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ABSTRACT

The recent advancements in large language models (LLMs) and pre-trained vi-
sion models have accelerated the development of vision-language large mod-
els (VLLMs), enhancing the interaction between visual and linguistic modali-
ties. Despite their notable success across various domains, VLLMs face chal-
lenges in modality alignment, which can lead to issues like hallucinations and
unsafe content generation. Current alignment techniques often rely on coarse
feedback and external datasets, limiting scalability and performance. In this paper,
we propose FiSAO (Fine-Grained Self-Alignment Optimization), a novel self-
alignment method that utilizes the model’s own visual encoder as a fine-grained
verifier to improve vision-language alignment without the need for additional
data. By leveraging token-level feedback from the vision encoder, FiSAO sig-
nificantly improves vision-language alignment, even surpassing traditional pref-
erence tuning methods that require additional data. Through both theoretical
analysis and experimental validation, we demonstrate that FiSAO effectively
addresses the misalignment problem in VLLMs, marking the first instance of
token-level rewards being applied to such models. Our code is avaliable at
https://anonymous.4open.science/r/FISAO-57F0/.

1 INTRODUCTION

The advent of large language models (LLMs) (Brown et al., 2020; Touvron et al., 2023; Yang et al.,
2024a) and pre-trained vision models (Radford et al., 2021a; Liu et al., 2023c) has propelled vision-
language large models (VLLMs) by advancing connections between visual and linguistic modalities
through linear projection (Li et al., 2023b) or q-former (Dai et al., 2023b). These VLLMs have
demonstrated notable capabilities across diverse domains such as medical applications (Liu et al.,
2023b), autonomous driving (Zhou et al., 2023a), and embodied intelligence (Peng et al., 2023).
However, challenges remain in precisely aligning vision and language modalities for integrated
inference due to their independent pre-training (Jang et al., 2023; Liu et al., 2024a). This pre-training
process often results in incompatible modality-specific representations, hindering the formation of a
coherent aligned representation space during joint training (Jang et al., 2023). Misalignment between
modalities can lead to safety risks such as biased or inappropriate content generation (Gong et al.,
2023; Tu et al., 2023) and hallucinations, where outputs are not grounded in visual input (Wang et al.,
2023). These risks are particularly concerning in tasks like visual question answering (Cui et al.,
2023; Fan et al., 2024), OCR (Shi et al., 2023), and image captioning (Gunjal et al., 2024), where
precise alignment is critical.

To address these misalignment issues, recent works have explored strategies such as instruction tun-
ing (Liu et al., 2023a; Chen et al., 2024b), preference tuning (Yu et al., 2023a), and post-processing
methods (Zhou et al., 2023b; Yin et al., 2023). However, most prevalent alignment methods rely
heavily on external datasets (Zhou et al., 2024a), models (Yin et al., 2023), or costly human annota-
tions (Yu et al., 2023a). Preference tuning, for example, requires extensive manual labeling, either
from human experts (Sun et al., 2023; Yu et al., 2023a) or commercial models (Lee et al., 2023;
Li et al., 2023b), which imposes significant costs on building reward datasets and limits scalability.
Worse still, these alignment methods often rely on coarse feedback, such as sentence-level (Zhou et al.,
2024b; Deng et al., 2024) or output-level rewards (Li et al., 2023d), framing the reward modeling task
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Table 1: Feature comparison of different preference tuning approaches.
Model Name Reward Model Additional Data GPT-Assisted

Vlfeedback (Li et al., 2023d) × ✓ ✓
Human-Preference (Sun et al., 2023) ✓ ✓ ×

POVID (Zhou et al., 2024a) × ✓ ✓

FiSAO × × ×

as a simple classification problem that scores outputs as desirable or undesirable. Focusing solely
on assigning a numerical score for an entire output fails to leverage VLLMs’ token-level generation
capabilities, limiting their ability to perform detailed reasoning and precise objective identification.

To mitigate the abovementioned limitations, we propose Fine-Grained Self-Alignment Optimization
(FiSAO), a method for precisely self-aligning modalities in VLLMs using token-level fine-grained
feedback from the vision encoder. Our findings indicate that coarse feedback shows a weak correlation
with hallucination detection, while fine-grained reward more effectively differentiates between
hallucinated and correct outputs (see Section 3.1). In other words, when using hallucination detection
as a proxy for alignment measurement, token-level feedback from the vision encoder offers more
informative signals for preference tuning compared to coarse scores. Our theoretical analysis further
confirms that this fine-grained feedback improves modality alignment (see Section 3.2). Additionally,
FiSAO eliminates the need for external annotations or tools by leveraging its vision encoder as a
fine-grained verifier, rewarding each generated token based on its alignment with the visual input.
As a result, FiSAO effectively harnesses the model’s text generation capabilities and demonstrates
superior performance compared to preference tuning methods that rely on additional data. We
compare FiSAO with other preference tuning approaches in Table 1.

Our primary contributions can be summarized as follows: We first empirically analyze the dif-
ferences between coarse and fine-grained rewards in addressing misalignment issues, finding that
coarse feedback from pre-trained vision encoders, such as sentence-level rewards, shows a weak
correlation with hallucination detection, whereas token-level rewards offer more precise signals for
modality alignment. Building on these findings, we propose a novel self-training approach, FiSAO,
which leverages token-level feedback from the model’s own visual encoder, eliminating the need for
additional data or external tools. To the best of our knowledge, FiSAO is the first method to intro-
duce token-level rewards for VLLMs. We further demonstrate FiSAO’s effectiveness in mitigating
misalignment through both empirical results and theoretical analysis.

2 PRELIMINARIES

This section reviews the standard pipeline of preference tuning for VLLMs, as outlined in prior
works (Ziegler et al., 2019; Ouyang et al., 2022; Yu et al., 2023a). The process typically consists of
three phases: 1) Supervised Fine-Tuning (SFT), 2) Reward Modeling, and 3) Policy Optimization.

Supervised Fine-Tuning (SFT) Phase. Preference tuning for VLLMs usually begins by jointly
training a pre-trained language model and a pre-trained vision encoder on a high-quality instruction
dataset (Li et al., 2023b; Dai et al., 2023b), resulting in a SFT model denoted as πSFT.

