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Abstract001

Multimodal large language models (MLLMs)002
demonstrate strong capabilities in multimodal003
understanding, reasoning, and interaction but004
still face the fundamental limitation of hallu-005
cinations, where they generate erroneous or006
fabricated information. We propose Visual007
Clue-Guided Decoding (VCGD), a novel de-008
coding strategy that incorporates precise visual009
cues generated by a Caption Model during the010
decoding phase. These cues serve as com-011
parative references for the model’s own out-012
puts, effectively mitigating hallucination phe-013
nomena. Specifically, VCGD leverages high-014
quality visual descriptions to guide MLLMs015
in correcting perceptual biases while gener-016
ating answers. Furthermore, we introduce a017
Reinforcement Learning (RL)-based training018
paradigm for the Caption Model, in which a019
Reward Agent provides feedback on the qual-020
ity of visual clues, further enhancing the ac-021
curacy of visual information. Extensive ex-022
periments across multiple benchmark datasets023
and state-of-the-art MLLMs demonstrate that024
VCGD significantly reduces hallucination rates025
and substantially improves cross-modal con-026
sistency. Our method exhibits strong gener-027
alizability and scalability, offering an effec-028
tive decoding enhancement strategy that can be029
seamlessly integrated into existing multimodal030
frameworks. Code is available at https://031
anonymous.4open.science/r/VCGD-C860.032

1 Introduction033

Large Language Models (LLMs) (OpenAI, 2023b;034

Touvron et al., 2023; Achiam et al., 2023; Jiang035

et al., 2023; Bai et al., 2023a) have marked a pivotal036

advancement in natural language processing. Build-037

ing upon their success, researchers have expanded038

these models into multimodal domains, giving rise039

to Multimodal Large Language Models (MLLMs)040

(Achiam et al., 2023; Liu et al., 2024d; Team et al.,041

2023; Bai et al., 2023b). While MLLMs demon-042

strate remarkable proficiency in tackling a wide043
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Figure 1: Figure 1⃝ illustrates the training procedure
of the Caption Model, which consists of two stages:
the Cold-Start Stage and the Reinforcement Learning
Stage. Figure 2⃝ illustrates the use of the Caption Model
to assist the MLLM in contrastive decoding, thereby
alleviating hallucination issues.

array of visual tasks (Zhang et al., 2023; Li et al., 044

2024; Black et al., 2024), as well as in under- 045

standing (Lai et al., 2024) and generating complex 046

content (Brooks et al., 2023; Geng et al., 2024), 047

they are not without limitations. A particularly 048

critical issue is the so-called “Hallucination” phe- 049

nomenon. In practice, MLLMs often produce in- 050

accurate or fabricated responses when interpreting 051

user-provided images and prompts—ranging from 052

irrelevant or nonsensical descriptions to misidenti- 053

fied colors, incorrect object counts, and erroneous 054

spatial relationships within the scene. Such ten- 055

dencies severely undermine their reliability and 056

present substantial obstacles to their deployment in 057

real-world applications. 058

The issue of hallucinations in MLLMs originates 059

from the intricacies of their training pipeline, which 060

typically includes an alignment-based projection 061

during pre-training, followed by fine-tuning on a 062

relatively limited amount of instruction-following 063

data. To tackle these hallucination problems, var- 064

ious strategies have been proposed. Some focus 065

on resolving inconsistencies by refining data qual- 066

ity and alignment (Liu et al., 2023a; Wang et al., 067

2024a), while others emphasize scaling up model 068

architectures (Zhai et al., 2023) or incorporating 069

reinforcement learning-based techniques (Yu et al., 070

2023; Sun et al., 2024). A distinct line of work 071

involves reactive techniques (Huang et al., 2023; 072
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Deng et al., 2024), which intervene directly during073

