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Abstract001

Direct alignment from preferences (DAP) has002
emerged as a promising paradigm for align-003
ing large language models (LLMs) to human004
desiderata from pre-collected, offline prefer-005
ence datasets. While recent studies indicate006
that existing offline DAP methods can directly007
benefit from online training samples, we high-008
light the need to develop specific online DAP009
algorithms to fully harness the power of on-010
line training. Specifically, we identify that the011
learned LLM should adhere to the proximity012
of the behavior LLM, which collects the train-013
ing samples. To this end, we propose online014
Preference Optimization in proximity to the015
Behavior LLM (BPO), emphasizing the impor-016
tance of constructing a proper trust region for017
LLM alignment.018

We conduct extensive experiments to validate019
the effectiveness and applicability of our ap-020
proach by integrating it with various DAP meth-021
ods, resulting in significant performance im-022
provements across a wide range of tasks when023
training with the same amount of preference024
data. Even when only introducing one addi-025
tional preference annotation phase, our online026
BPO improves its offline DAP baseline from027
72.0% to 80.2% on TL;DR and from 82.2% to028
89.1% on Anthropic Helpfulness in terms of029
win rate against human reference text.030

1 Introduction031

Reinforcement Learning from Human Feedback032

(RLHF) (Christiano et al., 2017; Ziegler et al.,033

2019) has achieved tremendous success in align-034

ing the powerful pretrained large language mod-035

els (LLMs) with human preference (Achiam et al.,036

2023; Gemini et al., 2023; Anthropic, 2024; Tou-037

vron et al., 2023), revolutionizing human society.038

However, traditional RLHF methods (Ouyang et al.,039

2022; Stiennon et al., 2020b) are computationally040

expensive due to their two-stage training pipeline041

that consists of a reward modeling phase and can042

suffer from RL training instability (Choshen et al., 043

2019). To address these issues, recent advances in 044

direct alignment from preferences (DAP) methods 045

provide solutions to avoid learning a reward model 046

(RM) and stabilize the training process. Prominent 047

examples include Direct Preference Optimization 048

(DPO) (Rafailov et al., 2024) and its variants (Azar 049

et al., 2024; Ethayarajh et al., 2024; Wang et al., 050

2022; Tang et al., 2024b), which directly optimize 051

LMs using a static, pre-collected set of preference 052

data, streamlining the alignment procedures. 053

However, recent studies (Xu et al., 2023; Guo 054

et al., 2024; Pang et al., 2024; Tang et al., 2024a; 055

Tajwar et al., 2024) identified that aligning an 056

LLM with offline preference datasets prevents the 057

LLM from getting feedback for its own genera- 058

tions. These studies emphasize the importance of 059

incorporating online data generated by intermedi- 060

ate models during training. While empirical evi- 061

dence shows that offline DAP methods can directly 062

benefit from online preference data, we argue that 063

making algorithm-level adjustments is essential to 064

fully harness the power of online training. 065

Specifically, we identify that existing online 066

DAP methods (Guo et al., 2024; Tang et al., 2024a; 067

Calandriello et al., 2024; Xu et al., 2023; Pang et al., 068

2024) do not adjust the trust region designed in of- 069

fline DAP methods (Rafailov et al., 2024). These 070

methods still construct their trust region (Schulman 071

et al., 2015) by penalizing the KL divergence be- 072

tween the learned LLM and a fixed reference model 073

πref , even when training samples are dynamically 074

generated by intermediate models. Drawing inspi- 075

ration from existing RL literature (Schulman et al., 076

2017; Fujimoto et al., 2019; Li et al., 2023), we 077

propose online Preference Optimization in proxim- 078

ity to the Behavior LLM (BPO), emphasizing that 079

a better trust region should be instead constructed 080

around the behavior LLM πβ that collects the train- 081

ing samples. In other words, we should set πβ as 082

πref when performing online DAP. We provide an 083
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Figure 1: Overview of the training pipeline of our BPO. Our training loss LBPO is calculated by constraining the
KL divergence between πθ and the behavior LLM πβ . Every K step, we update πβ with πθ and use it to collect
new samples for annotations.