Reward Modeling Phase. Given text x and visual input v as the prompt, the SFT model πSFT is
used to generate a pair of responses (y1, y2) ∼ πSFT(y|x, v). This pair is then evaluated by humans
or AI, with one response marked as preferred yw and the other as less preferred yl, denoted as
yw ≻ yl|x. This preference is assumed to follow a latent reward model r∗(y, x, v), which is not
directly observable. To model this underlying preference, the Bradley-Terry (BT) model is commonly
employed to define the preference distribution p∗:

p∗(yw ≻ yl|x) =
exp(r∗(x, v, yw))

exp(r∗(x, v, yw)) + exp(r∗(x, v, yl))
. (1)

Given a static dataset of comparisons D = {(x(i), v(i), y
(i)
w , y

(i)
l )}Ni=1 sampled from p∗, we can

parametrize a reward model rϕ(x, v, y) and estimate its parameters using maximum likelihood
estimation. By formulating the estimation of reward model rϕ(x, v, y) as a binary classification
problem, we define the negative log-likelihood loss LR as follows:

LR(rϕ, D) = −E(x,v,yw,yl)∼D[log σ(rϕ(x, v, yw)− rϕ(x, v, yl))], (2)

2
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Figure 1: Comparison of token-level (1a) and sentence-level (1b) reward distributions for hallucinated
and correct objects in the LLaVA 1.5 model. Further comparisons can be found in Appendix A.2.2.

where σ denotes the logistic function, and reward model rϕ(x, v, y) is typically initialized from
SFT model πSFT, with a linear layer added on top of the final transformer block to produce a scalar
output representing the reward prediction (Yu et al., 2023a). Due to the high costs associated with
constructing reward model rϕ, such as annotation and training, some preference tuning methods
employ external models or tools to directly provide rewards (Hessel et al., 2021).

Policy Optimization Phase. The goal of the policy optimization phase is to refine the policy model
πθ using feedback from the reward model rϕ, formulated as:

max
πθ

Ex,v∼D,y∼πθ(y|x,v)[rϕ(x, v, y)]− βDKL[πθ(y|x, v)||πref(y|x, v)], (3)

where β controls the deviation from the reference policy πref which is initialized as πSFT. This
constraint is essential, as it prevents the model from deviating significantly from the original model
πref, maintains generation diversity, and prevents mode collapse to high-reward answers. Due to the
discrete nature of language generation, Eqn. 3 is not differentiable. To solve this issue, the standard
approach (Ziegler et al., 2019; Ouyang et al., 2022) has been proposed to construct a modified reward
function r(x, v, y) = rϕ(x, v, y)− β(log πθ(y|x, v)− log πref(y|x, v)) and then maximize it using
Proximal Policy Optimization (PPO) (Schulman et al., 2017).

Although the above preference tuning pipeline enhances models with impressive capabilities (Rafailov
et al., 2023), it is considerably more complex than supervised learning, incurring significant computa-
tional costs. In light of this, recent alignment methods, such as DPO (Rafailov et al., 2023), have
been proposed to streamline the process by conducting preference tuning directly on human-preferred
responses without the need for a reward model.

3 FISAO

This section first presents empirical findings (Section 3.1), demonstrating that token-level rewards
tend to yield improved alignment in Vision-Language Learning Models (VLLMs) compared to
sentence-level rewards. A theoretical justification for the effectiveness of FiSAO is then provided
in Section 3.2. Following this, Sections 3.3 and 3.4 detail the two-step preference tuning process
employed by FiSAO, consisting of reward modeling and policy optimization. The overall framework
of FiSAO is illustrated in Figure 3, while Table 1 compares FiSAO with other preference tuning
approaches. Unlike other methods, FiSAO eliminates the need for reward model training, additional
data, or high-cost human annotators.

3.1 EMPIRICAL FINDINGS

Hallucinations in VLLMs occur when these models generate content that is not grounded in the input
image (Liu et al., 2024a), such as referencing non-existent objects, often indicating weak alignment
between the visual and linguistic modalities (Liu et al., 2024a). To investigate vision-language
alignment in VLLMs, we examine its relationship to hallucinations. VLLMs commonly extract
features using pretrained vision encoders, such as CLIP (Radford et al., 2021a) and Grounding
DINO (Liu et al., 2023c). These pretrained vision encoders are trained jointly on vision and language
modalities, resulting in a more reliable object recognition (Kuo et al., 2022). Consequently, we
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Figure 2: Correlation between the CLIP-based sentence rewards and conventional evaluation metrics:
CIDEr (2a) and METEOR (2b). A small Pearson correlation coefficient (r) indicates a weak
correlation. More comparison is detailed in Appendix A.2.2.

propose utilizing the vision encoder of the VLLM as a verifier to investigate two distinct types of
reward signals: the sentence-level signal, which is commonly employed in prior research (Hessel
et al., 2021; Zhou et al., 2024b), and the token-level signal, which has remained largely unexplored.

Token-level rewards are obtained by calculating the similarity between the token-level text embeddings
and the image embeddings from the VLLM’s vision encoder. Sentence-level rewards, on the other
hand, are computed based on the similarity between the embedding of the entire sentence and the
image embedding. We conduct two experiments: (1) we plot the distribution of scores across the
sentence-level and token-level signals for both hallucinated and correctly identified objects, and (2)
we examine the relationship between sentence-level rewards and conventional evaluation metrics for
VLLMs, such as CIDEr and METEOR. The scores are obtained by calculating the dot product of
the text and image embeddings derived from the pretrained vision encoder within the VLLM. We
generate captions for 5,000 images randomly sampled from the COCO training dataset and utilize
the widely recognized CHAIR hallucination benchmark (Rohrbach et al., 2018) to identify correctly
identified and hallucinated objects. We present our observations as follows:

Token-level rewards differentiate objects better than sentence-level rewards. Figure 1 presents a
comparison of score distributions for hallucinated and correct objects generated by LLaVA-1.5 using
two types of rewards: token-level and sentence-level. In the token-level reward distribution (Figure
1a), we observe that hallucinated objects are generally associated with lower scores compared to
correct objects. In contrast, in the sentence-level reward distribution (Figure 1b), the two distributions
largely overlap, with both hallucinated and correct objects peaking around the same score range
(60-70). This indicates that, at the sentence level, the reward signal struggles to distinguish between
hallucinated and correct objects.

Sentence-level rewards show a weak correlation with conventional metrics. Figure 2 illustrates
the relationship between CLIP scores and conventional evaluation metrics BLEU and ROUGE for
the generated captions. The scatter plots for BLEU (left) and ROUGE (right) depict the distribution
of data points and their corresponding regression lines. From these figures, it is evident that there is a
very weak correlation between the scores and both BLEU and ROUGE, with correlation coefficients
of r = −0.01 for each. Specifically, a high sentence-level score does not necessarily indicate a
high-quality sentence. This observation suggests that sentences-level rewards may not be reliable
indicators of model performance.

3.2 THEORETICAL FRAMEWORK FOR INCORPORATING FEEDBACK FROM PRE-TRAINED
VISION MODELS INTO VLLM TRAINING

In this section, we present a theoretical framework to demonstrate how integrating feedback from
pre-trained vision models can enhance the performance of Vision-Language Large Models (VLLMs).
We show that under certain assumptions, utilizing vision feedback leads to improved quality of model
outputs compared to relying solely on supervised fine-tuning (SFT).