the decoding process to suppress inaccurate outputs.074

Inspired by contrastive decoding (CD) strategies075

introduced by Li et al. (2023b), which compare the076

outputs of expert and amateur models, recent devel-077

opments in CD-based methods for MLLMs have ex-078

plored contrasting visual-conditioned generations079

to suppress hallucinations, taking into account fac-080

tors such as visual noise (Leng et al., 2023), image-081

induced bias (Zhu et al., 2024), and detailed visual082

grounding (Chen et al., 2024), and self-generated083

description (Kim et al., 2024).084

We investigate the following research question:085

If the model is incapable of accurately perceiv-086

ing visual content through its own capacity, it be-087

comes highly susceptible to generating hallucina-088

tions. Therefore, a key question arises: can aux-089

iliary models be incorporated to provide precise090

visual cues during decoding, thereby reducing the091

likelihood of hallucination? To address this issue,092

we propose a novel Visual Cue Guided Decod-093

ing strategy. Specifically, we leverage a caption094

model to provide precise visual cues during decod-095

ing, thereby mitigating the inherent biases of the096

model in visual perception. To further enhance cap-097

tion quality, we introduce a reinforcement learning098

algorithm based on a Reward-Agent framework,099

termed RA-GRPO. This algorithm optimizes the100

caption generation process by providing reward101

signals across three dimensions: accuracy, infor-102

mativeness, and redundancy control. As a result, it103

facilitates the generation of more precise and prag-104

matically useful image descriptions. The specific105

process is briefly illustrated in Figure 1, which in-106

cludes two main stage: 1⃝ Train Caption Model,107

where the Caption Model is obtained through a108

two-stage training procedure; 2⃝ Decoding with109

Caption Model, the Caption Model is employed to110

assist MLLMs in decoding.111

By conducting extensive experiments and analy-112

ses on prevailing cutting-edge MLLMs (Liu et al.,113

2023c; Chen et al., 2023b; Liu et al., 2024c), we114

corroborate the effectiveness of our method in re-115

ducing hallucination in various benchmarks (Li116

et al., 2023c; Liu et al., 2023d; Tong et al., 2024).117

Our contribution can be summarized into four-fold118

as follows:119

• We propose Visual Clue Guided Decoding120

(VCGD), a novel decoding strategy that en-121

hances the model’s visual perception by lever-122

aging precise visual clues. These clues are de-123

rived from captions generated by an external 124

Caption Model, while suppressing the model’s 125

own perception to reduce visual bias. 126

• We propose an approach for training the Cap- 127

tion Model using reinforcement learning to 128

generate accurate and informative visual clues 129

that effectively guide the decoding process. 130

• We introduce a reward mechanism for a ded- 131

icated Reward Agent, which evaluates the 132

quality of the generated captions based on 133

three dimensions: accuracy, informativeness, 134

and redundancy control. 135

• We evaluate the proposed decoding approach 136

on various benchmarks using state-of-the-art 137

MLMMs. Experimental results demonstrate 138

that VCGD significantly reduces hallucina- 139

tions. 140

2 Related Work 141

2.1 Multimodal Large Language Models 142

Recent advancements in MLLMs research are pri- 143

marily attributed to the evolution of LLMs (Wang 144

et al., 2024c; Zhuo et al., 2024; Lu et al., 2024; 145

Su et al., 2024). With the aid of advanced LLMs 146

like LLaMA (Touvron et al., 2023) and Qwen (Bai 147

et al., 2023a), a batch of MLLMs such as LLaVA- 148

1.5 (Liu et al., 2024d), Qwen-VL (Bai et al., 2023b), 149

LLaVA-NEXT (Liu et al., 2024c) , InternVL (Chen 150

et al., 2023b) and mPLUGOwl2 (Ye et al., 2024) 151

have emerged, which can comprehend and gener- 152

ate a wide array of content by utilizing informa- 153

tion from distinct modalities like texts and images. 154

Despite the success, current MLLMs suffer from 155

serious hallucination problems. Thus, in this paper, 156

we focus on mitigating hallucination problems to 157

promote the use of MLLMs in practical scenarios. 158

2.2 Hallucinations in MLLMs 159

Hallucinations in MLLMs have significantly im- 160

peded their usage in the real world, especially for 161

tasks that rely on precise captions. Recently, numer- 162

ous studies focus on the construction of datasets 163

for evaluating hallucination phenomena (Rohrbach 164

et al., 2018; Li et al., 2023d; Wang et al., 2023; 165

Sun et al., 2023a; Zhong et al., 2024; Tong et al., 166

2024; Wu et al., 2024; Cao et al., 2024; Huang 167

et al., 2024b; Mubarak et al., 2024; Jing et al., 2024; 168

Lovenia et al., 2023; Zhai et al., 2023; Wan and 169

Bansal, 2022; Zhang et al., 2024; Min et al., 2023; 170
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Yan et al., 2024). Concurrently, significant atten-171

