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Abstract
Event cameras are innovative sensors that cap-
ture brightness changes as asynchronous events
rather than traditional intensity frames. These
cameras offer substantial advantages over con-
ventional cameras, including high temporal reso-
lution, high dynamic range, and the elimination
of motion blur. However, defocus blur, a com-
mon image quality degradation resulting from
out-of-focus lenses, complicates the challenge of
event-based imaging. Due to the unique imag-
ing mechanism of event cameras, existing focus-
ing algorithms struggle to operate efficiently on
sparse event data. In this work, we propose EvFo-
cus, a novel architecture designed to reconstruct
sharp images from defocus event streams for the
first time. Our work includes the development of
an event-based out-of-focus camera model and
a simulator to generate realistic defocus event
streams for robust training and testing. EvFocus
integrates a temporal information encoder, a blur-
aware two-branch decoder, and a reconstruction
and re-defocus module to effectively learn and
correct defocus blur. Extensive experiments on
both simulated and real-world datasets demon-
strate that EvFocus outperforms existing methods
across varying lighting conditions and blur sizes,
proving its robustness and practical applicability
in event-based defocus imaging.

1. Introduction
Event cameras are innovative sensors that capture bright-
ness changes in the form of asynchronous events rather than
traditional intensity frames. These cameras offer significant
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Figure 1. Reconstructing sharp images from defocus event streams.
Our model reconstructs sharp images that closely approximate the
in-focus results from defocus event streams, effectively mitigating
the impact of defocus blur in event-based imaging.

advantages, such as high temporal resolution, high dynamic
range, and immunity to motion blur, making them particu-
larly useful in scenarios where conventional cameras strug-
gle (Gallego et al., 2020b). The ability to capture precise and
rapid changes in brightness opens new possibilities for im-
age reconstruction applications, particularly in challenging
conditions like low light and high-speed motion (Delbruck
& Lichtsteiner, 2007), where traditional cameras often fail
to deliver clear images.

Recent research increasingly leverages event data to enhance
image and video deblurring, capitalizing on the rich edge
information provided by event streams. Methods like (Jiang
et al., 2020), (Lin et al., 2020), and (Wang et al., 2020)
have successfully integrated event data with RGB image
and video deblurring, leading to notable improvements in
performance. For instance, (Sun et al., 2022) employs a
multi-head attention mechanism to combine event and im-
age data, while (Kim et al., 2022) introduces an exposure
time-based event selection (ETES) module to handle im-
ages with unknown exposure times. Additionally, (Lin et al.,
2022) proposes an autofocus strategy utilizing event streams,
though it struggles with fixed focus scenarios. Meanwhile,
(Teng et al., 2024) develops a method using event accumula-
tion during continuous focus scanning to aid RGB cameras
in predicting sharp, focused images.

However, a major limitation of existing methods is their
inability to effectively address defocus blur, which is a com-
mon and critical issue in many real-world scenarios (see
Fig. 1). Unlike traditional cameras, which benefit from ma-
ture autofocus technology, event cameras lack such mecha-
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nisms and often rely on manual focusing, making defocus a
frequent occurrence in event data. While motion blur is natu-
rally mitigated by the asynchronous nature of event cameras,
defocus blur fundamentally reduces spatial intensity gradi-
ents, resulting in a significant decrease in the number and
quality of generated events. This makes defocus blur par-
ticularly challenging to handle within existing event-based
frameworks, as the temporal dynamics of event streams are
directly affected by the loss of gradient information. Unlike
traditional deblurring techniques for RGB images, where
spatial restoration dominates, the sparsity and continuous
nature of event streams necessitate a temporal-domain ap-
proach to effectively handle defocus blur.

In this paper, we present EvFocus, a novel framework specif-
ically designed to reconstruct sharp images from defocus
event streams. To support this, we first develop a theoretical
model of defocus blur in event cameras and a simulator capa-
ble of generating large-scale, realistic defocus event datasets.
These datasets include event streams, blurred images, sharp
images, and optical flow, covering a wide range of defocus
conditions. Unlike traditional defocus blur datasets, which
primarily focus on spatial restoration, our dataset and ap-
proach emphasize the temporal characteristics of defocus
event streams, bridging the gap between theoretical explo-
ration and practical application. Our framework includes
a temporal information encoder with ConvLSTM layers to
capture and preserve temporal dependencies, and a blur-
aware two-branch decoder that separates blur-specific and
alignment features to ensure precise reconstruction. Addi-
tionally, we design a reconstruction and re-defocus module,
where the aligned feature passes through a Re-defocus mod-
ule and a Reconstruction module. The Re-defocus Image
generated from this process undergoes self-supervised learn-
ing with the blur feature, allowing the model to further
learn defocus blur distribution. Experimental results demon-
strate that our architecture effectively eliminates defocus
blur across different conditions. In summary, the contribu-
tions of this work are:

1) We propose EvFocus, the first network designed to effec-
tively reconstruct sharp images from defocus event streams,
featuring a temporal information encoder, a blur-aware two-
branch decoder, and a reconstruction and re-defocus module
to ensure precise image reconstruction.

2) We explore and model defocus events in event cameras
and develop a simulator to generate realistic defocus event
streams for robust training and evaluation. Additionally,
we introduce a defocus feature learning mechanism that en-
hances the model’s ability to learn defocus blur distribution
through the blur-aware two-branch decoder.

3) Extensive experiments on both simulated and real-world
defocus event data demonstrate the superior performance
of EvFocus, outperforming existing methods across various
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Figure 2. The sampling mechanism of defocus events. When the
lens is out-of-focus, light is focused outside the sensor through the
thin lens model and forms a CoC on the sensor. When the light
change at a single pixel on the sensor reaches the threshold, the
defocus event is generated.

lighting conditions and blur sizes, proving its robustness.

2. Related Work
Traditional Image-based Defocus Deblurring. Defo-
cus deblurring in RGB images follows two main ap-
proaches: defocus map estimation with deconvolution and
deep learning-based methods. Early works (Yi & Eramian,
2016; D’Andrès et al., 2016) estimate defocus maps before
applying deconvolution, while (Xin et al., 2021) introduces
an unsupervised approach with calibrated blur kernels. Deep
learning has significantly improved defocus deblurring, with
methods like (Abuolaim & Brown, 2020; Lee et al., 2021;
Son et al., 2021; Cho et al., 2021a; Ruan et al., 2022) en-
hancing accuracy and efficiency.