Problem Setup and Notation. We consider a VLLM that processes inputs consisting of an image
v ∈ Rdv and text t ∈ Rdt , forming the combined input x = (v, t). Although text data is typically
composed of discrete tokens, following prior work (Nakada et al., 2023; Chen et al., 2023), we model
these tokens as continuous random vectors for analytical tractability. The data generative model for
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the image v and text t is defined as:

v = Uvzv + ξv, and t = Utzt + ξt, (4)

where Uv ∈ Odv×r and Ut ∈ Odt×r are orthonormal matrices (U⊤
v Uv = Ir, U⊤

t Ut = Ir) represent-
ing decoders that map latent variables to high-dimensional representations. zv, zt ∈ Rr are latent
(low-dimensional) signals capturing the underlying content. ξv ∈ Rdv and ξt ∈ Rdt are sub-Gaussian
noise vectors with bounded covariance norms.

The ground truth response ytruth ∈ Rdt (e.g., the desired textual output) is generated as:

ytruth = V ∗
1 v + V ∗

2 t+ ϵy, (5)

where V ∗
1 ∈ Rdt×dv and V ∗

2 ∈ Rdt×dt are weight matrices, and ϵy ∈ Rdt is a noise term. Our goal
is to model the conditional distribution πθt(y | x) of the output y given the input x = (v, t). We
assume πθt(y | x) follows a Gaussian distribution:

πθt(y | x) ∝ exp

(
− 1

2σ2
∥y − (V1v + V2t)∥2

)
, (6)

where V1 ∈ Rdt×dv , V2 ∈ Rdt×dt are model parameters, and σ > 0 is the standard deviation.

Assumptions. To facilitate our theoretical analysis, we make several simplifying assumptions:

Linear Transformations: We assume linear relationships between latent variables and observed data
as specified in the generative model.

Orthogonal Projection Matrices: The matrices Uv and Ut are orthonormal, projecting latent variables
zv and zt into high-dimensional spaces.

Sub-Gaussian Noise and Gaussian Likelihood: The noise terms ξv and ξt are sub-Gaussian. The
likelihood for the output y is modeled as Gaussian.

Feedback from Pre-trained Vision Encoders. Building on prior work (Nakada et al.,
2023), with abundant image-text pairs, the learned CLIP embeddings converge to: FI(v) ≈
U⊤
v v, and FT (t) ≈ U⊤

t t. These embeddings represent the projections of v and t onto the
latent space. We define the feedback from pre-trained vision encoders as: RI(y) = ⟨U⊤

v v, U⊤
t y⟩,

which measures the alignment between the image and the generated text in the latent space.

Merged Scores Definition. The supervised fine-tuning (SFT) score is defined as:

Rsft(y) = −∥y − ytruth∥2 = −∥y − (V ∗
1 v + V ∗

2 t)∥2, (7)

quantifying the negative squared error between the model’s output and the ground truth. We introduce
the merged score combining SFT and vision feedback:

R(y) = (1− λ)Rsft(y) + λRI(y), (8)

where λ ∈ [0, 1] balances the contributions of SFT and vision feedback. When λ = 0, only SFT is
used; a positive λ incorporates vision feedback.

Theoretical Result. To evaluate the quality of the generated text y, we consider a target variable
z ∈ R defined as: z = β∗⊤ytruth, with β∗ ∈ Rdt being a fixed vector. The loss function assessing y
is: L(y) = minβ∈Rdt E

[
(z − β⊤y)2

]
, which measures the expected squared error in predicting z

from y. Our main result is encapsulated in the following theorem:
Theorem 3.1. Suppose the optimal distribution π∗

θt
(y | x) lies within the model class {πθ(y | x) :

θ ∈ Θ}. Then, there exists some λ > 0 such that:

Eπθ(λ)(y|x)[L(y)] < Eπθ(0)(y|x)[L(y)], (9)

where πθ(λ)(y | x) is the model trained with the merged score R(y) using parameter λ, and
πθ(0)(y | x) is the model trained using only supervised fine-tuning (λ = 0).

The proof is provided in Appendix A.3.1. This theorem indicates that incorporating feedback from
pre-trained vision encoders (λ > 0) can improve the performance of VLLMs in terms of the loss
L(y), compared to relying solely on supervised fine-tuning.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

𝑣

𝑥

Label:  Hallucination Correct

Vision Encoder

LLM

VLLM

This image features a cat and a dog.Describe this image.

Baseline Reward

Average

Vision Encoder

VLLM

LLM

textual tokens 

visual 
tokens 

‘cat’

Token-level  reward

Reward Calculation
Forward Pass
Backward Pass

Step 1  Reward Modeling 

Step 2 Fine-Grained Preference Policy Optimization

0.32

0.61

6.3

𝑣

Question: Generate a caption… 𝑥

y<tAnswer: This image describes a

Figure 3: The overall framework of FiSAO. We employ two steps to achieve self-alignment from
fine-grained feedback: (1) calculate the fine-grained reward based on the baseline score obtained
from correct and hallucinated tokens. (2) optimize the preference policy using this reward to align
the model’s responses during training.

3.3 REWARD MODELING FOR FISAO

3.3.1 GENERATION FROM THE PERSPECTIVE OF SEQUENTIAL DECISION-MAKING

In this section, we introduce a novel perspective on preference tuning for VLLMs, conceptualizing
it as a decision-making process that takes next-token prediction. As discussed in Section 3.1, it
is more appropriate to utilize token-level feedback from the fine-grained verifier. Therefore, we
consider preference tuning as a decision-making process undertaken by an agent. In this context, after
observing the input text and image, a VLLM policy πθ takes actions by predicting the next token.
Here, we consider a standard finite state Markov decision process (MDP) for VLLMs (Puterman,
2014), represented as a tuple M = (S,A, P, γ,R). In this context, S is the set of states s, representing
the current context or history of generated tokens in the VLLM. The set A denotes the actions a,
which correspond to the possible next tokens that the VLLM can generate. The transition probabilities
P ∈ ∆(S)S×A indicate the probability of transitioning from one state to another given an action.
The discount factor γ ∈ (0, 1] is typically set to 1 in our case, focusing on the undiscounted scenario.
Lastly, R is a bounded reward function R : S ×A× S → R, providing feedback or reward for the
VLLM πθ taking action a in state s and transitioning to a new state.

Given an appropriate reward function in M , the optimal policy π∗
M ∈ Π is the solution to the

optimization problem of maximizing the expected discounted total future reward:

max
π∈Π

Eat∼π

[
T∑

t=0

γtR(st, at, st+1)

]
. (10)

This perspective highlights how fine-grained rewards can be applied to enhance and guide VLLMs,
enhancing the vision-langauge alignment in VLLMs.