tion is directed towards analyzing the underlying172

causes of hallucinations (Tao et al., 2024; Sui et al.,173

2024; Fadeeva et al., 2024).174

Moreover, various approaches have been pro-175

posed to mitigate hallucinations in MLLMs, includ-176

ing training-free and training-based approaches.177

Training-based approaches seek to mitigate hal-178

lucinations in MLLMs via further training, such as179

Supervised Fine-Tuning (SFT) (Liu et al., 2023b)180

or preference learning (Sun et al., 2023a; Yu et al.,181

2024a; Li et al., 2023a; Zhao et al., 2023; Gunjal182

et al., 2024; Liu et al., 2024a; Yu et al., 2024b; Zhou183

et al., 2024; Jiang et al., 2024; Jing and Du, 2024).184

Training-free approaches address potential halluci-185

nations by post-processing the outputs of MLLMs186

(Leng et al., 2024; Huang et al., 2024a; Yin et al.,187

2023; Manevich and Tsarfaty, 2024; Wang et al.,188

2024b; Kim et al., 2024). For example, VCD (Leng189

et al., 2024) aims to address the model’s over-190

reliance on linguistic priors and statistical biases by191

comparing the output distributions from unaltered192

and visually perturbed inputs. Woodpecker (Yin193

et al., 2023) introduces post-processing aimed at194

mitigating biases from language priors. ICD (Wang195

et al., 2024b) suppresses hallucinations through dis-196

turbance instructions affecting multimodal align-197

ment. Similarly, LCD (Wang et al., 2024b) uses vi-198

sual noise to guide the decoding process to leverage199

the language modality to mitigate hallucinations.200

CODE (Kim et al., 2024) utilize self-generated201

description as contrasting visual counterpart and202

correct hallucinatory responses based on the model203

understanding. Inspired by Kim et al. (2024), our204

work aligns with CD-based approaches that utilize205

visual clues from Caption Models to guide decod-206

ing. Unlike previous works that focus on manipulat-207

ing information or self-generated descriptions, we208

argue that if the model fails to accurately identify209

the visual content and self-generated description,210

no amount of correction can resolve hallucinations.211

We utilize visual clues from Caption Models as a212

contrasting visual counterpart to correct hallucina-213

tory responses.214

3 Methodology215

Our proposed VCGD framework consists of two216

main components: training the Caption Model217

(Section 3.1) and decoding with the Caption Model218

(Section 3.2).219

3.1 Caption Model 220

3.1.1 Overview 221

We design and train a Caption Model. As shown in 222

Figure 1, inspired by the DeepSeek-R1 (Guo et al., 223

2025) approach, the training of the Caption Model 224

is divided into two stages: the cold-start stage and 225

the reinforcement learning (RL) stage. 226

Cold-Start Stage. We construct triplet data con- 227

sisting of images, questions, and answers based 228

on ShareGPT4V (Chen et al., 2023a) and LLaVA- 229

CoT (Xu et al., 2024). We then utilize GPT-4 to 230

summarize the original questions (Q) and answers 231

(A), extracting Visual Cues that are critical for prob- 232

lem solving, which are subsequently used as train- 233

ing targets. 234

RL Stage. The Visual Cues that support prob- 235

lem solving, exclude irrelevant details, and remain 236

highly consistent with the image content, and we 237

optimize the Caption Model based on our designed 238

Reward-Agent framework (RA-GRPO), as shown 239

in Figure 2. 240

3.1.2 Reward Agent 241

We design a Reward Agent comprising three re- 242

ward signals as illustrated in Figure 2: the Accu- 243

racy Reward, the Matching Reward, and the Image- 244

Consistency Reward. 245

Accuracy Reward. In order that the Visual 246

Clues (VC) can effectively capture visual infor- 247

mation and assist the model in understanding im- 248

age content, we employ a Large Language Model 249

(LLM), incorporating the VC as contextual in- 250

put—essentially allowing the VC to serve as the 251

LLM’s "eyes". These clues represent the visual 252

perception available to the LLM, based on which 253

it generates an answer to the given question. A re- 254

ward is then assigned depending on the correctness 255

of the answer. The reward is defined as follows: 256

RewardAcc =

{
1.0, if RolloutQ+V C = True
0.0, if RolloutQ+V C = False

(1) 257

Matching Reward. This reward signal is de- 258

signed to encourage the Caption Model to generate 259

VC that minimize the inclusion of redundant infor- 260

mation related to the image content but irrelevant 261

to the given question. To achieve this, we intro- 262

duce LLaMA as a discriminator J . Specifically, 263

the process is as follows: the discriminator J first 264

analyzes the question Q and identifies a set of key 265

points Ki required to answer Q. Subsequently, the 266

alignment between each VC and the identified key 267
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𝐑𝐞𝒘𝒂𝒓𝒅	 = 𝑹!"" + 𝑹𝑴𝒂𝒕𝒄𝒉 +	𝑹𝑰	𝑪

Q:How many kinds 
of food are there in 
the image?

A: six

1. A colorful and healthy breakfast plate is shown.
2. There are two slices of whole wheat bread on the 
plate.
3. There is a folded omelette garnished with fresh 
parsley on the plate.
…
n. There are sliced red tomatoes on the plate.
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Figure 2: Caption Model Train framework: (1) Reward Agent contains Accuracy Reward, Matching Reward, and
Image-Consistency Reward. (2) RL Train: For each data instance, we first employ the Caption Model to sample and
generate G Visual Clues (VC). For each VC, the Reward Agent evaluates the corresponding answer candidate and
assigns a reward score. The parameters are then optimized using the RA-GRPO algorithm.

points (Key) is computed (Equation (2)) to quantify268

the amount of useful information contained within269

the VC. This mechanism suppresses the generation270

of redundant content that is irrelevant to answering271

the question.272

RewardMatch =
1

|K|

|K|∑
i=1

(Ki ⊆ VC) (2)273

Image Consistency Reward. The image consis-274

tency reward aims to reduce hallucination phenom-275

ena induced by the VC. Specifically, we employ the276

FineCLIP (Asokan et al., 2025) model to compute277

the CLIP-Score for each VC, followed by a nor-278

malization process, as formalized in Equation (3).279

This score quantifies the consistency between the280

visual clue and the corresponding image content.281

RewardIC =

∑N
i=1 CLIP-Score(VCi, Image)

