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Abstract
As memory-intensive applications continue to drive the need
for advanced architectural solutions, Compute Express Link
(CXL) has risen as a promising interconnect technology that
enables seamless high-speed, low-latency communication be-
tween host processors and various peripheral devices. In this
study, we explore the application performance of ASIC CXL
memory in various data-center scenarios. We then further
explore multiple potential impacts (e.g., throughput, latency,
and cost reduction) of employing CXL memory via carefully
designed policies and strategies. Our empirical results show
the high potential of CXL memory, reveal multiple intriguing
observations of CXL memory and contribute to the wide adop-
tion of CXL memory in real-world deployment environments.
Based on our benchmarks, we also develop an Abstract Cost
Model that can estimate the cost benefit from using CXL
memory.

CCS Concepts: • Software and its engineering → Memory
management; • Hardware → Memory and dense storage;
• General and reference → Empirical studies.

Keywords: Datacenters, Operating Systems, Memory Man-
agement, CXL-Memory, measurement

1 Introduction
In an age marked by the surge of memory-intensive applica-
tions, such as machine learning tasks and High-Performance
Computing (HPC) applications, there is an urgent need for
expanding the memory capacity and bandwidth [1–3]. For
instance, a machine learning application with 175 B model
requires 700 GB of memory to hold its parameters only, not
to mention memory requirements for intermediate results and
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Fig. 1. CXL Overview. In this study, we focus on commercial CXL
1.1 Type-3 devices, leveraging CXL.io and CXL.mem protocols for
memory expansion in single-server environments.

others. That is, the memory requirements of modern applica-
tions could easily exceed the memory capability of a single
machine due to physical constraints, such as availability of
DDR DIMM slots and thermal issues, as well as cost consid-
erations of employing high-density DIMMs [2, 3].

To meet such urgent demands, Compute Express Link
(CXL) [3–6] is introduced as a groundbreaking interconnect
technology. CXL promises significant expansion of memory
capacity and bandwidth by attaching external memory de-
vices (e.g., DRAM, Flash or persistent memory) to PCIe slots.
Unlike its predecessors, CXL enables a more dynamic and
heterogeneous computing environment, leading to various de-
sign trade-offs for performance and cost gains. Commercially
debuting with version 1.1, CXL allows direct attachment of
external memory devices to the host machine, enabling a
unified and coherent memory address space. In such configu-
ration, CXL is predominantly used as a way of memory ex-
pansion. For example, AsteraLabs’ A1000 [7] CXL memory
expansion card supports up to 4xDDR5 RDIMMs, enabling
up to 2 TB of additional memory for a single server.

Although substantial studies on CXL memory have been
performed in the past [3, 5, 6, 8–12], there remains a signifi-
cant gap of employing these studies to guide the integration
of CXL practically. In particular, we observe the following
issues: (1) Much of the current literature has focused on eval-
uating CXL hardware through simulations [6, 8] or using
FPGA-based setups [11, 12]. Although a limited number of
studies have begun to assess the raw performance of ASIC-
based CXL hardware [11, 13], there remains a gap in under-
standing how different system configurations influence the
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performance of data center applications using CXL memory.
Furthermore, the specific applications that could substantially
benefit from CXL memory expansion are not yet fully iden-
tified. (2) While existing studies have begun to explore the
cost implications of employing CXL technology, such as the
work on memory pooling cost models presented in [14], a
critical gap remains in understanding the cost-effectiveness
of migrating particular types of applications or services to
memory expansions facilitated by CXL. (3) Given the re-
stricted availability of CXL ASIC hardware, the research
community faces a notable scarcity of open-source empiri-
cal data. This limitation hinders efforts to fully comprehend
the performance capabilities of such hardware or to develop
performance models based on empirical evidence.

Our study aims to fill existing knowledge gaps by conduct-
ing detailed evaluations of CXL 1.1 for memory-intensive
applications, leading to several intriguing observations: Con-
trary to the common perception that CXL memory, due to
its higher latency, should be considered a separate, slower
tier of memory [8, 9], we find that shifting some workloads
to CXL memory can significantly enhance performance,
even if local memory’s capacity and bandwidth are under-
utilized. This is because using CXL memory can decrease
the overall memory access latency by alleviating bandwidth
contention on DDR channels, thereby improving application
performance. From our analysis of application performance,
we have formulated an abstract cost model (§6) that predicts
substantial cost savings in practical deployments.

In summary, the major contributions of this paper are:
• Empirical Evaluation of ASIC CXL Hardware: Our

study comprehensively examines the performance of ASIC-
based CXL hardware and system configurations in data
center applications, offering insights on optimizing CXL
memory utilization.

• Cost-Benefit Analysis: We undertake a comprehensive
cost-benefit analysis and develop an Abstract Cost Model
to evaluate how CXL memory could substantially reduce
real-world applications’ TCO (Total Cost of Ownership).

• Open-source data on CXL ASIC performance: We open
source all data and testing configurations under https:
//github.com/bytedance/eurosys24-artifacts.
The paper organizes as follows. §2 introduces basic infor-

mation of CXL and environment setup for the evaluations. §3
presents basic performance characteristic of CXL memory ex-
pansion. §4 and §5 presents findings and suggestions of using
CXL as the expansion of memory capacity and bandwidth
on data center workloads. §6 provides a detailed analysis on
the potential cost benefits brought by CXL. §7 discusses how
our insights are applicable to future generations of CXL. §8
describes related work, and §9 concludes the paper.

2 Background and Methodology
This section presents an overview of CXL technology, fol-
lowed by our experimental setup and methodologies.

2.1 Compute Express Link (CXL) Overview
Compute Express Link (CXL) [15] is a standardized inter-
connect technology that facilitates communication between
processors and various devices, including accelerators, mem-
ory expansion units, and smart I/O devices. CXL is built upon
the physical layer of PCI Express® (PCIe®) 5.0 [16], provid-
ing native support for x16, x8, and x4 link widths with data
rates of 32.0 GT/s and 64.0 GT/s. The CXL transaction layer
is implemented through three protocols: CXL.io, CXL.cache,
and CXL.mem, as depicted in Fig. 1. CXL.io protocol is
based on PCIe 5.0 and handles device discovery, configu-
ration, initialization, I/O virtualization, and direct memory
access (DMA). CXL.cache enables CXL devices to access the
host processor’s memory. CXL.mem allows the host to access
memory attached to devices using load/store commands.

CXL devices are categorized into three types, each asso-
ciated with specific use cases: (1) Type-1 devices like Smart-
NICs utilize CXL.io and CXL.cache for DDR memory com-
munication. (2) Type-2 devices, including GPUs, ASICs, and
FPGAs, employ CXL.io, CXL.cache, and CXL.mem to share
memory with the processor, enhancing various workloads in
the same cache domain. (3) Type-3 devices leverage CXL.io
and CXL.mem for memory expansion and pooling. This al-
lows for increased DRAM capacity, enhanced memory band-
width, and the addition of persistent memory without sacrific-
ing DRAM slots. Type-3 devices complement DRAM with
CXL-enabled solutions, benefiting high-speed, low-latency
storage.

The commercially available version of CXL is 1.1, where
a CXL 1.1 device can only serve as a single logical device ac-
cessible by one host at a time. Future generations of CXL, like
CXL 2.0, are expected to support the partitioning of devices
into multiple logical units, enabling up to 16 different hosts
to access different portions of memory [17]. In this paper, our
focus is on commercially available CXL 1.1 Type-3 devices,
specifically addressing single-host memory expansion.

