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Abstract001

Mixture-of-Experts (MoE) benefits from a dy-002
namic routing mechanism among their spe-003
cialized experts, which existing Parameter-004
Efficient Fine-Tuning (PEFT) strategies fail005
to leverage. This motivates us to investigate006
whether adaptation modules themselves should007
incorporate routing mechanisms to align with008
MoE’s multi-expert architecture. We analyze009
dynamics of core components when applying010
PEFT to MoE language models and examine011
how different routing strategies affect adap-012
tation effectiveness. Extensive experiments013
adapting OLMoE-1B-7B and Mixtral-8×7B on014
various commonsense and math reasoning tasks015
validate the performance and efficiency of our016
routed approach. We identify the optimal con-017
figurations for different scenarios and provide018
empirical analyses with practical insights to019
facilitate better PEFT and MoE applications.1020

1 Introduction021

As modern transformer-based large language mod-022

els (LLMs) continue to scale (Vaswani et al.,023

2017), Mixture-of-Experts (MoE) has emerged as024

a promising approach (Shazeer et al., 2017), pow-025

ering series of frontier models (Jiang et al., 2024;026

Qwen, 2024; DeepSeek-AI, 2025). Fine-tuning027

these sparse yet massive models poses unique chal-028

lenges, that direct full fine-tuning is not only expen-029

sive but ignores the routed dynamics and sparsity030

of experts, negating their computational advantages031

(Wang et al., 2024). Existing Parameter-Efficient032

Fine-Tuning (PEFT) strategies like LoRA (Low-033

Rank Adaptation) have been widely studied on034

dense LLMs (Houlsby et al., 2019; Hu et al., 2022;035

He et al., 2022). Yet directly adapting MoE LLMs036

with PEFT is not an ideal solution, since current037

practice often treats MoE as dense and only ad-038

dresses MoE-irrelevant modules.039
1Code available at https://anonymous.4open.

science/r/PERFT-MoE/.

These observations motivate us to investigate 040

the designs for PEFT modules that consider the 041

underlying routing mechanisms of MoE. Recent 042

studies have explored MoE-inspired PEFT modules 043

targeting dense backbones (Zadouri et al., 2023; Li 044

et al., 2024; Hao et al., 2024), which inspired us to 045

propose that a mixture of PEFT modules should be 046

similarly required for adapting MoE LLMs. 047

To verify this, we start by analyzing the dy- 048

namics between key memory vectors (Geva et al., 049

2021) in experts and expert vectors in routers. In 050

§2.1 and Figure 1, We demonstrate that properly 051

routed PEFT experts can unlock a much more ex- 052

pressive adaptation space while maintaining MoE’s 053

efficiency and flexibility. 054

Guided by these insights, we introduce a frame- 055

work to explore meaningful design choices for inte- 056

grating PEFT modules into MoE LLMs in §2.2 and 057

Figure 2. We define (i) functional strategies, includ- 058

ing the architecture, multiplicity, routing among 059

PEFT experts; and (ii) compositional strategies, 060

specifying how PEFT modules interact with the 061

original MoE module. Within this framework, 062

we further propose Parameter-Efficient Routed 063

Fine-Tuning (PERFT) and three ablated variants 064

(PERFT-E/D/S) in §2.3 and Figure 3. These strate- 065

gies allow us to systematically verify if MoE actu- 066

ally demands a mixture of adaptation modules. 067

We evaluate our proposed strategies on OLMoE- 068

1B-7B (Muennighoff et al., 2024) and Mixtral- 069

8×7B (Jiang et al., 2024) across 14 commonsense 070

and arithmetic reasoning tasks. PERFT yields up 071

to 17.2% relative improvement over MoE-agnostic 072

baselines with equivalent number of activated pa- 073

rameters, showing that mixture of adaptation mod- 074

ules can indeed achieve better results on MoE 075

LLMs. We also systematically explore the opti- 076

mal scaling, sparsity, and routing configurations, 077

and empirically analyzed our findings with insights 078

that generalize across settings and may facilitate 079

better PEFT and MoE applications. 080
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Figure 1: Dynamics between key memory vectors in experts and expert vectors in routers. a. Dense Feed-
Forward Network (FFN) projects hidden state ht ∈ RD onto Da key memory vectors ki ∈ RD in weight matrix
Wup, yielding activation scores at ∈ RDa . b. Router for N FFN experts projects ht onto N expert vectors gi ∈ RD

in router weight matrix Wg , yielding token-to-expert affinity scores st ∈ RN . Each gi symbolizes a characteristic
ht pattern with the activation of corresponding expert’s kj . c. Routers for both FFN and PEFT experts introduce
interesting dynamics among their expert vectors, resulting a flexible space for fine-tuning.

The primary contributions of this paper are:081

1. Dynamics between experts and routers when082

applying PEFT to MoE LLMs;083

2. Framework & Strategies for systematic explo-084

ration of PEFT design choices;085

3. Evidence & Guidelines for the gains of routed086

adaptation strategies on MoE LLMs.087

2 Methodology088

We start from investigating how the core compo-089

nents of MoE and PEFT modules interact, which090

creates new opportunities for designing PEFT on091

MoE LLMs.092

2.1 The Dynamics093

For a transformer with L layers, each with attention094

and a Feed-Forward Network (FFN), given token095

embeddings x1:T
0 ∈ RT×D, layer l computes:2096

h1:T
l = SelfAttnl

(
x1:T
l−1

)
+ x1:T

l−1, (1)097

xt
l = FFNl

(
ht
l

)
+ ht

l . (2)098

Key Memory Vectors. A standard FFN takes099

form as σ(hWup)Wdown
3, where σ(·) represents100

the activation. Following the key-value memory101

perspective of Geva et al. (2021), each column102

ki ∈ RD in Wup serves as a key memory vec-103

tor that fires on certain input patterns. Projecting104

ht ∈ RD onto these keys yields activation scores105

at ∈ RDa (Figure 1a). These key vectors function106

2LayerNorms and dropout are omitted for clarity.
3For alternative FFN structures, see Appendix A.2.

as specialized ht pattern detectors, with their acti- 107

vations determining the subsequent output of the 108

value memory vectors for each token. 109

Expert Vectors. Scaling up transformers brings 110

redundancy in FFN, with most tokens trigger only 111

a few keys (Elhage et al., 2021). MoE groups key 112

memory vectors into N sparse experts Ei. A router 113

G(·) picks the top-K experts per token: 114

FFN
(
ht
)
=

N∑
i=1

Gi(h
t)Ei(h

t), (3) 115

Gi(h
t) = TopK

(
Softmax

(
htWg

))
i
. (4) 116

The router learns its weight matrix Wg ∈ RD×N 117

that can be interpreted as a set of N individual D- 118

dimensional expert vectors gi, each responding to 119

a characteristic hidden state hi that should activate 120

the corresponding expert Ei (and their key memory 121

vectors) (Zhou et al., 2022), as illustrated in Figure 122

1b. During training, G dynamically learns which 123

gi and ki should better fire together. 124

PEFT for MoE. A PEFT block ∆(h) = 125

UpProj (Act (DownProj(h))) mirrors the FFN 126

structure but is much smaller (He et al., 2022), 127

with Act(·) as non-linear σ(·) or identity function 128

in LoRA. Its down-projection contains new keys 129

k̃j that respond to task-specific patterns. 130

When integrating PEFT into MoE, we can 131

choose between several intuitive approaches. A 132

straightforward but limited one is MoE-agnostic 133

adaptation of individual matrices, which fails to 134
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b. Compositional Strategies
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Figure 2: The framework of how PEFT designs can
integrate with an MoE module. a. Functional strate-
gies specify the internal implementation of the PEFT
module introduced. b. Compositional strategies de-
scribe the PEFT module’s interaction with the original
MoE mechanism.

leverage any of the rich dynamics4 described above.135

We focuses on the other approach that introduces136

PEFT module(s) in parallel with FFN experts5.137

This brings additional configurations with intrigu-138

ing dynamics. A single parallel PEFT module acts139

as a shared expert that is always active (Dai et al.,140

2024). Alternatively, we can attach M PEFT ex-141

perts with their own router G̃(·) (Figure 1c). The142

two routers, gi and g̃j , can interact so that k̃j can ei-143

ther refine existing subspaces or explore new ones.144

This interaction can substantially enlarge the adap-145

tation space while keeping the backbone frozen.146

2.2 The Framework147

Based on our insights in §2.1, we examine how148

PEFT designs can integrate with MoE. As illus-149

trated in Figure 2, we introduce a framework fo-150

cusing on two key design dimensions: how the151

adaptation modules operate, and how they interact152

with MoE’s existing expert routing mechanisms.153

4As Figure 1c, and discussed in §2.2.2 & Appendix A.
5As MoE experts run in parallel and prior work shows

parallel PEFT works the best (He et al., 2022; Hu et al., 2023;
Luo et al., 2024; Hao et al., 2024), we only consider parallel
composition of PEFT modules in this study.