For video deblurring, integrating temporal information helps
recover sharp details from multiple frames (Chen et al.,
2018; Pan et al., 2023; Zhu et al., 2022a). However, these
methods rely on intensity-based images and do not address
event-based defocus blur. Unlike existing defocus blur
datasets focused on spatial restoration, we explore the tem-
poral characteristics of defocus-induced event streams, shift-
ing the focus from frame-based deblurring to event-based
reconstruction.

Event-based Reconstruction. Neuromorphic cameras offer
low latency and energy efficiency (Delbruck & Lichtsteiner,
2007; Zhu et al., 2019; 2020). Event-based reconstruction,
which recovers intensity images or video from asynchronous
events, is a core yet challenging application. Event-based re-
construction has evolved from early physics-driven methods
to deep learning. Classical approaches (Cook et al., 2011;
Kim et al., 2008; Bardow et al., 2016) rely on optimization
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Figure 3. Event distribution of real-world (Left) and simulated (Right) data with different degrees of blur. We present the visual effects of
RGB images under different degrees of blur as well as the corresponding events and event distribution statistics.

and filtering to estimate intensity images, while (Munda
et al., 2018; Barua et al., 2016) shows motion-independent
reconstruction feasibility. Deep learning further improves
event-based reconstruction. E2VID (Rebecq et al., 2019)
introduces a recurrent network using voxel grids, while
FireNet (Scheerlinck et al., 2020) achieves faster inference
but struggles with high-speed motion. Improvements like
E2VID+ and FireNet+(Stoffregen et al., 2020) align syn-
thetic and real data, and SPADE-based(Cadena et al., 2021)
and transformer-based (Weng et al., 2021) architectures re-
fine quality. Recent advances, including SNN-based (Zhu
et al., 2022b) and dynamic event reconstruction models (Er-
can et al., 2024), enhance efficiency and adaptability.

Event-based Deblurring. Events have been leveraged to
enhance deblurring by preserving high-temporal-resolution
edges (Jiang et al., 2020; Lin et al., 2020; Wang et al., 2020).
Methods like (Sun et al., 2022) use multi-head attention to
fuse event and image features, while (Kim et al., 2022) pro-
poses an exposure time-based selection module. Autofocus
strategies (Lin et al., 2022) remain limited to fixed-focus
cases, and (Teng et al., 2024) introduces event accumulation
for continuous focus scanning. (Lou et al., 2023) employ
the event focal stack method to assist RGB image refocus-
ing; however, this approach imposes stringent constraints
on data acquisition.

Despite progress, event-based defocus deblurring remains
challenging. Unlike motion blur, which events naturally
mitigate, defocus blur weakens spatial gradients, reducing
event generation and complicating sharp image reconstruc-
tion. Factors like blur kernel size, event firing threshold,
and refractory period further hinder effective modeling. Ad-
dressing this requires a temporal-domain approach to cap-
ture defocus event dynamics, moving beyond conventional
spatial deblurring techniques.

3. Background and Motivation
Event Sampling Mechanism. The sensor of the event cam-
era operates independently at each pixel to detect changes
in light intensity. An event is generated when the light inten-
sity at pixel changes by more than a certain threshold from
the time the last event is recorded (Gallego et al., 2020a).
This can be expressed as:

∆L = log I(t)− log I(t−∆t), (1)

where an event is generated if |∆L| > C, C denotes the
threshold. An event is defined by a quadruplet which con-
tains the event’s timestamp t, the pixel coordinates (x, y),
and the event polarity p.

Event-based Out-of-Focus Camera Model. Suppose that
the k-th event in an event stream is expressed as

Ek = (xk, yk, tk, pk). (2)

At tk, changes in light intensity at the pixel reaches the
threshold C, Eq. 1 can be rewritten as

∆L(xk, yk, tk) = L(xk, yk, tk)− L(xk, yk, tk −∆tk),
(3)

where |∆L(xk, yk, tk)| ≥ C. Conventional images typ-
ically employ the thin lens model to model defocus
blur (Mannan & Langer, 2016). This model presumes that
the thickness of the lens can be ignored, which is beneficial
for simplifying optical ray tracing computations. Through
this model, we can approximate the circle of confusion
(CoC) of the PSF of a given point (Levin et al., 2007) based
on the distance of the point from the lens and the camera
parameters (i.e., focal length, aperture size, and distance).
The model is shown in Fig. 2, where f is the focal length,
s is the object distance, and F is the aperture value. The
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distance between the lens and the sensor s′ and the aperture
diameter q are defined as: s′ = fs

s−f , q = f
F .

The CoC radius r of the scene point P1 at distance d from
the camera is given by:

r =
q

2
× s′

s
× d− s

d
. (4)

Thus, defocused RGB imaging can be modeled as:

Iblur(x, y) =
(
I ∗ h

)
(x,y)

,

Here, I ∗ h represents the convolution operation, where I is
the input image and h is the convolution kernel.

Considering the diffraction of light within the CoC of defo-
cus blur, the light intensity can be approximated as a Gaus-
sian distribution (Gokstorp, 1994; Elder & Zucker, 1998).
This results in blurred edges and degraded image quality
in RGB camera captures. To model event-based defocus
blur, we approximate it using Gaussian blur. The defocused
temporal light intensity difference ∆L′ is defined as:

∆L′(xk, yk, tk) = L′(xk, yk, tk)− L′(xk, yk, tk −∆tk),
(5)

where L′(xk, yk, tk) and L′(xk, yk, tk−∆t) represents
(
L∗

Gtk

)
(xk,yk,tk)

and
(
L ∗Gtk−∆t

)
(xk,yk,tk−∆t)

, respectively.
Here, Gtk represents the Gaussian kernel at time tk, which
approximates the size of the CoC. The blur kernel at (xk, yk)
and timestamp tk can be modeled by a Gaussian distribution
and is expressed as G(x, y) = 1

2πσ2 exp
(
−x2+y2

2σ2

)
.