N
(3)282

where min and max denote the minimum and max-283

imum CLIP-Scores across the VC, respectively.284

Final Reward. The final reward signal produced285

by the Reward Agent is a composite of the three286

aforementioned sub-rewards, as follows:287

Reward = RewardAcc + RewardMatch + RewardIC (4)288

3.1.3 Reinforcement Learning 289

To further enhance caption quality, inspired by Dai 290

et al. (2024), we propose a Reward-Agent frame- 291

work (RA-GRPO), as shown in Figure 2. RA- 292

GRPO is a reinforcement learning (RL) algorithm 293

that avoids learning a value critic by computing 294

normalized advantages within a group of sampled 295

actions. 296

Specifically, given a prompt s, we sample G out- 297

puts {a1, ..., aG} ∼ πθ(·|s), evaluate them with a 298

reward function r(s, a) from Reward Agent. We 299

compute the reward as ri, and repeatedly com- 300

pute the rewards for all paths from group, i.e., 301

{r1, r2, ..., rG}. 302

To estimate the advantage of each trajectory, we 303

normalize its reward relative to the group as follow: 304

Âi =
ri − mean({r1, r2, ..., rG})

std({r1, r2, ..., rG})
, (5) 305

where the mean group reward serves as the baseline, 306

and Âi measures how much better or worse ri is 307

compared to other trajectories within the group. 308

Following this, we optimize the policy model with 309
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How many colors does the umbrella have?
Caption
Model

(RA-GRPO)

1. A brightly - colored beach umbrella with various colors such as purple, yellow, green, and 
orange…
2. A purple beach lounge chair with a simple design and black...

MLLMs

Ongoing Response:
The umbrella in the picture has ____

Output tokens:

Visual Cues: vc

<or>v:
v+vc:

Visual Content: v

𝒍𝒐𝒈𝒊𝒕𝜽(𝒗, 𝒙, 𝒚"𝒕)

𝒍𝒐𝒈𝒊𝒕𝜽(𝒗 + 𝒗𝒄, 𝒙, 𝒚"𝒕)

𝟏 + 𝜶 𝒍𝒐𝒈𝒊𝒕𝜽 𝒗, 𝒙, 𝒚"𝒕 +
						𝜶	𝒍𝒐𝒈𝒊𝒕𝜽 𝒗 + 𝒗𝒄, 𝒙, 𝒚"𝒕

Final Response:
The umbrella in the picture 
has four colors. 

Visual Cue 
Guided Decoding

Figure 3: The overall decoding procedure of VCGD. After Caption Model generate Visual Clues for the image,
the model recursively outputs logits from each v and v + vc. By contrasting between two log-likelihoods, VCGD
produces more contextual and correct responses that match the given visual content suppressing inconsistent words
(serveral→four).

the loss defined as:310

LRA−GRPO = − E
Q∈Ds

[
1

M

M∑
i=1

(
πθ(c

i|Q)

[πθ(ci|Q)]no grad
Âi

− βDKL(πθ||πref )],
(6)

311

where KL divergence is adopted to regularize the312

policy model, preventing excessive deviation from313

the reference model. The reference model is typ-314

ically initialized as the same model as the policy315

model but remains frozen during RL training. The316

KL divergence between the policy model and the317

reference model is estimated as in (Shao et al.,318

2024):319

DKL(πθ||πref ) =
πref (c

i|Q)

πθ(ci|Q)
−log

πref (c
i|Q)

πθ(ci|Q)
−1.

(7)320

3.2 Visual Clue Guided Decoding321

An overview of our proposed VCGD framework is322

shown in Figure 3.323

3.2.1 Problem Setup and Preliminaries324

Let Mθ denote a Multimodal Large Language325

Model (MLLM) parameterized by θ that auto-326

regressively generates responses for the given vi-327

sual contents v and input textual query x. Then the328

model maps the logit distribution to the next token 329

prediction output yt ∈ R|V| at time step t in the 330

vocabulary set V such that yt ∼ pθ(yt|v, x, y<t) ∝ 331

logitθ(yt|v, x, y<t), where y<t indicates all previ- 332

ously generated tokens. 333

3.2.2 Contrastive Decoding with Disturbance 334

We can obtain a pair of visual content and pre- 335

cise visual clues from the Caption Model (v, vc), 336

where v represents the image information and vc 337

corresponds to Caption(y|v, x0). By contrasting 338

the logit variations between the set of information 339

during model response generation, we can formu- 340

late the next-word prediction using our proposed 341

VCGD method: 342

yt ∼ Softmax
[
(1 + αt)logitθ(yt | v, x, y<t)

+αtlogitθ(yt | v + vc, x, y<t)
)]

.
(8) 343

Inspired by CODE (Kim et al., 2024), we define 344

the dynamic constraint αt as: 345

1−Dbd(P
v
t | P v+vc

t ), (9) 346
347

Dbd(P∥Q) =
1

2

n∑
i=1

(pi + qi) log2(|pi − qi|k + 1),

(10) 348

where Dbd(P∥Q) ≥ 0 and equals 0, if and only if 349

p=q, and k denotes a smoothing parameter. Here, 350
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the upper-bound of the divergence apparently ex-351

