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Abstract

We propose a novel pose-guided appearance transfer
network for transferring a given reference appearance to
a target pose in unprecedented image resolution (10242),
given respectively an image of the reference and target per-
son. No 3D model is used. Instead, our network utilizes
dense local descriptors including local perceptual loss and
local discriminators to refine details, which is trained pro-
gressively in a coarse-to-fine manner to produce the high-
resolution output to faithfully preserve complex appear-
ance of garment textures and geometry, while hallucinat-
ing seamlessly the transferred appearances including those
with dis-occlusion. Our progressive encoder-decoder ar-
chitecture can learn the reference appearance inherent in
the input image at multiple scales. Extensive experimen-
tal results on the Human3.6M dataset, the DeepFashion
dataset, and our dataset collected from YouTube show that
our model produces high-quality images, which can be fur-
ther utilized in useful applications such as garment transfer
between people and pose-guided human video generation.

1. Introduction
Learning 3D appearance from 2D images is challeng-

ing because images are 2D projections of the correspond-
ing 3D world where objects can undergo complex defor-
mation and occlusion. Existing relevant work in computer
vision and machine learning either uses some forms of 3D
model to produce quality results, or produces relatively low-
resolution output image if only 2D images are allowed.

This paper focuses on images of human, whose different
poses introduce complex non-rigid deformation and self-
occlusion. Specifically, given a reference image of a per-
son, our method seamlessly transfers the reference appear-
ance to the person at the target pose while preserving high-
quality garment texture of the reference person, and at the
same time hallucinating realistically their complex appear-
ance under the target pose, see Figures 1 and 2. Note that
the network should not only move the corresponding body
parts to match the target pose, but also realistically inpaint
or hallucinate exposed body/garment parts unseen in the in-

Figure 1: Pose transfer on YouTube dataset. Test results on
our self-collected high-resolution (10242) dataset. Given a ref-
erence image (leftmost column) and target poses as input which
contains self-occlusion with complex appearance in texture and
geometry, our method transfers the reference appearance to target
pose in high resolution while faithfully preserving complex ap-
pearance and facial features under large pose variations.

put due to occlusion. This is particularly challenging for
human images due to the non-rigid nature of 3D human
body and complex texture and geometry distortion on 3D
garment worn by humans.

To address these challenges, we propose to learn appear-
ance information inherent in a given reference image and
transfer the original appearance of the person according to
the target pose representation, by injecting the target pose
representation into the bottleneck of the encoder-decoder
architecture. More importantly, to transfer detailed appear-
ance, we enforce both global and local loss to encourage
the network to learn both global coherency and local de-
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(a) (b) (c) (d)

Figure 2: Pose transfer on Human3.6M dataset. Test results
on human3.6M dataset. (a), (b) demonstrate the effect of dis-
occlusion; (c), (d) demonstrate the effect of transferring to other
self-occluding poses with zoom-in views.

tails. In addition, progressive growth is employed on both
encoder and decoder to increase output resolution. To vali-
date our approach, we conduct extensive experiments on the
Human3.6M [13] dataset, the DeepFashion [25] dataset and
our dataset collected from YouTube. We apply our method
to other applications such as high-quality garment transfer
and pose-guided human video generation, demonstrating its
huge potential in many challenging tasks.

Our contribution consists of a new encoder-decoder ar-
chitecture that successfully enables appearance transfer to
a target pose. To enable high-resolution appearance trans-
fer, 1) we propose novel local descriptors (progressive local
perceptual loss + local discriminators at the highest resolu-
tion (10242) to enhance local details and generation qual-
ity; 2) we apply progressive training to our autoencoder ar-
chitecture to achieve outputs at unprecedented high resolu-
tion (10242). To our knowledge, this is the first progres-
sive, deep encoder-decoder transfer network that can realis-
tically hallucinate in such high resolution at the target pose
the complex appearance of the worn garment, including the
portion that was previously occluded in the reference image.

2. Related Work
We address the problem of high-resolution pose-guided

appearance transfer, which is also a problem of conditional
image generation. Therefore, in this section, works related
to conditional image generation and pose transfer will first
be discussed, followed by recent approaches that can pro-
duce high-resolution images.