3.3.2 ESTIMATION OF BASELINE SCORES FOR GROUND TRUTH AND HALLUCINATED
DISTRIBUTIONS

To fairly evaluate the model’s performance using feedback from the fine-grained verifier, it is crucial
to establish a baseline score. In this section, we estimate the baseline reward for the reward calculation
process. Assume that the model generates a set of responses Y = {y1, y2, . . . , ys} in response to
visual inputs and queries (x1, v1), . . . , (xs, vs) from the training dataset. Object tokens of these
responses can be divided into two subsets: Ygt and Yhal. Here, Ygt represents the object tokens that are
correctly aligned with the corresponding visual input , determined by the ground truth labels, while
Yhal consists of the tokens that are identified as hallucinated or misaligned with the corresponding
visual input. For each correct object set Oi and hallucinated object set Õi in i-th response, we

6
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calculate a score S(·, ·) using the dot product between the features of object token and the visual
input vj , derived from the fine-grained verifier. Finally, the average scores for correct objects µgt and
hallucinated objects µhal are calculated as follows:

µgt =
1∑s

i=1 ||Oi||

s∑
i=1

∑
oj∈Oj

S(oji , v
i), µhal =

1∑s
i=1 ||Õi||

s∑
i=1

∑
oj∈Õi

S(oij , v
i), (11)

where || · || denotes cardinality of a set. Eqn. 11 can help define the boundary used to calculate the
final reward for fine-grained preference policy optimization.

3.3.3 FINE-GRAINED REWARD CALCULATION

In this section, we present the calculation of fine-grained rewards used for preference tuning, aiming
to enhance the alignment between the generated tokens and the visual input v. Formally, let the
model’s response to a query x with visual input v be denoted as {y1, y2, . . . , yT }. To effectively
select tokens suitable for feedback, we focus on common objects present in the dataset. We construct
an entity set C by collecting labels from Detic (Zhou et al., 2022) and COCO (Lin et al., 2015),
then expanding it to include similar words and plural forms. Detailed information is provided in
Appendix A.1.1. To incorporate feedback from the fine-grained verifier, we calculate negative and
positive reward thresholds based on baseline scores of correct and hallucinated responses, as described
in Section 3.3.2. Specifically, we use the average scores µgt and µhal for correct and hallucinated
tokens, respectively, and introduce a margin λ to define thresholds for reward assignment. The
fine-grained reward R = R(st, at, st+1)

T
t=1 for each token is calculated using the following formula:

R(st, at, st+1) =



N (S(yt, v), (µhal − λ))− ξDKL[πref(x, y<t, v)∥πθ(x, y<t, v)],

if yt ∈ C&S(yt, v) < µhal − λ

N (S(yt, v), (µgt + λ))− ξDKL[πref(x, y<t, v)∥πθ(x, y<t, v)],

if yt ∈ C&S(yt, v) > µgt + λ

0, otherwise

(12)

where S(yt, v) is the dot product score between the embedding of token yt and the visual input v
computed by the pre-trained vision encoder. The function N (·, ·) denotes a normalization function
applied to the score based on the threshold. The parameters µgt and µhal represent the average scores
of correct and hallucinated tokens, respectively, and λ is the margin used to create thresholds for
reward assignment. The term ξ is a scaling factor for the Kullback-Leibler (KL) divergence penalty,
and DKL [πref · || · πθ] is the KL divergence between the reference policy πref and the current policy
πθ, promoting consistency with the reference. More details on the calculation and implementation
can be found in Appendix A.1.5.

3.4 FINE-GRAINED PREFERENCE POLICY OPTIMIZATION FOR FISAO

Following (Ouyang et al., 2022; Yu et al., 2023a), our approach employs a clipped-PPO method to
train the model. This method involves cutting the probability ratios to mitigate large updates, ensuring
stable and reliable training. Unlike standard PPO, our approach learns from fine-grained feedback at
the token level for each state. By incorporating fine-grained preference signals, FiSAO ensures better
vision-language alignment in VLLMs. The objective function is defined as:

L(θ) = Eat∼π

[
T∑

t=1

min {rt(θ), clip(rt(θ), 1− ϵ, 1 + ϵ)}R(st, at, st+1)

]
, (13)

where rt(θ) is the probability ratio, Rt is the advantage estimate and ϵ is a hyperparameter that
determines the clipping range, and clip(·) is a clipping function that constrains the value of rt(θ).
The probability ratio rt(θ) is calculated as:

rt(θ) =
πθ(yt|x, y<t, v)

πref(yt|x, y<t, v)
, (14)

where πref and πθ are the policies before and after the update, respectively. We show the detailed
process of FiSAO in Algorithm 1.
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Algorithm 1 FiSAO

Require: Dataset: D = {(xi, vi)}Ni=1; Reference model: πref ; Policy model: πθ; PPO training
epochs e

Ensure: Updated policy model πθ

1: for each (x, v) ∈ D do
2: Generate the response from query and image {y1, y2, . . . , yT } = πθ(x, v)
3: for each state yt in {y0, y1, . . . , yT } do
4: Compute the score R(st, at, st+1) from Eqn. 12
5: for each epoch in e do
6: Calculate probability ratio rt(θ) from Eqn. 14
7: Update πθ using Eqn. 13
8: return πθ

Table 2: The performance of FiSAO across all benchmarks is presented. The best result is bolded.
Comprehensive Benchmark VQA Hallucination Benchmark

Method MMEP ↑ MMEC ↑ SEED ↑ MMB↑ MM-Vet ↑ SQAI ↑ POPE↑ GQA↑ Cap_val↑ CHAIRS ↓ CHAIRI ↓

LLaVA-1.5 1510.7 348.2 58.6 64.3 30.5 66.8 85.9 62.0 56.6 54.3 11.3
+ Vlfeedback 1432.7 321.8 59.3 64.0 31.2 66.2 83.7 63.2 54.8 40.3 13.2
+ Human-Prefer 1490.6 335.0 58.1 63.4 31.1 65.8 81.5 61.3 50.4 38.7 11.3
+ POVID 1452.8 325.3 60.2 64.9 31.8 68.8 86.9 61.7 57.3 35.2 8.3
+ FiSAO 1522.6 349.0 60.6 64.8 30.7 69.3 85.7 62.0 61.2 39.9 9.9

InstructBlip 1237.5 292.1 38.5 36.0 26.0 43.5 84.8 48.0 65.5 60.3 11.9
+ Vlfeedback 1241.3 298.9 40.4 37.7 26.6 44.6 78.5 47.7 64.0 56.5 9.7
+ Human-Prefer 1250.9 304.2 39.3 37.2 26.6 44.1 79.0 47.5 64.8 51.2 10.8
+ POVID 1255.1 301.8 38.3 37.2 26.3 43.4 84.6 48.3 66.5 51.5 10.5
+ FiSAO 1398.0 318.9 38.9 37.4 26.9 46.3 84.7 48.2 66.7 42.2 8.8

4 EXPERIMENT

In this section, we evaluate FiSAO on the modality alignment of Vision-Language Large Models
(VLLMs), showcasing its effectiveness in enhancing models’ performance. Our investigation aims
to answer the following questions: (1) Does FiSAO enhance the visual understanding capabilities
of VLLMs compared to previous approaches? (2) How does the primary component of FiSAO
contribute to performance across different benchmarks? (3) Does our method modify the reward
distribution of objects in the model’s output before and after training?