Distribution of Out-of-Focus Event Streams. As the ob-
ject distance and focal length are continuous variables, and
the time resolution of the event camera is extremely high,
we can assume that G remains unchanged at this moment,
i.e., Gtk(u, v) = Gtk−∆t(u, v). Therefore,

∆L′(xk, yk, tk) =

s∑
u=−s

s∑
v=−s

∆L(u, v) ·G(u, v), (6)

where ∆L(u, v) = L(x+u, y+v, tk)−L(x+u, y+v, tk−
∆t) and s represents the size of the CoC at point (xk, yk).
When a pixel lies at a local strong edge or experiences a
significant local brightness change, events are typically trig-
gered. However, the defocus PSF causes the brightness
peaks to shrink and the valleys to rise, resulting in local
smoothing (defocus averaging). Due to the presence of this
blurring phenomenon, strong brightness changes degrade
into weaker brightness changes, which statistically mani-
fests as a reduction in event triggering and a degradation of
the event distribution into a blurred distribution.

For instance, consider a 3× 3 CoC where only the central
pixel experiences a brightness change that exceeds the event
threshold, while all other pixels do not trigger events. In

this case, under normal focus, the brightness change at the
central pixel (xk, yk) satisfies ∆L(xk, yk, tk) > C.

After defocus, the brightness change is averaged across
the CoC, as described in Eq. 6. Since only the central
pixel contributes a significant brightness change, the defocus
effect reduces the overall brightness change at (xk, yk), and
we have ∆L′(xk, yk, tk) < C. As a result, no events are
triggered due to the “Defocus Averaging”, even though the
original brightness change exceeded the threshold. Thus,
we get ∆L′(xk, yk, tk) ≤ ∆L(xk, yk, tk).

Equality is achieved when all pixels within the blur kernel
exhibit brightness changes with the same polarity, resulting
in no cancellation effects. More generally, when pixels
within the blur kernel exhibit brightness changes of mixed
polarities, the contributions of positive and negative changes
are weighted by the blur kernel G. For instance, if xk emits
a positive event and another point xr within the kernel emits
a negative event with |∆Lxr

| < |∆Lxk
|, then ∆Lxr

< 0
and the weighted contribution ∆L′

xr
> 0 remains within

the overall summation.

From the above, we know that defocus blur causes events
to become sparse (Fig. 3). The smaller the area of the
object generating events, the more significant the effect
of defocus blur on event generation. When events with
both positive and negative polarities are generated within
the blur kernel area, the polarity with smaller brightness
changes is more affected by defocus blur, resulting in either
no event being generated or an event generated with the
opposite polarity. For further analysis, please refer to the
supplementary material.

Out-of-Focus Event Stream Simulation. We develop a
simulator to generate realistic defocus event streams for
robust training and evaluation. In supplementary material,
Alg. 1 presents the simulation of our out-of-focus event
stream. We apply Gaussian blur to the simulated event data
using the Multi-Objects-2D renderer option of ESIM (Re-
becq et al., 2018) where multiple moving objects are cap-
tured with a camera restricted to 2D motion. To simulate
varying levels of defocus in real-world scenarios, we employ
different PSF configurations for each scene. Experimental
results demonstrate that the model trained on synthetic data
achieves effective reconstruction for various defocus levels
observed in real-world scenarios. We use the configuration
of (Stoffregen et al., 2020) to ensure that our data has a sim-
ilar distribution as real-world data. We approximate defocus
blur with multi-levels gaussian filter which is applied when
high temporal resolution frames are rendered.

4. The Proposed Model
Based on previous analysis, unlike traditional image defo-
cus, event defocus also alters the number of events, mak-
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Figure 4. The architecture of EvFocus, includes a Temporal Information Encoder, a Blur-aware Two-branch Decoder for separating
blur and alignment features, and a Reconstruction and Re-Defocus Module that refines defocus blur correction through self-supervised
learning, resulting in precise image reconstruction from defocus event streams.

ing event defocus deblurring and reconstruction a highly
ill-posed problem. In this section, we propose EvFocus,
specifically designed to address the unique challenges posed
by event cameras for deblurring and reconstructing defocus
event streams (see Fig. 4). The model first extracts the tem-
poral feature from the defocus event stream, then introduces
a two-branch decoder and reconstruction and re-defocus
module, enabling robust defocus blur correction and image
reconstruction. The model is structured as follows:

Temporal Information Encoder. The event camera’s asyn-
chronous nature produces sparse event streams rather than
conventional frame-based sequences, making it difficult to
extract meaningful temporal information. Our temporal in-
formation encoder is motivated by the need to capture and re-
tain temporal dependencies in defocus event streams without
losing critical temporal resolution. Similar to E2VID (Re-
becq et al., 2019), we utilize ConvLSTM units to effectively
preserve temporal information over time by maintaining
hidden states.

1) Event Representation. Events are typically processed
and converted into alternative representations to fit the net-
work. In our model, we utilize voxel grid (Zihao Zhu et al.,
2018) as the spatio-temporal representation of event stream.

2) Feature Extraction. To stabilize the feature extraction
process in an asynchronous event data context, we incorpo-
rate ConvLSTM layers. These layers are chosen because

they can selectively forget irrelevant features and remember
important temporal information over multiple time steps,
enhancing the network’s ability to learn and extract useful
spatio-temporal features from the sparse event data.

Each encoder layer consists of a 2D down-sampling convo-
lution and a ConvLSTM (Shi et al., 2015). The 2D down-
sampling convolution has a kernel size of 5 and a stride of 2.
The ConvLSTM has a kernel size of 3, and the number of
input and hidden layers is the same as the down-sampling
convolution. Each encoder maintains a state ski that is up-
dated at each iteration to memorize temporal information.
ConvLSTM can enhance the stability of features by remem-
bering and forgetting previous states. Three consecutive
ConvLSTM blocks can be represented by the equation :

fCL
i , sti = frec

l (fCL
i−1, s

t−1
i ), (7)

where fCL
i denote the feature of ConvLSTM, i ∈ {1, 2, 3}

denotes the current i-th ConvLSTM block, and sti denotes
the state of the i-th ConvLSTM block at time t.