2.2.1 Functional Strategies 154

Architecture inside PEFT Experts. Each PEFT 155

expert uses the bottleneck layout in Eq.2.1: 156

DownProj(·) : RD 7→ RDB and UpProj(·) : 157

RDB 7→ RD. The bottleneck DB linearly sets 158

the trainable-parameter budget, like the rank r in 159

LoRA (Hu et al., 2022). It controls the capacity 160

for adaptation and the effectiveness of learning (Hu 161

et al., 2022). 162

Multiplicity of PEFT Experts. More experts 163

create multiple copies ∆i, increasing adaptation di- 164

versity. Studies on dense models show that adapter 165

count strongly affects performance (Zadouri et al., 166

2023; Liu et al., 2023a; Dou et al., 2023; Li et al., 167

2024), and the optimum varies by task, model, and 168

layer (Gao et al., 2024). 169

Routing among PEFT Experts. The third is 170

whether to add a separate router G̃(·). Prior 171

MoE-style PEFT targets dense LLMs (Hao et al., 172

2024; Gao et al., 2024; Wu et al., 2024); our design 173

leverages MoE-specific dynamics (§2.1). Token- 174

wise routing over M PEFT experts mirrors Eq.4: 175

∆(ht) =
∑M

i=1

(
G̃i

(
ht
)
∆i(h

t)
)
. (5) 176

2.2.2 Compositional Strategies 177

Shared PEFT Experts. A single PEFT block 178

can act as a shared expert that runs in parallel with 179

the MoE layer. With input h1:T , we have: 180

x1:T =

N∑
i=1

Gi

(
h1:T

)
Ei

(
h1:T

)
+∆

(
h1:T

)
+ h1:T .

(6) 181

The PEFT block sees the same input and adds its 182

output to the residual stream alongside the MoE 183

result. Like shared FFN experts, this block captures 184

common adaptations for all routed experts and can 185

raise parameter efficiency. 186

Embedded PEFT Experts. Here, each PEFT 187

expert pairs with one FFN expert and receives the 188

same token-wise input from the MoE router: 189

xt =

N∑
i=1

Gi(h
t)
(
Ei(h

t) + ∆i(h
t)
)
+ ht, (7) 190

where both outputs are weighted by Gi and then 191

added to the residual. 192

MoE-Agnostic PEFT. MoE-agnostic PEFT 193

treats the model as dense and ignores routing 194

mechanisms. We keep it as a baseline to compare 195

the gains of our MoE-aware designs. 196
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Figure 3: Illustration of PERFT and its ablated variants. PERFT holds an independent routing among the
introduced PEFT experts. PERFT-E embeds PEFT experts within the original MoE module and directly utilizes its
routing patterns. PERFT-D and PERFT-S simply work as independent shared expert(s) alongside the MoE module.

2.3 The Strategies197

Within our framework of all meaningful design198

choices, we implement Parameter-Efficient Routed199

Fine-Tuning (PERFT), a PEFT strategy tailored for200

MoE models (Figure 3), whose parallel block owns201

an independent router:202

x1:T =
N∑
i=1

Gi

(
h1:T

)
Ei

(
h1:T

)
+

M∑
j=1

G̃j

(
h1:T

)
∆j

(
h1:T

)
+ h1:T .

(8)203

The new G̃(·) : RD 7→ RM introduces vectors g̃j204

that interact with gi and enable flexible adaptation,205

as demonstrated in §2.2.1 and Figure 1c.206

If M equals N , we can also reuse the pretrained207

G and yield the variant PERFT-E (Embedded):208

x1:T =
N∑
i=1

Gi(h
1:T )Ei(h

1:T )

+

N∑
i=1

Gi(h
1:T )∆i(h

1:T ) + h1:T

=
N∑
i=1

Gi(h
1:T )

(
Ei +∆i

)
(h1:T ) + h1:T .

(9)209

Our experiments show that reusing G helps when210

data are too scarce to train a fresh router.211

Dropping the routing mechanism and sharing all212

PEFT experts gives PERFT-D (Dense):213

x1:T =
N∑
i=1

Gi(h
1:T )Ei(h

1:T )

+

M∑
j=1

∆j(h
1:T ) + h1:T .

(10)214

And further collapsing the M blocks into one yields215

PERFT-S (Single): 216

x1:T =
N∑
i=1

Gi(h
1:T )Ei(h

1:T )

+ ∆0(h
1:T ) + h1:T .

(11) 217

Together, with PERFT and its ablated vari- 218

ants, we can systematically experiment the de- 219

sign choices in our framework and verify if MoE 220

demands a mixture of adaptation modules as ex- 221

pected. 222

3 Experiments and Analyses 223

3.1 Experiment Setup 224

Datasets. We follow the benchmark suite proposed 225

by Hu et al. (2023). It contains 8 commonsense- 226

reasoning datasets and 6 arithmetic-reasoning 227

datasets. We utilize their amalgamated training 228

sets Commonsense170K and Math50K to fine-tune 229

models respectively for each domain. Evaluations 230

are conducted correspondingly across all individual 231

benchmark test sets. 232

LLM Backbones. We use two open-source 233

MoE LLMs as backbones: OLMoE-1B-7B (Muen- 234

nighoff et al., 2024) and Mixtral-8×7B (Jiang et al., 235

2024), selected among publicly available MoE 236

models based on their outstanding performance 237

in the 1B and 10B activated parameter ranges. 238

Baselines. Applying LoRA to attention matrices 239

Wq and Wv is the most popular PEFT setting un- 240

der a tight parameter budget (Hu et al., 2022). We 241

therefore adopt it as our primary baseline for all 242

scales and tasks. For the smaller OLMoE-1B-7B, 243

we additionally LoRA-tune the router matrix Wg 244

(results in Table 4, Appendix C). 245

Additional training details and design choices 246

are provided in Appendix A. 247
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Figure 4: Performance of OLMoE fine-tuned with baselines and PERFT. Scores on y-axes are averaged
performance across each individual benchmark; Activated Parameter Efficiency on x-axes indicates the ratio of
activated trainable parameters to the total activated parameters. “qvLoRA” stands for applying LoRA on attention
matrices Wq and Wv . Transparency indicates different sparsity levels (ratio of activated PEFT experts).

LLM Arch. Strategy # Act. % Act. CR8 AR6

LoRA4 Wq,Wv@Attn 0.52M 0.041 57.15 28.42
LoRA16 PERFT (Top1/2) 0.59M 0.046 66.66 31.91
LoRA8 PERFT (Top2/2) 0.59M 0.046 66.98 31.18

OLMoE
1B-7B

(Top8/64)

LoRA16 Wq,Wv@Attn 2.10M 0.164 62.86 29.71
LoRA32 PERFT (Top1/4) 2.23M 0.174 67.32 32.29
LoRA4 PERFT-E (Top8/64) 2.10M 0.164 69.42 31.30

LoRA64 Wq,Wv@Attn 8.39M 0.654 67.95 28.82
LoRA16 PERFT (Top8/8) 8.65M 0.675 68.81 31.65
LoRA16 PERFT-E (Top8/64) 8.39M 0.654 69.29 29.08

Mixtral
13B-47B
(Top2/8)

LoRA8 Wq,Wv@Attn 3.41M 0.026 85.02 64.72
LoRA8 PERFT (Top2/2) 4.46M 0.035 86.23 69.03
LoRA8 PERFT (Top2/8) 5.24M 0.046 85.68 68.14

Table 1: Average performance of baseline and PERFT
variants on 8 commonsense reasoning (CR8) and
6 arithmetic reasoning (AR6) benchmarks. “Arch.”
denotes architecture inside PEFT experts. “#Act.” and
“%Act.” represent the number of activated trainable
parameters and their ratio to the total activated. “(Top
K/N)” refers to activating K of N experts. Performance
is the mean across individual benchmarks.