Conditional image generation Generative models includ-
ing Variational Autoencoders [19] (VAEs) and Generative
Adversarial Networks [8] (GANs) have demonstrated suc-
cess in image generation. Although VAEs can generate tar-
get images complying a given reference image, they may
not faithfully preserve high-quality details because a lower
bound is optimized.

Conditional GANs [14] have been exploited to solve
many challenging tasks. Zhao et al. [43] integrated GANs
and other inference models to generate images of people in
various clothing styles from multiple views. Reed et al. [31]
proposed a conditional generative model that used pose and
text as conditions to generate images. Lassner et al. [20]
also presented a generative model that could generate real-
istic images conditioning on clothing segmentation.

Numerous researchers [36, 29, 39, 41, 46] introduced
their respective methods to enable more control on the ap-
pearance of the generated images in generative processes
by providing different intermediate information such as la-
bels and texts. Models such as Conditional GANs [14] and
CycleGAN [45] also demonstrated their efficacy in image-
to-image translation.

However, it is difficult for the above methods to simul-
taneously encode different factors such as pose and appear-
ance. To transfer the pose-invariant human appearance, dis-
entangling pose and appearance from the reference image
becomes an essential step. Many previous studies [4, 5]
attempted to use GANs [8] and autoencoders [1] to disen-
tangle such factors, including writing styles from charac-
ter identities. Recently, Tran et al. [37] proposed DRGAN,
which can disentangle pose from identity by learning the
representation of human face followed by synthesizing the
face with preserved identity at the target pose.

Appearance transfer Recent work produced high-quality
transfer results by employing 3D human models and infor-
mation (in the data synthesis stage) [22] or by estimating
3D human model as an intermediate step [40]. With no 3D
information used, approaches for pose transfer [6, 27] used
encoder-decoders to attempt disentangling the pose and ap-
pearance of the input image to perform pose transfer. Esser
et al. [7] explored a variational U-Net [32] on transferring
the pose of a reference image invariant with its appearance.

The PG2 [26] was a more related work that aims at gen-
erating images of a subject in various poses based on an im-
age of that person and one novel pose. Combining GANs
and autoencoders, PG2 was trained through an encoder-
decoder network followed by a refinement network given
the pose and person image as input. Siarohin et al. [34]
proposed a generative model similar to PG2, where a dis-
criminator was included at the end of the autoencoder to
help generate realistic images. Instead of using a discrim-
inator, the pose transfer network presented by Natalia et
al. [28] attempted to produce the seamless result by blend-
ing the synthesized image and warped image through end-
to-end training. Though not aiming at transferring human
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Figure 3: Overall Network Architecture. The reference image X is first passed through an encoder to generate a latent representation.
In the lower branch, 18 keypoints are estimated from the ground truth image X

′
to produce an explicit pose representation P . P is then

concatenated with the latent representation, which is further decoded into the output X̂ . Global perceptual loss is enforced between X
′

and X̂ . To enable high-resolution appearance transfer, two types of local loss are also enforced on the corresponding local regions (Xd
′
,

X̂d), indicated by the bounding boxes. Local details are progressively refined. See section 3.2 and section 3.3 for technical contributions.

pose, the landmark learning network recently proposed by
Jakab et al. [15] demonstrated acceptable results on pose
transferring, which was achieved by using a simple encoder-
decoder network with the learning landmarks concatenated
in an intermediate representation.

Although [26, 28, 15] performed well on changing pose
at low-resolution (1282) reference images while keeping
their rough identity, they could not preserve but signifi-
cantly blur complex textures after pose transfer. In contrast,
we are dealing with a more challenging task compared to
their work since we want to preserve as many details as
possible at the target pose presented in the high-resolution
reference image.

Progressive training In the generative model, producing
high-resolution and high-quality results is difficult since the
training process becomes unstable and hard to converge as
the output dimension increases.

Recently, Tero et al. [17] proposed a progressive train-
ing methodology for GANs to generate high-quality results.
They started training from low resolution and added lay-
ers to the model progressively to obtain satisfactory high-
resolution results. Tero’s work focused on GANs and can-
not be directly applied to autoencoders while our goal is
conditional image generation using autoencoders for even
higher resolution output (10242).