2.2 Hardware Support for CXL
Recent announcements have introduced CXL 1.1 support
for Intel Sapphire Rapids processors (SPR) [18] and AMD
Zen 4 EPYC "Genoa" and "Bergamo" processors[19]. While
commercial CXL memory modules are provided by vendors
such as Asteralabs [7], Montage [20], Micron [21], and Sam-
sung [13], CXL memory expanders are predominantly in
prototype stages, with only limited samples available, mak-
ing access difficult for university labs. Consequently, due to
the scarcity of CXL hardware, research into CXL memory
has largely depended on NUMA-based emulation [8, 9] and
FPGA implementations [11, 12], each with inherent limita-
tions:
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Fig. 2. CXL Experimental Platform. (a) Each CXL server is equipped with two A1000 memory expansion cards. SNC-4(§3.1) is enabled only
for the raw performance benchmarks(§3) and bandwidth-bound benchmarks(§5), and each SNC Domain is equipped with two DDR5 channels
. (a) illustrates Socket 0; Socket 1 shares a similar setup except for the absence of CXL memory. (b) Our platform comprises two
CXL servers and one baseline server. The baseline server replicates the same configuration but lacks any CXL memory cards.

NUMA-based emulation. Given the cache coherent nature
and comparable transfer speed of CXL and UPI/xGMI inter-
connects, NUMA-based emulation [8, 9] is widely adopted to
enable fast application performance analysis and software pro-
totyping as the CXL memory is exposed as a remote NUMA
node. However, NUMA-based emulation fails to accurately
capture the performance characteristics of CXL memory due
to differences from CXL and UPI/xGMI interconnects [22],
as shown in previous research [11].

FPGA-based implementation. Intel and other hardware ven-
dors use FPGA hardware to implement CXL protocols [23],
bypassing the performance inconsistencies of NUMA-based
emulation. However, FPGA-based CXL memory falls short
in fully utilizing memory chip performance due to its lower
operating frequency compared to ASICs [24]. FPGAs prior-
itize flexibility over performance and are suitable for early-
stage CXL memory validation but not production deploy-
ment. Intel’s recent evaluation [11] uncovered performance
issues in FPGA implementations, including reduced memory
bandwidth during concurrent thread execution. This hampers
rigorous evaluations for memory capacity- and bandwidth-
bound applications, which are key use cases for CXL memory
expanders. Further discussion on the performance disparity
between CXL ASIC and FPGA controllers is in §3.

To the best of our knowledge, we are one of the pioneers
in uncovering the performance characteristics of actual ASIC
prototypes designed for CXL memory expansion. The ASIC
CXL memory controller we have employed is the A1000 [7]
developed by AsteraLabs, which implements the CXL inter-
face at speeds of up to 32 GT/s per lane, supporting up to
16 lanes in total. This controller has the capability to accom-
modate up to 4 DDR5-5600 RDIMM slots, providing a total
memory capacity of 2TB.

2.3 Software Support for CXL
While hardware vendors are actively advancing CXL produc-
tion, a notable deficiency exists in software and OS kernel
support for CXL memory. This deficiency has prompted the
utilization of specific software enhancements. We summarize
the most recent patches in the Linux Kernel that add CXL-
aware support, namely: (1) the interleaving policy support
(unofficial) and (2) the hot page selection support (official
since Linux Kernel v6.1).

N:M Interleave Policy for Tiered Memory Nodes.
Traditional memory interleave policies distribute data

evenly across memory banks, often using a 1:1 ratio. However,
the advent of tiered memory systems, which feature CPU-
less memory nodes with diverse performance traits, demands
more nuanced strategies for optimizing memory bandwidth,
especially for bandwidth-heavy applications. The interleave
patch [25] introduces an innovative N:M interleave policy
to address this, allowing for an allocation scheme where N
pages are directed to high-performance (top-tier) nodes and
M pages to lower-tier nodes. For example, using a 4:1 ratio
directs 80% of traffic to top-tier nodes and 20% to low-tier
nodes, adjustable through the vm.numa_tier_interleave
parameter. While the patch showcases compelling evalua-
tion results [25], it’s crucial to note that optimal memory
distribution depends on specific hardware and application
characteristics. Given the higher latency of CXL memory,
as demonstrated in §3, performance-sensitive applications
should undergo thorough profiling and benchmarking to max-
imize the advantages of interleaving and mitigate potential
performance trade-offs.

NUMA Balancing & Hot Page Selection.
The memory subsystem, now termed a memory tiering sys-

tem, accommodates various memory types like PMEM and
3
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CXL Memory, each with differing performance characteris-
tics. To optimize system performance, "hot pages" (frequently
accessed) should reside in faster memory tiers like DRAM,
while "cold pages" (less frequently accessed) should be in
slower tiers like CXL memory. Recent Linux Kernel patches
address this:

1. The NUMA-balancing patch [26] uses a latency-aware
page migration strategy, focusing on promoting recently ac-
cessed pages (MRU). It scans NUMA balancing page tables
and hints page faults. However, it may not accurately iden-
tify high-demand pages due to extended scanning intervals,
potentially causing latency issues for some workloads.

2. The Hot Page Selection patch" [27] introduces a Page
Promotion Rate Limit (RPRL) mechanism to control the rate
of page promotions and demotions. While this extends pro-
motion/demotion times, it improves workload latency. The
hot page threshold is dynamically adjusted to align with the
promotion rate limit.

Additionally, research prototypes like TPP [9] share a simi-
lar concept with optimizations and are being considered for in-
tegration into the Linux Kernel [28]. However, we faced chal-
lenges with TPP when running memory-bandwidth-intensive
applications, resulting in unexplained performance degrada-
tion. Hence, we rely on the well-tested kernel patches inte-
grated into Linux Kernel since version 6.1.

2.4 Experimental Platform Description
The evaluation testbed, as illustrated in Fig. 2(b), consists of
three servers. Two of these servers are designated as CXL
experiment servers. Each of these servers is equipped with
dual Intel Xeon 4th Generation CPUs (Sapphire Rapids, or
SPR), 1 TB of 4800 MHz DDR5 memory, two 1.92 TB SSDs,
and a pair of A1000 CXL Gen5 x16 ASIC memory expanders
modules from AsteraLabs, each with 256 GB of 4800MHz
memory (resulting in a total of 512 GB memory per server).
Both A1000 memory modules are attached to socket 0. The
third server serves as the baseline and is configured identically
to the CXL experiment servers, except for the absence of the
CXL memory expanders. It is designated for initiating client
requests and running workloads that strictly utilize the main
memory during the application assessments. All servers are
interconnected via 100 Gbps Ethernet links.

3 CXL 1.1 Performance Characteristics
In this section, we assess the performance of the CXL mem-
ory expander and compare it directly with main memory,
which we designate as MMEM for clarity against CXL mem-
ory. We analyze workload patterns and evaluate performance
differences between local and remote socket scenarios.

3.1 Experimental Configuration
For each dual-channel A1000 ASIC CXL memory ex-
pander [7], we connect two DDR5-4800 memory channels,
achieving a total capacity of 256 GB. To provide a fair com-
parison between MMEM and CXL-attached DDR5 memory,

we utilize the Sub-NUMA Clustering (SNC) [29] feature to
ensure the number of memory channels is the same in both
settings.