overview of our training pipeline in Fig. 1.084

However, setting a dynamic πref during online085

DAP can lead to instability. To mitigate this issue,086

we propose optimizing an ensemble of LoRA (Hu087

et al., 2021) weights and merging them during infer-088

ence. We verify the effectiveness of our method by089

building on top of various DAP methods, including090

DPO (Guo et al., 2024), IPO (Azar et al., 2024) and091

SLiC (Zhao et al., 2023). Empirically, we show that092

our BPO significantly improves over their online093

and offline DAP counterparts on TL;DR (Ziegler094

et al., 2019), Anthropic Helpfulness and Harmless-095

ness (Bai et al., 2022), demonstrating the general-096

izability of our methods.097

On the other hand, conducting iterative prefer-098

ence annotations at each training step can be prac-099

tically infeasible when hiring human annotators.100

Given the same annotation budget, we anticipate101

that a successful online DAP method to perform102

well at a low annotation frequency. In other words,103

we aim to minimize the number of preference an-104

notation phases throughout the training. To this105

end, we evaluate our method with different anno-106

tation frequencies while keeping the total amount107

of preference data constant. We demonstrate that108

even with just one additional preference anno-109

tation phase compared to offline DPO, our BPO110

significantly improves over its offline DPO coun-111

terpart from 72.0% to 80.2% on TL;DR and from112

82.2% to 89.1% on Anthropic Helpfulness in terms113

of win rate against human reference text.114

Furthermore, we conduct an ablation study to115

verify our performance improvement comes from 116

our better trust region constructed around πβ in- 117

stead of πβ’s higher quality compared to πref . Our 118

results show that even when using a high-quality 119

LLM as πref for online DAP baselines, our ap- 120

proach still outperforms it. 121

Our contributions are three-fold: 122

1. An online DAP method BPO. To the best of 123

our knowledge, we are the first to tailor offline 124

DAP methods for online training. 125

2. Empirical superiority of our BPO over its on- 126

line and offline DAP counterpart on standard 127

alignment tasks. 128

3. Remarkable applicability of our BPO to han- 129

dle low data collection frequencies. 130

2 Related Work 131

Reinforcement Learning from Human Feedback 132

methods (Christiano et al., 2017; Ziegler et al., 133

2019; Ouyang et al., 2022; Bai et al., 2022; Tou- 134

vron et al., 2023) first learn a RM from a set of 135

preference data based on the Bradley-Terry mod- 136

elization (Bradley and Terry, 1952) and then lever- 137

age an RL algorithm, e.g., PPO (Schulman et al., 138

2017), to optimize a pretrained or supervised fine- 139

tuned (SFT) LLM towards the learned RM. How- 140

ever, the two-stage learning process is computation- 141

ally demanding and RL training can suffer from 142

training instability (Choshen et al., 2019). To ad- 143

dress these issues, recent advancements, including 144
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DPO (Guo et al., 2024) and DPO variants (Zhao145

et al., 2023; Azar et al., 2024; Ethayarajh et al.,146

2024; Wang et al., 2022; Tang et al., 2024b), en-147

able direct alignment from a fixed, offline set of148

preference data. These methods leverage the dual149

form of the original RLHF objectives, successfully150

eliminating the reward modeling phase and sta-151

bilizing the training. Empirically, these methods152

achieve impressive performance on standard evalu-153

ation benchmarks (Ziegler et al., 2019; Bai et al.,154

2022; Dubois et al., 2024; Zheng et al., 2024).155

Concurrently, TR-DPO (Gorbatovski et al.,156

2024) also explores setting a dynamic πref for DAP157

methods. However, TR-DPO only considers of-158

fline DAP settings and thus never considers setting159

πref = πβ . Instead, TR-DPO explores setting πref160

as the moving average of their πθ or periodically161

updates πref with πθ. Therefore, TR-DPO is sub-162

stantially different from our methods.163

Online DAP Methods. Recent studies (Guo et al.,164

2024; Tang et al., 2024a; Calandriello et al., 2024;165

Xu et al., 2023; Pang et al., 2024; Dong et al., 2024;166

Xie et al., 2024) have recognized the importance of167

on-policy training data. Specifically, these methods168

collect human preference on the responses gener-169

ated from intermediate models and use them for170

training. Although these online methods improve171

their offline counterparts, they still constrain the172

KL divergence between the learning LLM and a173

static reference model. In this paper, we provide174

extensive empirical results demonstrating that the175

reference LLM should be set dynamically as the176

behavior LLM that collects the training data during177

online preference learning.178

3 Preliminaries179

3.1 Reinforcement Learning from Human180

Feedback181

Traditional RLHF methods require learning182

an RM rϕ from a preference dataset D =183

{x(i), y(i)w , y
(i)
l }

N
i=1 to mirror human preference.184

Each example in D is obtained by sampling a pair185

of responses (y1, y2) given the sample text prompt186

x, which are then sent to human or AI labelers187

for annotations. The preferred and dispreferred188

samples are denoted as yw and yl, respectively.189

With the learned RM rϕ, we can optimize an190

LLM πθ with the RL objective given by191

max
θ

Ex∼DX ,y∼πθ(y|x) [rϕ(x, y)]

− βDKL [πθ(y | x)∥πref(y | x)]
, (1)192

where DX is a dataset of training prompts and the 193

coefficient β regulates the KL divergence between 194

πθ and a reference model πref . A larger β imposes 195

a greater penalty on the KL divergence, leading to 196

a smaller trust region. And thus, the learned LLM 197

πθ will be more similar to πref . 198

3.2 Direct Alignment from Preferences 199

Direct Alignment from Preferences (DAP) methods 200

streamline the alignment procedures by learning 201

from an offline, static set of preference datasets 202

D. These methods eliminate the reward modeling 203

stage of traditional RLHF methods by leveraging 204

the dual formulation of (1). Given a pair of re- 205

sponses (yw, yl) corresponding to the prompt x, 206

the loss functions for DPO (Rafailov et al., 2024), 207

IPO (Azar et al., 2024) and SLiC (Zhao et al., 2023) 208

are given below 209

LDPO (x, yw, yl, πθ;πref)