4.1 EXPERIMENTAL SETUP

Implementation Details. We employ LLaVA-1.5 7B (Liu et al., 2024b) and InstructBLIP (Dai
et al., 2023b) as the backbone models. During the preference tuning process, we adapt Low-Rank
Adaptation (LoRA) (Hu et al., 2021) fine-tuning. We select the first 8k data from the LLaVA-Instruct
150k dataset (Li et al., 2023b). As both InstructBLIP and LLaVA are trained using the LLaVA-Instruct
150k dataset, no additional data is introduced into our model training. Training is conducted over
one epoch, with Proximal Policy Optimization (PPO) being applied for four epochs per sample,
utilizing four A100 80GB GPUs. Fine-tuning LLaVA-1.5 7B takes approximately six hours, while
fine-tuning InstructBLIP 13B requires around ten hours. For more detailed information on training
hyperparameters and training data, please refer to Appendix A.1.5.

Evaluation Benchmarks. We conduct evaluations on three types of benchmarks: comprehensive
benchmarks, general VQA benchmarks and COCO benchmarks. Specifically, these include: (1)
Comprehensive benchmarks (MME (Fu et al., 2024a), SEEDbench (Li et al., 2023a), MMbench (Liu
et al., 2024c), MM-Vet (Yu et al., 2023b)); (2)VQA (ScienceQA (SQA) (Lu et al., 2022), POPE (Li
et al., 2023e), GQA (Hudson & Manning, 2019)); (3) Caption benchmark (Bo Li* & Liu, 2024)
(Average score of BLEU, ROUGE-L and CIDER), CHAIR (Rohrbach et al., 2019) ). The detailed
information is in Appendix A.1.3.

Baselines. We compare FiSAO with previous preference tuning approaches, including Silkie
(VLFeedback)(Li et al., 2023d), which uses preference distillation via DPO on a multi-modal dataset
from 12 LVLMs; LLaVA-RLHF (Human-preference)(Sun et al., 2023), which integrates RLHF to
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Table 3: Comparison of FiSAO and other open-sourced state-of-the-art VLLMs.
Method MMEP ↑ MMEC↑ SEED ↑ MMB↑ MM-Vet↑ SQAI ↑ GQA ↑
BLIP-2 1293.8 290.0 46.4 38.1 22.4 61.0 41.0
Qwen-VL-Chat 1487.6 360.7 58.2 60.6 47.3 68.2 57.5
mPLUG-Owl2 1450.2 313.2 57.8 64.5 36.2 68.7 56.1

LLaVA-1.5 1510.7 348.2 58.6 64.3 30.5 66.8 62.0
FiSAO (LLaVA-1.5) 1522.6 349.0 60.6 64.8 30.7 69.3 62.0
InstructBlip 1237.5 292.1 38.5 36.0 26.0 43.5 48.0
FiSAO (InstructBlip) 1398.0 318.9 38.9 37.4 26.9 46.3 48.2

align visual faithfulness with human expectations; and POVID (Zhou et al., 2024a), which generates
non-preferred responses to optimize VLLMs through DPO (Rafailov et al., 2023). Furthermore, we
compare FiSAO with other state-of-the-art open-source VLLMs, including BLIP-2 (Li et al., 2023c),
InstructBLIP (Dai et al., 2023a), Qwen-VL-Chat (Bai et al., 2023), mPLUG-Owl2 (Ye et al., 2023b).
More details can be seen in Appendix A.1.4.

4.2 EXPERIMENTAL RESULTS ON BENCKMARKS (RQ1)

Comparison with Other Preference Tuning Approaches. As shown in Table 2, our method
demonstrates clear advantages over other preference tuning approaches, which often require training
reward models or incur high data costs. The superiority of FiSAO lies in its use of fine-grained
verifier, which more effectively captures the intrinsic preferences of VLLMs and achieves stronger
modality alignment between the pre-trained vison models and LLMs. Additionally, on the LLaVA
backbone, FiSAO surpasses existing approaches, delivering an average performance improvement of
8.7%. This underscores FiSAO’s effectiveness in leveraging fine-grained token-level rewards to align
visual and textual modalities seamlessly.

Comparison with Other Open-Sourced VLLMs. Table 3 compares FiSAO with other state-of-the-
art VLLMs. Our method, implemented on the LLaVA-1.5 architecture, achieves competitive results
across multiple benchmarks, demonstrating its effectiveness in various tasks such as vision question
answering and image captioning. This highlights FiSAO’s capability in integrating fine-grained
token-level rewards to enhance modality alignment in VLLMs.

4.3 ANALYSIS (RQ2&RQ3)

Ablation Study. Table 4 summarizes the results of the ablation study conducted on FiSAO. Each row
represents a different configuration: the presence (✓) or absence (×) of fine-grained rewards and PPO
training. When fine-grained rewards are not used regardless of PPO training, performance metrics
are notably lower across all benchmarks compared to configurations where fine-grained rewards are
employed. Introducing PPO training alone shows an improvement, but the most significant gains are
observed when both fine-grained rewards and PPO training are utilized. This combination achieves
the highest scores, demonstrating the effectiveness of integrating both strategies in enhancing model
performance and alignment across various evaluation tasks. These findings underscore the importance
of fine-grained token-level rewards in optimizing VLLMs such as FiSAO for multimodal tasks.

How does Reward Margin Effect Model’s Performance? We present how different reward
margins impact the model’s performance across various benchmarks in Table 5. The table highlights
how varying the reward margin λ affects the performance of LLaVA-1.5 + FiSAO across multiple
benchmarks. The results indicate notable variations in performance metrics based on the choice of
reward margin. Specifically, when the margin is either too small or too large, a decline is observed in
metrics such as CHAIRI, suggesting diminishing returns with extreme reward margins. Although
overall performance remains relatively stable, these findings underscore the importance of optimizing
the reward margin to balance precision and generalization in FiSAO for enhancing the performance
of VLLMs.

How does FiSAO Alter the Reward Distribution of Objects in the Model’s Output
before and after Training? To better demonstrate how our method enhances vision-
language alignment and ensures the generation of high-scoring objects, we visualize the re-
ward distribution of generated objects on the CHAIR benchmark, as depicted in Figure 4.
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Table 4: Ablation study results. Each row illustrates a different configuration, indicating the presence
(✓) or absence (×) of fine-grained rewards and PPO training. The best results in each column are
highlighted in bold.