3. Method
Figure 3 details the autoencoder architecture for pose-

guided appearance transfer with technical contributions to
transfer appearance details at 10242 to be detailed.

Specifically, given a reference image X of a person and
another image X

′
of the same person which is in the target

pose, we first extract the explicit pose representation P from
X

′
using a state-of-the-art pose estimator (section 3.1). We

then inject P into the autoencoder’s bottleneck by concate-
nating it with the deepest feature map generated by the en-
coder. Finally, the concatenated feature block is passed
through a decoder to generate an image with the person in
the target pose, denoted as X̂ . Reconstruction loss is en-
forced globally between X

′
and X̂ (section 3.1). To en-

able high-resolution appearance transfer, we employ novel
local descriptors to refine output details. Local descriptors
are applied under the guidance of keypoint locations from
the pose estimator (section 3.2). To generate images in a
high resolution (10242), the encoder and decoder are grown
progressively as training proceeds (section 3.3) and a su-
per resolution (such as SRGAN [21], SinGAN [33]) can be
additionally applied to further sharpen simple garment tex-
tures.

3.1. Pose-guided high-resolution appearance trans-
fer

Pose representation To represent human pose information
in an explicit manner, we employ a state-of-the-art pose es-

3



336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391

392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447

CVPR
#968

CVPR
#968

CVPR 2020 Submission #968. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

(a) original image (b) 18 local descriptors

(c) 31 local descriptors (d) 44 local descriptors

X̂dX̂

Xd

′
X

′

φ0 φrelu1 2 φrelu2 2 φrelu3 2 φrelu4 2

VGG-16

Zoom-ins

0 18 31 44

Increasing number of local descriptors

Figure 4: Left: the distribution and coverage of different numbers of local descriptors. Local descriptors are centered at the dots and their
coverage is indicated by green bounding boxes. In particular, blue dots denote the 18 keypoints generated by a pose estimator and yellow
dots denote the interpolated keypoints. Denser local descriptors introduce higher coverage of human body. Right-top: the mechanism of
local perceptual loss back-propagation. Two corresponding local regions X̂d andX ′

d are respectively cropped from generated image X̂ and
ground truth image X ′. X̂d and X ′

d are then separately passed through a pre-trained VGG-16 to generate activations φ at different layers
l. A customized criterion C(φ, φ′) measures the distances between corresponding activations φ. Local descriptors intensify local loss
back-propagation and thus enhance local details: see the sharper wrinkles and belt depicted in X ′

d. Right-bottom: the detail enhancement
introduced by increasingly denser overlapping local descriptors. Specifically, the four zoom-in views of logo are respectively cropped from
outputs of four models trained using 0, 18, 31, 44 local descriptors (from left to right). Subtle but evident improvement can be identified in
the process of increasing the number of overlapping local descriptors.

timator [3], which gives the locations of 18 keypoints of
a person in 2D coordinates. To let the network leverage
the keypoint information effectively, these 18 keypoints are
separately represented by a gaussian distribution map with a
fixed standard deviation. Specifically, we denote each key-
point as k = 1, · · · , 18 and their respective 2D coordinates
as u(k). Then the pose representation P , which is the con-
catenation of 18 gaussian distribution maps, is encoded as:

P (x; k) = exp(− 1

2σ2
||x− u(k)||2) (1)

The result is an explicit pose representation P ∈ RH×W×18

whose 18 maxima represent the locations of the 18 key-
points. P is then concatenated into the bottleneck of au-
toencoder.

Autoencoder The goal of the autoencoder is to reconstruct
X̂ in the target pose based on the appearance of the person
in the reference image X and the pose representation P ex-
tracted from the same person in the ground truth image X

′
,

as shown in Figure 3. Since P contains no appearance in-
formation, the network is forced to utilize the appearance
information in X . Furthermore, we add skip connections
similar to those in a U-Net [32] to enable smoother gra-
dient flow along the autoencoder. Then we use reconstruc-
tion loss between output X̂ and ground truth image X

′
to

encourage the network to generate appropriate appearance
which matches the pose of the person in X

′
.