Sub-NUMA Clustering(SNC). Sub-NUMA Clustering
(SNC) serves as an enhancement over the traditional NUMA
architecture. It decomposes a single NUMA node into multi-
ple smaller semi-independent sub-nodes (domains). Each sub-
NUMA node possesses its own dedicated local memory, L3
caches, and CPU cores. In our experimental setup (Fig. 2(a)),
we partition each CPU into four sub-NUMA nodes. Each sub-
NUMA node is equipped with two DDR5 memory channels
connected to two 64 GB DDR5-4800 DIMMs. Enabling SNC
requires setting the IMC (Integrated Memory Controllers) to
1-way interleaving. According to the specifications, a single
DDR5-4800 channel has a theoretical peak bandwidth of 38.4
GB/s [6]. Therefore, each sub-NUMA node has a combined
memory bandwidth of up to 76.8 GB/s.

Intel Memory Latency Checker (MLC). We leverage Intel’s
Memory Latency Checker (MLC) to examine loaded-latency
for various read-write workloads, adopting a 64-byte access
size same as prior work [11]. We deploy 16 MLC threads, and
it’s important to note that while the thread count is a config-
urable parameter in MLC, it doesn’t directly dictate memory
request concurrency. MLC assigns separate memory segments
for each thread to access simultaneously. Specifically, when
evaluating loaded latency, MLC incrementally increases the
operation rate of each thread. Our findings indicate that em-
ploying 16 threads with MLC precisely measures both the
idle and loaded latency and the point at which bandwidth
becomes saturated. MLC accommodates a broad spectrum of
workloads including those with varied read-write mixes and
non-temporal writes.

Our study is focused on addressing the following research
questions:
• How is the performance of the CXL-attached memory com-

pared to that of local-socket/remote-socket main memory?
• What is the performance impact of the CXL memory under

different read-write ratios and access patterns (random vs.
sequential)?

• How do main memory and CXL memory behave under
high memory load conditions?

3.2 Basic Latency and Bandwidth Characteristics
This section outlines our findings on memory access latency
and bandwidth for different memory configurations: local-
socket main memory (MMEM), remote-socket main memory
(MMEM-r), CXL memory (CXL), and remote-socket CXL
memory (CXL-r). Figure 3(a) shows the loaded latency curve
for MMEM under varied read-write mixes. The read-only
workload hits a peak bandwidth of roughly 67 GB/s, reaching
87% of its theoretical maximum. Yet, as write operations in-
crease, bandwidth dips, with write-only tasks dropping to 54.6
GB/s. We note an initial memory latency of about 97 ns, which
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Fig. 3. Overall effect of read-write ratio on MMEM and CXL across different distances. The workloads are represented by read:write
ratios (e.g., 0:1 for write-only, 1:0 for read-only). Accessing CXL memory locally incurs higher latency compared to MMEM but is more
comparable to accessing MMEM on a remote socket. MMEM bandwidth peaks at 67 GB/s, versus 54.6 GB/s for CXL memory. Performance
significantly declines when accessing CXL memory on a remote socket (§3.2). In specific scenarios, such as the write-only workload (0:1) in
(b), the plot may show instances where bandwidth decreases and latency increases with heavier loads. The Y-axis is on a logarithmic scale.
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Fig. 4. A detailed comparison of MMEM versus CXL over diverse NUMA/socket distances and workloads. (a)-(f) shows the latency-
bandwidth trend difference of accessing data from different distances in sequential access pattern, sorted by the proportion of write. We refer to
main memory as MMEM, with MMEM-r and CXL-r representing remote socket MMEM and cxl memory access, respectively. The Y-axis is
on a logarithmic scale.

spikes exponentially as bandwidth nears full capacity, a sign
of bandwidth contention [30, 31]. Interestingly, latency starts
to significantly increase at 75%-83% of bandwidth utilization,
surpassing prior estimates of 60% from earlier studies [30].

Figure 3(b) illustrates the latency differences when access-
ing MMEM via a remote socket. For read-only tasks, latency
begins at approximately 130 ns, contrasting sharply with just
71.77 ns for write-only operations. This reduced latency for
write-only workloads results from non-temporal writes, which
proceed asynchronously without awaiting confirmation. De-
spite read-only tasks achieving maximum bandwidth com-
parable to that of local MMEM, incorporating more write
operations significantly diminishes bandwidth, attributed to

the additional UPI traffic necessitated by cache coherence
protocols. Interestingly, the write-only workload generate
minimal UPI traffic but suffer the lowest bandwidth as it uti-
lize only one direction of the UPI’s bidirectional capabilities.
Moreover, latency escalation occurs earlier in remote socket
memory accesses than in local ones, primarily due to queue
contention at the memory controller.

Fig. 3(c) illustrates the latency curve for CXL memory
expansion, demonstrating a minimum latency of 250.42 ns.
Interestingly, despite additional PCIe and CXL memory con-
troller overhead on the datapath, accessing CXL follows the
same "Bandwidth contention" trend as MMEM. The latency
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of accessing CXL on the same socket remains relatively sta-
ble as bandwidth increases, with a maximum bandwidth of
around 56.7 GB/s, achieved when the workload is 2:1 read-
write ratio. The reduction in maximum bandwidth compared
to DRAM is attributed to PCIe overhead, such as extra head-
ers. The maximum bandwidth for read-only workloads is
smaller due to PCIe bi-directionality, preventing full band-
width utilization. Fig. 3(d) reveals the latency-bandwidth plot
for accessing CXL from a remote socket, incurring an excep-
tionally high idle latency of 485 ns. In addition, the maximum
memory bandwidth is unexpectedly halved, reaching just 20.4
GB/s for 2:1 read-write ratio, which is a much more severe
performance drop compared to accessing MMEM from the
remote NUMA node in Fig. 3(d). Since running a read-only
towards a CXL Type-3 device on the remote socket does not
generate substantial coherence traffic, initial speculation re-
garding cache coherence is ruled out. Further investigation
utilizing the Intel Performance Counter Monitor (PCM) [32]
also confirms that the UPI utilization is consistently below
30%. Discussions with Intel suggest this performance bottle-
neck is likely due to limitations in the Remote Snoop Filter
(RSF) on the current CPU platform, anticipated to be ad-
dressed in the next-generation processors [33].

3.3 Different Read-Write Ratios & Access Pattern
Fig. 4(a)-4(f) present a performance comparison for a spe-
cific workload with varying read-write ratios. The results
align with our observation that accessing CXL from a re-
mote socket introduces exceptionally high latency and low
bandwidth. When accessing CXL from the same socket, la-
tency is 2.4-2.6 × that of local DDR and 1.5-1.92 × that of
remote socket DDR. This suggests that running applications
directly on CXL may significantly drop performance. How-
ever, when workloads span multiple NUMA nodes within
the same socket, accessing CXL locally is comparable to
accessing remote NUMA node memory. Additionally, the
latency-bandwidth knee-point shifts to the left as the propor-
tion of write operations in the workload increases. Fig. 4(g)
and 4(h) display the results of running both read-only and
write-only workloads, utilizing random access patterns in-
stead of sequential access. Notably, we do not observe any
significant performance disparities under these conditions.

3.4 Key insights
Avoiding Remote Socket CXL Access. CXL memory ex-

pansion is commonly utilized for applications that are de-
manding in terms of memory, particularly those limited by
memory capacity or bandwidth. In such contexts, accessing
memory across sockets is not uncommon. It is important
for software developers to recognize the potential decline in
performance when CXL memory is accessed from a remote
socket and to strategize against cross-socket CXL memory
accesses in their applications. Additionally, hardware ven-
dors should perform cooperative testing and validation of
their products to ensure compatibility between CXL memory

modules and the processors’ CXL support. With adequate
support for the CXL 1.1 protocol, we expect that the max-
imum bandwidth attainable when accessing CXL memory
across sockets could approximate the bandwidth seen when
accessing MMEM across sockets.