ists, such that Dbd(P∥Q) ≤
∑n

i=1 pi log2 2=1,352

due to the following condition |pi−qi| ≤ 1.353

That implements a token-level feedback control354

mechanism that dynamically adjusts the informa-355

tion weight based on the proximity of two distri-356

butions. The primary role of this constraint is to357

maintain a balanced variation in logits given the358

predictive discrepancies between the v and v + vc359

distributions. Specifically, when the two distribu-360

tions are sufficiently close (i.e., P v
t ≈ P v+vc

t ), the361

value of Dbd(P
v
t | P v+vc

t ) approaches zero, indi-362

cating minimal distributional divergence. In this363

case, αt approaches 1, thereby allowing greater am-364

plification of the logits’ variation when predicting365

the next token.366

3.2.3 Adaptive Information Constraint367

The VCGD objective is designed to favor tokens368

preferred by the MLLMs output while imposing369

penalties on tokens influenced by instruction distur-370

bances. However, it also might erroneously reward371

tokens representing implausible concepts. To ad-372

dress this issue, we refine the VCGD objective to373

incorporate an adaptive plausibility constraint Vhead.374

By comparing prediction distributions between P v
t375

and P v+vc
t , we filter out less relevant tokens from376

the candidate pool as follows:377

Vhead(y<t) = {yt ∈ V : pθ(yt | v, x, y<t)

≥ βtmax
w

pθ(w | v, x, y<t)},
(11)378

where βt dynamically regulate the token candidate379

pool utilizing the divergence term in Eq. (10), de-380

fined as βt = Dbd(P
v
t ∥P v+vc

t ). This strategy can381

expand the token searching pool when the next-382

token prediction, derived from both visual content383

and comprehensive description, shows a similar dis-384

tribution yet uncertainty in selecting the candidate385

token (i.e., false negatives). Finally, we only con-386

sider the next-token prediction within Vhead(y<t),387

and for the tokens satisfying yt /∈ Vhead(y<t), we388

set their logits to −∞ to filter out from the candi-389

date pool.390

4 Experiment391

4.1 Experimental Setup392

4.1.1 Caption Model393

During the Cold-Start Stage, we sample 160K data394

points from ShareGPT4V (Chen et al., 2023a) and395

LLaVA-CoT (Xu et al., 2024) to train Qwen-2.5- 396

VL-7B. In the RL stage, we sample 50K data points 397

from the aforementioned datasets and use Qwen- 398

2.5-7B as Rollout Model, with rollout=8 and K- 399

L=0. 400

4.1.2 Inference Model 401

We apply VCGD on three MLLMs in different 402

sizes, LLaVA-1.5-13B (Liu et al., 2024b), LLaVA- 403

NeXT-34B (Liu et al., 2024c) and InternVL-26B 404

(Chen et al., 2023b). 405

4.1.3 Evaluation Benchmarks 406

We evaluate the performance of VCGD on four 407

widely used benchmarks, including POPE (Li et al., 408

2023d), MMVP (Tong et al., 2024), MMHalBench 409

(Sun et al., 2023b), and LLaVA-Bench (In-the- 410

Wild) (Liu et al., 2023d) for MLLMs with a special 411

focus on hallucination. The benchmarks are de- 412

tailed in Appendix A. 413

4.1.4 Baselines 414

We compare our method with six baseline de- 415

coding strategies. For conventional decoding 416

strategies, we use greedy decoding, nucleus sam- 417

pling (Holtzman et al., 2020), and beam search 418

decoding. Additionally, we select the recent 419

state-of-the-art (SOTA) methods, including the 420

OPERA method (Huang et al., 2023), the VCD 421

method (Leng et al., 2023), and the CODE 422

method (Kim et al., 2024) as comparative decoding 423

approaches. 424

4.2 Main Results 425

Table 1 presents the primary experimental results. 426

We observe the following points: 427

Results on MMVP. The MMVP benchmark 428

comprehensively evaluate CLIP blind pairs across 429

9 different visual modalities. As shown in Table 1, 430

the results indicate a significant improvement in av- 431

erage accuracy after employing VCGD contrastive 432

decoding. 433

Results on POPE. Our method demonstrates 434

consistent improvements over previous baselines 435

across various settings. The composition of POPE 436

focuses solely on questioning the existence of 437

objects, rather than their absence (e.g., "Is there 438

{something} in the image?"). The combinatorial 439

results of a high accuracy and F1 score indicate 440

that our method can boost the existing MLLMs 441

to effectively mitigate hallucination by cautiously 442

confirming yes for the existence of objects (i.e., the 443

model does not often make up objects). 444
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Model
MMVP POPE LLaVA

QA90
MMHal
Bench

☼ Û L � , h Ô k � Avg↑ Accadv F1adv Overall Overall Hal ↓

LLaVA-1.5-13B
+ Greedy 30.7 27.2 0.0 12.5 10.0 53.3 16.6 50.0 40.0 30.6 84.0 82.6 82.4 2.39 52.0
+ Beam 19.2 27.2 11.1 25.0 10.0 60.0 16.6 70.0 35.0 32.6 84.1 82.7 83.5 2.33 53.1

+ Nucleus 26.9 27.2 22.2 12.5 20.0 33.3 0.0 60.0 20.0 26.6 80.6 79.4 79.3 2.03 60.4
+ Opera 42.3 36.3 11.1 25.0 10.0 56.6 16.6 70.0 35.0 33.3 84.0 82.5 80.7 2.22 55.0
+ VCD 34.6 18.1 22.2 37.5 50.0 43.3 33.3 40.0 35.0 34.0 81.0 80.3 79.3 2.28 54.0