Perceptual loss The design of reconstruction error is criti-

cal for good performance. Since it is hard for the network
to learn a pixel-to-pixel mapping only from X due to the
inherent pose and appearance variation, we encourage the
network to also learn high-level semantic meanings during
training, which is pivotal for decoupling pose and appear-
ance. Inspired by recent excellent practices [16], we adopt
perceptual loss as the reconstruction loss between X

′
and

X̂ . Apart from comparing only the raw pixel values, per-
ceptual loss involves passing the output and the ground truth
images individually through a pre-trained deep network and
comparing the activations extracted from multiple layers in-
side the network. This process enables the network to better
learn the decoupling of appearance and pose and alleviates
overfitting. Specifically, we define perceptual loss as:

L(X
′
, X̂) =

∑
l

C(φl(X
′
), φl(X̂)) (2)

where φ(x) is a pre-trained network, such as VGG-16 [35],
and φl denotes the activation of the lth layer of φ(x). Dif-
ferent from common practices which use L2 loss as the cri-
terion to evaluate X̂ , we customize the criterion C(φ, φ

′
) to

accelerate network convergence. Since L2 loss has an op-
timal solution while L1 loss enforces sharper output but is
less stable, we designate C(φ, φ

′
) as L2 loss in the first half

of the training process within each resolution level and L1

loss in the second half. This practice enables stable conver-
gence as well as high generation quality.
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Figure 5: Progressive training. The bottleneck size of the au-
toencoder is 32 × 32. We start from a low spacial resolution of
64 × 64 pixels and incrementally add layers to encoder and de-
coder as training proceeds until we reach the ultimate resolution
of 1024 × 1024. All existing layers remain trainable throughout
the process. Here we illustrate a snapshot when the network in-
creases its resolution from 64 × 64 to 128 × 128. During this
transition, a new convolution block [(Conv + BN + Leaky ReLU)
× 2] with corresponding up-sampling or down-sampling layer is
introduced to encoder and decoder respectively. Also 1 × 1 con-
volution layer used to project RGB channels to/from feature space
is replaced by a new one that fits the network.

3.2. Local descriptors

Note that the adoption of global perceptual loss does not
enforce sufficient preservation of local details. It is ob-
served that sharp garment textures cannot be preserved well
under the restriction of global perceptual loss only, as will
be shown in the ablation study in Figure 7. To address this
limitation, we introduce novel local descriptors which en-
able the generation of high-quality images. Local descrip-
tors describe a set of regions telling the network where to
focus and concentrate loss back-propagation. The locations
of local descriptors are guided by the pose keypoints pro-
duced by the pose estimator. To ensure appropriate detail
refinement and alleviate overfitting, the size of local regions
is designed to be one-eighth of the input image resolution.

Figure 4 shows the distribution and coverage of local de-
scriptors. Since higher resolution generally requires more
local details, we increase the number of local descriptors
adopted by interpolating between existing keypoints as in-
put image resolution grows. Denser overlapping local de-
scriptors introduce more complete coverage of the body and
thus help preserve details more faithfully. Since we are not
interested in fingers so we do not incorporate the keypoints
particularly there.

Two kinds of local descriptor are adopted, respectively
local perceptual loss and local discriminator. We use lo-
cal perceptual loss as local descriptors during progressive
training and local discriminators at the highest resolution
(10242).

Specifically, based on the 18 keypoints in X
′

produced
by the pose estimator, a list of N local descriptors is gener-
ated, denoted as d = 1, · · · , N . Then two sets of fractional-

(a)Xd

(b)Xd
′

(c)X̂d

6

128

128

64

64

128

32

256

16

512

8

1024

4

2048

2

1

2

1

Dlocal(Xd,Xd
′
) → 1

Dlocal(Xd, X̂d) → 0

Conv3x3 (padding=2) Leaky ReLU

Spectral Normalization Sigmoid

Avg Pooling

Figure 6: Local Discriminators. Xd, Xd
′

and X̂d are cropped
from the reference image, the target image (GT) and the generated
image respectively. The concatenation of Xd and Xd

′
is fed into

the local discriminator as a positive example, while the concate-
nation of Xd

′
and X̂d is fed as a negative example. Shown here

is the architecture of the local discriminator with the last 2x2x1
feature vector being averaged to a scalar as the probability of the
input pair being a valid transfer result.

sized regions centered at the location of each of N local
descriptors are cropped from X

′
and X̂ respectively.