Bandwidth Contention Previous research [6, 31] has
brought attention to issues related to bandwidth contention.
We further examine how memory latency varies with varying
read-write ratios under bandwidth contention. While latency
remains relatively stable at low to moderate bandwidth uti-
lization levels, it increases exponentially as bandwidth ap-
proaches higher levels, primarily due to queuing delays in
the memory controller [30]. Furthermore, the knee-point in
latency shifts to lower memory bandwidth when there is a
higher proportion of write operations in the workload. In-
terestingly, CXL-attached memory has often been character-
ized by industry and research community as ’tiered mem-
ory’ [11, 25, 28], suggesting that it serves as a slower and
less performant memory layer to be considered only when
MMEM is fully utilized. However, we argue against this sim-
plistic view of CXL-memory. Allocators and kernel-level
page placement policies should consider the available band-
width in MMEM. Even if a substantial portion of memory
bandwidth in MMEM remains unused, e.g., 30%, offloading a
portion of the workload, e.g., 20%, to CXL memory can lead
to overall performance improvements. Our recommendation
is to regard CXL memory as a valuable resource for load
balancing, even when local DRAM bandwidth is not fully
utilized. Subsequent real-world evaluations support these in-
sights (§5).

Comparison with FPGA-based CXL implementations. In-
tel recently disclosed latency and bandwidth performance
metrics for their FPGA-based CXL prototype [11]. While
they provided insights into relative latency and bandwidth
efficiency for soft and hard IP implementations, performance
under load was not shared. Our measurements indicate that
the ASIC CXL solution only introduces a less than 2.5𝑥 over-
head in access latency compared to MMEM, surpassing most
of Intel’s measurements. However, the FPGA-based solution
achieved only 60% of the PCIe bandwidth due to the ineffi-
ciency of the memory controller, while the Asteralabs A1000
prototype reached an impressive 73.6% bandwidth efficiency,
clearly outperforming Intel’s FPGA-based solution.

4 Memory Capacity-bound Applications

One of the most significant advantages of integrating CXL
memory into modern computing systems is the opportunity
for significantly larger memory capacities. To elucidate the
potential benefits, we focus on three particular use cases (1)
key-value stores, a commonly used application in data centers.
(2) Big data analytical application. (3) Elastic computing from
cloud providers.
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Fig. 5. KeyDB YCSB latency and throughput under different configurations. (a) Average throughput of four YCSB workload under
different system configuration. (b) Tail latency of YCSB-A (c) Tail latency CDF of YCSB-C, both reported by the YCSB client [34].

4.1 In-memory key-value stores
Redis [35] is an open-source in-memory key-value store and
one of the most popular NoSQL databases. Redis employs
a user-defined parameter, maxmemory, to limit its memory
allocation for storing user data. Like traditional memory allo-
cators (e.g., malloc()), Redis may not return memory to the
system after key deletion, particularly if deleted keys were
on a memory page with active ones. This necessitates mem-
ory provisioning based on peak demand, making memory
capacity the major bottleneck for Redis deployments [36] in
data centers. Google Cloud suggests keeping memory usage
below 80% [37], whereas other sources recommend a limit of
75% [36].

Due to the substantial infrastructure costs for memory-only
deployment, Redis Enterprise [38] is the commercial variant
extensively supported by leading cloud platforms (e.g., AWS,
Google Cloud, or Azure). It introduces "Auto Tiering"[39] to
allow data overflow to SSDs, offering an economically viable
option for database expansion beyond the limits of RAM
capacity. Given that Redis Enterprise is not accessible on our
experiment platform, we employ KeyDB as an alternative.
KeyDB extends Redis’s capabilities by adding KeyDB Flash,
which uses RocksDB for persistent storage. The FLASH
feature enables all data is written to the disk for persistence,
with hot data remaining in memory as well as disk.

4.1.1 Methodology and Software Configurations. In our
study, we investigate the performance effects of maximizing
memory utilization on a KeyDB server. We deploy a sin-
gle KeyDB instance on a CXL-enabled server configured
with seven server-threads. Unlike Redis’s single-threaded ap-
proach, KeyDB enhances performance by operating multiple
threads to run the standard Redis event loop, akin to running
several Redis instances simultaneously. We disable SNC and
Transparent Hugepages and enable memory overcommitting
within the kernel to minimize potential overhead from OS
configurations. For KeyDB FLASH, we deactive all forms
of compression in RocksDB to minimize software overhead.

Configuration Description
MMEM Entire working set in main memory.
MMEM-SSD-0.2 20% of the working set is spilled to SSD.
MMEM-SSD-0.4 40% of the working set is spilled to SSD.
3:1 Entire working set in memory (75% MMEM

+ 25% CXL, 3:1 interleaved).
1:1 Entire working set in memory (50% MMEM

+ 50% CXL, 1:1 interleaved).
1:3 Entire working set in memory (25% MMEM

+ 75% CXL, 1:3 interleaved).
Hot-Promote Entire working set in memory (50% MMEM

+ 50% CXL), with hot page promotion kernel
patches discussed in §2.

Table 1. Configurations used in capacity experiments.

Our empirical analysis uses the YCSB benchmark with four
distinct workloads: (1) YCSB-A (50% read, 50% update) for
update-intensive scenarios; (2) YCSB-B (95% read, 5% up-
date) for read-heavy operations; (3) YCSB-C (100% read) for
read-only tasks; and (4) YCSB-D (95% read, 5% insert) to
simulate reading the most recent data. These workloads are
tested under various system configurations as detailed in Ta-
ble 1. Note that we use the term "MMEM" for main memory
in order to separate it from CXL memory. For configurations
utilizing SSD data spillover, we set the maxmemory parameter
according to the portion of the workload expected to remain
in memory. For Hot-Promote, we applied numactl to distrib-
ute half of the dataset across CXL memory while limiting
the total main memory usage to half the dataset size. The
experiments are conducted using a 1 KB key-value size, the
YCSB default, with a Zipfian distribution for workloads A-C
and the latest distribution for workload D. The total amount
of working set data is 512 GB.

4.1.2 Analysis. Fig. 5 provides insights into the variations
in throughput across different configurations. Notably, regard-
less of the specific workload, running the entire workload
on MMEM consistently yields the highest throughput. This
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outcome can be attributed to the nature of our workload, pri-
marily constrained by memory capacity rather than memory
bandwidth. The Hot-Promote configuration, which leverages
the Zipfian distribution to identify frequently accessed keys as
hot pages and migrates them from CXL to MMEM, performs
nearly as well as running the workload entirely on MMEM.
This demonstrates the effectiveness of the Hot-Promote ap-
proach in optimizing performance. In contrast, interleaving
data access between CXL and MMEM leads to a noticeable
performance decrease, resulting in a 1.2x to 1.5x slowdown
compared to running the workload directly in MMEM. This
performance drop is primarily due to the higher access la-
tency, as evident in the tail latency plots for workload A and
workload C (Fig. 5(b)(c)). MMEM-SSD-0.2 and MMEM-
SSD-0.4 configurations perform the poorest, exhibiting nearly
a 1.8x slowdown compared to the pure MMEM solution and
a 1.55x slowdown compared to the CXL interleaving solution.
This poor performance is mainly attributed to the high access
latency required to retrieve data from the SSD. It’s worth
noting that our choice of a Zipfian distribution ensures that
the working set is largely cached in MMEM. If the keys were
distributed uniformly, we anticipate worse performance due
to increased SSD access times.