3.2 Experiment Results248

We validate the optimal configurations by exhaus-249

tively fine-tuning OLMoE under each configura-250

tion. The results are summarized in Figure 4. Table251

1 presents a numerical comparison between some252

well-performing PERFT configurations and MoE- 253

agnostic baselines with equivalent levels of acti- 254

vated trainable parameters. PERFT improves by up 255

to 17.2% in commonsense and 12.3% in arithmetic. 256

PERFT-E reaches 10.4% and 5.4%, respectively.6 257

Appendix C lists full results for each configuration 258

and task. 259

PERFT outperforms baselines. Our results 260

verified that designing PEFT with considering the 261

underlying MoE mechanisms can indeed achieve 262

better results. Notably, PERFT and its variants 263

yields drastically different performance patterns. 264

PERFT and PERFT-E are the best-performing vari- 265

ants, especially at higher parameter-efficiency lev- 266

els. 267

PERFT and PERFT-E can benefit from scaling 268

up. Different variants show different scaling per- 269

formances. PERFT and PERFT-E gain from larger 270

bottleneck sizes DB within a certain range (shown 271

6Notice that the reported PERFT-E performs better than
PERFT on commonsense reasoning tasks with similar activated
trainable parameters, yet this is achieved with much higher
total number of trainable parameters, which is intuitive as
commonsense reasoning is more knowledge-intensive and
benefit from a broader pool of PEFT experts.
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Figure 5: Performance of PERFT configurations with different total number and activated number of PEFT
experts. Results from OLMoE fine-tuned for commonsense reasoning. x-axes indicate activated parameter
efficiency. Transparency represents different sparsity levels. Marker size represents bottleneck size DB .

by bigger markers in Figure 4).272

PERFT is more sensitive to overall PEFT ex-273

pert number rather than activated ratio. Figure274

5 isolates the effect of total activated PEFT-expert275

count and trainable parameter efficiency. When276

fixing total number, the performance gain from277

increasing the activated ratio is relatively modest.278

Additional ablations appear in Figure 8 (Ap-279

pendix C.1). They underline the need to balance280

expert count, sparsity and computational efficiency281

when tuning PERFT.282

3.3 Discussion283

Key findings. We observe two consistent patterns284

across all tasks. First, token-wise routing among285

PEFT experts (the PERFT-R family) drives most of286

the gains and enables extreme parameter efficiency.287

Second, when the number of PEFT experts is large,288

re-using the pretrained MoE router (PERFT-E) is289

more stable than training a new router from scratch.290

Detailed ablations, additional figures and visual291

analyses are provided in Appendix 3.3.292

3.3.1 Role of Routing293

Across most tasks and budgets, the routed variant294

PERFT outperforms PERFT-S/D/E, showing that a295

learnable router is the main driver of PEFT gains.296

We summarize the advantage in three aspects.297

Sparse Activation. Figure 4 shows that PERFT-298

S/D, which always activate every PEFT block, de-299

grade quickly as the bottleneck widens. This phe-300

nomenon stems from inefficient parameter utiliza-301

tion in always-activated shared experts. Section302

2.2.1 shows that the bottleneck must balance ca-303

pacity against learning effectiveness to reach peak304

performance. PERFT avoids this by activating only305

the few experts whose keys k̃i match the token,306

guided by router vectors g̃i. Without routing, when307

the PEFT module’s dimensions exceed the intrin-308

sic amount required, the surplus capacity becomes309

detrimental rather than beneficial. 310

Weight Distribution. When G̃(·) is absent, 311

adding more PEFT experts hurts performance: 312

PERFT-D consistently lags behind PERFT-S, and 313

the gap widens as the expert count grows. Even 314

when every PEFT is allowed to fire (TopN/N ), 315

PERFT still beats non-routed baselines, confirming 316

that token-wise weights, not mere capacity, lift per- 317

formance. The router assigns token-wise gating 318

weights, letting the model control how much each 319

expert adapts. This dynamic weighting improves 320

capacity utilization and supports the analysis in 321

§2.2.1. This operates similarly to how Gated Lin- 322

ear Units (GLU) improve FFN layers (Dauphin 323

et al., 2017). Without such a mechanism, the po- 324

tential benefits of multiple PEFT experts would be 325

counterbalanced by the redundancy across them. 326

Efficiency. With effective routing, total PEFT 327

capacity module matters more than the number of 328

the activated parameters, enabling highly efficient 329

adaptation. Figure 5 shows that for a fixed total 330

number of PEFT experts, increasing the sparsity 331

by activating fewer PEFT experts does not severely 332

impact performance. Figure 6 supports this result 333

with UMAP projections of ki and gi in OLMoE 334

and k̃i and g̃i in different PERFT variants. Com- 335

paring Top2/4 with Top4/4, it confirms that an ade- 336

quate subset of activated k̃i is sufficient to capture 337

the appropriate adaptation space. 338

3.3.2 Pretrained Routing 339

The relationship between PERFT-E and PERFT 340

reveals important insights about leveraging pre- 341

trained knowledge versus learning new adaptation 342

patterns, as discussed in Section 2.2.2. We notice 343

that the performance between PERFT-E and PERFT 344

can vary in practice, especially when considering 345

scenarios with different activated parameters. Re- 346

sults in Figure 4a show that given the same total 347

number of PEFT experts, PERFT-E outperforms 348
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Figure 6: Visualization of key memory vectors and expert vectors in OLMoE and PERFT fine-tuned for
commonsense reasoning. Results show projections of vectors with DB = 32 from layer 8 of OLMoE. Each
subplot corresponds to a different configuration: “Base Model” showing vectors of FFN experts and router in the
original MoE layer; “S”, “D”, “R” and “E” referring to vectors in the PEFT experts and router (if any) of the
corresponding PERFT variants. Markers ● represent key memory vectors in FFN or PEFT experts, and ✖ expert
vectors in routers for either FFN experts (in Base Model and PERFT-E) or PEFT experts (in PERFT). All vectors are
projected using the same PCA and UMAP trained on FFN experts’ key memory vectors. Different colors distinguish
vectors associated with different indices.