Comprehensive Benchmark VQA Hallucination Benchmark

Fine-grained PPO MMEP ↑ MMEC ↑ SEED ↑ MMB ↑ MM-Vet ↑ SQAI ↑ POPE ↑ GQA ↑ Cap_val ↑ CHAIRS ↓ CHAIRI ↓
× × 1431.9 340.0 59.6 64.0 30.6 67.7 85.7 61.4 54.5 54.0 11.0
× ✓ 1509.3 350.4 59.5 64.1 30.5 67.5 85.9 60.9 56.6 55.3 11.4
✓ ✓ 1522.6 349.0 60.6 64.8 30.7 69.3 85.7 62.0 61.2 39.9 9.9

Table 5: Performance of FiSAO with varying margins. The best results in each column are highlighted
in bold.

Comprehensive Benchmark VQA Hallucination Benchmark

λ MMEP ↑ MMEC ↑ SEED ↑ MMB ↑ MM-Vet ↑ SQAI ↑ POPE ↑ GQA ↑ Cap_val ↑ CHAIRS ↓ CHAIRI ↓
5 1509.3 350.4 60.4 64.1 30.6 67.5 84.4 61.7 57.1 53.3 10.8

10 1522.6 349.0 60.6 64.8 30.7 69.3 85.7 62.0 61.2 39.9 9.9
20 1501.4 348.6 59.2 64.5 31.0 67.9 85.1 61.6 59.7 56.5 13.6

Figure 4: Comparison of reward distributions for
generated objects on LLaVA-1.5 before and after
Training.

Before training, VLLMs tend to generate ob-
jects with lower scores, indicating that the out-
puts are not well-aligned with the preferences
encoded by the visual encoder. After applying
our method, the reward distribution shifts to the
right, signifying that the model generates ob-
jects with consistently higher rewards. This shift
demonstrates improved alignment between the
visual and language components of the model,
as well as an enhanced ability to produce out-
puts that better match the encoded preferences.
By presenting this change, we aim to highlight
the effectiveness of fine-grained feedback in im-
proving both vision-language alignment and the
overall performance of VLLMs.

Case Study on Sentence-Level Reward and
Token-Level Reward. In this section, we con-
duct a case study where two sentences from an image are selected for evaluation using both token-level
and sentence-level scoring. From Figure 5, we can observe that the sentence-level score is not sensi-
tive to hallucinatory sentences, as it assigns similar scores to both sentences. In contrast, token-level
scoring more effectively identifies hallucinatory objects.

Figure 5: Case study on sentence-level reward and token-level reward.

5 CONCLUSION
In this study, we addressed the alignment issues prevalent in Vision-Language Large Models (VLLMs)
by investigating the integration of pre-trained vision encoders with large language models. Through
comprehensive analysis, we introduced a novel self-training method using fine-grained Proximal
Policy Optimization (PPO) that does not rely on additional data. This method leverages the model’s
visual encoder as a reward model to enhance alignment at the token level, demonstrating superior
performance compared to existing preference tuning approaches.
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A APPENDIX

A.1 EXPERIMENTAL SETTINGS

A.1.1 DETAILS OF ENTITY SET

First, we construct an entity set using the labels from Detic (Zhou et al., 2022) and COCO (Lin et al.,
2015). We present the case of these datasets’ labels in Table 6 Then, we expand the original set to C
by including similar words and plural forms using the inflect library and the wordnet module
from the nltk library. The expanded set C contains 5678 words compared to the original set, which
contains 1204 words. The inflect library is used to generate plural and singular forms of the
original labels, while the wordnet module from nltk is employed to find synonyms. This method
allows us to create a comprehensive entity set by considering various linguistic forms, thus enhancing
the robustness of our dataset.

A.1.2 OVERVIEW OF THE BACKBONE MODELS

LLaVA-1.5 is a multimodal model designed for general-purpose visual and language understanding.
It integrates a vision encoder with the Vicuna language model, making it capable of processing images
and generating text-based responses. The model is an open-source chatbot that has been fine-tuned on
multimodal instruction-following data generated by GPT. It is built upon the transformer architecture,
specifically leveraging the LLaMA/Vicuna foundation models.

InstructBLIP is a sophisticated vision-language model designed to follow detailed instructions. It is
built upon the BLIP-2 architecture, incorporating a vision encoder, a language model, and a Query
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Original Word Expanded Words
apple apples

handbag bag, handbags, pocketbook, purse
suitcase grip, suitcases

bagel bagels
boat boats, sauceboat, boat
bob dock, cork, bobs

bread breads, lucre, lolly, staff of life
cat purge, chuck, cats

chair moderate, chairs, chairperson, lead, chairman
duck ducks, duck, dip, douse
jar jars, clash, shock

person someone, person, individual, somebody, people, soul
shirt shirts
taco tacos, greaser, wetback, taco

wheel cycle, wheels, roll

Table 6: Cases of original Words and their expanded forms.

Transformer (Q-Former) that bridges the two components. The Q-Former module is specifically
enhanced to handle instruction text tokens, allowing it to extract task-relevant features from images
effectively.

A.1.3 DETAILS OF EVALUATION BENCHMARK

• MME (Fu et al., 2024a) is a comprehensive benchmark for evaluating the performance of LVLMs in
multimodal tasks. It measures models’ capabilities across two key areas: perception and cognition,
using 14 specially designed subtasks that test interpretative and analytical skills.

• SEED-Bench (Li et al., 2023a) focuses on evaluating the generative comprehension abilities of
LVLMs. It includes a dataset of 19K multiple-choice questions with detailed human annotations,
spanning 12 evaluation dimensions that cover both spatial and temporal understanding in image
and video modalities.

• MMBench (Liu et al., 2024c) employs a dual approach: it provides an extensive dataset that
broadens the range and variety of evaluation questions, and introduces the innovative CircularEval
strategy, which uses ChatGPT to convert free-form predictions into structured choices.

• MM-Vet (Yu et al., 2023b) is a benchmark created to evaluate the diverse competencies of LVLMs.
It organizes complex multimodal tasks into 16 unique integrations based on six core vision-language
capabilities, offering a detailed analysis of model performance across various question types and
answer styles.

• ScienceQA (Lu et al., 2022) is a multimodal benchmark aimed at assessing and diagnosing AI
systems’ multi-hop reasoning and interpretability in the science domain. It includes a dataset
of around 21K multiple-choice questions across various scientific topics, complete with detailed
answer annotations, related lectures, and explanations.

• GQA (Hudson & Manning, 2019) is a dataset designed for advanced visual reasoning in real-
world scenarios, using scene graph-based structures to generate 22 million diverse, semantically-
programmed questions. It features a novel set of evaluation metrics focused on consistency,
grounding, and plausibility, setting a high standard for vision-language task assessment.

• POPE (Li et al., 2023e) is an evaluation method for examining object hallucination in LVLMs.
It transforms the evaluation into a binary classification task, asking LVLMs simple Yes-or-No
questions to identify hallucinated objects. POPE employs various object sampling strategies to
reveal model tendencies towards hallucination.