Local perceptual loss Perceptual loss is enforced between
corresponding local regions. The local loss Llocal is formu-
lated as the following:

Llocal(X
′
, X̂) =

N∑
d=1

∑
l

C(φl(X
′

d), φl(X̂d))) (3)

where Xd

′
and X̂d denote the dth region cropped from X

′

and X̂ respectively.

Local discriminators We adopt local discriminators in re-
placement of the local perceptual loss at the highest reso-
lution (10242). Specifically, the local discriminators at the
dth region take pairs of inputs where the concatenation of
Xd and Xd

′
is considered real and the concatenation of Xd

and X̂d is considered fake, as shown in Figure 6. It is ob-
served that local discriminators can improve the generaliza-
tion ability of the model and further boost its generation
quality.

Self-comparison between the model with and without lo-
cal descriptors are shown in Figure 7. The significant im-
provement in image quality demonstrates the efficacy intro-
duced by local descriptors.

3.3. Progressive training of autoencoder

Apart from achieving high-quality image generation, we
also aim at producing unprecedentedly high-resolution re-
sults (10242). However, training the autoencoder in high
resolution from scratch does not yield satisfactory results.
Inspired by [12] which produces high-resolution results on
CelebA-HQ dataset by introducing progressive training to
GAN, we adopt a variation of progressive training which
fits our setting of autoencoder with skip connections, as
shown in Figure 5. Most importantly, instead of fading in
a new convolution block to increase resolution using alpha
blending, we train the new convolution block with skip con-
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nection from scratch, utilizing deeper convolution blocks
trained in the previous stage as mature feature extractors.
From our observation, this enables faster convergence of
newly introduced blocks as well as utilization of skip con-
nections to enhance generation quality. Self-comparison in
Figure 7 demonstrates substantial improvement brought by
progressive training on autoencoder.

3.4. Implementation details

We use the Adam [18] optimizer with a weight decay
of 5 × 10−4. The initial learning rate is set to 2 × 10−4.
We use σ = 3.2 to generate the gaussian distribution for
pose representation. The autoencoder is trained progres-
sively starting from the resolution of 642 with bottleneck
shape of 1024× 322 and ending at the resolution of 10242.
Within each convolution block, we use two contiguous sets
of 3× 3 convolution layer followed by batch normalization
[10] and leaky Relu with leakiness of 0.2. The number of
channels of feature maps is halved as spacial size doubles.
We downscale and upscale the feature maps using average
pooling and nearest neighbor interpolation respectively. We
use 1× 1 convolution to project the outermost feature maps
into RGB space and vice versa as in RGB back to feature
map. We use He’s initializer [11] to initialize the autoen-
coder. A total of 18 local descriptors are used for the res-
olution of 642 and 1282. For 2562 and 5122, we use 31
local descriptors by interpolating between keypoints pairs
and 44 local descriptors for 10242 through additional inter-
polations. For each resolution level, we train the network
for 700 thousand iterations.

Our final loss L, which is composed of both global loss
Lglobal and local loss Llocal, is formulated as the following:

L(X
′
, X̂) = Lglobal(X

′
, X̂) + Llocal(X

′
, X̂)

=
∑
l

C(φl(X
′
), φl(X̂)))

+

N∑
d=1

∑
l

C(φl(X
′

d), φl(X̂d)) (4)

4. Experiments

To demonstrate the advantages of our method, we first
conduct qualitative and quantitative self-comparisons to
validate the effectiveness of different components, namely
local descriptors and progressive training on autoencoders.
We then demonstrate the network’s generalizability by
showing the results on various datasets, including the Hu-
man3.6M [13] dataset, the DeepFashion [25] dataset and
a self-collected dataset from YouTube. We also compare
the performance on the DeepFashion dataset with previous
work. Lastly, we show the network’s potential to be fur-
ther utilized in real-world applications, such as high-quality
garment transfer and pose-guided human video generation.