PERFT (Top8/64) across all bottleneck sizes; while349

many PERFT configurations with fewer experts in350

turn outperform PERFT-E. Figure 6 illustrates the351

distinct dynamics between PERFT-E and PERFT.352

PERFT-E utilizes the frozen gi in G(·) for FFN353

experts, while PERFT learns an independent G̃(·)354

from scratch for PEFT experts. These results sug-355

gest that when using a larger number of PEFT ex-356

perts, leveraging the well-pretrained G(·), which357

already encodes effective patterns for distributing358

hidden space across FFN experts, would provide359

more stable and efficient learning for PEFT experts.360

In contrast PERFT may expend much training re-361

sources exploring larger subspaces without effec-362

tively capturing the optimal distribution patterns for363

a large number of PEFT experts. This variability364

highlights the complex trade-off between the flexi-365

bility offered by learning new routing mechanisms366

versus the stability gained from utilizing pretrained367

components in large-scale models, underscoring368

the need to consider training configuration- and369

task-specific factors when choosing between these370

approaches for large-scale model adaptation.371

4 Related Work372

4.1 Mixture-of-Experts373

MoE was originally introduced as a viable solution374

to the computational challenges of scaling up and375

improving specialization (Jacobs et al., 1991; Jor-376

dan and Jacobs, 1994; Eigen et al., 2013; Shazeer 377

et al., 2017). With the rise of transformers, re- 378

searchers observed that FFNs hold the largest share 379

of parameters and capture substantial knowledge 380

(Geva et al., 2021; Dai et al., 2022). This capac- 381

ity is linked to sparsely represented features in 382

their activations (Dalvi et al., 2019; Durrani et al., 383

2020; Gurnee et al., 2023). MoE leverages this 384

sparsity by activating only a subset of experts for 385

each input, which improves resource utilization 386

(Liu et al., 2023b). The idea has led to several suc- 387

cessful MoE LLMs (Lepikhin et al., 2020; Du et al., 388

2022; Fedus et al., 2022; Zoph et al., 2022a; Jiang 389

et al., 2024; Dai et al., 2024; Qwen, 2024; Grok, 390

2024; DeepSeek-AI, 2025). Recent studies explore 391

shared experts, modules that run in parallel with 392

routed FFN experts and remain active for every 393

token. This design captures common knowledge 394

and can improve parameter efficiency (Gou et al., 395

2023; Dai et al., 2024; Qwen, 2024). 396

4.2 Parameter-Efficient Fine-tuning 397

Classical full fine-tuning approaches have become 398

increasingly expensive as transformers scale (De- 399

vlin et al., 2019; Qiu et al., 2020). Recent work 400

introduce diverse PEFT methods offering compa- 401

rable performance with significantly reduced com- 402

putational demands. He et al. (2022) present a 403

unified view for PEFT, where any PEFT method 404

can be viewed as a combination of several design 405

7



dimensions. This perspective has inspired many406

hybrid designs. They also show that parallel PEFT407

modules outperform sequential ones and that modi-408

fying FFN is more effective than modifying atten-409

tion. Later studies confirm these findings (Hu et al.,410

2023; Zhang et al., 2023; Dettmers et al., 2024;411

Hao et al., 2024).412

Recent success of MoE has sparked MoE-413

structured PEFT methods. Some insert mixtures of414

LoRA experts into the attention layers (Liu et al.,415

2023a; Luo et al., 2024). Others place them next to416

dense FFNs (Zadouri et al., 2023; Dou et al., 2023;417

Page-Caccia et al., 2024; Chen et al., 2024; Hao418

et al., 2024; Li et al., 2024; Wu et al., 2024; Gao419

et al., 2024). All these studies primarily focus on420

adapting dense models, which motivates us to in-421

vestigate designing PEFT modules considering the422

underlying routing mechanisms of MoE. Recently,423

Wang et al. (2024) propose expert-specialized fine-424

tuning as an alternative approach to PEFT, which425

selectively fine-tunes the most relevant experts for426

downstream tasks and comes closest to this re-427

search gap, although no PEFT techniques are in-428

volved and the experts weights are modified. In429

our exploration of whether MoE LLMs requires430

mixture of adaptation modules, we directly con-431

sider introducing PEFT modules for MoE LLMs,432

offering more flexible and efficient solutions while433

preserving the original weights untouched.434

5 Conclusion435

This study addresses the gap in efficiently adapting436

MoE LLMs to downstream tasks. We investigate437

the dynamics of core components when perform-438

ing PEFT for MoE. Building on these insights, we439

introduce a unified framework with a comprehen-440

sive set of design dimensions. We further propose441

a flexible family of PEFT strategies tailored for442

MoE modules. Extensive experiments on OLMoE443

and Mixtral, covering commonsense and arithmetic444

reasoning, show that our methods outperform MoE-445

agnostic baselines in both effectiveness and scala-446

bility. We identify the optimal configuration for447

each design dimension and analyze the results.448

These observations provide practical guidance for449

future PEFT and MoE applications.450

Limitations451

Model scale and hardware assumptions. As452

constrained by computational resouce budgets, all453

experiments are conducted on OLMoE-1B-7B and454

Mixtral-8×7B, i.e. MoE backbones whose acti- 455

vated parameter counts lie in the 1B– 10B range 456

(see §3.1). It is unclear whether the PERFT fam- 457

ily keeps the same efficiency–quality trade-off on 458

much larger models (e.g. 70 B+) or on resource 459

constrained devices such as edge GPUs and CPUs. 460

We also did not measure inference latency or mem- 461

ory footprint. Both metrics may vary with the cho- 462

sen sparsity pattern. 463

Task coverage. Our evaluation focuses on 14 En- 464

glish benchmarks: 8 commonsense-reasoning and 465

6 arithmetic-reasoning datasets (Tables 1, 4 - 7). 466

The gains may not transfer to language generation, 467

code synthesis, dialogue safety, multilingual, or 468

low-resource scenarios. Future work should test 469

these settings and evaluate robustness under distri- 470

bution shift (e.g. adversarial or noisy inputs). 471

Hyperparameter search cost. Identifying the 472

best combination of bottleneck size DB , number 473

of PEFT experts M , and routing sparsity K/N 474

required an extensive grid search (§3.2, Figures 475

4b, 5). Once identified, a configuration generalises 476

across tasks. However, smaller practitioners may 477

lack the compute to reproduce the grid search. An 478

adaptive or automated hyperparameter policy could 479

mitigate this issue. 480

Bias and societal risk. Although our bench- 481

marks are non-dialogue and seemingly benign, 482

both the backbone MoE LLMs and the fine-tuning 483

data contain demographic and geographic skews 484

inherited from web corpora. We did not perform a 485

bias or robustness audit (e.g. accuracy stratified by 486

gender or language variety), nor did we evaluate pri- 487

vacy leakage or data memorization. Consequently, 488

downstream users should apply task-specific fair- 489

ness, privacy and safety checks before deployment. 490

Environmental impact. Although PERFT re- 491

duces trainable parameters, it still fine-tunes 492

multi-billion-parameter backbones on A100/H100 493

GPUs, incurring a non-trivial carbon footprint. A 494

detailed energy accounting (e.g. kWh per exper- 495

iment) was not recorded; future work should ex- 496

plore greener training (mixed-precision, progres- 497

sive pruning) and life-cycle impact reporting. 498

These limitations highlight promising directions 499

for extending the current study and for responsibly 500

deploying PEFT techniques on sparse MoE LLMs. 501
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A.1 Training Configurations. 807

Hardware. For each experiment we trained 808
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Mixtral-8×7B was trained on our 4×NVIDIA 810

H100 GPUs connected with NV-link. Both models 811

are evaluated on NVIDIA A100 GPUs. 812

Hyperparameters. We display the hyperparam- 813

eter configurations used in fine-tuning and evalu- 814

ating OLMoE-1B-7B and Mixtral-8×7B in Table 815

2. We use the LoRA settings recommended by Hu 816

et al. (2023) and keep all other hyperparameters at 817

their model-default values. 818

Loss Functions. In our experiments, we main- 819

tain consistency with the original training process 820

of each LLM by incorporating their respective aux- 821

iliary losses alongside the cross-entropy loss for 822

token outputs. All evaluated models include a 823

load-balancing loss, which encourages an equal 824

token distribution among experts (Shazeer et al., 825

2017). OLMoE-1B-7B additionally incorporates 826

a router z-loss to penalize large routing logits and 827
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Hyperparameters OLMoE-1B-7B Mixtral-8×7B

Training precision BFloat16
Dropout 0.05

Optimizer AdamW
LR 1e-5 2e-5

LR scheduler Linear
Batch size 16

Warmup steps 100
Epochs 3

Auxiliary loss coef. 0.01 0.02

Table 2: Hyperparameter configurations for OLMoE-
1B-7B and Mixtral-8×7B.