Blur-aware Two-branch Decoder. The blur-aware two-
branch decoder addresses the challenge of separating blur-
specific features from the alignment features necessary for
accurate image reconstruction. The need for two parallel
decoding branches arises from the observation that blur and
alignment features often interfere with each other during re-
construction. By processing them separately, we can ensure
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Figure 5. Qualitative comparison with baseline methods on out-of-focus simulated data.Our reconstruction result has the best quality, is
closest to the sharp ground truth, and restores more details.

that the blur decoder focuses solely on understanding and
correcting defocus blur, while the alignment decoder works
on aligning features correctly for the final sharp image re-
construction. The spatio-temporally encoded features are
processed in parallel through two decoders, namely the blur
feature decoder Dblur and the aligned feature decoder Dalign,
generating the blur feature Fblur and the aligned feature
Falign. Each decoder consists of three decoder blocks, where
each decoder block is composed of bilinear upsampling and
a convolutional block with a kernel size of 5, followed by
ReLU and BN.

The features generated by the blur feature decoder Dblur
undergo a prediction layer and are then used to learn blur
reconstruction with the blur ground truth (blur gt), which
subsequently supervises the redegradation process. The
aligned feature decoder Dalign performs preliminary align-
ment, followed by deblur reconstruction and the redegrada-
tion process. After each decoder block, the Cross-Modal
Fusion (CF) applies ReLU activation to the two features
to assist in extracting alignment features, and then concate-
nates them along the channel dimension. Through the CF
module, information from both parts is combined, enhanc-
ing the features of the alignment decoder module, thus better
focusing on extracting alignment information.

Reconstruction and Re-defocus Module. We design a
self-supervised loss mechanism where the aligned feature
Falign first passes through a Re-defocus module and a Re-
construction module. The Re-defocus module generates a
Re-defocus Image, which is used in self-supervised learning
with the blur feature Fblur, allowing the model to better learn
defocus blur distribution in the Blur-aware Two-branch De-
coder. The aligned feature Falign is then processed by the
Reconstruction module to produce the final clear image
reconstruction under temporal consistency supervision.

Our Reconstruction and Re-defocus Module utilizes
Transformer-based Multi-Head Channel Attention
(MHCA)s (Vaswani, 2017; Zhang et al., 2024). to enhance
defocus blur handling. Transformers are selected for their

ability to focus on critical features over long distances,
addressing the quadratic growth issue of key-query
interactions by applying self-attention across channels and
computing cross-channel covariance for generating the
attention map. Given queries (Q), keys (K), and values (V),
we reshape Q and K such that their dot product generates
a transposed attention map A ∈ RC×C instead of the
traditional RHW×HW . Overall, MHCA can be summarized
as:

X′ = Wp Attention(Q,K,V) +X, (8)

Attention(Q,K,V) = V · softmax
(
K ·Q
α

)
, (9)

where X′ and X are input and output feature maps, Wp

is the 1 × 1 point-wise convolution, and α is a learnable
scaling parameter to control the magnitude of (K·Q) before
applying softmax.

Self-supervised Mechanism We design a self-supervised
loss mechanism. First, the aligned feature Falign passes
through a Re-defocus module and a Reconstruction module.
The Re-defocus module outputs a Re-defocus Image, which
undergoes self-supervised learning with the blur feature
Fblur, allowing the model to further learn the distribution of
defocus blur in the Blur-aware Two-branch Decoder. Finally,
the aligned feature Falign passes through the Reconstruction
module, and under temporal consistency supervision, the
model produces the final clear image reconstruction.

Loss Function. As shown in Fig. 4, we use perceptual
loss (Zhang et al., 2018) and temporal consistency loss (Lai
et al., 2018; Rebecq et al., 2019) to ensure the quality of
reconstruction, and we learn the deblurring process through
L1 loss. The final loss is the sum of the losses:

LK = λ1LR
1
k + λ2LR

2
k + λ3L

TCP
k + λ4L1, (10)

where LTCP
K represents the Temporal Consistency loss, and

LR1
k and LR2

k respectively represent the perceptual loss of
the align feature Falign after prediction supervised by the
sharp ground truth (sharp gt) and the blur feature Fblur after
prediction supervised by the defocus ground truth (blur gt).
λ1,2,3,4 is separately set to 4, 1, 7, 1, respectively.
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Input/event Ref Image Ours ET-Net SPADE-E2VIDE2VID+* E2VID+E2VIDET-Net*

Figure 6. Qualitative comparison on out-of-focus real-world data. Our proposed model achieves better reconstruction results with the
clear edge restored.

Table 1. Quantitative comparison on simulated event data with different defocus degrees.
Metric sharp k=3, σ=1.0 k=5, σ=1.5 k=7, σ=2.0 k=9, σ=2.5 k=11, σ=3.0 Mean

MSE ↓

E2VID 0.084 0.065 0.065 0.071 0.080 0.085 0.075
E2VID+ 0.041 0.044 0.054 0.061 0.065 0.065 0.055

E2VID+* 0.054 0.047 0.047 0.047 0.050 0.052 0.050
ET-Net 0.037 0.037 0.042 0.044 0.047 0.048 0.043
ET-Net* 0.032 0.029 0.027 0.027 0.027 0.028 0.028

Ours 0.030 0.028 0.027 0.026 0.027 0.028 0.027

SSIM ↑

E2VID 0.256 0.234 0.216 0.202 0.190 0.184 0.214
E2VID+ 0.342 0.309 0.282 0.265 0.248 0.237 0.281

E2VID+* 0.497 0.486 0.450 0.417 0.385 0.360 0.433
ET-Net 0.352 0.331 0.305 0.283 0.261 0.247 0.297
ET-Net* 0.425 0.428 0.413 0.392 0.367 0.349 0.396