4.1.3 Insights. Our study shows that the additional mem-
ory capacity provided by CXL can be a game-changer for
applications like key-value stores constrained by traditional
MMEM’s capacity. Intelligent scheduling policies further ac-
centuate the benefits, offering avenues for optimizing systems
that leverage multiple memory types and simultaneously sav-
ing operation costs.

4.2 Spark SQL
Big Data plays a crucial role in the workloads managed by
data centers. Due to the scale of data involved in Big Data
analytical applications, memory capacity often becomes a
bottleneck to the performance [40]. Take Spark [41], one of
the common Big Data platforms, as an example: A typical
query requires shuffling data from multiple tables for pro-
cessing in the next stage. Operations like reduceByKey() first
partition the data according to the key and then execute re-
duce operators on each key. Such shuffling operation involves
disk I/O and network communication between multiple nodes,
posing significant overhead on the query. In some cases, the
performance of shuffling could dominate the performance
of the workload [42]. During the shuffling process(Fig. 6),
memory usage could grow beyond the capacity or certain
threshold (e.g. spark.shuffle.memoryFraction). When
this happens, Spark can be configured to spill data to disk
to avoid the risk of out-of-memory failure. Since disk I/O is
of magnitudes slower than memory, this could significantly
impact the workload’s performance.

4.2.1 Methodology and Software Configurations. In our
experiment, we aim to test if we could reduce the number

Executor

Off-Heap Memory

JVM Region

Execution
Memory

Storage 
Memory

On-Heap Memory

Shuffle Write Shuffle Read

Partition 1

Partition 2

Partition 3

Execution 
Memory Storage

Fig. 6. Spark memory layout and shuffle spill. Each Spark execu-
tor possesses a fixed-size On-Heap memory, which is dynamically
divided between execution and storage memory. If there is insuf-
ficient memory during shuffle operations, the Spark executor will
spill the data to the disk.

of servers needed for a specific workload with minimal ef-
fect on overall performance. Therefore, we compared the
performance of Spark running TPC-H [43] on three servers
without CXL memory expansion vs. on two servers but with
CXL memory expansion. We assume the maximum amount
of MMEM that could be used on each server is 512 GB, there-
fore with three servers, we have 1.5 TB MMEM and 1 TB
CXL memory in total. In order to trigger data spill within the
workload, we configured 150 Spark executors. Each Spark
executor contains 1 core and 8 GB of memory. Therefore
the total Spark application occupies 150 cores and 1.2 TB of
memory. We generate a total of 7 TB TPC-H initial dataset.
We continue to adhere to the configuration settings detailed
in Table 1 as follows:
• MMEM only: We allocate 50 Spark executor and 400 GB

on each of the three servers. In this case there is no data
spilled to disk as each executor have sufficient amount of
memory.

• MMEM/CXL interleaving: We distributed the same num-
ber of executors (150) across the two cxl servers, which
has 1 TB (512 GB from each of the two CXL cards) plus 1
TB of MMEM (512 GB each). For example, in a configura-
tion where MMEM and CXL memory usage is balanced
(1:1 ratio), we allocated 75 Spark executors to use 600 GB
MMEM while another 75 Spark executors to 600 GB CXL
memory. In this case, there is also negligible amount of
data spilled to the disk.

• Spill to SSD: To simulate conditions where executors
would run out of memory and need to spill data to SSD
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Fig. 7. Spark execution time and shuffle percentage. (a) Execution time of each TPC-H query normalized to the execution time running
on MMEM. (b) The percentage of time spent of shuffle operation for each query. The solid bars represent shuffle writes, while hollow bars
represent shuffle reads.

storage, we restrict the memory allocation of the Spark
executors to either 80% or 60% of entire 1.2 TB MMEM.
In this case, there will be around 320 GB and 500 GB data
spilled to the disk respectively.

• Hot-Promote: same as prior experiment (§4.1).
We chose four specific queries (𝑄5, 𝑄7, 𝑄8, and 𝑄9) from the
TPC-H benchmark [43], recognized for their intensive data
shuffling demands from prior studies [42], to evaluate our
setup. Importantly, our measurements focused solely on the
time to execute these queries, excluding any data preparation
or server setup durations. We disabled SNC on all servers.

4.2.2 Analysis. Figure 7 illustrates variations in total ex-
ecution time across different configurations. To provide a
clear comparison, we normalized the total execution time
against the best-case scenario, which involves running the
entire workload in MMEM. Similar to the KeyDB experi-
ments, the interleaving approach still exhibits a performance
slowdown, ranging from 1.4x to 9.8x compared to the optimal
MMEM-only scenario while using less number of servers.
This performance degradation becomes worse as a larger pro-
portion of memory is allocated to CXL. Nevertheless, it’s
crucial to note that even with this slowdown, the interleav-
ing approach remains significantly faster than spilling data
to SSDs. Figure 7(b) illustrates that shuffling overshadows
the total execution time due to the intensification of data spill
issues.

A notable difference between the KeyDB and Spark
experiments is the performance of HotPromote. While
it performs better in KeyDB, the Spark SQL experiment
shows a more than 34% slowdown compared to MMEM.
Unlike the Zipfian distribution in which the hottest keys
are moved from CXL to DDR, there is a considerable
amount of thrashing behavior within the kernel in the Spark
SQL tests. We identify the root cause after thoroughly
investigating the kernel patch implementation. In the initial
version of the hot page selection patch [27], a sysctl knob

"kernel.numa_balancing_promote_rate_limit_MBps"
is used to control the maximum promoting/demoting through-
put. Subsequent versions introduced an automatic threshold
adjustment feature to this patch, aiming to strike a balance
between the speed of promotion and migration costs.
Nevertheless, this automatic adjustment mechanism appears
to fall short in our Spark SQL evaluations. The TPC-H
workload on Spark, which demonstrates reduced data locality,
challenges the kernel’s efficiency in promoting frequently
accessed pages. This finding aligns with similar issues
highlighted in prior research [11].

4.2.3 Insights. Our research indicates that utilizing CXL
memory expansion offers a cost-efficient approach for data-
center applications. We postpone our detailed theoretical ex-
amination of the Abstract Cost Model to §6. Concurrently,
although the hot-promote patch demonstrates significant ad-
vantages in key-value store workloads, its performance is
notably lacking in Spark experiments. As system developers
begin to enhance software support for CXL within the kernel,
it is crucial to proceed with caution. System-wide policies
can have varied impacts on applications, depending on their
unique characteristics.

4.3 Spare Cores for Virtual Machine

One widely-used application within Infrastructure-as-a-
Service (IAAS) is Elastic Computing [49]. Here, cloud ser-
vice providers (CSPs) offer computational resources to users
through virtual machines or container instances. Given the
diverse needs of users, CSPs traditionally offer a variety of
instance types, each characterized by different configurations
of CPU cores, memory, disk, and network capacities. Gener-
ally, an "optimal" CPU-to-memory ratio, often cited as 1:4,
is employed to balance computational and memory require-
ments (as per AWS guidelines [50, 51]). For example, an
instance with 128 vCPUs would typically feature 512 GB of
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Year CPU Max vCPU Memory channels Max memory Required Memory
per server per socket \TB (1 : 4) \TB

2021 IceLake-SP[44] 160 8xDDR4-3200 4 0.64
2022 (delayed) Sapphire Rapids[45] 192 8xDDR5-4800 4 0.768
2023 (delayed) Emerald Rapids[46] 256 8xDDR5-6400 4 1

2024+ Sierra Forest[47] 1152 12 4 4.5
2025+ Clearwater Forest[48] 1152 TBD 4 4.5

Table 2. Intel Processor Series.

