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Abstract

Multimodal large language models (MLLMs)
demonstrate strong capabilities in multimodal
understanding, reasoning, and interaction but
still face the fundamental limitation of hallu-
cinations, where they generate erroneous or
fabricated information. We propose Visual
Clue-Guided Decoding (VCGD), a novel de-
coding strategy that incorporates precise visual
cues generated by a Caption Model during the
decoding phase. These cues serve as com-
parative references for the model’s own out-
puts, effectively mitigating hallucination phe-
nomena. Specifically, VCGD leverages high-
quality visual descriptions to guide MLLMs
in correcting perceptual biases while gener-
ating answers. Furthermore, we introduce a
Reinforcement Learning (RL)-based training
paradigm for the Caption Model, in which a
Reward Agent provides feedback on the qual-
ity of visual clues, further enhancing the ac-
curacy of visual information. Extensive ex-
periments across multiple benchmark datasets
and state-of-the-art MLLMs demonstrate that
VCGD significantly reduces hallucination rates
and substantially improves cross-modal con-
sistency. Our method exhibits strong gener-
alizability and scalability, offering an effec-
tive decoding enhancement strategy that can be
seamlessly integrated into existing multimodal
frameworks. Code is available at https://
anonymous . 4open.science/r/VCGD-C860.

1 Introduction

Large Language Models (LLMs) (OpenAl, 2023b;
Touvron et al., 2023; Achiam et al., 2023; Jiang
etal., 2023; Bai et al., 2023a) have marked a pivotal
advancement in natural language processing. Build-
ing upon their success, researchers have expanded
these models into multimodal domains, giving rise
to Multimodal Large Language Models (MLLMs)
(Achiam et al., 2023; Liu et al., 2024d; Team et al.,
2023; Bai et al., 2023b). While MLLMs demon-
strate remarkable proficiency in tackling a wide
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Figure 1: Figure @ illustrates the training procedure
of the Caption Model, which consists of two stages:
the Cold-Start Stage and the Reinforcement Learning
Stage. Figure @ illustrates the use of the Caption Model
to assist the MLLM in contrastive decoding, thereby
alleviating hallucination issues.

array of visual tasks (Zhang et al., 2023; Li et al.,
2024; Black et al., 2024), as well as in under-
standing (Lai et al., 2024) and generating complex
content (Brooks et al., 2023; Geng et al., 2024),
they are not without limitations. A particularly
critical issue is the so-called “Hallucination™ phe-
nomenon. In practice, MLLMs often produce in-
accurate or fabricated responses when interpreting
user-provided images and prompts—ranging from
irrelevant or nonsensical descriptions to misidenti-
fied colors, incorrect object counts, and erroneous
spatial relationships within the scene. Such ten-
dencies severely undermine their reliability and
present substantial obstacles to their deployment in
real-world applications.

The issue of hallucinations in MLLMs originates
from the intricacies of their training pipeline, which
typically includes an alignment-based projection
during pre-training, followed by fine-tuning on a
relatively limited amount of instruction-following
data. To tackle these hallucination problems, var-
ious strategies have been proposed. Some focus
on resolving inconsistencies by refining data qual-
ity and alignment (Liu et al., 2023a; Wang et al.,
2024a), while others emphasize scaling up model
architectures (Zhai et al., 2023) or incorporating
reinforcement learning-based techniques (Yu et al.,
2023; Sun et al., 2024). A distinct line of work
involves reactive techniques (Huang et al., 2023;
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Deng et al., 2024), which intervene directly during
the decoding process to suppress inaccurate outputs.
Inspired by contrastive decoding (CD) strategies
introduced by Li et al. (2023b), which compare the
outputs of expert and amateur models, recent devel-
opments in CD-based methods for MLLMs have ex-
plored contrasting visual-conditioned generations
to suppress hallucinations, taking into account fac-
tors such as visual noise (Leng et al., 2023), image-
induced bias (Zhu et al., 2024), and detailed visual
grounding (Chen et al., 2024), and self-generated
description (Kim et al., 2024).