stabilize training (Zoph et al., 2022b). To ensure a828

fair comparison, we keep all auxiliary losses active829

during fine-tuning for baseline and all PERFT vari-830

ants. For PERFT, we extend this approach with the831

load balancing loss for the PEFT expert router as832

well for a similar balanced distribution of tokens833

among PEFT experts. Detailed hyperparameters834

and resource configurations for our experiments835

are provided in Appendix A.1.836

A.2 Gated Linear Unit837

Modern transformers often adopt the Gated Lin-838

ear Unit (GLU), which adds an element-wise mul-839

tiplicative gate after activation (Dauphin et al.,840

2017; Shazeer, 2020). Formally: FFNGLU(h) =841

[σ(hWup) ⊗ (hWgate)]Wdown. We focus on the842

matrix Wup since it directly processes h and its843

output passes through σ(·), which controls key-844

memory activation. The same argument applies to845

both vanilla FFN and GLU.846

B Additional Analyses for Design847

Configurations848

B.1 Architecture inside PEFT Experts849

LoRA Versus Parallel Adapters. We centre our850

study on LoRA adapters because they are simple851

yet effective. Output scaling with α also reduces852

the need to retune hyperparameters when the bot-853

tleneck size changes (Yang and Hu, 2020; Hu et al.,854

2022). Motivated by results on dense models (He855

et al., 2022; Hu et al., 2023), we also analyze paral-856

lel adapters (Houlsby et al., 2019; He et al., 2022),857

which add an activation function after the bottle-858

neck.859

Table 3 compares the commonsense reasoning860

performance of LoRA and Parallel Adapters (PA)861

as PEFT experts in OLMoE-1B-7B with several862

well-performing PERFT configurations. As we863

can see, under equivalent activated trainable pa-864

rameter levels, the average performance difference 865

between LoRA and PA is only marginal. Interest- 866

ingly, on specific tasks, certain architectures con- 867

sistently outperform others. For instance, parallel 868

adapters generally perform better on BoolQ, PIQA, 869

and ARC, while LoRA excels in SIQA and OBQA. 870

These task-specific gaps may reflect differences in 871

required knowledge or data distribution. A deeper 872

investigation into these task-specific variations is 873

beyond the scope of this study. Given the similar 874

average performance, we opted to focus on LoRA 875

for our experiments due to its simpler structure 876

without the additional activation function. 877

It is also viable to consider copying the original 878

FFN structure as PEFT experts. We have opted 879

not to investigate this option further in our cur- 880

rent study based on two reasons. First, copying 881

the full FFN violates the spirit of PEFT because 882

it effectively upsizes the model to a version with 883

more experts. Second, recent advancements have 884

introduced more complex implementations that go 885

beyond the simple σ(hWup)Wdown pattern how 886

FFN initially designed as. GLU has become widely 887

adopted in modern transformers including OLMoE- 888

1B-7B and Mixtral-8×7B. The increased com- 889

plexity of GLU, with its three matrices, presents 890

challenges for a fair controlled comparison under 891

the same parameter budget. Given these consid- 892

erations, we focus on experimenting within our 893

current scope. 894

Bottleneck Sizes. We experiment with different 895

bottleneck sizes ranging from 2 to 128. Here we 896

provide a detailed empirical analysis about the inef- 897

ficient parameter utilization when always-activated 898

shared experts are employed without an effective 899

routing mechanism. Such cases reveal a mismatch 900

between task dimensionality and adapter capac- 901

ity. When the bottleneck is too wide, the extra 902

dimensions add little signal and can even hurt per- 903

formance. Large, randomly-initialized bottlenecks 904

in PERFT-S or PERFT-D inject noise into other- 905

wise unused subspaces and may corrupt pretrained 906

representations. If the residual stream is viewed as 907

limited bandwidth between modules (Elhage et al., 908

2021), then only a small subspace should carry 909

task-specific adaptation when most weights stay 910

frozen. Any over-parameterized adaptation can 911

unnecessarily disrupt normal functioning on the 912

residual stream’s bandwidths, potentially destabi- 913

lizing the original gradient flow in the transformer 914

and leading to unstable training or sub-optimal so- 915

lutions (Aghajanyan et al., 2021). Simultaneously, 916
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Arch. Strategy # Act. % Act. BoolQ PIQA SIQA HellaS WinoG ARC-e ARC-c OBQA Avg.

LoRA4 PERFT (Top1/1) 0.16M 0.013 62.48 75.73 68.17 25.16 51.07 76.81 55.72 61.60 59.59
PA4 PERFT (Top1/1) 0.16M 0.013 63.09 76.50 64.94 31.23 52.72 77.02 56.31 55.40 59.65
LoRA8 PERFT (Top1/1) 0.29M 0.023 63.43 77.53 70.68 42.13 66.14 77.10 59.30 66.20 65.31
PA8 PERFT (Top1/1) 0.29M 0.023 65.63 78.94 68.68 40.46 53.75 79.25 56.14 61.20 63.01
LoRA16 PERFT (Top1/1) 0.56M 0.043 64.98 78.56 72.52 41.99 67.25 77.82 58.70 68.20 66.25
PA16 PERFT (Top1/1) 0.56M 0.043 66.61 78.56 71.34 41.26 59.75 78.87 59.30 66.20 65.24
LoRA32 PERFT (Top1/1) 1.08M 0.084 66.36 78.84 72.36 42.83 63.38 78.62 58.36 71.20 66.49
PA32 PERFT (Top1/1) 1.08M 0.084 66.61 79.54 72.62 42.36 66.46 79.29 62.03 67.40 67.04

LoRA4 PERFT (Top2/2) 0.33M 0.026 64.86 76.71 69.60 40.89 62.43 77.23 55.80 63.60 63.89
PA4 PERFT (Top2/2) 0.33M 0.026 65.44 77.48 69.40 41.14 51.54 78.83 57.94 63.20 63.12
LoRA8 PERFT (Top2/2) 0.59M 0.046 65.26 78.18 72.31 42.11 71.82 77.90 60.49 67.80 66.98
PA8 PERFT (Top2/2) 0.59M 0.046 67.31 80.03 71.14 41.70 61.80 78.58 58.87 66.60 65.75
LoRA16 PERFT (Top2/2) 1.11M 0.087 66.18 77.97 72.52 43.99 70.64 78.24 60.75 69.80 67.51
PA16 PERFT (Top2/2) 1.11M 0.087 66.76 79.38 72.47 43.52 69.85 80.85 61.26 71.00 68.14
LoRA32 PERFT (Top2/2) 2.16M 0.169 65.81 79.38 73.59 49.42 71.59 77.78 61.18 71.80 68.82
PA32 PERFT (Top2/2) 2.16M 0.169 67.61 80.96 73.18 45.57 70.64 80.68 61.18 72.00 68.98

LoRA4 PERFT (Top2/4) 0.66M 0.051 63.98 75.68 69.29 40.26 65.75 77.36 59.56 67.40 64.91
PA4 PERFT (Top2/4) 0.66M 0.051 65.93 77.75 69.96 40.81 61.09 79.17 58.28 65.80 64.85
LoRA8 PERFT (Top2/4) 1.18M 0.092 65.02 77.86 71.90 41.61 68.75 77.31 59.13 68.80 66.30
PA8 PERFT (Top2/4) 1.18M 0.092 64.40 78.07 71.24 41.80 70.17 79.76 61.09 67.80 66.79
LoRA16 PERFT (Top2/4) 2.23M 0.174 64.07 76.61 73.59 42.10 71.90 78.32 60.58 71.20 67.30
PA16 PERFT (Top2/4) 2.23M 0.174 65.99 79.92 72.62 43.14 61.64 80.09 60.58 69.20 66.65
LoRA32 PERFT (Top2/4) 4.33M 0.337 66.30 77.75 75.44 45.88 71.43 76.18 60.58 70.60 68.02
PA32 PERFT (Top2/4) 4.33M 0.337 66.70 79.33 73.18 42.57 70.40 81.10 62.20 70.60 68.26

Table 3: Commonsense reasoning performance of OLMoE with PERFT using LoRA and Parallel Adapter
(PA). “Arch.” denotes the architecture inside PEFT modules. “# Act.” and “% Act.” represent the number of
activated trainable parameters and their ratio to the total activated parameters. “(TopK/N)” refers to activating K
experts among the total number of N experts. Dataset names are partially abbreviated, including BoolQ (Clark
et al., 2019), PIQA (Bisk et al., 2020), Social IQa (Sap et al., 2019), HellaSwag (Zellers et al., 2019), WinoGrande
(Sakaguchi et al., 2021), Easy Set and Challenge Set of ARC (Clark et al., 2018), and OpenBookQA (Mihaylov
et al., 2018).