Ours 0.550 0.525 0.486 0.449 0.413 0.385 0.468

LPIPS ↓

E2VID 0.344 0.361 0.379 0.394 0.406 0.422 0.384
E2VID+ 0.234 0.258 0.279 0.295 0.309 0.316 0.282

E2VID+* 0.173 0.173 0.188 0.200 0.213 0.226 0.196
ET-Net 0.213 0.234 0.254 0.273 0.289 0.303 0.261
ET-Net* 0.151 0.155 0.168 0.180 0.192 0.204 0.175

Ours 0.144 0.146 0.161 0.169 0.182 0.195 0.166

5. Experiment
Experimental Setup. In this section, we compare our
method with mainstream reconstruction techniques both
qualitatively and quantitatively using simulated and real
data. We test our model on simulated data with varying
blur levels to demonstrate its adaptability to different de-
grees of defocus blur, and on real data with varying mo-
tion speeds and different focal planes to show its effective-
ness in handling motion blur and robustness across varying
depth levels. And we visualize the feature in our model
to demonstrate the effectiveness of the model architecture.
Additionally, we perform ablation studies to evaluate the
contribution of each module in our proposed method. 1)
Dataset. As stated in Sec. 2, we generate sequences of
defocus events, sharp images, and optical flows, in which
41 sequences are used in the training set and 6 sequences in
the test set. To verify the effectiveness of our model on real
data, we use the DAVIS 346 cameras to capture 7 real-world

scenes. 2) Implement Details. Our model is implemented
using the PyTorch framework. We adopt a constant strat-
egy of learning rate during training, which is set at 1e-4.
Our model is trained for 300 epochs with batch size of 1
on 3 NVIDIA GeForce RTX 3090 GPUs. 3) Evaluation
metrics. For quantitative evaluation on synthetic data, we
consider three widely-used evaluation metrics: (i) structure
similarity (SSIM) (Wang et al., 2004),(ii) mean squared er-
ror (MSE), and (iii) perceptual similarity (LPIPS) (Zhang
et al., 2018). For quantitative evaluation on real data,we
use two No-Reference Image Quality Assessment metrics:
Brisque (Mittal et al., 2012a) and Niqe (Mittal et al., 2012b).
BRISQUE (Blind/Referenceless Image Spatial Quality Eval-
uator) evaluates natural scene statistics in the spatial domain
without requiring a reference image, while NIQE (Natural
Image Quality Evaluator) computes quality based on devia-
tions from learned statistical regularities of natural images.

Evaluation on Simulated Event Data. 1) Qualitative Re-
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E2VID+ ET-NetE2VID* ET-Net*Events E2VIDOurs

Figure 7. Qualitative comparison with baseline methods on real
data with different speeds. Our proposed model has better results
with sharp details and fewer artifacts.

Table 2. Quantitative comparisons on the real-world data.
Model Brisque↓ Niqe↓

Ours 27.136 6.345
E2VID 30.977 12.505
E2VID+ 38.957 7.986
E2VID+* 34.399 6.877
ET-Net 31.994 7.771
ET-Net* 31.855 6.868

sults. Fig. 5 presents the quantitative results obtained by
evaluating our method and current mainstream methods on
the simulated data sequence generated by us. E2VID+∗ and
ET-Net∗ denote the models are fine-tuned on our dataset.
Among them, the first column represents the reconstruction
results of clear events and sharp ground truth. The other
columns represent different degrees of blur. The larger the
kernel size and the larger the σ, the bigger the blur. Each
row shows the reconstruction result of each method for dif-
ferent blurred events. The last row gives the ground truth
as a reference. As shown in Fig. 6, E2VID (Rebecq et al.,
2019) and E2VID followed by MIMO-UNet or MIMO-
UNet+ (Cho et al., 2021b) have the lowest quality and the
most prominent artifacts and blurs, and are basically unrec-
ognizable. SPADE-E2VID (Cadena et al., 2021) has rela-
tively fewer artifacts, but the degree of blur is still quite large.
E2VID+ (Stoffregen et al., 2020) and ET-Net (Weng et al.,
2021) have relatively less blur than the former. E2VID+
and ET-Net retrained on the defocus synthetic data further
reduce blur and distortion. However, the contrast of E2VID+
and the retrained E2VID+ still has serious distortion. And
our results are also better than all the above results and
are the closest to the image quality of the sharp ground
truth. 2) Quantitative Results. We calculate the average
value of each metric on all frames in different blur degree
groups as in Table 1. The EvFocus method achieves state-
of-the-art performance in all metrics. These results validate
the effectiveness of the proposed EvFocus method, and the
reconstructed images generated by this method are more
perceptually satisfactory and high-fidelity.

Evaluation on Real-world Event Data. 1) Qualitative Re-
sults. We present the qualitative results in Fig. 6, in which
each row represents the reconstruction result of the data
captured in one scene. The first and second columns respec-

Table 3. Ablation study.
Model SSIM↑ MSE↓ LPIPS↓

All Modules 0.604 0.021 0.139
w/o CF 0.603 0.021 0.141
w/o sharp supervision (Falign) 0.577 0.024 0.141
w/o L1 re-defocus supervision 0.403 0.021 0.140
w/o Reconstruction Module 0.601 0.022 0.139

tively represent the Events view and the original APS frame
captured by the camera. Each of the remaining columns
represents the reconstruction result of one method. Fig. 6
shows SPADE-E2VID has the worst effect and the greatest
degree of blur. E2VID can reconstruct basic objects, but
the degree of blur is still quite large. E2VID+ and ET-Net
have better reconstruction, but still remain a lot of artifacts
and blurs. The retrained E2VID+ can eliminate blur to a
certain extent, but high-frequency information such as edges
still cannot be presented well. The retrained ET-Net can
reconstruct high-frequency information to a certain extent.
Compared with the above results, our method has the best
reconstruction quality, and the restoration of details such
as edges is the closest to ground truth. 2) Quantitative
Results. Since the visual results of SPADE-E2VID are poor,
and the image deblurring of MIMO-UNet or MIMO-UNet+
connected after E2VID does not improve the quality of the
reconstructed image, we only conduct quantitative compar-
isons of the remaining methods. Among them, our method
achieves the best performance. We present quantitative re-
sults on real data in Table 2. We omit SPADE-E2VID and
E2VID followed by MIMO-UNet or MIMO-UNet+ due
to poor quantitative scores. Our method achieves the best
results on both Brisque and Niqe metrics.