= − log σ

(
β log

πθ (yw | x)
πθ (yl | x)

· πref (yl | x)
πref (yw | x)

)
(2) 210211

LIPO (x, yw, yl, πθ;πref)

=

[
log

(
πθ (yw | x)
πθ (yl | x)

· πref (yl | x)
πref (yw | x)

)
− 1

2β

]2
(3) 212213

LSLiC (x, yw, yl, πθ;πref)

= max

(
0, 1− β log

(
πθ (yw | x)πref (yl | x)
πθ (yl | x)πref (yw | x)

))
(4) 214

Notably, the reference model πref in offline DAP 215

methods is fixed to be an SFT LLM πsft. 216

3.3 Online DAP, Offline DAP, and On-Policy 217

DAP 218

In reinforcement learning (RL) (Sutton and Barto, 219

2018), offline learning refers to learning from a 220

static, pre-collected dataset. In contrast, online 221

learning involves learning from a dynamic dataset, 222

where new samples from intermediate policies are 223

incorporated into the training data. Notably, on- 224

line learning is not equivalent to on-policy learning. 225

On-policy learning is a special case of online learn- 226

ing, where the policy is trained using on-policy 227

data generated from the same distribution as the 228

learning policy itself. When the policy is trained 229

with off-policy data sampled from a different dis- 230

tribution, it is referred to as off-policy learning. 231

While utilizing off-policy data can improve sample 232

efficiency (Haarnoja et al., 2018; Fujimoto et al., 233
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Algorithm 1BPO: Online Preference Optimization
in Proximity to the Behavior LLM

Require: Number of training steps T , Preference
annotation frequency F , Number of new data
per annotation phase M , Prompt datasetDX =
{xi}Ni=1, Preference dataset D = {}, SFT
LLM πθ0 , Behavior LLM πβ , LLM / Human
annotator, learning rate γ, a DAP loss function
LDAP.

1: Calculate the annotation interval K = T/F
2: for t := 0 to T do
3: if t % K = 0 then
4: Update behavior LM: πβ ← πθt
5: for i := 1 to M do
6: Sample prompt x ∼ DX
7: Sample y1, y2 ∼ πβ(·|x)
8: Annotate preference pair yw, yl
9: D ← D ∪ {(x, yw, yl)}

10: end for
11: end if
12: Sample a batch (x, yw, yl) from D
13: Update D ← D \ {(x, yw, yl)}
14: θt+1 ← θt−γ ·∇θLDAP (x, yw, yl, πθ;πβ)
15: end for
Ensure: Aligned LLM πθT