in the PEFT context with limited adaptation infor-917

mation compared to model pretraining, an exces-918

sively large parameter space without gating control919

can easily result in over-fitting on fine-tuning data,920

which is exacerbated by the sparse nature of the921

MoE module we are adapting. As the MoE module922

hosts multiple different patterns on various combi-923

nations of activated FFN experts that dynamically924

interact with each other on the residual stream, the925

always-activated PERFT-S and PERFT-D variants926

may learn unnecessary adaptations during the train-927

ing process, further aggravating the disrupted func-928

tionality and over-fitting problems.929

It is also worth noting that since FFN tends930

to learn task-specific textual patterns (Geva et al.,931

2021) and attention learns more about positional932

interactions (Elhage et al., 2021), the nature of dif-933

ferent components to which PEFT is introduced934

also contributes to different phenomena. For the935

baseline LoRA operating on attention matrices, in-936

dividual attention heads are already operating on937

relatively smaller subspaces and can easily write938

outputs to disjoint subspaces without interaction.939

Because each attention head operates in a low-rank 940

subspace, its read/write patterns are relatively fixed. 941

Consequently, additional parameters introduced by 942

scaling the bottleneck of attention LoRA may not 943

interfere with information from other components 944

as severely as adapting the MoE FFN module. 945

B.2 Multiplicity of PEFT Experts 946

We vary the total number of PEFT experts from 947

1 to 64 and the number of activated experts from 948

1 to 8. This grid lets us study how expert count 949

and activation ratio affect performance. We denote 950

K out of M routed PEFT experts activated per 951

token as "(TopK/M)", and N shared PEFT experts 952

without routing as "(N)". 953

B.3 Routing among PEFT Experts 954

We investigate both learned routing (PERFT) and 955

embedded routing using the pretrained MoE router 956

(PERFT-E). We also include non-routed variants 957

(PERFT-D/S) for comparison. This allows us to 958

systematically study the impact of parameter effi- 959

ciency on performance across PERFT variants. 960
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C Additional Results961

C.1 OLMoE-1B-7B for Commonsense Reasoning962
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Figure 7: Performance comparison of OLMoE-1B-7B fine-tuned with different configurations of PERFT.
Performance on y-axes is averaged across commonsense reasoning benchmarks; “Activated Parameter Efficiency”
on x-axes indicates the ratio of activated trainable parameters to the total activated parameters. Color represents
different configurations of PERFT. Transparency indicates different sparsity levels (ratio of activated experts K/N ,
as “(TopK/N)” labeled for PERFT and PERFT-E). Marker size indicates bottleneck size DB .
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Figure 8: Performance comparison of configurations with different total number of PEFT experts in PERFT.
Results from OLMoE-1B-7B fine-tuned with PERFT for commonsense reasoning. x-axes stand for activated
parameter efficiency. Transparency represents different sparsity levels (ratio of activated PEFT experts), and marker
size represents bottleneck size DB .
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Arch. Strategy # Act. % Act. BoolQ PIQA SIQA HellaS WinoG ARC-e ARC-c OBQA Avg.

Base (pretrained) — — 42.42 52.61 16.53 21.27 28.10 13.13 13.99 6.80 24.36
Base (instruct) — — 59.94 62.68 12.03 22.27 5.84 15.15 17.15 8.00 25.38

LoRA2 Wq,Wv@Attn 0.26M 0.020 62.02 71.11 59.77 28.48 50.36 70.37 48.89 48.00 54.88
LoRA4 Wq,Wv@Attn 0.52M 0.041 60.40 73.61 62.90 32.08 50.20 74.12 52.65 51.20 57.15
LoRA8 Wq,Wv@Attn 1.05M 0.082 63.76 74.86 65.30 37.01 50.83 76.81 55.46 56.40 60.05
LoRA16 Wq,Wv@Attn 2.10M 0.164 64.95 76.88 69.60 39.27 53.35 78.07 57.34 63.40 62.86
LoRA32 Wq,Wv@Attn 4.19M 0.327 66.79 78.56 70.93 41.63 58.41 79.38 60.41 65.00 65.14
LoRA64 Wq,Wv@Attn 8.39M 0.654 67.13 80.30 73.34 44.28 65.90 80.72 61.95 70.00 67.95
LoRA128 Wq,Wv@Attn 16.8M 1.309 68.32 82.64 74.16 45.71 72.45 81.36 63.82 73.60 70.26

LoRA4 Wg@Gate 0.14M 0.011 62.14 59.79 39.66 25.94 51.62 42.63 36.52 29.00 43.41
LoRA8 Wg@Gate 0.27M 0.021 59.11 66.49 47.59 27.37 51.70 52.06 42.06 33.20 47.45
LoRA16 Wg@Gate 0.54M 0.042 62.05 64.04 47.85 28.08 49.33 57.37 43.17 34.40 48.29
LoRA32 Wg@Gate 1.08M 0.084 59.24 60.07 43.19 26.62 49.09 41.50 32.34 31.60 42.96

LoRA4 PERFT-S (1) 0.26M 0.020 63.82 72.31 63.87 25.45 50.12 73.91 49.49 56.40 56.92
LoRA8 PERFT-S (1) 0.52M 0.041 63.52 73.56 66.33 25.45 51.93 72.60 52.47 61.00 58.36
LoRA16 PERFT-S (1) 1.05M 0.082 63.49 71.71 65.71 25.11 51.22 71.13 50.60 61.20 57.52
LoRA32 PERFT-S (1) 2.10M 0.164 62.08 68.28 64.69 25.37 52.17 64.73 44.54 54.80 54.58
LoRA64 PERFT-S (1) 4.19M 0.327 61.59 63.76 59.11 24.48 54.06 53.75 36.86 43.80 49.68

LoRA4 PERFT-D (2) 0.52M 0.041 62.14 71.87 66.53 25.41 51.07 72.60 50.43 57.80 57.23
LoRA8 PERFT-D (2) 1.05M 0.082 62.87 71.44 63.41 25.47 51.70 65.28 46.84 54.80 55.23
LoRA16 PERFT-D (2) 2.10M 0.164 62.14 59.68 46.98 25.51 49.25 45.96 33.45 39.20 45.27
LoRA32 PERFT-D (2) 4.19M 0.327 62.17 48.20 32.86 25.38 48.86 24.87 25.17 25.60 36.64

LoRA4 PERFT-D (4) 1.05M 0.082 62.87 69.37 61.98 24.93 50.91 65.78 46.08 55.60 54.69
LoRA8 PERFT-D (4) 2.10M 0.164 62.17 49.29 33.06 24.57 49.57 25.46 25.09 22.20 36.43
LoRA16 PERFT-D (4) 4.19M 0.327 62.17 50.60 33.21 24.67 48.78 26.01 24.74 30.00 37.52
LoRA32 PERFT-D (4) 8.39M 0.654 62.17 52.18 33.47 25.02 50.51 25.80 22.18 26.00 37.17

LoRA4 PERFT-D (8) 2.10M 0.164 62.11 48.86 35.11 24.57 48.22 25.51 23.38 27.80 36.94
LoRA8 PERFT-D (8) 4.19M 0.327 62.17 49.13 33.27 25.37 49.41 25.00 24.23 26.40 36.87
LoRA16 PERFT-D (8) 8.39M 0.654 62.17 52.01 33.47 24.91 53.20 25.29 26.96 25.20 37.90
LoRA32 PERFT-D (8) 16.8M 1.309 62.17 50.92 33.88 24.58 49.64 24.16 26.71 25.20 37.16

LoRA4 PERFT (Top1/1) 0.16M 0.013 62.48 75.73 68.17 25.16 51.07 76.81 55.72 61.60 59.59
LoRA8 PERFT (Top1/1) 0.29M 0.023 63.43 77.53 70.68 42.13 66.14 77.10 59.30 66.20 65.31
LoRA16 PERFT (Top1/1) 5.57M 0.043 64.98 78.56 72.52 41.99 67.25 77.82 58.70 68.20 66.25
LoRA32 PERFT (Top1/1) 1.08M 0.084 66.36 78.84 72.36 42.83 63.38 78.62 58.36 71.20 66.49