• The COCO-caption benchmark assesses image captioning models using BLEU, ROUGE, and
CIDEr scores, providing a comprehensive measure of caption quality. We calculate the average
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of these scores and multiply by 100 to obtain the final score. This benchmark utilizes the COCO
dataset, emphasizing the accuracy and relevance of generated captions. Detailed evaluation
methodology and task specifics can be found in the lmms_eval repository, specifically under the
tasks/coco2017_cap_val directory.1

• CHAIR (Rohrbach et al., 2019) is a well-known tool for evaluating object hallucination in image
captioning tasks. It includes two variants: CHAIRI and CHAIRS, which assess object hallucination
at the instance and sentence levels, respectively. Specifically, we randomly sampled 500 images
from the COCO (Lin et al., 2015) validation set and evaluated object hallucination using the CHAIR
metric.

A.1.4 DETAILS OF BASELINES

• Silkie (Vlfeed- back) (Li et al., 2023d) focuses on improving large vision language models
(LVLMs) by using preference distillation. The authors created a vision-language feedback
(VLFeedback) dataset, consisting of multi-modal instructions and responses generated by
12 different LVLMs. The model pool includes prominent models like GPT-4V and LLaVA-
series. By applying direct preference optimization (DPO) on this dataset, they developed the
Silkie model, which shows significant improvements in perception and cognition capabilities.

• LLaVA-RLHF (Human-preference) (Sun et al., 2023) explores the integration of reinforce-
ment learning with human feedback (RLHF) to enhance vision-language models. The
LLaVA series, built on Vicuna models and fine-tuned with GPT-4 generated multi-modal
data, is further improved by aligning visual faithfulness and human preferences. This
approach aims to ensure that the generated responses are more aligned with human expec-
tations and the visual content they describe, providing a more reliable and contextually
accurate output

• POVID (Zhou et al., 2024a) is a framework for generating non-preferred responses in
Vision-Language Large Models (VLLMs) aimed at preference optimization. The framework
employs two strategies: hallucination text responses and noisy image responses at token
and instance levels. This approach helps in understanding and optimizing VLLMs by inten-
tionally producing outputs that are less preferred, thus identifying areas for improvement in
model performance and user interaction.

A.1.5 HYPERPARAMETER DETAILS

In this section, we show the detailed information on training hyperparameters and training data in
Table 7. Specifically, for the normalized function N (·, ·), we calculate the score for correct objects
as S(yt,v)−(µgt+λ)

Smax−(µgt+λ) , and for hallucinated objects as S(yt,v)−(µhal−λ)
(µgt−λ)−Smin

. Smin and Smax represent the
minimum and maximum possible scores, respectively. In this way, we constrain the reward within
the range of −1 to 1.

A.2 ADDITIONAL ANALYSIS

A.2.1 DETAILED ANALYSIS ON COCO-CAPTION BENCHMARK

Table 8 provides a comprehensive comparison of various methods evaluated on COCO-caption
benchmark. Our method, denoted as FiSAO, demonstrates significant improvements across multiple
metrics, highlighting its efficacy in enhancing caption generation quality. On the LLaVA backbone,
FiSAOconsistently outperforms the baseline and other preference-tuning methods across all BLEU
metrics, as well as METEOR, ROUGE L, and CIDEr scores. These results underscore the robustness
of FiSAOin capturing nuanced textual and visual features, achieving superior alignment and coherence
in the generated captions. Similarly, for the InstructBLIP backbone, FiSAOmaintains a competitive

1https://github.com/EvolvingLMMs-Lab/lmms-eval/tree/main/lmms_eval/
tasks
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Backbone Model LLaVA-1.5 InstructBLIP
Parameter 7B 13B
Reward Model CLIP-ViT-L-334 CLIP-ViT-L
Dataset LLaVA-Instruct LLaVA-Instruct
Fine-Tuning Method LoRA LoRA
Number of Epochs 1 1
PPO Training Epochs 4 4
GPUs Used 4 A100 80GB GPUs 4 A100 80GB GPUs
Training Time ~6 hours ~10 hours
LoRA r 128 128
LoRA Alpha 256 256
Learning Rate 5e-7 4e-6
LoRA Parameter all linear all linear
ξ 0.2 0.2
λ 10 10

Table 7: Training parameters for LLaVA-1.5 7B and InstructBLIP 13B models.

edge, achieving high scores across the evaluation metrics and outperforming other preference-tuning
approaches. The improvements observed with FiSAOhighlight its effectiveness in leveraging fine-
grained token-level rewards to enhance the alignment between visual and textual modalities.

Table 8: Evaluation results on COCO-caption benchmark.

Method Bleu 1 Bleu 2 Bleu 3 Bleu 4 METEOR ROUGE L CIDEr
LLaVA 0.7312 0.5641 0.4150 0.2976 0.2929 0.5559 1.1038
+ Vlfeedback 0.7149 0.5487 0.3734 0.2788 0.2835 0.5398 1.0969
+ Human-Prefer 0.6741 0.5047 0.3613 0.2519 0.2864 0.5329 0.9142
+ POVID 0.7360 0.5680 0.4197 0.3030 0.2954 0.5601 1.1305
+ FiSAO 0.7925 0.6259 0.4681 0.3407 0.2811 0.5774 1.1970
InstructBLIP 0.8220 0.6682 0.5199 0.3973 0.2982 0.5984 1.3498
+ Vlfeedback 0.7919 0.6346 0.4886 0.3689 0.3000 0.5874 1.3055
+ Human-Prefer 0.8034 0.6431 0.5068 0.3759 0.3104 0.6012 1.2902
+ POVID 0.8204 0.6671 0.5198 0.3977 0.3009 0.6002 1.3619
+ FiSAO 0.8239 0.6707 0.5231 0.4008 0.2985 0.5994 1.3526

A.2.2 ADDITIONAL ANALYSIS ON SENTENCE-LEVEL REWARD

We present the sentence-level rewards of the generated captions on InstructBLIP in Figure 6. We can
observe the low distinction between correct and hallucinated captions. We also show comparison of
Fine-Grained and sentence-level reward distribution in Figure 7 and Figure 8, where the sentence-level
reward shows no explicit correlation with traditional evaluation scores. This comparison highlights
that the Fine-Grained reward distribution tends to be more useful, offering a detailed view of the
model’s performance. These analyses further demonstrate that using Fine-Grained rewards is more
effective than sentence-level rewards.

We also calculate the average sum of token-level rewards in a sentence and explore its relationship
with conventional evaluation metrics in Figure 12. We observe that, compared to sentence-level
rewards, token-level rewards exhibit strong correlation with conventional evaluation metrics.