We investigate the following research question:
If the model is incapable of accurately perceiv-
ing visual content through its own capacity, it be-
comes highly susceptible to generating hallucina-
tions. Therefore, a key question arises: can aux-
iliary models be incorporated to provide precise
visual cues during decoding, thereby reducing the
likelihood of hallucination? To address this issue,
we propose a novel Visual Cue Guided Decod-
ing strategy. Specifically, we leverage a caption
model to provide precise visual cues during decod-
ing, thereby mitigating the inherent biases of the
model in visual perception. To further enhance cap-
tion quality, we introduce a reinforcement learning
algorithm based on a Reward-Agent framework,
termed RA-GRPO. This algorithm optimizes the
caption generation process by providing reward
signals across three dimensions: accuracy, infor-
mativeness, and redundancy control. As a result, it
facilitates the generation of more precise and prag-
matically useful image descriptions. The specific
process is briefly illustrated in Figure 1, which in-
cludes two main stage: @ Train Caption Model,
where the Caption Model is obtained through a
two-stage training procedure; @ Decoding with
Caption Model, the Caption Model is employed to
assist MLLMs in decoding.

By conducting extensive experiments and analy-
ses on prevailing cutting-edge MLLMs (Liu et al.,
2023c; Chen et al., 2023b; Liu et al., 2024c), we
corroborate the effectiveness of our method in re-
ducing hallucination in various benchmarks (Li
et al., 2023c; Liu et al., 2023d; Tong et al., 2024).
Our contribution can be summarized into four-fold
as follows:

* We propose Visual Clue Guided Decoding
(VCGD), a novel decoding strategy that en-
hances the model’s visual perception by lever-
aging precise visual clues. These clues are de-

rived from captions generated by an external
Caption Model, while suppressing the model’s
own perception to reduce visual bias.

* We propose an approach for training the Cap-
tion Model using reinforcement learning to
generate accurate and informative visual clues
that effectively guide the decoding process.

* We introduce a reward mechanism for a ded-
icated Reward Agent, which evaluates the
quality of the generated captions based on
three dimensions: accuracy, informativeness,
and redundancy control.

* We evaluate the proposed decoding approach
on various benchmarks using state-of-the-art
MLMMs. Experimental results demonstrate
that VCGD significantly reduces hallucina-
tions.

2 Related Work

2.1 Multimodal Large Language Models

Recent advancements in MLLMs research are pri-
marily attributed to the evolution of LLMs (Wang
et al., 2024c; Zhuo et al., 2024; Lu et al., 2024;
Su et al., 2024). With the aid of advanced LLMs
like LLaMA (Touvron et al., 2023) and Qwen (Bai
et al., 2023a), a batch of MLLMs such as LLaVA-
1.5 (Liu et al., 2024d), Qwen-VL (Bai et al., 2023b),
LLaVA-NEXT (Liu et al., 2024c¢) , InternVL (Chen
et al., 2023b) and mPLUGOwI2 (Ye et al., 2024)
have emerged, which can comprehend and gener-
ate a wide array of content by utilizing informa-
tion from distinct modalities like texts and images.
Despite the success, current MLLMs suffer from
serious hallucination problems. Thus, in this paper,
we focus on mitigating hallucination problems to
promote the use of MLLMs in practical scenarios.

2.2 Hallucinations in MLLMs

Hallucinations in MLLMs have significantly im-
peded their usage in the real world, especially for
tasks that rely on precise captions. Recently, numer-
ous studies focus on the construction of datasets
for evaluating hallucination phenomena (Rohrbach
et al., 2018; Li et al., 2023d; Wang et al., 2023;
Sun et al., 2023a; Zhong et al., 2024; Tong et al.,
2024; Wu et al., 2024; Cao et al., 2024; Huang
et al., 2024b; Mubarak et al., 2024; Jing et al., 2024;
Lovenia et al., 2023; Zhai et al., 2023; Wan and
Bansal, 2022; Zhang et al., 2024; Min et al., 2023;



Yan et al., 2024). Concurrently, significant atten-
tion is directed towards analyzing the underlying
causes of hallucinations (Tao et al., 2024; Sui et al.,
2024; Fadeeva et al., 2024).