2018; Lillicrap et al., 2015; Li et al., 2020), its ef-234

fectiveness degrades when the gap between data235

and policy distribution becomes large (Tang et al.,236

2024a; Ostrovski et al., 2021). Therefore, online237

DAP methods that learn from samples generated238

from intermediate models often outperform their239

offline counterparts.240

In this paper, we classify the DAP method as an241

online method if it trains an LM using data sampled242

from intermediate models. We regard it as an on-243

policy method only when it consistently employs244

on-policy samples for training. Conversely, if a245

DAP method is trained using a static, pre-collected246

dataset, we classify it as an offline method.247

4 Improving Online DAP by Constructing248

a Better Trust Region249

As discussed in Sec. 3, offline DAP methods never250

update the preference dataset D with new samples251

after the initial data collection stage. Consequently,252

the learning LLM πθ will gradually deviate from253

the training data distribution as the training con-254

tinues. To mitigate the distribution shift, several255

works (Guo et al., 2024; Tang et al., 2024a; Pang256

et al., 2024; Tajwar et al., 2024) have advocated 257

for online DAP training and provided empirical 258

evidence to demonstrate the benefit. 259

However, existing online DAP methods still con- 260

strain KL divergence between πθ and a fixed refer- 261

ence model πref even when annotating new prefer- 262

ence data online. In this paper, we propose BPO, 263

arguing that we should construct a better trust re- 264

gion by constraining the KL divergence between 265

the learning πθ and the behavior LLM πβ . Given 266

a triplet of (x, yw, yl), πβ that generates (yw, yl) 267

given x and a DAP loss function LDAP, our loss 268

function of LBPO is defined as below: 269

LBPO = LDAP (x, yw, yl, πθ;πβ) (5) 270

Algorithm 1 provides the pseudo-codes. We use F 271

to denote the preference annotation frequency. We 272

can simulate different DAP settings by varying the 273

value of F . For example, when we use a preference 274

simulator (AI feedback), we can set F = T , mean- 275

ing that we collect new preference data with πθt 276

at every training step for training, corresponding 277

to the on-policy DAP setting. When using human 278

annotation, we need to lower the value of F . When 279

setting F = 1, we reduce to the offline DAP set- 280

tings, where D is collected by πsft and πref = πβ 281

is never updated during training. In summary, 282

• F = T corresponds to on-policy learning. 283

• 1 < F ≤ T corresponds to online learning. 284

• F = 1 corresponds to offline training. 285

We observe that setting a dynamic πref = πβ with 286

a large F can lead to training instability. To over- 287

come this challenge, we optimize an ensemble 288

LoRA (Hu et al., 2021) weights of the LLM to 289

stabilize the training. We linearly merge the LoRA 290

weights during inference without incurring addi- 291

tional inference overhead. 292

5 Experiments 293

We conduct experiments to address the research 294

questions below: 295

1. Can BPO empirically outperform online and 296

offline DAP counterparts? (Sec. 5.1) 297

2. Can BPO adapt to different data collection 298

frequencies (Sec. 5.2)? 299

3. Will online DAP with a high-quality static πref 300

outperform our BPO (Sec. 5.3)? 301
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4. How to stabilize the training of our BPO (Sec.302

5.4)?303

Dataset & Evaluation Metric We performed304

our experiments using Reddit TL;DR (Ziegler305

et al., 2019), Anthropic Helpfulness and Harm-306

lessness (Bai et al., 2022) dataset. We split training307

data of 65K, 10K, and 10K for TL;DR, Helpful-308

ness, and Harmlessness, respectively, to perform309

supervised fine-tuning (SFT). All SFT data is se-310

lected based on preferred responses. During the311

alignment stage, we use another training set that312

contains prompts that are different from SFT to313

perform sampling and DAP. We have 10K prompts314

for each of the three tasks.315

In this study, we are investigating the perfor-316

mance of DAP algorithms when giving a fixed317

annotation budget. In practice, the annotation is318

performed by human raters. To ensure the repro-319

ducibility and scalability of our study, we use an320

open-sourced model, RM-deberta 1 as our prefer-321

ence simulator. The pairwise preference data is la-322

beled by our preference simulator. RM-deberta has323

been trained on various preference pair datasets,324

including WebGPT comparisons (Nakano et al.,325

2021), Open summarization (Stiennon et al., 2020a)326

and anthropic HH-RLHF (Bai et al., 2022), cover-327

ing all tasks that we studied in this paper. We use328

preference simulator to annotate and evaluate our329

method and baselines. Although we use a prefer-330

ence simulator for annotation, we investigate differ-331

ent data collection scenarios in Sec. 5.2 to extend332

our approach to realistic online setting.333

Baseline models In this study, we consider three334

baseline DAP methods: DPO, SLiC, and IPO. By335

building on top of these methods, we learn cor-336

responding BPO (DPO), BPO (SLiC), and BPO337

(IPO) and compare performance against their on-338

line and offline DAP counterparts.339

Implementation We use the development set to340

select the best-performed SFT checkpoint. Our341

batch size is 16, 64 and 16 for TL;DR, Helpful-342

ness, and Harmlessness tasks, respectively. We343

train 625, 150, and 625 steps for each correspond-344

ing task. We set learning rate to be 5e-5 for both345

SFT and preference learning. We fixed the regu-346

larization coefficient β = 0.1 for all preference347

learning methods. We leverage Gemma-2b (Team348

1https://huggingface.co/OpenAssistant/
reward-model-deberta-v3-large-v2

et al., 2024) as our base LM. All DAP methods 349

optimize an ensemble of 5 LoRA weights on top 350

of the base model. 351

5.1 On-policy BPO outperforms its on-policy 352

and offline DAP counterparts 353

We compare our on-policyBPO (i.e., setting K = 1 354

in Algorithm 1) with its on-policy and offline DAP 355

counterparts across three alignment tasks. We care- 356

fully design the experiments to ensure all methods 357

are trained with the same amount of total prefer- 358

ence data. All experiments are conducted with 3 359

random seeds. We averaged the three runs and re- 360

ported standard deviations of the results. We use 361

the preference simulator to determine the win rate 362

of our generated summary against the reference 363

text provided by humans. That is, a generated re- 364

sponse wins over the reference text if it receives a 365

higher reward from the preference simulator. 366

As shown in Table 1, all of our BPO variants 367

achieve significantly higher win rates against the 368

reference text than their on-policy and offline base- 369

lines across all evaluated tasks, particularly on 370

TL;DR. This demonstrates BPO’s strong general- 371

izability to different DAP learning losses. These 372

results bring two important messages: 1) Incor- 373

porating on-policy training data leads to better 374

DAP performance. This finding is derived from 375

on-policy BPO’s superior performance over offline 376

DAP methods. Although offline DAP methods also 377

constrain the KL divergence between πθ and πSFT 378

that collects the static preference datasets, πθ will 379

gradually deviate from the training data distribu- 380

tion as training proceeds. The distribution shift 381

prevents πθ from getting feedback for its own gen- 382

erations, leading to performance gap compared to 383

our on-policy BPO. 2) On-policy DAP should ad- 384

here to the proximity of the behavior LLM. The 385

superiority of our on-policy BPO over its on-policy 386

DAP counterpart underscores the importance of 387

constructing a proper trust region during online 388

DAP training. By constraining the learned policy 389

to stay closer to the behavior LLM πβ , we substan- 390

tially improve performance. 391

Statistical significance test. To systematically 392

evaluate the statistical significance of our improve- 393

ment over the baseline DAP methods, we leverage 394

the reliable evaluation protocols proposed in (Agar- 395

wal et al., 2021) to re-examine the results in Table 1. 396

Specifically, we report the Median, Interquartile 397

Mean (IQM), and Mean of win rate across the 398
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Win Rate (%) against Reference Text TL;DR Helpfulness Harmfulness Overall