Ablation Study. To highlight the effectiveness of each
module in our model, we conduct ablation experiments as
shown in Table 3. As illustrated in the table:

1) Effect of sharp supervision to Falign. Removing the
perceptual loss supervised by the sharp ground truth re-
sults in the worst performance in MSE and LPIPS. This
demonstrates that the align decoder plays a crucial role in
the reconstruction and re-degradation process by providing
prior knowledge to align Falign with the followed reconstruc-
tion. 2) Effect of Reconstruction Module. The model
without the reconstruction module also shows worse per-
formance, indicating that the reconstruction module, as the
last module before producing the clear predicted image, im-
proves the quality of the reconstruction results. 3) Effect
of CF. Removing the CF structure leads to a decline in
the model’s performance, proving the effectiveness of our
strategy to enhance aligned features through Cross-Modal
Fusion. 4) Effect of L1 re-defocus supervision. The model
without the L1 loss also shows a noticeable decrease, further
validating the importance of our re-degradation module.

Feature Visualization. We visualize the intermediate fea-
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Figure 8. Feature visualization. We visualize the features input to
the decoder. Taking (a) as an example, the red box indicates a
region with slight defocus, while the blue box shows a region with
severe defocus. Despite similar event densities caused by motion,
the feature map reveals stronger responses in the heavily blurred
area. This demonstrates that our network exhibits varying feature
intensities for blur at different depths, validating the model’s phys-
ical consistency.

tures of our model using real-world data containing scenes
with objects at varying degrees of defocus in Fig. 8. The
results demonstrate that our model can effectively perceive
features across different defocus levels, validating the effec-
tiveness of the model design.

Evaluation on Different Out-of-focus Blur Size. In Fig. 5,
we conduct experiments on the degree of blur that our model
can handle. Through experiments, our model can perform
relatively complete and clear reconstructions for blurred
events with kernel size less than or equal to 7. For blurred
events with kernel size greater than 7, the reconstruction
quality of our model can also be the best.

Evaluation on Different Depth Level. We conduct ex-
periments on scenes with varying depths to validate our
model’s ability to recover texture information at different
focal lengths within the same scene as in Fig. 9. The experi-
mental results demonstrate that our model achieves effective
defocus recovery across different focal settings.

Evaluation on Different Motion Speed. To test the pro-
cessing effect of our model on different blurs, we collect
real event data at different moving speeds for experiments

E2VID+ E2VID+* ETNet ETNet*RGBEvents E2VIDOursScene

focal plane

focal plane

focal plane

(a)

(b)

(c)

Figure 9. Qualitative experiment on different depth levels. We
capture three scenes with distinct depth variations for evaluation.
Our method demonstrates effective deblurring performance across
different depth levels.

(Fig. 7). E2VID has only slight motion blur at low speed, but
does not effectively remove the motion blur at high speed.
The reconstruction result is generally blurry. E2VID+ and
the retrained E2VID+ have better reconstruction quality at
low speed, but cannot effectively remove high-speed motion
blur. ET-Net and the retrained ET-Net have better detail re-
covery at low speed. The retrained ET-Net has less motion
blur at high speeds than ET-Net but still cannot be removed
well. In contrast, our model shows better reconstruction
quality at both high and low speed, and retains the best de-
tails, proving that our method is also superior to the above
methods for the reconstruction of different event densities.

Parameters. We present the parameter size of each model
and inference speed in Table 4. Our model is in the same
order of magnitude as mainstream models such as E2VID
and is lower than ETNet.

Table 4. Comparison on Parameters and Runtime.

Methods Params(M) Inference
Time(ms)

E2VID 10.71 4.41
ETNet 22.18 25.71
SPADE 11.46 12.66
EvFocus (ours) 12.11 24.09

6. Conclusion
We propose EvFocus, a novel framework for reconstructing
sharp images from defocus event streams. It incorporates
a temporal encoder and a blur-aware decoder to effectively
correct defocus blur. Additionally, we develop a defocus
event simulator to generate realistic training data, enabling
robust model performance. Unlike traditional methods fo-
cused on spatial restoration, EvFocus leverages the temporal
characteristics of event streams for improved defocus han-
dling. Experiments on simulated and real-world datasets
show that EvFocus outperforms existing methods, demon-
strating its effectiveness in event-based defocus imaging.
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A. Appendix: Theoretical Framework for Simulation
Our motivation is to explore the temporal characteristics of defocus-induced event streams, which are crucial for understand-
ing the dynamic interactions between motion, scene structure, and defocus effects. Unlike traditional defocus blur datasets,
which primarily focus on the spatial restoration of sharp images from blurred ones, our work emphasizes the generation and
analysis of event streams in the temporal domain. This shift in focus allows us to model and study how defocus blur impacts
the asynchronous nature of event data, capturing fine-grained temporal dynamics that are often overlooked in conventional
datasets. By incorporating motion dynamics and adopting multiple strategies, we aim to simulate real-world scenarios with
greater fidelity and provide new insights into event-based vision under defocus conditions.

A.1. Event Triggering Model and Intensity Dynamics

Event cameras capture temporal intensity changes at a high temporal resolution, generating asynchronous events based on
logarithmic intensity differences. The triggering condition for an event at pixel (x, y) and time t can be formalized as:

E(x, y, t) =


1, if ∆L(x,y,t)

L(x,y,t) ≥ C+,

−1, if ∆L(x,y,t)
L(x,y,t) ≤ C−,

0, otherwise,

(11)

where:

• L(x, y, t) denotes the light intensity at pixel (x, y) at time t,

• ∆L(x, y, t) = L(x, y, t)− L(x, y, t−∆t) represents the temporal change in intensity over a time interval ∆t,

• C+ and C− are predefined positive and negative contrast thresholds, respectively.

The magnitude of ∆L(x, y, t) denotes temporal intensity gradient, which is influenced by two critical factors:

1. The relative motion between the camera and the observed scene, which induces pixel-level intensity shifts in the image
plane.

2. The spatial intensity gradient, ∇L(x, y), representing local intensity variations.

These factors collectively determine the event triggering behavior and the density of the resulting event stream.