Moreover, various approaches have been pro-
posed to mitigate hallucinations in MLLMs, includ-
ing training-free and training-based approaches.
Training-based approaches seek to mitigate hal-
lucinations in MLLMs via further training, such as
Supervised Fine-Tuning (SFT) (Liu et al., 2023b)
or preference learning (Sun et al., 2023a; Yu et al.,
2024a; Li et al., 2023a; Zhao et al., 2023; Gunjal
etal., 2024; Liu et al., 2024a; Yu et al., 2024b; Zhou
et al., 2024; Jiang et al., 2024; Jing and Du, 2024).
Training-free approaches address potential halluci-
nations by post-processing the outputs of MLLMs
(Leng et al., 2024; Huang et al., 2024a; Yin et al.,
2023; Manevich and Tsarfaty, 2024; Wang et al.,
2024b; Kim et al., 2024). For example, VCD (Leng
et al., 2024) aims to address the model’s over-
reliance on linguistic priors and statistical biases by
comparing the output distributions from unaltered
and visually perturbed inputs. Woodpecker (Yin
et al., 2023) introduces post-processing aimed at
mitigating biases from language priors. ICD (Wang
et al., 2024b) suppresses hallucinations through dis-
turbance instructions affecting multimodal align-
ment. Similarly, LCD (Wang et al., 2024b) uses vi-
sual noise to guide the decoding process to leverage
the language modality to mitigate hallucinations.
CODE (Kim et al., 2024) utilize self-generated
description as contrasting visual counterpart and
correct hallucinatory responses based on the model
understanding. Inspired by Kim et al. (2024), our
work aligns with CD-based approaches that utilize
visual clues from Caption Models to guide decod-
ing. Unlike previous works that focus on manipulat-
ing information or self-generated descriptions, we
argue that if the model fails to accurately identify
the visual content and self-generated description,
no amount of correction can resolve hallucinations.
We utilize visual clues from Caption Models as a
contrasting visual counterpart to correct hallucina-
tory responses.

3 Methodology

Our proposed VCGD framework consists of two
main components: training the Caption Model
(Section 3.1) and decoding with the Caption Model
(Section 3.2).

3.1 Caption Model
3.1.1 Overview

We design and train a Caption Model. As shown in
Figure 1, inspired by the DeepSeek-R1 (Guo et al.,
2025) approach, the training of the Caption Model
is divided into two stages: the cold-start stage and
the reinforcement learning (RL) stage.

Cold-Start Stage. We construct triplet data con-
sisting of images, questions, and answers based
on ShareGPT4V (Chen et al., 2023a) and LLaVA-
CoT (Xu et al., 2024). We then utilize GPT-4 to
summarize the original questions (Q) and answers
(A), extracting Visual Cues that are critical for prob-
lem solving, which are subsequently used as train-
ing targets.

RL Stage. The Visual Cues that support prob-
lem solving, exclude irrelevant details, and remain
highly consistent with the image content, and we
optimize the Caption Model based on our designed
Reward-Agent framework (RA-GRPO), as shown
in Figure 2.

3.1.2 Reward Agent

We design a Reward Agent comprising three re-
ward signals as illustrated in Figure 2: the Accu-
racy Reward, the Matching Reward, and the Image-
Consistency Reward.

Accuracy Reward. In order that the Visual
Clues (VC) can effectively capture visual infor-
mation and assist the model in understanding im-
age content, we employ a Large Language Model
(LLM), incorporating the VC as contextual in-
put—essentially allowing the VC to serve as the
LLM’s "eyes". These clues represent the visual
perception available to the LLLM, based on which
it generates an answer to the given question. A re-
ward is then assigned depending on the correctness
of the answer. The reward is defined as follows:

1.0, if Rolloutg+vc = True

Reward gcc = { (D

0.0, if Rolloutg4+vc = False

Matching Reward. This reward signal is de-
signed to encourage the Caption Model to generate
VC that minimize the inclusion of redundant infor-
mation related to the image content but irrelevant
to the given question. To achieve this, we intro-
duce LLaMA as a discriminator J. Specifically,
the process is as follows: the discriminator J first
analyzes the question () and identifies a set of key
points K; required to answer (). Subsequently, the
alignment between each VC and the identified key
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Figure 2: Caption Model Train framework: (1) Reward Agent contains Accuracy Reward, Matching Reward, and
Image-Consistency Reward. (2) RL Train: For each data instance, we first employ the Caption Model to sample and
generate GG Visual Clues (VC). For each VC, the Reward Agent evaluates the corresponding answer candidate and
assigns a reward score. The parameters are then optimized using the RA-GRPO algorithm.

points (Key) is computed (Equation (2)) to quantify
the amount of useful information contained within
the VC. This mechanism suppresses the generation
of redundant content that is irrelevant to answering
the question.

|K|

L S(K € Vo) @)
=1

Rewardpjaich = ﬁ

Image Consistency Reward. The image consis-
tency reward aims to reduce hallucination phenom-
ena induced by the VC. Specifically, we employ the
FineCLIP (Asokan et al., 2025) model to compute
the CLIP-Score for each VC, followed by a nor-
malization process, as formalized in Equation (3).
This score quantifies the consistency between the
visual clue and the corresponding image content.