LoRA4 PERFT (Top1/2) 0.20M 0.015 63.67 77.04 69.09 39.92 58.09 76.81 55.80 62.40 62.85
LoRA8 PERFT (Top1/2) 0.33M 0.026 63.98 78.13 70.93 41.00 58.88 78.11 56.66 65.80 64.19
LoRA16 PERFT (Top1/2) 0.59M 0.046 65.14 76.93 72.42 41.39 70.64 78.03 59.56 69.20 66.66
LoRA32 PERFT (Top1/2) 1.11M 0.087 65.60 78.18 73.13 43.47 69.61 77.40 58.53 70.00 66.99
LoRA64 PERFT (Top1/2) 2.16M 0.169 66.09 77.97 73.75 46.36 72.61 78.79 62.20 69.20 68.37

LoRA4 PERFT (Top2/2) 0.33M 0.026 64.86 76.71 69.60 40.89 62.43 77.23 55.80 63.60 63.89
LoRA8 PERFT (Top2/2) 0.59M 0.046 65.26 78.18 72.31 42.11 71.82 77.90 60.49 67.80 66.99
LoRA16 PERFT (Top2/2) 1.11M 0.087 66.18 77.97 72.52 43.99 70.64 78.24 60.75 69.80 67.51
LoRA32 PERFT (Top2/2) 2.16M 0.169 65.81 79.38 73.59 49.42 71.59 77.78 61.18 71.80 68.82
LoRA64 PERFT (Top2/2) 4.26M 0.332 65.96 79.87 72.82 53.93 73.40 78.91 62.20 72.20 69.91
LoRA128 PERFT (Top2/2) 8.45M 0.659 67.09 80.09 74.67 68.44 70.32 79.55 60.49 73.80 71.81

LoRA4 PERFT (Top1/4) 0.39M 0.031 63.94 76.88 69.91 39.14 60.54 78.49 57.68 65.40 64.00
LoRA8 PERFT (Top1/4) 0.66M 0.051 64.34 77.75 71.75 40.30 67.01 77.06 58.96 64.80 65.25
LoRA16 PERFT (Top1/4) 1.18M 0.092 64.46 77.04 71.29 41.83 62.51 77.57 59.39 65.00 64.89
LoRA32 PERFT (Top1/4) 2.23M 0.174 66.21 78.51 71.49 43.87 69.61 77.69 61.01 70.20 67.32
LoRA64 PERFT (Top1/4) 4.33 0.337 65.32 79.60 73.49 45.33 71.11 77.69 62.20 71.00 68.22

LoRA4 PERFT (Top2/4) 0.66M 0.051 63.98 75.68 69.29 40.26 65.75 77.36 59.56 67.40 64.91
LoRA8 PERFT (Top2/4) 1.18M 0.092 65.02 77.86 71.90 41.61 68.75 77.31 59.13 68.80 66.30
LoRA16 PERFT (Top2/4) 2.23M 0.174 64.07 76.61 73.59 42.10 71.90 78.32 60.58 71.20 67.30
LoRA32 PERFT (Top2/4) 4.33M 0.337 66.30 77.75 75.44 45.88 71.43 76.18 60.58 70.60 68.02

LoRA4 PERFT (Top4/4) 1.18M 0.092 64.25 75.84 71.03 41.40 69.22 77.65 57.08 68.40 65.61
LoRA8 PERFT (Top4/4) 2.23M 0.174 65.14 77.64 72.98 42.67 72.45 76.98 59.39 66.40 66.71
LoRA16 PERFT (Top4/4) 4.33M 0.337 65.44 79.43 73.08 48.35 71.19 77.48 59.98 73.40 68.55
LoRA32 PERFT (Top4/4) 8.52M 0.665 66.70 79.49 73.75 55.95 71.43 77.53 60.07 70.40 69.41
LoRA64 PERFT (Top4/4) 16.9M 1.319 66.02 79.71 75.49 59.29 73.32 76.64 59.90 71.80 70.27
LoRA128 PERFT (Top4/4) 33.7M 2.628 65.99 78.94 75.13 67.21 73.72 78.24 59.90 74.80 71.74

Table 4: (Part 1/2) Evaluation results for OLMoE with baseline methods and PERFT variants on eight
commonsense reasoning benchmarks. “Arch.” denotes the architecture inside PEFT modules. “# Act.” and
“% Act.” represent the number of activated trainable parameters and their ratio to the total activated parameters.
“(TopK/N)” refers to activating K experts among the total number of N experts. Dataset names are partially
abbreviated, including BoolQ (Clark et al., 2019), PIQA (Bisk et al., 2020), Social IQa (Sap et al., 2019), HellaSwag
(Zellers et al., 2019), WinoGrande (Sakaguchi et al., 2021), Easy Set and Challenge Set of ARC (Clark et al., 2018),
and OpenBookQA (Mihaylov et al., 2018).
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Arch. Strategy # Act. % Act. BoolQ PIQA SIQA HellaS WinoG ARC-e ARC-c OBQA Avg.

LoRA4 PERFT (Top1/8) 0.52M 0.041 63.73 75.30 69.91 40.77 66.77 77.69 57.51 64.60 64.54
LoRA8 PERFT (Top1/8) 0.79M 0.061 64.98 77.09 70.78 41.65 66.93 77.78 57.76 66.40 65.42
LoRA16 PERFT (Top1/8) 1.31M 0.102 64.89 77.26 70.88 41.95 70.09 77.31 59.39 67.40 66.15
LoRA32 PERFT (Top1/8) 2.36M 0.184 64.25 77.58 72.52 42.30 70.64 77.82 58.53 67.40 66.38

LoRA4 PERFT (Top2/8) 0.79M 0.061 64.28 76.99 68.88 40.61 66.85 77.57 57.34 65.40 64.74
LoRA8 PERFT (Top2/8) 1.31M 0.102 63.91 76.88 71.03 43.45 69.69 77.23 58.11 68.00 66.04
LoRA16 PERFT (Top2/8) 2.36M 0.184 64.68 77.64 72.36 43.33 71.51 75.97 58.45 67.80 66.47
LoRA32 PERFT (Top2/8) 4.46M 0.348 64.40 78.13 74.21 46.80 71.59 76.39 58.79 71.20 67.69

LoRA4 PERFT (Top4/8) 1.31M 0.102 64.74 77.04 71.60 42.82 70.01 77.31 59.73 68.20 66.43
LoRA8 PERFT (Top4/8) 2.36M 0.184 64.86 76.61 73.69 42.10 69.46 76.98 58.02 67.20 66.12
LoRA16 PERFT (Top4/8) 4.46M 0.348 65.78 76.33 72.57 45.61 69.53 76.22 58.28 69.20 66.69
LoRA32 PERFT (Top4/8) 8.65M 0.675 65.20 77.37 73.64 46.36 72.45 77.02 56.83 69.20 67.26

LoRA4 PERFT (Top8/8) 2.36M 0.184 64.98 77.37 72.77 45.71 70.32 77.15 58.96 68.60 66.98
LoRA8 PERFT (Top8/8) 4.46M 0.348 64.98 78.13 74.21 46.75 69.85 77.19 59.56 70.00 67.58
LoRA16 PERFT (Top8/8) 8.65M 0.675 65.93 77.58 74.41 55.14 71.98 76.47 57.59 71.40 68.81
LoRA32 PERFT (Top8/8) 17.0M 1.329 65.78 78.07 74.92 58.44 71.82 76.05 61.35 73.80 70.03
LoRA64 PERFT (Top8/8) 33.8M 2.638 65.20 80.25 75.13 65.68 73.01 75.67 59.47 72.40 70.85

LoRA4 PERFT (Top1/16) 0.79M 0.061 64.65 75.73 70.83 40.04 63.61 77.06 59.04 64.40 64.42
LoRA8 PERFT (Top1/16) 1.05M 0.082 64.98 76.17 69.60 40.17 67.48 76.30 58.02 67.00 64.97
LoRA16 PERFT (Top1/16) 1.57M 0.123 63.79 77.04 73.29 42.39 70.56 76.60 58.96 69.00 66.45
LoRA32 PERFT (Top1/16) 2.62M 0.204 64.25 75.79 72.21 43.98 70.24 76.18 59.04 69.20 66.36