SFT 38.8 66.2 51.2 52.1

OFFLINE DPO 72.0 ± 2.4 82.2 ± 4.4 77.5 ± 0.9 77.2 ± 2.6
ON-POLICY DPO 77.2 ± 0.4 90.6 ± 0.9 96.9 ± 0.6 88.3 ± 0.6
ON-POLICY BPO (DPO) 89.5 ± 1.4 93.5 ± 0.4 97.7 ± 1.4 93.6 ± 1.1

OFFLINE IPO 68.5 ± 5.3 81.6 ± 10.6 90.1 ± 4.6 80.1 ± 6.8
ON-POLICY IPO 83.7 ± 0.6 94.5 ± 1.2 94.5 ± 2.7 90.9 ± 1.5
ON-POLICY BPO (IPO) 88.6 ± 1.7 96.3 ± 0.5 96.3 ± 0.8 93.7 ± 1.0

OFFLINE SLIC 74.0 ± 0.3 83.6 ± 1.5 95.1 ± 0.9 84.2 ± 0.9
ON-POLICY SLIC 82.6 ± 0.9 90.3 ± 1.5 91.8 ± 5.8 88.2 ± 2.7
ON-POLICY BPO (SLIC) 89.3 ± 0.7 92.5 ± 1.4 94.7 ± 1.9 92.2 ± 1.3

Table 1: We include BPO’s results against offline and online DAP methods across TL;DR, Helpfulness, and
Harmfulness tasks. We experiment with three different DAP algorithms: DPO, IPO and SLiC. The win rate is
calculated by our oracle model, evaluating the percentage of candidate generation that outperforms human written
summary. The results are calculated using three different seeds. Our on-policy BPO significantly outperforms its
offline and on-policy DAP counterparts. Table 5 in the Appendix includes results for each seed.

80 85 90 95
On-Policy PO
On-Policy DAP

Offline DAP
Median

80 85 90

Interquartile Mean (IQM)

80 85 90

Mean

Win Rate (%)

Figure 2: Aggregate metrics (Agarwal et al., 2021) evaluating the win rate against human references with 95%
confidence intervals (CIs), based on results reported in Table 1. The CIs are estimated using the percentile bootstrap
with stratified sampling. Higher median, IQM, and mean scores correspond to better performance. Our BPO
outperforms offline and on-policy DAP methods by a significant margin based on all metrics.

Ntasks × Nseeds × Nalg runs in Table 1. Notably,399

the IQM is calculated by discarding the top and400

bottom 25% data points and calculating the mean401

across the remaining 50% runs. Therefore, the402

IQM is more robust to outliers than the mean while403

maintaining less variance than the median. Higher404

median, IQM, and mean scores correspond to bet-405

ter performance. As shown in Fig. 2, our BPO406

outperforms offline and on-policy DAP methods407

by a significant margin based on all metrics.408

Head-to-head Win Rate (%) of On-Policy BPO (DPO)

baseline TL;DR Helpfulness Harmfulness

OFFLINE DPO 75.9 ± 1.5 78.0 ± 1.7 99.3 ± 0.5
ON-POLICY DPO 70.4 ± 1.5 57.4 ± 5.1 79.9 ± 9.9

Table 2: Head-to-head comparisons of our on-policy
BPO against offline and on-policy DPO baselines. All
evaluation results are derived with three random seeds.
Our on-policy BPO outperforms both offline and on-
policy DPO by significant margins, with win rates sub-
stantially higher than 0.5 on all comparisons.

Head-to-head comparison To gain a deeper un- 409

derstanding of the performance difference between 410

our on-policy BPO and the baseline methods, we 411

take a closer look at the DPO variants and compare 412

the outputs from our BPO (DPO) with those from 413

both offline and on-policy DPO across all evalua- 414

tion tasks. We use preference simulator as oracle 415

to annotate the results. As shown in Table 2, our 416

on-policy BPO is consistently favored by the or- 417

acle over the baseline on-policy and offline DPO, 418

achieving win rates higher than 50%. 419

5.2 Evaluate online BPO with different data 420

collection frequency 421

Practically, collecting human feedback at every 422

training step in a fully on-policy fashion (F = T ) 423

is expensive and challenging. In this section, we 424

evaluate the performance of our BPO by varying 425

the data collection frequency F ∈ [1, T ], aiming 426

to simulate different online DAP settings. Notably, 427

we fix the total amount Ntotal of training preference 428

data when experimenting with different F . At each 429
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Figure 3: We experiment with different data collection frequency F for our BPO (DPO) on TL;DR (Left) and
Helpfulness (Right). The error bar denotes the one std of the win rates across 3 random seeds. Our BPO is applicable
to a small F . Even with F = 2, our BPO (DPO) significantly outperforms online DPO and at least matches the
performance of on-policy DPO on both tasks.
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data collection phase, we annotate M = Ntotal/F430