SN | CLIP-Score(VC;, Image)
N

RewaIdIC = (3)

where min and max denote the minimum and max-
imum CLIP-Scores across the VC, respectively.
Final Reward. The final reward signal produced
by the Reward Agent is a composite of the three
aforementioned sub-rewards, as follows:

Reward = Reward . + Rewardpj,¢cp, + Rewardjc  (4)

3.1.3 Reinforcement Learning

To further enhance caption quality, inspired by Dai
et al. (2024), we propose a Reward-Agent frame-
work (RA-GRPO), as shown in Figure 2. RA-
GRPO is a reinforcement learning (RL) algorithm
that avoids learning a value critic by computing
normalized advantages within a group of sampled
actions.

Specifically, given a prompt s, we sample G out-
puts {ai,...,ag} ~ my(:|s), evaluate them with a
reward function (s, a) from Reward Agent. We
compute the reward as 7%, and repeatedly com-
pute the rewards for all paths from group, i.e.,
{rl,r2 . rCL

To estimate the advantage of each trajectory, we
normalize its reward relative to the group as follow:

r —mean({r!,r2, ..., r})
std({rl,r2,...,rG}) ’

A
T _

®)

where the mean group reward serves as the baseline,
and fli measures how much better or worse r; is
compared to other trajectories within the group.
Following this, we optimize the policy model with
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the loss defined as:
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— BDk (|| Tre )]s
(6)

where KL divergence is adopted to regularize the
policy model, preventing excessive deviation from
the reference model. The reference model is typ-
ically initialized as the same model as the policy
model but remains frozen during RL training. The
KL divergence between the policy model and the
reference model is estimated as in (Shao et al.,
2024):

7Tref(ci|62)

ﬂref(ci|Q)
T (@) o

mp(c'|Q)

D r(mg||mrer) =

3.2 Visual Clue Guided Decoding

An overview of our proposed VCGD framework is
shown in Figure 3.

3.2.1 Problem Setup and Preliminaries

Let My denote a Multimodal Large Language
Model (MLLM) parameterized by 6 that auto-
regressively generates responses for the given vi-
sual contents v and input textual query x. Then the

—1.

model maps the logit distribution to the next token
prediction output y; € RV! at time step ¢ in the
vocabulary set V such that y; ~ pg(y¢|v, z,y<¢) x
logity (y:|v, z, y<¢), where y; indicates all previ-
ously generated tokens.

3.2.2 Contrastive Decoding with Disturbance

We can obtain a pair of visual content and pre-
cise visual clues from the Caption Model (v, vc),
where v represents the image information and vc
corresponds to Caption(y|v, zp). By contrasting
the logit variations between the set of information
during model response generation, we can formu-
late the next-word prediction using our proposed
VCGD method:

Yp ~ Softmax[ (1 + ay)logity(y: | v, z,y<t)
(®)
+Qtlogit€ (yt | v+ e, T, y<t)>:| :

Inspired by CODE (Kim et al., 2024), we define
the dynamic constraint o as:

1—Dya (P} | PT°), )

1
Dbd PHQ 52 pz+Qz log2(’pz _Q’L‘ +1)7

(10)
where Dyg(P||Q) > 0 and equals 0, if and only if
p=q, and k denotes a smoothing parameter. Here,



the upper-bound of the divergence apparently ex-
ists, such that Dpg(P||Q) < Y, pilogy 2=1,
due to the following condition |p;—¢;| < 1.

That implements a token-level feedback control
mechanism that dynamically adjusts the informa-
tion weight based on the proximity of two distri-
butions. The primary role of this constraint is to
maintain a balanced variation in logits given the
predictive discrepancies between the v and v + ve
distributions. Specifically, when the two distribu-
tions are sufficiently close (i.e., P} ~ P/ U, the
value of Dypg(PY | PY1"¢) approaches zero, indi-
cating minimal distributional divergence. In this
case, o approaches 1, thereby allowing greater am-
plification of the logits’ variation when predicting
the next token.