+ CODE 19.2 31.8 11.1 25.0 20.0 53.3 16.6 80.0 40.0 34.0 84.2 82.8 83.5 2.49 51.0
+ VCGD(ours) 40.2 38.4 22.2 37.5 20.0 60.0 16.6 80.0 45.0 37.2 85.0 84.7 82.2 2.62 49.0

LLaVA-NeXT-34B
+ Greedy 38.4 40.9 16.6 37.5 30.0 60.0 0.0 80.0 35.0 40.6 86.5 87.0 90.7 3.30 34.0
+ Beam 38.4 31.8 22.2 37.5 50.0 60.0 0.0 80.0 30.0 40.6 84.1 82.7 94.5 3.26 35.4

+ Nucleus 34.6 22.7 27.7 25.0 20.0 43.3 0.0 50.0 45.0 33.3 84.9 85.3 90.0 3.08 40.6
+ Opera - - - - - - - - - - - - - - -
+ VCD 42.3 22.7 22.2 37.0 50.0 46.6 16.6 80.0 40.0 39.3 85.2 85.6 92.1 3.16 39.5

+ CODE 34.6 36.3 33.3 25.0 50.0 70.0 0.0 70.0 30.0 42.6 86.9 87.5 95.3 3.43 34.0
+ VCGD(ours) 50.0 40.9 22.2 62.5 50.0 60.0 16.6 60.0 45.0 47.5 87.8 89.3 93.8 3.88 31.3

InternVL-26B
+ Greedy 42.3 36.3 27.7 25.0 30.0 80.0 33.3 80.0 45.0 48.0 85.8 86.4 86.6 3.15 33.3
+ Beam 38.4 45.4 22.2 37.5 50.0 83.3 50.0 70.0 45.0 50.6 86.8 86.6 89.3 3.36 31.2

+ Nucleus 50.0 31.8 27.7 12.5 60.0 70.0 33.3 60.0 25.0 44.0 81.2 81.7 86.4 3.14 37.5
+ Opera 42.3 27.2 16.6 25.0 30.0 76.6 50.0 70.0 50.0 45.3 86.3 86.6 88.7 3.32 32.2
+ VCD 30.7 36.3 11.1 12.5 50.0 66.6 50.0 50.0 55.0 42.0 81.7 82.1 88.3 2.94 42.0

+ CODE 42.3 50.0 44.4 12.5 30.0 83.3 50.0 70.0 40.0 51.3 86.9 87.5 92.2 3.52 30.2
+ VCGD(ours) 25.0 50.0 44.4 50.0 60.0 83.3 56.6 80.0 55.0 55.9 88.2 89.8 94.8 3.48 31.2

Table 1: Experimental results of various hallucination benchmarks on different decoding strategies. The best result
for each metric in each group is in bold.

MMVP POPE LLaVA
QA90

MMHal
Bench

Avg Acc F1 Oa Oa Hal ↓

LLaVA-1.5-13B

VC As Prefix 35.4 84.8 83.6 85.5 2.69 49.6
VCGD 37.2 85.0 84.7 82.2 2.61 49.0

LLaVA-NeXT-34B

VC As Prefix 45.5 87.2 88.6 95.2 3.68 32.5
VCGD 47.5 87.8 89.3 93.8 3.88 31.3

InternVL-26B

VC As Prefix 56.3 87.5 88.2 93.6 3.38 33.1
VCGD 55.9 88.2 89.8 94.8 3.48 31.2

Table 2: Comparison of using VC as prompt prefixes
versus incorporating them through the VCGD.

Results on LLaVA-QA90. To explore the445

broader applicability of our method beyond ba-446

sic multiple-choice formats, we evaluate sentence-447

level model outputs on the LLaVA-QA90 (Liu et al.,448

2023d). As shown in Table 1, VCGD achieves com-449

petitive performance compared to other contrastive450

decoding (CD) methods.451

Results on MMHal-Bench. Additionally, we452

compare our models in MMHal-Bench (Sun et al., 453

2024) specialized to evaluate hallucination effects 454

sourced from more challenging image-question 455

pairs. As in the result, our method generally not 456

only improves overall average score with consis- 457

tent results among other baseline MLLMs, but also 458

effectively mitigates the hallucination ratio. 459

4.3 Ablation Analysis 460

We conduct analysis on VCGD considering the 461

following questions: (Q1) To what extent do the 462

Cold-Start Stage and the RL Stage contribute to the 463

performance improvement of the Caption Model? 464

(Q2) Are all three reward functions in the Reward 465

Agent necessary? (Q3) What would be the effect 466

on performance if the Visual Cues generated by 467

the Caption Model were used directly as prompt 468

prefixes, instead of being processed through the 469

CD method? 470

A1: Both the Cold-Start Stage and the RL 471

Stage are necessary. To validate the improvements 472

in Caption Model performance brought about by 473

the Cold-Start and RL Stages, as shown in Table 3, 474

we employed three versions of Caption Model: 475

the untrained version, the Cold-Start version, and 476

the RL version, for generating Visual Cues during 477
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MMVP POPE LLaVA
QA90