DDR memory. Advancements in server processor architec-
ture and chiplet technology have spurred rapid increases in
the number of cores available in a single processor package,
driven in large part by the CSPs’ aim to lower per-core costs.
Consequently, 2-socket servers have seen their vCPU counts
grow from 160 to 256 within the past two years (Table 2).
This trend is projected to continue, reaching as many as 1152
vCPUs per server by 2025.

The surge in vCPUs exacerbates memory capacity bottle-
necks, constrained by DDR slot limits, DRAM density, and
the cost of high-density DIMMs. Intel’s Sierra Forest Xeon,
for example, supports 1152 vCPUs but is limited by mother-
board design to less than 4 TB of memory, falling short of the
typical 4.5 TB needed for VM provisioning [52]. This discrep-
ancy makes maintaining a cost-effective vCPU-to-memory
ratio challenging, resulting in underutilized vCPUs and lost
revenue for CSPs. CXL memory expansion provides a so-
lution by enabling memory capacity to scale beyond DDR
limitations, ensuring optimal vCPU utilization and mitigating
revenue losses for CSPs.

4.3.1 Methodology and Software Configurations. To as-
sess the performance impact when an application operates
exclusively on CXL memory, we replicate the KeyDB config-
uration from previous experiments (§4.1). We utilize numactl
to allocate the KeyDB instance exclusively to MMEM or
CXL memory. For our evaluation, the workload employed is
YCSB-C, characterized by 1 KB key-value pairs and a total
dataset size of 100 GB. SNC is disabled.

4.3.2 Analysis. The CDF of read latency (Fig. 8(a)) indi-
cates that applications running on CXL experience a latency
penalty of 9% − 27% which is less than the raw data fetching
numbers in our previous measurements in §3. This is due
to the processing latency within Redis. The throughput of
running the entire workload on CXL memory is around 12.5%
less compared to MMEM as show in Fig. 8(b).

Now consider a server operating at a sub-optimal vCPU-to-
memory ratio of 1:3: (1) Due to inadequate memory, only 75%
of the vCPUs can be sold at the optimal 1:4 ratio, resulting in
a 25% revenue loss. Implementing CXL memory expansion
enables the CSP to sell the remaining 25% of vCPUs at the
optimal ratio. (2) Our benchmarks indicate that instances
running on CXL memory perform 12.5% slower than those on
DDR for common workloads such as Redis. Assuming a 20%
price discount on such instances, CSPs could still recover
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Fig. 8. KeyDB Performance with YCSB-C on CXL/MMEM.

approximately 80% of the lost revenue, equating to a 27%
improvement in total revenue (20/75 = 26.77%).

4.3.3 Insights. Given the sheer scale of Elastic Computing
Service (ECS) applications in public clouds, the potential ben-
efits of CXL memory expansion could be substantial. How-
ever, the challenge of maintaining an optimal virtual CPU
(vCPU) to memory ratio, traditionally at 1:4, becomes more
complex with the rapid increase in processor cores. This ratio,
although standard, is under scrutiny for its applicability in
future cloud computing paradigms. Notably, Bytedance’s Vol-
cano Engine Cloud [53] illustrates the variability in resource
allocation by offering different ratios: 1:4 for general pur-
poses, 1:2 for compute-intensive tasks, and 1:8 for memory
and storage-intensive workloads. The impact of CXL memory
expansion and pooling on these established ratios presents
an intriguing avenue for exploration, raising questions about
the adaptability of cloud providers to evolving hardware ca-
pabilities and the subsequent effect on resource allocation
standards.

5 Memory Bandwidth-Bound applications
The other advantage of CXL memory expansion is its extra
memory bandwidth. We use Large Language Model inference
as an example to showcase how this can benefit real-world
applications.

Recent work on LLM [54] shows that LLM inference is
hungry for memory capacity and bandwidth. The limited ca-
pacity of GPU memory restricts the batch size of the LLM
inference job and reduces computing efficiency since LLM
models are memory-demanding. On the other hand, while
CPU memory is high in capacity, it has lower bandwidth
than GPU memory. The extra bandwidth and capacity offered
by CXL memory make it a promising option for alleviating
this bottleneck. For example, a CPU-based LLM inference
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job can benefit from the extra bandwidth brought by CXL
memory, and a CXL-enabled GPU device can also use the
extra memory capacity from a disaggregated memory pool.
Due to the lack of CXL support in current GPU devices, we
experiment with LLM inference on CPU to study the implica-
tions of CXL memory’s extra bandwidth. We also note that
as LLM inference applications are agnostic to the underlying
memory technologies, the findings and implications from our
experiments are also applicable to the upcoming CXL 2.0/3.0
devices.

LLM Inference Framework. Mainstream Large Language
Model (LLM) inference frameworks, such as vLLM [55] and
LightLLM [56], do not support CPU inference. Recently, In-
tel introduced an LLM model named Q8chat [57], trained
using their 4th Generation Intel Xeon® Scalable Proces-
sors. However, the inference code for Q8chat is not yet pub-
licly available. To address this gap, we have developed our
inference framework based on the open-source LightLLM
framework [56] by replacing the backend with a CPU infer-
ence backend. Figure 9 illustrates our implementation. In our
framework, the HTTPserver frontend receives LLM inference
requests and forwards the tokenized requests to a router. The
router is responsible for distributing these requests to differ-
ent CPU backend instances. Each CPU backend instance is
equipped with a Key-Value (KV) cache [58], a widely used
technique in large language model inference. It’s worth noting
that KV caching, despite its name, differs from the traditional
’key-value store’ in system architecture. KV caching occurs
during multiple token generation steps, specifically within the
decoder. During the decoding process, the model starts with a
sequence of tokens, predicts the next token, appends it to the
input, and repeats this generation process. This is how mod-
els like GPT [54] generate responses. The KV cache stores
key and value projections used as intermediate data within
this decoding process to avoid recomputation for each token
generation. Prior research [58] has shown that KV caching is
typically memory-bandwidth bound, as it is unique for each
sequence in the batch, and different requests typically do not
share the KV cache since the sequences are stored in separate
contiguous memory spaces [59].

5.1 Methodology and Software Configurations
To investigate the benefits of CXL memory extension for
applications with high memory bandwidth demands and lim-
ited MMEM bandwidth availability, we employ the SNC-4
configuration to divide a single CPU into four sub-NUMA
nodes. Each node is equipped with two DDR5-4800 memory
channels, facilitating an early memory bandwidth saturation
of 67 GB/s (§3). We examine three distinct interleaving poli-
cies (3:1, 1:1, 1:3), detailed in Table 1. The CPU inference
backend is configured with 12 CPU threads, and memory
allocation is strictly bound to a single sub-NUMA domain.
This domain includes two DDR5-4800 channels and a 256
GB A1000 CXL memory expansion module via PCIe. By
binding allocations to a single node, we ensure the initial
saturation of the DDR5 channels. Our experiments utilize the
Alpaca 7B model [60], an advancement of the LLaMA 7B
model, requiring 4.1GB of memory. The workload, derived
from the LightLLM framework [56], includes a wide range
of chat-oriented questions. A single-threaded client machine
on a baseline server sends HTTP requests with various LLM
queries to mimic real-world conditions. The client ensures
continuous operation of the CPU inference backends by main-
taining a constant stream of requests. The prompt context is
set to 2048 bytes to guarantee a minimum inference response
size. We progressively increase the CPU inference backend
count to monitor the LLM inference serving rate (in tokens/s).