3.2.3 Adaptive Information Constraint

The VCGD objective is designed to favor tokens
preferred by the MLLMs output while imposing
penalties on tokens influenced by instruction distur-
bances. However, it also might erroneously reward
tokens representing implausible concepts. To ad-
dress this issue, we refine the VCGD objective to
incorporate an adaptive plausibility constraint Veagq.
By comparing prediction distributions between P’
and P/1"¢, we filter out less relevant tokens from
the candidate pool as follows:

Viead(Y<t) = {ye €V 1 po(ye | v, 2, y<t)

> 51‘/ muz}xpg(w ‘ v, x, y<t)}7 (b
where (3, dynamically regulate the token candidate
pool utilizing the divergence term in Eq. (10), de-
fined as B; = Dbd(Pt“HJDer”C). This strategy can
expand the token searching pool when the next-
token prediction, derived from both visual content
and comprehensive description, shows a similar dis-
tribution yet uncertainty in selecting the candidate
token (i.e., false negatives). Finally, we only con-
sider the next-token prediction within Viead(y<¢)s
and for the tokens satisfying y; ¢ Vhead(y<t), we
set their logits to —oo to filter out from the candi-
date pool.

4 Experiment

4.1 Experimental Setup

4.1.1 Caption Model

During the Cold-Start Stage, we sample 160K data
points from ShareGPT4V (Chen et al., 2023a) and

LLaVA-CoT (Xu et al., 2024) to train Qwen-2.5-
VL-7B. In the RL stage, we sample 50K data points
from the aforementioned datasets and use Qwen-
2.5-7B as Rollout Model, with rollout=8 and K-
L=0.

4.1.2 Inference Model

We apply VCGD on three MLLMs in different
sizes, LLaVA-1.5-13B (Liu et al., 2024b), LLaVA-
NeXT-34B (Liu et al., 2024¢) and InternVL-26B
(Chen et al., 2023b).

4.1.3 Evaluation Benchmarks

We evaluate the performance of VCGD on four
widely used benchmarks, including POPE (Li et al.,
2023d), MMVP (Tong et al., 2024), MMHalBench
(Sun et al., 2023b), and LLaVA-Bench (In-the-
Wild) (Liu et al., 2023d) for MLLMs with a special
focus on hallucination. The benchmarks are de-
tailed in Appendix A.

4.1.4 Baselines

We compare our method with six baseline de-
coding strategies. For conventional decoding
strategies, we use greedy decoding, nucleus sam-
pling (Holtzman et al., 2020), and beam search
decoding. Additionally, we select the recent
state-of-the-art (SOTA) methods, including the
OPERA method (Huang et al., 2023), the VCD
method (Leng et al.,, 2023), and the CODE
method (Kim et al., 2024) as comparative decoding
approaches.

4.2 Main Results

Table 1 presents the primary experimental results.
We observe the following points:

Results on MMVP. The MMVP benchmark
comprehensively evaluate CLIP blind pairs across
9 different visual modalities. As shown in Table 1,
the results indicate a significant improvement in av-
erage accuracy after employing VCGD contrastive
decoding.

Results on POPE. Our method demonstrates
consistent improvements over previous baselines
across various settings. The composition of POPE
focuses solely on questioning the existence of
objects, rather than their absence (e.g., "Is there
{something} in the image?"). The combinatorial
results of a high accuracy and F1 score indicate
that our method can boost the existing MLLMs
to effectively mitigate hallucination by cautiously
confirming yes for the existence of objects (i.e., the
model does not often make up objects).



LLaVA  MMHal
MMVP POPE

Model QA90 Bench

O Q £ 15 9 @ 9% A B Avgl Accege Flago Overall Overall Hal |
LLaVA-1.5-13B
+ Greedy 30.7 272 0.0 12.5 10.0 53.3 16.6 50.0 40.0 30.6 840 826 824 239 520
+ Beam 19.2 272 11.1 25.0 10.0 60.0 16.6 70.0 35.0 32.6 84.1 827 835 233 53.1
+ Nucleus 269 272 222 125 20.0 333 0.0 60.0 20.0 266 80.6 794 793 203 604
+ Opera 42.3 36.3 11.1 25.0 10.0 56.6 16.6 70.0 350 333 840 825 807 222 550
+VCD 34.6 18.1 222 37.5 50.0 43.3 33.3 40.0 350 340 810 803 793 228 54.0
+ CODE 19.2 31.8 11.1 25.0 20.0 53.3 16.6 80.0 40.0 34.0 842 828 835 249 51.0
+VCGD(ours) 402 384 222 37.5 20.0 60.0 16.6 80.0 45.0 372 85.0 847 822 2.62 49.0
LLaVA-NeXT-34B