Table 1: Quantitative self-comparison in different modes.
Human3.6M

Model SSIM local-SSIM LPIPS
Baseline 0.909 0.699 0.230
LPL 0.944 0.744 0.205
PT 0.953 0.759 0.164
PT+LPL 0.954 0.772 0.145
PT+LPL+LD 0.959 0.804 0.135
Real Data 1.00 1.00 0.00

4.1. Datasets

Human3.6M We train and test our model primarily on the
Human3.6M dataset [13], which includes 11 actors in to-
tal with different poses. The dataset provides ground truth
2D human poses, backgrounds and human body bounding
boxes. We first subsample the videos at 3 frames per sec-
ond and obtain image frames with large pose variations. For
each image frame, we then subtract the background and re-
tain only the human foreground to reduce training noises.
We select ‘Posing’, ‘Greeting’ and ’Walking’ action classes
for training, and ‘Directions’ class for testing.
YouTube dataset To test the generalizability of our method,
we further train and test our network on our self-collected
YouTube video datasets. The datasets we collected contains
20 hip-hop dancing videos from World of Dance competi-
tion, all of which have large pose variations. We subtract
the background of this dataset using human parsing net-
work [23] and subsample the videos at 3 frames per second
to produce the training and testing set.

4.2. Self-comparison

Local descriptors Qualitative comparison in Figure 7
demonstrates the effectiveness of local descriptors (local
perceptual loss and local discriminators). As shown in col-
umn (e), (g) and their corresponding zoom-in views, local
perceptual loss results in improvement on local details com-
pared to the baseline. From column (i), (k) and their corre-
sponding zoom-in views, local perceptual loss is still able
to bring significant enhancement to the generation quality
under progressive training. In particular, the two stars in
image (3, d) are faithfully preserved in result (3, l), but lost
in result (3, j). In addition, column (k), (m) and their corre-
sponding zoom-in views show the further enhancement on
the generation quality of human body and garment textures
introduced by the local discriminators applied at the highest
resolution (10242).
Progressive training The advantages of progressive train-
ing is demonstrated through comparisons in Figure 7. Col-
umn (g) and (k) with their corresponding zoom-in views
show the improvement for the models with local descrip-
tors, while column (e) and (i) with zoom-in views show the
improvement without local descriptors. In particular, the
garment texture in image (1, d) is faithfully preserved in re-
sult (1, l), but lost in result (1, h). Therefore, while local
descriptors enable local detail enhancement, the entire net-
work still suffers from the vanishing gradient problem. To
alleviate this problem, progressive training enables separate
and progressive convergence of deep network layers, thus
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Target Pose GT (in target pose) Baseline result LPL result PT result PT+LPL result PT+LPL+LD result
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Figure 7: Self-comparison results. Test results on the Human3.6M generated by Baseline (no local descriptors or progressive train-
ing), LPL (with local perceptual loss only), PT (with progressive training), PT+LPL (with progressive training and local perceptual loss),
PT+LPL+LD (with progressive trainning, local perceptual loss and local discriminators) and their corresponding zoom-in views are pro-
vided. Progressive training and local descriptors (local perceptual loss + local discriminator) each introduces considerable improvement
in generation quality and produce the best result when combined. Our model also demonstrates robustness to the segmentation error
introduced by the Human3.6M dataset. Figure is best viewed online.

reduce the effects of vanishing gradient.
Quantitative comparison Image generation quality can be
difficult to assess due to various standards. Here we adopt
Structural Similarity (SSIM) [38] and Learned Perceptual
Image Patch Similarity (LPIPS) [42] as our main evalua-
tion metric. Due to the limitations of SSIM such as insensi-
tivity and distortion under-estimation near hard edges [30],
we also adopt a variation of SSIM, local-SSIM, to more ef-
fectively evaluate local details. Instead of global evalua-
tion performed by SSIM, local-SSIM operates on 44 cor-
responding local regions between the generated image and
the reference image. The 44 local regions correspond to the
areas described by 44 local descriptors, where the highest
coverage of human body is achieved.