5.2 Analysis
Fig. 10(a) displays the inference serving rates across various
memory configurations as the thread count, i.e., the number of
CPU inference backends, increases. Initially, the serving rate
improves almost linearly with available memory bandwidth.
However, at 48 threads, MMEM bandwidth saturation limits
the serving rate, whereas the interleaving configurations lever-
age additional CXL bandwidth for continued scaling. With a
significant number of inference threads (60), an MMEM:CXL
= 3:1 interleaving significantly surpasses the MMEM-only
approach by 95%.

Interestingly, among the interleaving policies, configura-
tions with a higher proportion of data in main memory demon-
strate superior inference performance. Contrary to expecta-
tions, we observe that operating entirely on main memory is
14% less effective than a MMEM:CXL ratio of 1:3 beyond
64 threads. This outcome is notable given CXL’s inherently
higher latency and reduced memory bandwidth (§ 3). Fig.
10(b) charts the memory bandwidth utilization, as measured
by the Intel Performance Counter Monitor (PCM) [32], with
increasing CPU thread counts within a single CPU inference
backend. Initially, bandwidth utilization grows linearly with
thread count, plateauing at 24.2 GB/s for 24 threads. This
trend allows us to estimate a bandwidth of approximately 63
GB/s at 60 threads, reaching 82% of the theoretical maximum.
Our microbenchmark findings, as detailed in §3, indicate that
this level of bandwidth utilization may lead to significant
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Fig. 10. CPU LLM inference.

latency spikes. These results corroborate the hypothesis that
bandwidth contention plays a crucial role in the observed
performance degradation.

Bandwidth contention may stem from either loading the
LLM model or accessing the KV cache. Adjusting the prompt
context to infinity enables the LLM model to continuously
generate new tokens for storage in the KV cache. Fig. 10(c)
illustrates the correlation between KV cache size and memory
bandwidth consumption. The initial memory bandwidth of
approximately 12 GB/s originates from I/O threads loading
the model from memory. When storing information for a
larger sequence of tokens in the KV cache, memory usage
initially increases linearly. However, bandwidth utilization
stops increasing beyond roughly 21 GB/s.

5.3 Insights
Interestingly, existing tiered memory management in the ker-
nel does not consider memory bandwidth contention. Consid-
ering a workload that uses high main memory bandwidth(e.g.,
70%), existing page migration policy(§2) tends to move data
from slower tiered-memory (CXL) into MMEM, supposing
that there is still enough memory capacity. As more data is
written into the main memory, the memory bandwidth will
continue to increase (e.g., 90%). In this case, the access latency
will grow exponentially, resulting in an actual slowdown of
the workload. This scenario will not be uncommon, especially
for memory-bandwidth-bound applications (e.g., LLM infer-
ence). Therefore, the definition of tiered memory requires
rethinking.

6 Cost Implications
Our comprehensive analysis in prior sections (§4, §5) reveals
that the adoption of CXL memory expansion offers substantial
benefits for data center applications, including comparable
performance with operational cost savings. However, a sig-
nificant hurdle in embracing such innovative technology as
CXL lies in determining its Return on Investment (ROI). De-
spite having access to detailed technical specifications and
benchmark performance results, accurately forecasting the

Total Cost of Ownership (TCO) savings remains challeng-
ing. The complexity of simulating benchmarks at production
scale, compounded by the limited availability of CXL hard-
ware, exacerbates this issue. Traditional cost models in prior
work [14], which could offer such forecasts, demand exten-
sive internal and sensitive information that is often inaccessi-
ble. To overcome this barrier, we propose an Abstract Cost
Model designed to estimate TCO savings independently of
internal or sensitive data. This model leverages a select set
of metrics obtainable through microbenchmarks, alongside a
handful of empirical values that are simpler to approximate
or access, providing a viable means to evaluate the economic
viability of CXL technology implementation.

We use a capacity-bound application (Spark SQL) as an
example to demonstrate how we develop our Abstract Cost
Model, but our methodology can be extended to other types of
workloads as well. For Spark SQL applications, the additional
capacity enabled by CXL memory reduces the amount of data
spilled to SSD and results in higher performance (throughput).
This means fewer servers will be needed to meet the same
performance target.

Given that the workload maintains a relatively consistent
memory footprint (the size of the active dataset) during execu-
tion, we can approximate the execution time of the workload
by dividing it into three distinct segments: (1) The segment
processed using data stored in MMEM, (2) The segment
processed using data stored in CXL memory, and (3) The
segment processed using data that has been offloaded to SSD
storage.

We first make these measurements from microbenchmarks
on a single server:
• Baseline performance (𝑃𝑠 ): Measure the throughput when

(almost) all working set is spilled to SSD. The absolute
number is not used in our cost model. Instead, we then
normalize it to 1 in our cost model.

• Relative performance when the entire working set is in
MMEM (𝑅𝑑 ): Using the same workload, we measure the
throughput when the entire working set is in MMEM and
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Parameter Description Example Value

𝑃𝑠
Throughput when (almost) entire working set is spilled to SSD on a server.
Normalized to 1 in the cost model.

1

𝑅𝑑 Relative throughput when the entire working set is in main memory on a server, normalized to 𝑃𝑠 . 10
𝑅𝑐 Relative throughput when the entire working set is in CXL memory on a server, Normalized to 𝑃𝑠 . 8
𝐷 The MMEM capacity allocated to each server. For completeness only, not used in cost model.

𝐶
The ratio of main memory to CXL capacity on a CXL server.
E.g. 2 means the server has 2x MMEM capacity than CXL memory.

2

𝑁𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 Number of servers in the baseline cluster.
𝑁𝑐𝑥𝑙 Number of servers in the cluster with CXL memory to deliver the same performance as the baseline.

𝑅𝑡
Relative TCO comparing a server equipped with CXL memory vs. baseline server.
E.g. If a server with CXL memory costs 10% more than the baseline server, this parameter is 1.1.

1.1

Table 3. Parameters of our Abstract Cost Model .

normalize it to 𝑃𝑠 to get the relative performance (i.e., how
much faster compared to the baseline).

• Relative performance when the entire working set is in
CXL memory (𝑅𝑐 ): Using the same workload, we measure
the throughput when the entire working set is in CXL mem-
ory, and normalize it to 𝑃𝑠 to get the relative performance.
We then formulate our cost model using the parameters

outlined in Table 3. For a working set size of𝑊 , the execution
time of the baseline cluster could be approximated as the sum
of two segments: 1) the segment that is executed with data
in MMEM; 2) the segment that is executed with data spilled
onto SSD.

𝑇𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 =
𝑁𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝐷

𝑅𝑑
+ (𝑊 − 𝑁𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝐷)

The execution time of the cluster with CXL memory could
be approximated in a similar way. It includes the segment that
is executed with data in main memory, in CXL memory, and
spilled to SSD respectively.

𝑇𝑐𝑥𝑙 =
𝑁𝑐𝑥𝑙𝐷

𝑅𝑑
+ 𝑁𝑐𝑥𝑙𝐷

𝐶𝑅𝑐
+ (𝑊 − 𝑁𝑐𝑥𝑙𝐷 − 𝑁𝑐𝑥𝑙𝐷

𝐶
)

To meet the same performance target, 𝑇𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 = 𝑇𝑐𝑥𝑙 :

𝑁𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝐷

𝑅𝑑
−𝑁𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝐷 =

𝑁𝑐𝑥𝑙𝐷

𝑅𝑑
+ 𝑁𝑐𝑥𝑙𝐷

𝐶𝑅𝑐
−𝑁𝑐𝑥𝑙𝐷 − 𝑁𝑐𝑥𝑙𝐷

𝐶

With some simple transformations, we get the ratio be-
tween 𝑁𝑐𝑥𝑙 and 𝑁𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 :

𝑁𝑐𝑥𝑙

𝑁𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

=
𝐶𝑅𝑐 (𝑅𝑑 − 1)

𝑅𝑐𝑅𝑑 (𝐶 + 1) −𝐶𝑅𝑐 − 𝑅𝑑

TCO saving can then be formulated as follows.