+ Greedy 38.4 40.9 16.6 37.5 30.0 60.0 0.0 80.0 350 40.6 865 87.0 90.7 330 34.0
+ Beam 38.4 31.8 222 37.5 50.0 60.0 0.0 80.0 30.0 40.6 84.1 827 945 326 354
+ Nucleus 34.6 227 277 25.0 20.0 433 0.0 50.0 45.0 333 849 853 90.0 3.08 406

+ Opera - - - - - - - - - - - - - - -
+VCD 423 2277 222 37.0 50.0 46.6 16.6 80.0 40.0 393 852 856 92.1 3.16 395
+ CODE 34.6 363 33.3 25.0 50.0 70.0 0.0 70.0 30.0 42.6 869 875 953 343 340
+VCGD(ours) 50.0 40.9 222 62.5 50.0 60.0 16.6 60.0 45.0 47.5 87.8 893 938 3.88 313

InternVL-26B

+ Greedy 423 36.3 27.7 25.0 30.0 80.0 33.3 80.0 45.0 480 858 864 866 3.15 333
+ Beam 38.4 45.4 222 375 50.0 83.3 50.0 70.0 450 50.6 86.8 86.6 893 336 31.2
+ Nucleus 50.0 31.8 27.7 12.5 60.0 70.0 33.3 60.0 25.0 44.0 812 817 864 3.14 375
+ Opera 423 272 16.6 25.0 30.0 76.6 50.0 70.0 50.0 453 863 86.6 887 332 322
+VCD 30.7 36.3 11.1 12.5 50.0 66.6 50.0 50.0 55.0 42.0 817 821 883 294 420
+ CODE 423 50.0 44.4 12.5 30.0 83.3 50.0 70.0 40.0 513 869 875 922 352 302
+VCGD(ours) 25.0 50.0 44.4 50.0 60.0 83.3 56.6 80.0 55.0 559 882 898 948 348 312

Table 1: Experimental results of various hallucination benchmarks on different decoding strategies. The best result

for each metric in each group is in bold.

LLaVA MMHal

MMVP  POPE

QA90 Bench

Avg Acc Fl Oa Oa Hal |
LLaVA-1.5-13B

VC As Prefix 354 84.8 83.6 855 2.69 49.6

VCGD 372 85.0 84.7 822 2.61 49.0
LLaVA-NeXT-34B

VC As Prefix 455 87.2 88.6 952 3.68 32.5

VCGD 475 87.8 89.3 93.8 3.88 313
InternVL-26B

VC As Prefix 56.3 87.5 882 93.6 3.38 33.1

VCGD 559 88.2 89.8 948 3.48 31.2

Table 2: Comparison of using VC as prompt prefixes
versus incorporating them through the VCGD.

Results on LLaVA-QA90. To explore the
broader applicability of our method beyond ba-
sic multiple-choice formats, we evaluate sentence-
level model outputs on the LLaVA-QA90 (Liu et al.,
2023d). As shown in Table 1, VCGD achieves com-
petitive performance compared to other contrastive
decoding (CD) methods.

Results on MMHal-Bench. Additionally, we

compare our models in MMHal-Bench (Sun et al.,
2024) specialized to evaluate hallucination effects
sourced from more challenging image-question
pairs. As in the result, our method generally not
only improves overall average score with consis-
tent results among other baseline MLLMs, but also
effectively mitigates the hallucination ratio.

4.3 Ablation Analysis

We conduct analysis on VCGD considering the
following questions: (Q1) To what extent do the
Cold-Start Stage and the RL Stage contribute to the
performance improvement of the Caption Model?
(Q2) Are all three reward functions in the Reward
Agent necessary? (Q3) What would be the effect
on performance if the Visual Cues generated by
the Caption Model were used directly as prompt
prefixes, instead of being processed through the
CD method?