LoRA4 PERFT (Top2/16) 1.05M 0.082 63.94 77.31 71.44 41.23 69.22 78.37 58.11 67.00 65.83
LoRA8 PERFT (Top2/16) 1.57M 0.123 62.45 76.12 71.55 41.75 67.80 76.14 59.47 68.00 65.41
LoRA16 PERFT (Top2/16) 2.62M 0.204 64.50 76.06 71.03 43.21 69.22 75.59 59.30 68.00 65.86
LoRA32 PERFT (Top2/16) 4.72M 0.368 65.35 76.50 72.98 47.08 69.30 74.79 58.19 67.80 66.50

LoRA4 PERFT (Top4/16) 1.57M 0.123 64.37 75.52 72.36 42.12 69.61 76.35 57.59 68.00 65.74
LoRA8 PERFT (Top4/16) 2.62M 0.204 64.92 76.55 72.21 43.09 69.61 75.67 59.30 67.20 66.07
LoRA16 PERFT (Top4/16) 4.72M 0.368 65.50 76.50 73.80 43.82 71.43 74.03 57.34 69.80 66.53
LoRA32 PERFT (Top4/16) 8.91M 0.695 65.47 77.09 73.64 45.04 69.77 74.49 58.70 67.80 66.50

LoRA4 PERFT (Top8/16) 2.62M 0.204 64.25 76.06 72.31 41.46 71.11 76.81 60.67 68.00 66.33
LoRA8 PERFT (Top8/16) 4.72M 0.368 64.50 77.53 73.34 45.22 71.74 74.92 57.51 67.80 66.57
LoRA16 PERFT (Top8/16) 8.91M 0.695 64.53 77.91 73.54 47.24 71.27 75.00 54.78 71.20 66.93
LoRA32 PERFT (Top8/16) 17.3M 1.350 65.57 76.82 74.51 53.13 70.01 74.07 57.17 70.60 67.73

LoRA4 PERFT (Top8/32) 3.15M 0.245 63.82 75.52 72.57 41.75 72.30 74.37 57.25 69.00 65.82
LoRA8 PERFT (Top8/32) 5.24M 0.409 63.79 75.35 71.70 43.90 67.88 74.03 58.28 67.80 65.34
LoRA16 PERFT (Top8/32) 9.44M 0.736 64.07 75.90 73.39 44.59 72.22 72.31 55.29 65.20 65.37
LoRA32 PERFT (Top8/32) 17.8M 1.390 64.71 75.35 73.95 47.17 70.72 72.22 55.46 67.80 65.92

LoRA4 PERFT (Top8/64) 4.19M 0.327 63.55 76.06 70.11 42.16 69.14 72.31 53.67 64.80 63.98
LoRA8 PERFT (Top8/64) 6.29M 0.491 64.53 75.52 72.21 41.79 70.40 71.38 53.92 66.20 64.49
LoRA16 PERFT (Top8/64) 10.5M 0.818 64.71 73.61 72.26 42.35 70.88 71.09 54.78 65.80 64.44
LoRA32 PERFT (Top8/64) 18.9M 1.472 62.81 74.43 72.31 41.11 69.22 69.49 53.84 65.60 63.60

LoRA2 PERFT-E (Top8/64) 1.05M 0.082 65.54 79.11 73.59 50.06 73.24 77.27 58.70 72.80 68.79
LoRA4 PERFT-E (Top8/64) 2.10M 0.164 64.80 79.49 74.36 58.39 72.69 75.00 58.45 72.20 69.42
LoRA8 PERFT-E (Top8/64) 4.19M 0.327 65.81 78.84 73.85 58.84 71.51 74.41 56.06 69.20 68.56
LoRA16 PERFT-E (Top8/64) 8.39M 0.654 65.20 78.24 74.97 64.35 72.30 74.41 55.46 69.40 69.29
LoRA32 PERFT-E (Top8/64) 16.8M 1.309 66.51 76.39 74.26 62.55 73.09 72.22 56.14 70.60 68.97
LoRA64 PERFT-E (Top8/64) 33.6M 2.617 65.57 77.09 73.80 59.89 73.32 71.72 56.40 68.80 68.32

Table 5: (Part 2/2) Evaluation results for OLMoE-1B-7B with baseline methods and PERFT variants on
eight commonsense reasoning benchmarks. “Arch.” denotes the architecture inside PEFT modules. “# Act.” and
“% Act.” represent the number of activated trainable parameters and their ratio to the total activated parameters.
“(TopK/N)” refers to activating K experts among the total number of N experts. Dataset names are partially
abbreviated, including BoolQ (Clark et al., 2019), PIQA (Bisk et al., 2020), Social IQa (Sap et al., 2019), HellaSwag
(Zellers et al., 2019), WinoGrande (Sakaguchi et al., 2021), Easy Set and Challenge Set of ARC (Clark et al., 2018),
and OpenBookQA (Mihaylov et al., 2018).
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C.2 Mixtral-8×7B for Commonsense Reasoning963

Arch. Strategy # Act. % Act. BoolQ PIQA SIQA HellaS WinoG ARC-e ARC-c OBQA Avg.

Base (pretrained) — — 51.10 81.12 46.11 47.54 49.88 53.20 52.99 39.20 52.64
Base (instruct) — — 68.87 88.30 68.58 72.06 59.98 89.52 78.50 74.40 75.03

LoRA8 Wq,Wv@Attn 3.41M 0.026 73.49 90.04 81.17 89.67 82.16 93.56 83.87 86.20 85.02

LoRA16 PERFT-S (1) 4.19M 0.033 75.11 90.26 81.63 94.26 84.85 92.85 81.40 87.60 85.99

LoRA8 PERFT (Top2/2) 4.46M 0.035 74.68 89.77 81.47 94.33 86.27 92.05 81.48 89.80 86.23
LoRA16 PERFT (Top1/4) 4.72M 0.037 72.84 89.12 80.40 92.69 84.37 91.84 82.25 85.80 84.91
LoRA8 PERFT (Top2/4) 4.72M 0.037 74.71 90.10 79.38 94.18 85.71 92.09 81.31 85.80 85.41
LoRA8 PERFT (Top2/8) 5.24M 0.041 73.76 89.12 81.63 94.51 85.16 91.67 80.20 87.80 85.48

LoRA8 PERFT-E (Top2/8) 4.19M 0.033 74.13 90.21 80.81 91.36 86.42 92.21 81.06 88.60 85.60

Table 6: Evaluation results for Mixtral-8×7B with baseline methods and PERFT variants on eight common-
sense reasoning benchmarks. “Arch.” denotes the architecture inside PEFT modules. “# Act.” and “% Act.”
represent the number of activated trainable parameters and their ratio to the total activated parameters. “(TopK/N)”
refers to activating K experts among the total number of N experts. Dataset names are partially abbreviated,
including BoolQ (Clark et al., 2019), PIQA (Bisk et al., 2020), Social IQa (Sap et al., 2019), HellaSwag (Zellers
et al., 2019), WinoGrande (Sakaguchi et al., 2021), Easy Set and Challenge Set of ARC (Clark et al., 2018), and
OpenBookQA (Mihaylov et al., 2018).

C.3 Mixtral-8×7B for Arithmetic Reasoning964

Arch. Strategy # Act. % Act. MultiArith GSM8K AddSub AQuA SingleEq SVAMP Avg.

LoRA8 Wq,Wv@Attn 3.41M 0.026 60.00 50.87 90.13 28.74 89.37 69.20 64.72

LoRA8 PERFT (Top2/2) 4.46M 0.035 82.83 55.80 87.59 29.92 89.76 68.30 69.04
LoRA8 PERFT (Top2/8) 5.24M 0.041 79.00 54.06 87.34 29.13 88.98 70.30 68.13

Table 7: Evaluation results for Mixtral-8×7B with baseline methods and PERFT variants on six arithmetic
reasoning benchmarks. “Arch.” denotes the architecture inside PEFT modules. “# Act.” and “% Act.” represent
the number of activated trainable parameters and their ratio to the total activated parameters. “(TopK/N)” refers
to activating K experts among the total number of N experts. Dataset names are partially abbreviated, including
MultiArith (Roy and Roth, 2015), GSM8K (Cobbe et al., 2021), AddSub (Hosseini et al., 2014), AQuA (Ling et al.,
2017), SingleEq (Koncel-Kedziorski et al., 2015), and SVAMP (Patel et al., 2021).
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