MMHal
Bench

Avg Acc F1 Oa Oa Hal ↓

LLaVA-1.5-13B

No Train 32.3 83.8 81.9 80.0 2.36 52.4
Cold-Start 35.3 84.5 82.9 81.4 2.38 52.2

RL 37.2 85.0 84.7 82.2 2.62 49.0

LLaVA-NeXT-34B

No Train 43.7 87.1 87.9 89.8 3.52 33.6
Cold-Start 44.8 87.2 88.2 90.4 3.58 33.2

RL 47.5 87.8 89.3 93.8 3.88 31.3

InternVL-26B

No Train 50.8 87.5 88.4 92.9 3.31 31.0
Cold-Start 51.9 87.3 88.2 93.2 3.35 32.2

RL 55.9 88.2 89.8 94.8 3.48 31.2

Table 3: Ablation results of Caption Models at different
training stages.

VCGD. The results indicate that both the Cold-478

Start and RL Stages contribute positively to the479

final performance.480

A2: All three reward functions in the Reward481

Agent are necessary. To validate the contribu-482

tion of each reward functions to Reward Agent,483

we conduct an ablation study in Table 4. The re-484

sults demonstrate that all three reward functions are485

essential for achieving the final objectives. They486

complement each other, and their combined use is487

crucial for improving overall model performance.488

The results also show that the RewardAcc is the489

most effective.490

A3: Visual Cues as prompt prefixes are ef-491

fective, but less so than the VCGD. As shown492

in Table 2, we conducted the following ablation493

experiments, where the Visual Cues generated by494

the Caption Model were directly used as context495

prefixes for testing. Specifically, we used the input496

format "{Original question} \n The following are497

the Visual Cues of the image, please use these vi-498

sual cues to answer the question: \n {Visual cues}".499

The experimental results indicate that this method500

performs well in benchmark, validating the effec-501

tiveness of the Caption Model. However, compared502

to the results obtained using the VCGD, its perfor-503

mance is somewhat inferior.504

4.4 Case Study505

To provide a more intuitive demonstration of506

VCGD’s performance in mitigating hallucinations,507

RA RM RIC

MMVP POPE LLaVA
QA90

MMHal
Bench

Avg Acc F1 Oa Oa Hal ↓

LLaVA-1.5-13B

✓ 34.8 84.7 84.0 82.3 2.53 51.3
✓ 32.2 84.3 83.1 80.8 2.29 52.2

✓ 33.3 83.9 82.5 80.3 2.25 52.7
✓ ✓ 36.6 84.8 84.2 82.6 2.55 50.6
✓ ✓ 36.8 84.9 84.4 82.8 2.58 50.0

✓ ✓ 32.6 84.5 82.9 81.8 2.45 50.2
✓ ✓ ✓ 37.2 85.0 84.7 82.2 2.62 49.0

LLaVA-NeXT-34B

✓ 46.1 87.5 88.9 93.0 3.74 31.8
✓ 45.3 86.9 88.3 92.8 3.68 32.3

✓ 45.0 87.1 88.2 92.7 3.70 31.9
✓ ✓ 46.8 87.6 88.9 93.2 3.80 31.5
✓ ✓ 47.0 87.5 89.0 93.3 3.83 31.0

✓ ✓ 45.7 87.3 88.3 92.9 3.79 31.7
✓ ✓ ✓ 47.5 87.8 89.3 93.8 3.88 31.3

InternVL-26B

✓ 53.8 87.9 88.9 93.8 3.44 31.2
✓ 52.8 87.8 88.7 93.4 3.38 31.2

✓ 54.1 88.0 89.2 93.2 3.35 32.5
✓ ✓ 54.3 88.0 89.3 94.1 3.46 31.0
✓ ✓ 55.6 88.1 88.4 94.3 3.43 29.0

✓ ✓ 55.2 87.3 88.7 93.6 3.41 29.0
✓ ✓ ✓ 55.9 88.2 89.8 94.8 3.48 31.2

Table 4: Ablation results of different reward in Reward
Agent. RA denote RewardAcc, RM denote RewardMatch,
and RIC denote RewardI-C. The results demonstrate
that each component RewardAcc, RewardMatch, and
RewardI-C plays an indispensable role in the effective-
ness of the Reward Agent.

we conducted case studies of the VCGD. For de- 508

tailed results, please refer to the Appendix B. 509

5 Conclusion 510

In this paper, we propose VCGD, a novel strategy 511

that uses high-quality Visual Cues from Caption 512

Model to guide MLLMs during decoding, reducing 513

hallucinations. The Caption Model is further im- 514

proved via reinforcement learning, where a Reward 515

Agent evaluates the quality of visual clues. Exper- 516

iments on multiple benchmarks show that VCGD 517

enhances cross-modal consistency, lowers halluci- 518

nation rates, and integrates seamlessly into existing 519

multimodal systems. 520
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Limitations521