Al: Both the Cold-Start Stage and the RL
Stage are necessary. To validate the improvements
in Caption Model performance brought about by
the Cold-Start and RL Stages, as shown in Table 3,
we employed three versions of Caption Model:
the untrained version, the Cold-Start version, and
the RL version, for generating Visual Cues during



LLaVA MMHal

LLaVA MMHal

MMVP POPE " "0Ag0  Bench MMVP POPE  "0Ag0  Bench

Ra Rum Ric

Avg Acc Fl Oa Oa Hal | Avg  Acc Fl Oa Oa Hal |
LLaVA-1.5-13B LLaVA-1.5-13B
No Train 323 83.8 819 800 236 524 v 348 84.7 840 823 253 513
Cold-Start 353 845 829 814 238 522 v 322 843 83.1 80.8 229 522
RL 372 85.0 84.7 822 2.62 49.0 v 333 839 825 803 225 527
LLaVA-NeXT-34B v v 36.6 84.8 842 826 255 50.6
v /7 36.8 849 844 828 2.58 50.0
No Train  43.7 87.1 879 89.8 352 336 7/ 326 845 829 81.8 245 50.2
Cold-Start 44.8 87.2 882 904 3.58 332 v v / 372 85.0 84.7 822 2.62 49.0
RL 47,5 87.8 893 938 3.88 31.3
LLaVA-NeXT-34B
InternVL-26B
v 46.1 87.5 889 93.0 3.74 318
No Train  50.8 87.5 884 929 331 31.0 v 453 869 883 928 3.68 323
Cold-Start 519 87.3 882 932 335 322 v 45.0 87.1 882 927 3.70 319
RL 559 88.2 898 948 348 312 v v 46.8 87.6 889 932 3.80 315
v /7 47.0 87.5 89.0 933 3.83 31.0
Table 3: Ablation results of Caption Models at different v v/ | 457 873 883 929 379 317
training stages. v v /| 415 878 893 938 388 313
InternVL-26B

VCGD. The results indicate that both the Cold- v 53.8 879 8.9 938 344 312
Start and RL Stages contribute positively to the v 528 878 88.7 934 338 312
final performance. v 54.1 88.0 89.2 932 335 325
A2: A P . . v v 543 88.0 89.3 941 346 310
: All three reward unct19ns in the Rew?rd a 556 881 884 943 343 290
Agent are necessary. To validate the contribu- /v | 552 873 887 936 341 29.0
tion of each reward functions to Reward Agent, vV V V| 559 882 898 948 348 312

we conduct an ablation study in Table 4. The re-
sults demonstrate that all three reward functions are
essential for achieving the final objectives. They
complement each other, and their combined use is
crucial for improving overall model performance.
The results also show that the Reward 4.. is the
most effective.

A3: Visual Cues as prompt prefixes are ef-
fective, but less so than the VCGD. As shown
in Table 2, we conducted the following ablation
experiments, where the Visual Cues generated by
the Caption Model were directly used as context
prefixes for testing. Specifically, we used the input
format "{Original question} \n The following are
the Visual Cues of the image, please use these vi-
sual cues to answer the question: \n {Visual cues}".
The experimental results indicate that this method
performs well in benchmark, validating the effec-
tiveness of the Caption Model. However, compared
to the results obtained using the VCGD, its perfor-
mance is somewhat inferior.

4.4 Case Study

To provide a more intuitive demonstration of
VCGD’s performance in mitigating hallucinations,

Table 4: Ablation results of different reward in Reward
Agent. R4 denote Rewardac., Ras denote Rewardyyych,
and R;c denote Rewardc. The results demonstrate
that each component Rewardse., Rewardyyen, and
Rewardy.c plays an indispensable role in the effective-
ness of the Reward Agent.

we conducted case studies of the VCGD. For de-
tailed results, please refer to the Appendix B.

5 Conclusion

In this paper, we propose VCGD, a novel strategy
that uses high-quality Visual Cues from Caption
Model to guide MLLMs during decoding, reducing
hallucinations. The Caption Model is further im-
proved via reinforcement learning, where a Reward
Agent evaluates the quality of visual clues. Exper-
iments on multiple benchmarks show that VCGD
enhances cross-modal consistency, lowers halluci-
nation rates, and integrates seamlessly into existing
multimodal systems.



Limitations

In this paper, we focus on addressing the hallucina-
tion problem in MLLMs by introducing our novel
VCGD approach. We demonstrate the effective-
ness of this method through rigorous evaluations
on a variety of hallucination discrimination bench-
marks. Furthermore, we qualitatively assess its
performance on generative benchmarks, which are
essential for detecting hallucinated content. While
generative benchmarks play a critical role, there re-
mains a notable lack of established metrics capable
of thoroughly analyzing hallucinations. This high-
lights an important direction for future research:
the development of robust automatic metrics to
enhance the evaluation of open-ended generative
performance.
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A Evaluation Benchmarks

We introduce additional details about the bench-
marks we used for evaluation. Benchmarking the
evaluation of hallucination phenomena in Mul-
timodal Large Language Models (MLLMs) can
generally be categorized into discriminative and
generative types. Discriminative benchmarks de-
tect hallucinations by assessing the predicted an-
swers within given options (e.g., multiple-choice
or true/false questions), whereas generative bench-
marks typically employ more advanced language
models (e.g., GPT-based evaluations) to score the
descriptions generated by the target model. Under
this classification, we have carefully selected four
benchmarks to test the baseline models.