Quantitative comparison between models under differ-
ent settings are shown in Table 1. Both local descriptors
and progressive training bring considerable enhancement in
generation quality, with a combination of the two further
boosting the result. Local-SSIM more evidently reflects the
improvement in the quality at local regions.

4.3. YouTube dataset

Since appearance variation of the Human3.6M dataset is
extremely limited (i.e. many actors wear garment with plain
texture), we train and test our model on our YouTube dataset
to validate its generalizability. Test results are shown in Fig-

Reference Target Pose GT DSC [34] DIAF [22] LWGAN [24] Ours

Figure 8: Comparison with previous work. Comparing with
previous work, given the large pose differences our network cap-
tures more details despite that some parts may not be sharp
enough.

ure 1. Our method clearly demonstrates its power in detail
preservation and pose manipulation even under hard situ-
ations where large pose variations introduce different self-
occlusions and thus dis-occlusion.

4.4. Comparison with previous work

Here we compare our method with three state-of-the-art
approaches, DSC proposed by Siarohin et al., Dense Intrin-
sic Appearance Flow (DIAF) proposed by Li et al. and Liq-
uid Warping GAN (LWGAN) proposed by Liu et al. They
reported their results on the market-1501 [44] dataset and
the DeepFashion [25] dataset. Since our method focuses on
high-resolution pose transfer, we only compare with them
on the DeepFashion dataset, which has relatively high reso-
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Original Reference Mask

Garment Mask

Virtual try-on result

dis-

occlusion

parsing

Appearance flow network

Figure 9: Garment Transfer Network. We first use our Our
method to dis-occlude the original image and apply human pars-
ing network [23] to extract the mask of the garment in reference
and target poses. The appearance flow network will then take the
garment image, reference pose mask and target pose mask as in-
put and outputs the appearance flows, which yield the synthesized
garment image through a bilinear sampling layer.

lution (2562). Figure 8 shows a qualitative comparison. Our
method successfully transfers sharp appearance details to
large pose variations and faithfully hallucinates previously
occluded parts. Table 2 shows our better quantitative per-
formance compared with their methods.

Table 2: Quantitative comparison with previous work.

DeepFashion
Model SSIM MS-SSIM LPIPS
DSC 0.776 0.792 0.345
DIAF 0.778 0.798 0.252
LWGAN 0.781 0.788 0.227
Ours 0.806 0.814 0.198
Real Data 1.00 1.00 0.00

4.5. Further Applications

Virtual try-on Virtual try-on has demonstrated great appli-
cation potential. This task requires the transfer of any gar-
ment with detailed texture. While a recent approach [9] suc-
cessfully preserves garment details and shapes, there still
exists artifacts due to self-occlusions. We can tackle this
problem with two steps. First, we transfer the image of the
target person (with self-occlusion) into a pre-defined frontal
pose (without occlusion). Then, we apply our appearance
flow network to transfer the garment to that person. Details
are in Figure 9.
Pose-guided human video generation Our method can be
applied to generate human action videos in 10242 under a
pose guidance. Specifically, given a reference image and
a video sequence of target poses, a high-resolution video
of the reference person complying the target pose frames
is generated. Although we generate the video frame-by-
frame and do not consider temporal conherency as done
in [2] on human video generation, their video resolution was

(a)

(b)

(c)

(d)

Figure 10: Pose-guided human video generation. five sample
frames of (a) input target poses, (b) generated video by [2], (c) our
generated video, (d) zoom-in views of the two methods.

only 1282. Figure 10 shows a comparison on 5 subsequent
frames, where our result shows the facial features as well as
other details of the garment and shoes. Our method demon-
strates a great potential in high-resolution human video gen-
eration.

5. Conclusion

In this paper we present a solution for pose-guided
high-resolution appearance transfer between images, where
the proposed local descriptors (local perceptual loss + lo-
cal discriminators) and progressive training on autoen-
coder are shown to be effective in generating plausible
and photorealistic images of human at target poses. Self-
comparisons have clearly validated the advantages of differ-
ent components. We have also demonstrated our method’s
high generalizability in our extensive experiments. We
have also shown important applications in high-quality
garment transfer and pose-guided human video genera-
tion.
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