In this paper, we focus on addressing the hallucina-522

tion problem in MLLMs by introducing our novel523

VCGD approach. We demonstrate the effective-524

ness of this method through rigorous evaluations525

on a variety of hallucination discrimination bench-526

marks. Furthermore, we qualitatively assess its527

performance on generative benchmarks, which are528

essential for detecting hallucinated content. While529

generative benchmarks play a critical role, there re-530

mains a notable lack of established metrics capable531

of thoroughly analyzing hallucinations. This high-532

lights an important direction for future research:533

the development of robust automatic metrics to534

enhance the evaluation of open-ended generative535

performance.536
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A Evaluation Benchmarks970

We introduce additional details about the bench-971

marks we used for evaluation. Benchmarking the972

evaluation of hallucination phenomena in Mul-973

timodal Large Language Models (MLLMs) can974

generally be categorized into discriminative and975

generative types. Discriminative benchmarks de-976

tect hallucinations by assessing the predicted an-977

swers within given options (e.g., multiple-choice978

or true/false questions), whereas generative bench-979

marks typically employ more advanced language980

models (e.g., GPT-based evaluations) to score the981

descriptions generated by the target model. Under982

this classification, we have carefully selected four983

benchmarks to test the baseline models.984

As discriminative benchmarks, we primarily use985

two datasets for detailed evaluation. Specifically,986

POPE (Li et al., 2023c) is a commonly used bench-987

mark that detects target hallucinations by trans-988

forming target label information sourced from the989

Microsoft COCO dataset (MSCOCO) (Chen et al.,990

2015). POPE employs binary classification perfor-991

mance on simple true/false questions across three992

distinct subsets: random, common, and adversarial.993

MMVP (Tong et al., 2024) aims to evaluate the un-994

derstanding of visual details across nine different995

visual modes through paired classification accu-996

racy. Given its evaluation design, which involves997

comparing two similar CLIP-blind image pairs,998

MMVP requires Multimodal Large Language Mod-999

els (LMMs) to capture subtle visual differences.1000

We use two benchmarks as generative bench-1001

marks, extending the evaluation scope to open-1002

ended image description tasks, rather than being1003

limited to evaluating within the context of given1004

answer options. In general, ChatGPT (OpenAI,1005

2023a) is used to score the quality of sentences1006

generated by the model. LLaVA-Bench (In-the-1007

Wild) (Liu et al., 2023d) is a scoring ratio, de-1008

fined as the sum of the absolute values of model1009

scores divided by the sum of the absolute values1010

of ground truth scores, all of which are evaluated1011

by GPT-4 (OpenAI, 2023c). It includes three types1012

of questions: dialogue, detailed descriptions, and1013

complex reasoning. MMHal-Bench (Sun et al.,1014

2024) evaluates the degree of hallucination across1015

eight different question types, including: target at-1016

tributes, adversarial targets, comparisons, counting,1017

spatial relations, environment, overall descriptions,1018

and others. GPT-4 measures the severity of halluci-1019

nations on a scale from 0 to 7, where higher scores1020

indicate fewer hallucinations. 1021

B Case Study 1022

Details of VCGD’s performance in mitigating hal- 1023

lucinations are shown in Figure 4 and 5. We present 1024

two case studies involving the VCGD: we com- 1025

pared the performance differences of the InternVL 1026

model in generative and discriminative tasks un- 1027

der two settings: without and with the VCGD 1028

method. Additionally, specific examples of the 1029

Caption Model were provided to assist in the anal- 1030

ysis. 1031
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Question:
Is there a lemon inside the drink in the cup or are all 
the lemons outside the drink?
A.There is one inside 
B.All are outside

Image:

InternVL(VCGD):
A✅

InternVL(Original):
B ❌

Caption Model:
1. One lemon slice is fully submerged inside the drink, clearly visible through 
the transparent glass.
2. Another lemon slice is placed on the rim of the glass, not inside the liquid.
3. The submerged lemon slice is distorted by the water and appears partially 
below the liquid level, confirming it is inside the drink.

Figure 4: VCGD’s performance on discriminative task. ✓represents a correct answer, while prepresents an
incorrect answer.

Question:
Describe the image in detail.

Image:

InternVL(VCGD):
This image shows a steamed bun display case, commonly used to keep 
buns warm and moist. Inside the case, several white steamed buns are 
placed on small paper liners. The glass walls are fogged up with 
condensation, indicating a hot and humid interior environment. A pair 
of metal tongs is placed in the front, used for picking up the buns. The 
setting appears to be a food stall or a small eatery, possibly serving 
breakfast or snacks.

InternVL(Original):
The image shows a clear plastic container filled with small white 
dumplings. The container is placed on a white surface, which could be 
a table or a counter. There is a fork nearby, possibly used for serving 
or eating the dumplings. The dumplings are arranged neatly in the 
container, and the overall presentation appears to be clean and 
appetizing.

Caption Model:
1. The glass is fogged with condensation, indicating that the food inside is 
being kept warm in a steamer.
2. Each bun is placed on a small piece of white paper, a common practice for 
steamed buns to prevent sticking.
3. A metal pair of tongs is placed inside the display, suggesting the buns are 
ready to be served.

Figure 5: VCGD’s performance on generative task. Text highlighted in red denotes hallucinatory descriptions.
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