A.2. Impact of Blur on Intensity Gradients

Optical blur, such as defocus, attenuates spatial intensity variations by smoothing local intensity gradients, effectively
reducing ∇L(x, y). This smoothing effect can be mathematically represented using a Gaussian blur kernel Gσ , defined as:

Lblur(x, y, t) = Gσ ∗ L(x, y, t), (12)

where Gσ is a Gaussian kernel with standard deviation σ that determines the blur magnitude. Consequently, the blurred
spatial intensity gradient is expressed as:

∇Lblur(x, y, t) = Gσ ∗ ∇L(x, y, t). (13)

As the blur strength (σ) increases:

1. The spatial intensity gradient ∇Lblur(x, y, t) diminishes, leading to a reduced magnitude of temporal intensity changes,
∆L(x, y, t).
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2. The reduction in intensity changes results in fewer events being generated, producing a sparser event stream.

Thus, the relationship between blur and event sparsity forms a fundamental aspect of modeling the effect of optical defocus
on event generation.

A.3. Motion-Induced Intensity Changes

Relative motion between the camera and the scene is another primary source of temporal intensity variation. Let the
motion-induced speed in the image plane be Vp. The temporal change in intensity due to motion can be approximated as:

∆L(x, y, t) ∝ Vp · ∇Lblur(x, y, t), (14)

where:

• Vp is the motion velocity projected onto the image plane,

• ∇Lblur(x, y, t) is the blurred spatial gradient at pixel (x, y).

From this expression, it is evident that:

• High motion velocity (Vp large) amplifies temporal intensity changes, thereby mitigating the smoothing effects of blur.

• Low motion velocity (Vp small) reduces intensity changes, making the impact of blur more pronounced.

This interaction highlights the interplay between motion dynamics and optical blur in determining event density and spatial
distribution.

A.4. Interdependence of Motion Speed and Blur Strength

If an object moves with velocity Vp, we can simulate the object’s movement by applying geometric transformations T (t)
(such as translation, rotation, or scaling):

Ltransformed(x, y, t) = T (t)L(x, y, 0). (15)

Event triggering depends on the change in light intensity, so:

∆L(x, y, t) = Ltransformed(x, y, t)− Ltransformed(x, y, t−∆t). (16)

If we choose an appropriate motion velocity Vp, the intensity change rate generated by the geometric transformation matches
that produced by different depth-related defocus blur, as shown by:

∆L(x, y, t)

L(x, y, t)
≈ ∆Lblur(x, y, t, d)

Lblur(x, y, t, d)
. (17)

Thus, for a given motion speed Vp, the events triggered by motion can be equivalent to those triggered by depth-related
defocus blur.

Theorem 1 (Equivalence Theorem): There exists a mapping between the blur level σ(d) and the motion speed Vp such that
for each depth d, the event density generated by motion at a specific velocity are equivalent to those generated by defocus
blur at that depth:

σ(d) ∝ 1

Vp
. (18)
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The preceding analysis suggests an inverse relationship between motion speed (Vp) and defocus blur strength (σ) in their
influence on temporal intensity changes and event generation:

∆L(x, y, t) ∝ Vp · ∇Lblur(x, y, t). (19)

This relationship implies that:

1. High-speed motion (Vp large) can counteract the effect of a small blur kernel (σ small).

2. Low-speed motion (Vp small) amplifies the impact of a large blur kernel (σ large).

This equivalence facilitates the simulation of varying levels of blur by appropriately adjusting the motion speed.

A.5. Simulation Pipeline

The analysis demonstrates that the generation of defocus-induced event streams is influenced by motion speed, scene
intensity, and the degree of defocus. Unlike traditional defocus-related work that focuses on image restoration in the spatial
domain, our research primarily investigates the temporal characteristics of defocus event streams. To model this, we adopt
different backgrounds and foregrounds, complex motion trajectories and motion parameters, and multiple Gaussian blur
kernels with varying standard deviations σ, the simulation process is structured as follows:

Algorithm 1 Synthetic Data Generation Pipeline
Require: • A set of background images {Bi}

• A set of foreground images {Fi,j} for each background i

• Motion parameters (e.g. translation, rotation) for background & foreground

• Number of time steps T
Ensure: • Synthetic dataset containing rendered scenes with events & optical flow
1: for each scene i do
2: Select one background image Bi

3: Select M foreground images {Fi,j}Mj=1

4: Generate motion trajectories for background and each foreground:

• trajB ← GenerateTrajectory(motion parameters)

• trajFi,j
← GenerateTrajectory(motion parameters)

5: for t = 1, . . . , T do
6: Sample camera pose pt ← SamplePose()
7: Sample camera distortion dt ← SampleDistortion()
8: Render defocus brightness image:

It ← Render(Bi, {Fi,j}, trajB[t], {trajFi,j
[t]},pt,dt)

9: Compute brightness change ∆It = It − It−1 (if t > 1)
10: Generate events Et ← EventGeneration(∆It)
11: Compute optical flow ut ← OpticalFlow(It)
12: end for
13: Store {It}Tt=1, {Et}Tt=1, {ut}Tt=1 as the dataset for scene i
14: end for

B. Appendix: Network Architecture Details
Fig. 4 provides an overview of the EvFocus network, as detailed in Section 3. In this Section, we will explain other details
of the model.
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B.1. Temporal Information Encoder.

Our temporal information encoder module consists of a head layer and three encoder modules. The head layer outputs a
number of channels Nb = 32, and the number of channels is doubled after each encoder layer. The inputs to our temporal
information encoding module are 5-channel voxel-grids, and the outputs are feature maps with Nb × 23 channels.

B.2. Self-supervised Mechanism

We design a self-supervised loss mechanism. First, the aligned feature Falign passes through a Re-defocus module and a
Reconstruction module. The Re-defocus module outputs a Re-defocus Image, which undergoes self-supervised learning
with the blur feature Fblur, allowing the model to further learn the distribution of defocus blur in the Blur-aware Two-branch
Decoder. Finally, the aligned feature Falign passes through the Reconstruction module, and under temporal consistency
supervision, the model produces the final clear image reconstruction.