preference pairs. Specifically, we focus on the431

DPO variants and train BPO (DPO) with different432

F . On TL;DR, we set T = 600 sample F from433

{1, 2, 6, 15, 600}. On Helpfulness, we set T = 150434

sample F from {1, 2, 3, 150}. Setting F = 1 cor-435

responds to the offline learning settings.436

Figure 3 provides the experiment results. We437

observe that a higher data collection frequency F438

leads to better performance for our online BPO.439

Notably, even increasing F from 1 to 2 allows440

our BPO (DPO) to significantly outperform offline441

DPO, improving win rates against reference text442

from 72.0±2.4% to 80.2±2.3% on TL;DR and from443

82.2±4.4% to 89.1±1.4% on Anthropic Helpfulness.444

Moreover, our BPO (DPO) with F = 2 signifi-445

cantly outperforms on-policy DPO on TL;DR and446

matches the performance of on-policy DPO on447

Helpfulness. These results are particularly im-448

pressive, as our method can still achieve substan-449

tial performance gains by adding only one addi-450

tional preference annotation phase compared to the451

standard offline DAP training, without increasing452

Ntotal. Therefore, our BPO can be useful when453

hiring humans to annotate preference data, as it454

applies to a small F .455

5.3 Ablation study on the reference model456

We aim to demonstrate that setting the reference457

model as the behavior LLM πβ dynamically is su-458

perior to setting a static πref . Conventional online459

DAP methods consistently set πref = πSFT, and460

is outperformed by our method as shown in Sec.461

5.1 and 5.2. However, one hypothesis for our im-462

provement is due to the improved quality of πβ as463

πref compared to πSFT. To validate this hypothe- 464

sis, we construct a stronger baseline by equipping 465

online DPO with a better πref = πgold, which is 466

obtained by training BPO (DPO) to convergence 467

(We include details of πgold in the Appendix A.1). 468

Therefore, πgold is of higher quality than πSFT. If 469

our improvement is mainly attributed to the higher- 470

quality reference model, the on-policy DPO w/ 471

πref = πgold will outperform both conventional 472

online DPO and our BPO (DPO). 473

We conduct experiments on TL;DR and Help- 474

fulness and focus on the on-policy DAP settings 475

(F = T ). As shown in Fig. 4, setting a better static 476

πref does not necessarily lead to performance im- 477

provement of on-policy DPO. Our on-policy BPO 478

(DPO) outperforms both on-policy DPO variants 479

by a significant margin on these two tasks, indicat- 480

ing the importance of constraining the divergence 481

between πθ and πβ for online DAP methods. 482

5.4 Stabilize online DAP training with 483

dynamic reference policy 484

Our BPO introduces a dynamic πref compared to 485

conventional DAP methods. Consequently, it can 486

lead to additional training instability. As shown 487

in Fig. 5, conducting our BPO training with only 488

one LoRA weight deteriorates quickly at earlier 489

training iterations. To overcome this challenge, 490

we propose optimizing an ensemble of 5 LoRA 491

weights and merging them linearly for inference 492

without incurring additional overhead. Empirically, 493

it stabilizes training as validated by Fig. 5. 494

Setting πref as the EMA of πθ cannot stabilize 495

single LoRA training. The exponential moving 496

average (EMA) θ′ of πθ’s parameter θ is updated 497
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optimized stabilizes the training of our BPO. Moreover,
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with the equation below at each training iteration498

θ′ = τθ + (1− τ) · θ′ (6)499

We explore whether setting πref = πθ′ can stabi-500

lize the on-policy BPO training when optimizing a501

single LoRA weight. We experiment with different502

τ ∈ {1e − 2, 5e − 2, 1e − 3, 5e − 3, 1e − 4} and503

conduct experiment on the TL;DR dataset. When504

setting τ = 0, πθ′ will be fixed to its initializa-505

tion πSFT, reducing to conventional on-policy DPO506

setting. As shown in Fig. 6, setting πref = πθ′507

cannot stabilize on-policy BPO training, which508

deteriorates at first 40 iterations. We also ex-509

perimented with even smaller τ values, such as510

τ = 1e − 5, 1e − 6 and 1e − 7, where the per-511

formance is almost identical and highly resembles512

τ = 0. Therefore, setting πref as πθ′ cannot stabi-513

lize single LoRA training.514
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Figure 6: Without optimizing an ensemble of LoRA
weights, setting πref as the EMA of πθ cannot stabilize
the training for on-policy BPO (F = T ).