𝑇𝐶𝑂𝑠𝑎𝑣𝑖𝑛𝑔 = 1 − 𝑇𝐶𝑂𝑐𝑥𝑙

𝑇𝐶𝑂𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

= 1 − 𝑁𝑐𝑥𝑙𝑅𝑡

𝑁𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

For example, suppose 𝑅𝑑 = 10, 𝑅𝑐 = 8, 𝐶 = 2, we get
𝑁𝑐𝑥𝑙

𝑁𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
= 67.29% from the cost model. This means that by

using CXL memory, we may reduce the number of servers
by 32.71%. And if we further assume 𝑅𝑡 = 1.1 (a server with
CXL memory costs 10% more than the baseline server), the
TCO saving is estimated to be 25.98%.

Our Abstract Cost Model provides an easy and accessible
way to estimate the benefit from using CXL memory, provid-
ing important guidance to the design of the next-generation
infrastructure.

Extending Cost Model for more realistic scenarios. In
line with previous research [14], our Abstract Cost Model
is designed to be adaptable, allowing for the inclusion of
additional practical infrastructure expenses such as the cost
of CXL memory controllers, CXL switches (applicable in
CXL 2.0/3.0 versions), PCBs, cables, etc., as fixed constants.
However, a notable constraint of our current model is its focus
on only one type of application at a time. This becomes a
challenge when a data center provider seeks to evaluate cost
savings for multiple distinct applications, each with unique
characteristics, especially in environments where resources
are shared (for instance, through CXL memory pools). This
scenario introduces complexity and presents an intriguing
challenge, which we acknowledge as an area for future inves-
tigation.

7 Discussion
Our experiments concentrate on CXL 1.1 devices, yet the
insights extend beyond this version. We also explore the rele-
vance of our findings to future CXL architectures, including
CXL 2.0 and 3.0, and discuss the anticipated evolution of
CXL technologies.

7.1 CXL 2.0/3.0 and Beyond
Over the last two decades, we’ve seen the evolution from
isolated computation and storage on single machines to the
pooled resources that underpin today’s cloud infrastructure,
thanks to distributed computing and storage technologies.
This shift to a disaggregated architecture has enabled comput-
ing and storage to scale independently, offering substantial
cost savings for various large-scale workloads.

Looking ahead, we anticipate a similar transformation for
memory resources. We foresee the next-generation data cen-
ters leveraging a disaggregated heterogeneous memory archi-
tecture with a unified address space, allowing workloads to
dynamically allocate memory from a pooled resource and
maintain a unified memory view across different memory
types. This approach, decoupling memory scaling from other
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GH200 memory tier Resemblance to CXL
Local GPU HBM Local DDR
Local CPU DDR CXL memory expansion
Remote GPU HBM CXL memory pooling
Remote CPU DDR CXL memory pooling

Table 4. Comparison of memory architectures between Nvidia
GH200 [61] and CXL memory .

resources like CPUs, promises enhanced elasticity and cost
efficiency, with technologies such as CXL 2.0/3.0 playing a
pivotal role due to their superior bandwidth, low latency, and
scalable memory access features.

Furthermore, we predict this disaggregated memory archi-
tecture will merge with general computing and AI/ML work-
loads, reflecting recent architectural advancements in GPU
and AI/ML accelerators, such as Nvidia’s GH200 with its
heterogeneous memory ([61]), Apple’s M2 Ultra with its Uni-
fied Memory Architecture ([62]), and Google’s TPUv4 with
its globally addressable memory space ([63]). The Nvidia
GH200, in particular, showcases a tiered memory structure
akin to the CXL-based disaggregated memory architecture
(4). We anticipate the disaggregated heterogeneous memory
architecture will revolutionize not just general computing,
but AI/ML workloads as well. However, realizing this vision
faces several challenges:
• Hardware: Innovations in processors, such as those pro-

posed in the CXL-centric architecture by Cho et al. ([6]),
and the integration of emerging memory technologies like
MRAM and ReRAM, are crucial. These technologies will
bring new capabilities and challenges in management,
scheduling, and placement algorithms.

• Software: The shift towards a disaggregated memory ar-
chitecture necessitates significant changes in the software
stack. This includes OS enhancements and the development
of a unified memory management framework to handle al-
location, placement, migration, provisioning, monitoring,
and fault tolerance efficiently. This framework must sup-
port a variety of applications and hardware configurations
with minimal performance overhead.

• Interconnect & Fabric Technology: The scalability of this
architecture heavily relies on advancements in interconnect
and fabric technologies. Current limitations of PCIe cables
for CXL 1.1 memory expansion necessitate new solutions
for scaling beyond single racks. Innovations like optical
interconnects for PCIe [64] and Ultra Ethernet (UEC) [65]
show promise for enabling large-scale, multi-rack, or even
data center-wide disaggregated memory pools.

7.2 Other Datacenter Applications
Beyond the applications initially discussed, a wide array of
data-center tasks stands to gain significantly from CXL mem-
ory expansion, particularly with the advancements in CXL 1.1
and 2.0 technologies. This includes Graph Neural Network
(GNN) applications and genomics, where the immense mem-
ory requirements for processing entire graphs or extensive

genomic sequences present substantial challenges. Enhance-
ments in CXL’s memory capacity and bandwidth can dramat-
ically improve data access and processing speeds for these
and similar data-intensive tasks. Moreover, the integration of
Type-1 and Type-2 CXL devices opens up new avenues for
optimizing interactions with heterogeneous accelerators, such
as GPUs, which are pivotal in ML/AI workloads. This conflu-
ence of CXL memory expansion and accelerator technologies
not only boosts data center scalability and efficiency but also
elevates the performance of a broad spectrum of applications.
From enhancing real-time analytics to enabling more efficient
edge computing and IoT operations, CXL technology is in-
strumental in reducing latency, increasing throughput, and
facilitating the real-time processing demands essential for ad-
vancing computational capabilities across various domains.

8 Related Work
The concept of memory disaggregation, highlighted in key
studies [66, 67], aims to uncouple CPUs from local memory
to optimize memory resource sharing in data centers, po-
tentially alleviating memory bottlenecks. The integration of
Compute Express Link (CXL) technology is explored for its
potential to enhance system efficiency and reduce Total Cost
of Ownership (TCO) [5, 6, 8, 9, 68]. Research on CXL spans
various methodologies, including the use of NUMA servers
as stand-ins for CXL memory [8], software simulators, and
actual implementations on FPGA-based RISC-V CPUs [12].
Key industry players like Microsoft [8, 14] and Meta [9],
alongside hardware vendors Intel [11] and Samsung [13], are
moving towards adopting CXL, showcasing its performance
advantages. Cho et al. [30] further propose a CXL-centric
server processor architecture, suggesting the replacement of
DDR controllers with CXL interfaces to capitalize on its
higher bandwidth and efficiency.

9 Conclusion
We provide a comprehensive empirical evaluation of Compute
Express Link (CXL) in real-world data center applications,
filling a critical knowledge gap left by prior theoretical studies.
Our findings reveal both the potential and limitations of CXL,
offering actionable recommendations for its ongoing devel-
opment to better serve data-centric computing environments.
Based on our benchmarks, we also develop an Abstract Cost
Model that can estimate the TCO savings without relying on
internal or sensitive data, providing important guidance to the
design of our next generation infrastructure.
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