B.3. Reconstruction and Re-defocus Module

The Reconstruction and Re-defocus Module is designed to refine the network’s ability to handle defocus blur. By utilizing
Transformer-based Multi-Head Channel Attention (MHCA), we aim to improve the network’s focus on the most relevant
features for blur correction. Transformers are chosen because they offer the flexibility to attend to important features over
long distances in the feature space, which is essential for effectively capturing the intricate patterns of defocus blur.

Our Reconstruction and Re-defocus Module consists of sequentially cascaded Transformer-based Multi-Head Channel
Attention (MHCA) modules (Vaswani, 2017; Zhang et al., 2024). Transformers have demonstrated unique advantages in
image restoration tasks due to their flexible and adaptive kernels. To address the quadratic growth problem of key-query
dot product interactions, we adopt the idea of applying self-attention across channels rather than spatial dimensions and
compute the cross-channel covariance to generate the attention map.

B.4. Loss Fuction

Perceptual loss We use the calibrated perceptual loss LPIPS (Zhang et al., 2018) to supervise the reconstruction image Î
with sharp ground truth and two decoder outputs I1 and I2 after processing the prediction with out-of-focus and focused
ground truth. The LPIPS loss can evaluate the perceptual similarity of frame quality in a more realistic manner. The
perceptual reconstruction loss is specifically calculated as

LRk = d(Îk, Ik), (20)

where d represents the LPIPS distance.

Temporal Consistency and Perceptual Joint Loss To supervise the final reconstructed image, we use a joint loss of
temporal consistency loss and perceptual loss. The perceptual loss between the predicted image and the sharp ground truth
is used to ensure reconstruction quality. At the same time,due to the presence of temporal artifacts, we use a temporal
consistency loss to correct the warping error between the reconstructed consecutive frames through the optical flow map (Lai
et al., 2018). This is specifically expressed as:

LTC
k = Mk

k−1

∥∥∥Îk −W k
k−1(Îk−1)

∥∥∥
1
, (21)

where d represents the LPIPS distance (Zhang et al., 2018), W k
k−1(Îk−1) is the result of warping the reconstruction Îk−1 to

Îk using the optical flow F k
k−1, and Mk

k−1 = exp(−α
∥∥Ik −Mk

k−1(Ik−1)
∥∥2
2
) is a weighting term that helps mitigate the

effects of occlusion.
Therefore,the Temporal Consistency and Perceptual joint Loss can be formulated as:

LTCP
K = λLRk + LTC

k , (22)

where LTCP
K represents the Temporal Consistency loss, LRk represents the perceptual loss, and λ is set to 0.75.

L1 Loss To ensure that the re-defocus module can learn defocus blur, we use the L1 loss to supervise the output
of the re-defocus module with the output of the blur decoder through the prediction layer, which can be described as:
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L1 = ∥Î1k − Î ′k∥1 where Î1k represents the predicted output of the blur decoder Dblur, and Î ′k represents the output of the
re-defocus module.

Total Loss The final loss is the sum of the losses mentioned above:

LK = λ1LR
1
k + λ2LR

2
k + λ3L

TCP
k + λ4L1, (23)

where LR1
k and LR2

k respectively represent the perceptual loss of the align feature Falign after prediction supervised by the
sharp ground truth (sharp gt) and the blur feature Fblur after prediction supervised by the defocus ground truth (blur gt).
λ1,2,3,4 is separately set to 4, 1, 7, 1, respectively.

B.5. Dataset Details

To evaluate the applicability of our method, we conduct tests using seven real-world scenes as in Fig. 10. These scenes
are captured by DVS 346, where events and frames are 346× 260 resolution. The “Pic” test assesses the reconstruction
performance for defocus events with similar focal lengths, while the “motionspeed1” and “motionspeed2” tests evaluate
the model’s suitability for handling motion blur. The “desk” “board” “library” and “toy” tests examine the reconstruction
performance for defocus events in scenes with different blur kernels and significantly different focal lengths.

Table 5. Statistics for Test Scenes
Scene Number of Frames Number of Events

pic 135 7912802
motionspeed1 169 23476852
motionspeed2 41 11426136

desk 289 14980786
board 204 36806803
library 223 10912574

toy 377 6575390

C. Appendix: More Experimental Results
In this section, we primarily present the qualitative comparison of our model with several mainstream models across all
real-world scenes and the parameter size for each model.

C.1. Qualitative Comparison

In Fig. 11 and Fig. 12, we compare the reconstruction results of our model with E2VID, E2VID+, ETNET and SPADE
E2VID. From these experimental results, it can be observed that the reconstruction result of our model is the most effective
in terms of blur removal. It is capable of clearly reconstructing edge details even when there is a large variance in focal
length distribution. Additionally, the motion blur removal effect under varying motion speeds is superior to that of other
methods.

In Fig. 13 and Fig. 14, we further evaluate the performance of other mainstream reconstruction methods by using their
results as input to a deblurring model, NRKNet (Yuhui Quan & Ji, 2023), and then compare the output with our model’s
results. The experimental results demonstrate that the reconstructed frames followed by the additional defocus deblurring
network, still fail to effectively remove the blur. In contrast, our model achieves high reconstruction quality.
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Figure 10. Examples of our real-world dataset.
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Figure 11. Visual comparison results in the Desk, Board, and Pic scenes. We compared our model with E2VID, E2VID+, ETNET and
SPADE E2VID.
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Figure 12. Visual comparison results in the Lib, Ms1, Ms2 and Toy scenes. We compared our model with E2VID, E2VID+, ETNET and
SPADE E2VID.
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Figure 13. Visual comparison of E2VID, E2VID+, ETNET, SPADE E2VID followed by NRKNet and our method in the Pic, Board and
Desk scenes. For a better comparison of defocus deblurring, we utilize the reconstruction frames from E2VID, E2VID+, ETNET, and
SPADE E2VID as input to NRKNet (Yuhui Quan & Ji, 2023), and compare the results with our method.
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Figure 14. Visual comparison of E2VID, E2VID+, ETNET, SPADE E2VID followed by NRKNet and our method in the Lib, Ms1, Ms2
and Toy scenes.
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