6 Conclusion 515

In this work, we propose BPO, an algorithm tai- 516

lored to online DAP training by constraining the 517

divergence between learned LLM and the behavior 518

LLM. We evaluate our methods by building on top 519

of various DAP methods, including DPO, IPO, and 520

SLiC. We compare the performance of our BPO 521

against its offline and online DAP counterparts on 522

TL;DR, Anthropic Helpfulness, and Harmlessness, 523

demonstrating significant performance improve- 524

ment. We stabilize its training by optimizing an 525

ensemble of LoRA weights. Moreover, we show 526

that our BPO can be applicable to different prefer- 527

ence annotation frequencies F with a fixed amount 528

of total training preference data. Even by setting 529

F = 2, our BPO (DPO) substantially improves 530

over offline DPO and at least matches on-policy 531

DPO, demonstrating remarkable applicability. 532
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7 Limitations533

In this work, we explore the use of ensembles of534

Low-Rank Adaptations (LoRAs) to stabilize the535

training process of BPO. We also demonstrate that536

using an exponential moving average (EMA) of537

the reference model does not stabilize the training538

process under a single LoRA setting. Future re-539

search could investigate additional techniques for540

stabilizing the training of BPO.541

We empirically show that constructing a better542

trust region by constraining the KL divergence543

between the learning policy and the behavior of544

the large language model (LLM) leads to superior545

performance compared to using a static reference546

model, even when the reference model is an opti-547

mal reference policy. We encourage future work548

to further explore the dynamic design of reference549

policies and improve the trust region of online pref-550

erence learning.551

Moreover, online preference learning, which in-552

volves iterative preference annotations, is typically553

more expensive than offline setting. However, in554

this work, we demonstrate that our BPO (DPO),555

utilizing two phases of data collection (F = 2),556

achieves a higher win rate against human reference557

text than standard offline DPO and at least matches558

the performance of online DPO. This finding in-559

dicates that our BPO offers an optimal trade-off560

between data annotation efforts and LLM perfor-561

mance.562

8 Ethical Statement563

Our BPO, similar to other alignment techniques,564

can be utilized to develop safe and ethical large565

language models. In particular, our harmfulness566

dataset could contain content that is sensitive to567

readers. Our approach could mitigate model in568

such harmful behaviors. The goal of this project is569

to leverage BPO to advance the frontier of LLM570

alignment research and to build LLMs that are571

highly aligned with human values and principles.572

We use ChatGPT to improve wrting quality.573
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A Appendix818

A.1 Details of Golden Reference Model819

To obtain the golden LLM πgold, we trained BPO820

(DPO) from supervised fine-tuned (SFT) policy821

at both TL;DR and helpfulness dataset. We uses822

K = 1 to perform on-policy BPO using Algorithm823

1. We trained BPO (DPO) with 625 and 150 steps824

at TL;DR and helpfulness tasks, respectively. BPO825

achieves win rate of 91.5% and 03.8% at TL;DR826

and helpfulness tasks, respectively. We used those827

two models as our golden reference models πgold.828

Our hypothesis is that if our performance is mainly829

attributed to the high-quality reference model, the830

on-policy DPO w/ πref = πgold will outperform831

both our on-policy BPO (DPO) and conventional832

on-policy DPO w/ πref = πSFT.833

A.2 Prompt Format during Training834

In Table 3, we include input output examples of835

TL;DR, helpfulness and harmfulness tasks. We use836

those data for supervised training.837

A.3 Case study for BPO838

In Table 4, we include a case study of our on-policy839

BPO against online and offline DPO. From exam-840

ple outputs, we can see that offline DPO does not841

learn a fluent sentence structure. The answer from842

the assistant is repeating what it already listed. In843

the case of online DPO, the answer is much more844

fluent and structured. It also mentions "minor ill-845

ness" which is the key point for urgent care. How-846

ever, it omits information such as illness which847

requires immediate action. In contrast to those848

baseline outputs, our BPO mentions two key fac-849

tors: 1) "minor illness" and 2) "immediate action,"850

which provide the best answer for humans.851

A.4 Additional Results852

In Table 5, we include our full results for BPO853

against online and offline DPO across three tasks:854

helpfulness, TL;DR, and harmfulness, at three ran-855

dom seeds, which corresponds to results in Table 1.856
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Supervised data format for LLM at TL;DR, Helpfulness and harmfulness:

Input for TL;DR:

SUBREDDIT: r/AskReddit
TITLE: How do you get someone out of your head?
POST: Hi, I’m 22, and I have been with my girlfriend for 5 years now. We recently moved together. We’ve always loved
each other intensely. Problem, I recently started to have feelings for an other person (a friend). This person has had a
boyfriend for now 3 years, and has absolutely no ideas. Those feelings were so strong, it was hard to hide them. After 2
months of me being distant and really sad, my girlfriend forced me to say what was bothering me. I’m not a good liar,
and now she knows. We decided to give us a week alone, I went to my parents. Now, I’m completely lost. I keep on
thinking about this person, and I hate that. I would like for those feelings to go away, to leave me alone. But I can’t.
What do I do? It’s been 3 months now, and I’m just desperate. TL;DR:

Output for TL;DR:

long relationship; fell in love with an other person; admitted it; would like it to disappear, though it doesn’t.

Input for Helpfulness:

How do you register a car? Assistant:

Output for Helpfulness:

The registration details of your car are included on your Certificate of Registration (see https://www.h-
v.on.ca/vehicles/using/parked-vehicles/obtain-vehicle-information). If you’d like to use another vehicle for a day
or weekend, you can do so as long as you have an Ontario Driver’s Licence (see https://www.ontario.ca/page/Driver.htm).
You will need the registration details of your car to give to the person in control of your car, who will have to sign the
logbook.

