn in-context by gradient descent? *arXiv preprint arXiv:2310.08540*, 2023.
- Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Shoeb, Abubakar Abid, Adam Fisch, Adam R Brown, Adam Santoro, Aditya Gupta, Adri Garriga-Alonso, et al. Beyond the imitation game: Quantifying and extrapolating the capabilities of language models. *Transactions on machine learning research*, 2023.
- Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural information processing systems*, 30, 2017.
- Inacio Vieira, Will Allred, Séamus Lankford, Sheila Castilho, and Andy Way. How much data is enough data? fine-tuning large language models for in-house translation: Performance evaluation across multiple dataset sizes. *arXiv* preprint arXiv:2409.03454, 2024.
- Johannes Von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordvintsev, Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient descent. *International Conference on Machine Learning*, pp. 35151–35174, 2023.
- Jerry Wei, Jason Wei, Yi Tay, Dustin Tran, Albert Webson, Yifeng Lu, Xinyun Chen, Hanxiao Liu, Da Huang, Denny Zhou, et al. Larger language models do in-context learning differently. *arXiv* preprint arXiv:2303.03846, 2023.
- Zhao Yang, Yuanzhe Zhang, Dianbo Sui, Cao Liu, Jun Zhao, and Kang Liu. Representative demonstration selection for in-context learning with two-stage determinantal point process. In *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing*, pp. 5443–5456, 2023.
- Qingyu Yin, Xuzheng He, Luoao Deng, Chak Tou Leong, Fan Wang, Yanzhao Yan, Xiaoyu Shen, and Qiang Zhang. Deeper insights without updates: The power of in-context learning over fine-tuning. arXiv preprint arXiv:2410.04691, 2024.
- Ruiqi Zhang, Spencer Frei, and Peter L Bartlett. Trained transformers learn linear models in-context. *Journal of Machine Learning Research*, 25(49):1–55, 2024.
- Yiming Zhang, Shi Feng, and Chenhao Tan. Active example selection for in-context learning. *arXiv* preprint arXiv:2211.04486, 2022.