As discriminative benchmarks, we primarily use
two datasets for detailed evaluation. Specifically,
POPE (Li et al., 2023c¢) is a commonly used bench-
mark that detects target hallucinations by trans-
forming target label information sourced from the
Microsoft COCO dataset (MSCOCO) (Chen et al.,
2015). POPE employs binary classification perfor-
mance on simple true/false questions across three
distinct subsets: random, common, and adversarial.
MMYVP (Tong et al., 2024) aims to evaluate the un-
derstanding of visual details across nine different
visual modes through paired classification accu-
racy. Given its evaluation design, which involves
comparing two similar CLIP-blind image pairs,
MMVP requires Multimodal Large Language Mod-
els (LMMs) to capture subtle visual differences.

We use two benchmarks as generative bench-
marks, extending the evaluation scope to open-
ended image description tasks, rather than being
limited to evaluating within the context of given
answer options. In general, ChatGPT (OpenAl,
2023a) is used to score the quality of sentences
generated by the model. LLaVA-Bench (In-the-
Wild) (Liu et al., 2023d) is a scoring ratio, de-
fined as the sum of the absolute values of model
scores divided by the sum of the absolute values
of ground truth scores, all of which are evaluated
by GPT-4 (OpenAl, 2023c). It includes three types
of questions: dialogue, detailed descriptions, and
complex reasoning. MMHal-Bench (Sun et al.,
2024) evaluates the degree of hallucination across
eight different question types, including: target at-
tributes, adversarial targets, comparisons, counting,
spatial relations, environment, overall descriptions,
and others. GPT-4 measures the severity of halluci-
nations on a scale from 0 to 7, where higher scores
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indicate fewer hallucinations.

B Case Study

Details of VCGD’s performance in mitigating hal-
lucinations are shown in Figure 4 and 5. We present
two case studies involving the VCGD: we com-
pared the performance differences of the InternVL
model in generative and discriminative tasks un-
der two settings: without and with the VCGD
method. Additionally, specific examples of the
Caption Model were provided to assist in the anal-
ysis.



Image:

g

Question:

Is there a lemon inside the drink in the cup or are all
the lemons outside the drink?

A.There is one inside

B.All are outside

InternVL(Original):
8 X

Caption Model:

1. One lemon slice is fully submerged inside the drink, clearly visible through
the transparent glass.

2. Another lemon slice is placed on the rim of the glass, not inside the liquid.
3. The submerged lemon slice is distorted by the water and appears partially
below the liquid level, confirming it is inside the drink.

InternVL(VCGD):
A

J

Figure 4: VCGD’s performance on discriminative task. vrepresents a correct answer, while Xrepresents an

incorrect answer.

Image:

Question:

N

Describe the image in detail.

InternVL(Original):

The image shows a clear plastic container filled with small white
dumplings. The container is placed on a white surface, which could be
a table or a counter. There is a fork nearby, possibly used for serving
or eating the dumplings. The dumplings are arranged neatly in the
container, and the overall presentation appears to be clean and
appetizing.

Caption Model:

1. The glass is fogged with condensation, indicating that the food inside is
being kept warm in a steamer.

2. Each bun is placed on a small piece of white paper, a common practice for
steamed buns to prevent sticking.

3. A metal pair of tongs is placed inside the display, suggesting the buns are
ready to be served.

InternVL(VCGD):

This image shows a steamed bun display case, commonly used to keep
buns warm and moist. Inside the case, several white steamed buns are
placed on small paper liners. The glass walls are fogged up with
condensation, indicating a hot and humid interior environment. A pair
of metal tongs is placed in the front, used for picking up the buns. The
setting appears to be a food stall or a small eatery, possibly serving
breakfast or snacks.

J

Figure 5: VCGD’s performance on generative task. Text highlighted in red denotes hallucinatory descriptions.
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