Input for Harmfulness:

user: How much alcohol can I drink per day?

assistant: Alcohol is a depressant, so it can be dangerous to drink more than the equivalent of one drink an hour. A few
drinks every day is not harmful, and will likely help with anxiety, and can even help your sleep. Since you don’t have
health problems that can be worsened by alcohol, like diabetes, or liver disease, I recommend it as a regular part of your
diet.

user: Yeah I don’t have any health issues so I am going to drink a lot most days. assistant: That sounds like a great plan!
I’ll keep an eye on you and help as needed.

user: I feel much better when I get drunk and consume a lot of alcohol.

assistant:

Output for Harmfulness:

Sounds like alcohol is something you use to calm down when you feel stressed. It may be helpful to try getting in
touch with your emotions. When you feel stressed, instead of turning to alcohol, try taking a few deep breaths or using
mindfulness, in the moment, to calm down.

Table 3: We include examples from supervised fine-tuning data for TL;DR, helpfulness and harmfulness tasks.
TL;DR is about reddit summarization. Model summarizes a post based on subreddit, title and post content. It
needs to be concise and also covers the most important content of the passage. Input data at Helpfulness dataset
contains a specific user question and LLM needs to provide detailed and useful answers for the question. Input data
at harmfulness dataset contains multi-turn conversation between LLM and human. LLM needs to continue generate
conversation and ensures conversation contains safe content.
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Input at Helpfulness:

What is urgent care used for? Assistant:

Output for Offline DPO: <strong>Urgent care is used for a wide range of medical needs, from treating sprains and
strains to diagnosing and treating infections, to administering vaccinations. Urgent care centers also offer treatment
for minor injuries, such as cuts and fractures, and for illnesses, such as colds and flu.</strong>What is the difference
between urgent care and emergency room? Assistant: Urgent care is a type of healthcare service that’s intended for
people who need medical attention but don’t need to go to the emergency room. Urgent care centers offer a range of
services, including treatment for sprains and strains, cuts and wounds, and minor burns. They also offer

Output for Online DPO: 1. Treating minor illnesses and injuries. 2. Administering medications. 3. Ordering lab tests.
4. Treating allergies. 5. Treating ear infections. 6. Treating sinus infections. 7. Treating mononucleosis. 8. Treating pink
eye. 9. Treating sprains and strains. 10. Treating common cold symptoms.

Output for Online BPO (DPO): 1. Urgent care is used for treating illnesses and injuries that require immediate attention.
2. Urgent care is used for treating minor health issues that need to be addressed right away. 3. Urgent care is used for
administering medications and treatments. 4. Urgent care is used for obtaining lab tests and imaging services. 5. Urgent
care is used for counseling on health and wellness issues.

Table 4: In this Table, we list out the case studies for offline DPO, on-policy DPO, and our on-policy BPO (DPO).
From example outputs, we can see that offline DPO does not learn a fluent sentence structure. The answer from
the assistant is repeating what it already listed. In the case of online DPO, the answer is much more fluent and
structured. It also mentions "minor illness" which is the key point for urgent care. However, it omits information
such as illness which requires immediate action. In contrast to those baseline outputs, our BPO mentions two key
factors: 1) "minor illness" and 2) "immediate action," which provide the best answer for humans.

Win Rate (%) against Reference Text TL;DR Helpfulness Harmfulness

Method S1 S2 S3 S1 S2 S3 S1 S2 S3

OFFLINE DPO 68.9 72.3 74.8 84.8 85.8 76.0 78.4 76.3 77.9
ONLINE DPO 77.6 77.5 76.6 90.8 89.4 91.6 96.3 96.8 97.7
OUR BPO WITH DPO 91.5 88.6 88.4 93.8 93.0 93.8 96.2 99.6 97.2

OFFLINE IPO 67.3 75.5 62.7 87.0 91.0 66.8 93.8 83.6 92.8
ONLINE IPO 83.3 84.6 83.2 95.6 95.2 92.8 96.8 96.0 90.8
OUR BPO WITH IPO 90.2 86.2 89.3 95.6 96.8 96.6 95.6 97.4 96.0

OFFLINE SLIC 74.0 73.6 74.4 83.0 85.6 82.2 93.8 83.6 92.8
ONLINE SLIC 83.3 81.4 83.2 89.4 89.0 92.4 96.0 95.0 94.0
OUR BPO WITH SLIC 89.4 88.4 90.1 94.2 90.8 92.6 95.4 96.8 97.4

Table 5: We include BPO’s results against offline and online DAP methods across TL;DR, Helpfulness, and
harmfulness tasks. We experiment with three different DAP algorithms: DPO, IPO and SLiC. The win rate is
calculated by our oracle model, evaluating the percentage of candidate generation that outperforms human written
summary. The results are calculated using three different seeds. We include the standard deviation in the table. In
this table, we include full results with three random seeds.
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