A.2.3 ADDITIONAL ANALYSIS ON REWARD DISTRIBUTION OF OBJECTS

To further illustrate how our method enhances the alignment between visual encoders and VLLMs,
we present the reward distribution of hallucinated objects in Figure Figure 10. The figure shows that,
before training, the reward distribution for hallucinated objects in both LLaVA and InstructBLIP is
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Figure 6: Comparison of fine-grained and sentence-level reward distributions in InstructBLIP.
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Figure 7: Correlation between sentence reward and conventional evaluation metrics on InstructBLIP.
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Figure 8: Correlation between sentence reward and conventional evaluation metrics on LLaVA
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Figure 9: Correlation between average sum of token-level rewards and conventional evaluation
metrics on LLaVA.
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Method MMEP ↑ MMEC ↑ SEED ↑ Cap_val ↑ CHAIRS ↓ CHAIRI ↓ SciQA ↑

LLaVA-1.5 1510.7 348.2 58.6 56.6 54.3 11.3 66.8
+ Vlfeedback 1432.7 321.8 59.3 54.8 40.3 13.2 66.2
+ Human-Prefer 1490.6 335.0 58.1 50.4 38.7 11.3 65.8
+ POVID 1452.8 325.3 60.2 57.3 35.2 8.3 68.8
+ FiSAO (Dino) 1542.6 351.1 60.3 61.5 37.4 9.3 68.7

Table 9: The performance of FiSAO across benchmarks. The best result is bolded.

more scattered and less aligned with the visual encoder’s preferences. After applying our method, the
reward distribution shifts to the right, indicating improved alignment and consistency with the visual
encoder. This shift demonstrates that the model’s rewards now more accurately reflect the visual
encoder’s evaluations, thereby enhancing the overall performance of vision-language alignment.

(a) LLaVA (b) InstructBLIP

Figure 10: Reward distribution comparison before and after training.

A.2.4 CASE STUDIES

In this section, we present detailed case studies comparing the outputs of our model with LLaVA 1.5.
The case studies highlight the strengths of FiSAOin generating detailed image descriptions. As shown
in Figure 11, FiSAOfocuses on providing a comprehensive overview, including contextual details
such as the environment and the placement of objects (e.g., handbag, table settings). This approach
ensures that the description covers all relevant aspects of the scene. LLaVA 1.5 includes specific
interactions and objects that enhance the vividness of the scene. However, it sometimes generates
objects that are not actually present in the images.

A.2.5 ADDITIONAL EXPERIMENTS USING DIFFERENT VISION ENCODERS AS FINE-GRAINED

VERIFIERS.

To explore the potential for adapting our approach to MLLMs with multiple visual encoders, such as
SigLip and DINO-v2. we conduct two experiments:

• a. Using DINO-v2 as the reward model. We adopt DINO-v2 as the reward model to
provide fine-grained feedback for training LLaVA. The results are presented in Table 9.
The results demonstrate that using DINO-v2 as the reward model achieves consistent
improvements across benchmarks, validating its effectiveness in providing fine-grained
feedback for training LLaVA.

• b. Visualizing SigLip’s differentiation capabilities. We visualize the distributions of
hallucinated and correct tokens using SigLip scores, as shown in Figure 12.
Our observations show that SigLip demonstrates a significant differentiation between hal-
lucinated and correct tokens compared to CLIP. This finding highlights that our approach
is potentially highly adaptable when applied to MLLMs that incorporate multiple visual
encoders, opening avenues for future exploration.
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The image features a group of people standing near a 

large elephant. There are at least five people in the scene, 

with some standing closer to the elephant and others 

further away. The elephant is positioned towards the 

right side of the image, taking up a significant portion of 

the frame.

In addition to the people and the elephant, there is a 

handbag located near the left side of the image, possibly 

belonging to one of the people in the group. The scene 

appears to be set in a dirt area, which is a common 

environment for elephants. 

The image features a group of people standing near a large 

elephant in a dirt area. The elephant is positioned in the 

center of the scene, with its trunk extended towards the 

people. There are at least five people in the scene, with 

some standing closer to the elephant and others further away.

The people are interacting with the elephant, with one 

person feeding it a carrot. The carrot is visible in the 

elephant's mouth, and the person is holding it in their hand. 

The other people are observing the interaction, likely 

enjoying the unique experience of being so close to such a 

majestic creature.

Ours LLaVA 1.5Prompt: Describe this image in detail.

The image features a delicious pizza with a variety of 

toppings, including olives, cheese, and spinach, placed 

on a dining table. The pizza is cut into slices and is 

ready to be eaten. The table is set with a fork and a 

knife, indicating that the pizza is meant to be enjoyed 

with utensils.

In addition to the pizza, there are two cups on the table, 

one near the top left corner and the other near the top 

right corner. A bowl is also present on the table, 

located towards the top right corner. The dining table 

occupies most of the image, with the pizza taking up a 

significant portion of the table's surface.

Prompt: Describe this image in detail.

The image features a delicious pizza sitting on a dining 

table. The pizza is topped with a variety of ingredients, 

including cheese, olives, and spinach. There are several 

olives scattered across the pizza, with some located near 

the center and others towards the edges. The spinach is 

also evenly distributed across the pizza, adding a vibrant 

green color to the dish.

In addition to the pizza, there are two cups on the table, 

one near the top left corner and the other near the top right 

corner. A fork is also present on the table, positioned 

towards the right side. The table occupies most of the 

image, with the pizza being the main focus.

Figure 11: Case studies on LLaVA 1.5.

30 20 10 0
Score

D
en

si
ty

Hallucinated Objects
Correct Objects

Figure 12: Correlation between the average sum of token-level rewards and conventional evaluation
metrics.
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A.2.6 ANALYSIS OF THE EXPANDED SET C AND ITS IMPACT ON PERFORMANCE

In this section, we analyze the impact of expanding the object set C on the performance of our
approach. The results, presented in Table 12, demonstrate that expanding C leads to noticeable
improvements in the performance of LVLMs across multiple benchmarks.

The expanded set C provides a more comprehensive set of object labels from Open Image2 and
Objects3653, allowing the model to robustly identify and align object tokens. This enhancement
improves the contextual understanding of the generated descriptions, contributing to better overall
performance.

However, as shown in Table 12, we further expand C by adding additional object labels from, which
results in only marginal performance gains. This observation suggests that the original set C already
covers a sufficiently comprehensive range of common objects.

A.2.7 COMPUTATIONAL OVERHEAD: TOKEN-LEVEL VS. SENTENCE-LEVEL REWARDS

To analyze the computational trade-offs between token-level and sentence-level rewards, we con-
ducted experiments comparing their efficiency. The results are presented in Table 10.

Metric Token-Level Sentence-Level
Total Samples 5000 5000
Current Speed (s/sample) 0.1883 0.1631

Table 10: Comparison of computational overhead for token-level and sentence-level rewards.

The results indicate that token-level rewards introduce only a minor increase in computational
overhead compared to sentence-level rewards. To further explore the overall efficiency, we measured
the total runtime across different methods, as shown in Table 11.

Method Time per Sample (seconds) Throughput (samples/second)
Inference Only 2.63 0.38
Ours (w/o Inference) 1.17 0.85
Ours (w Inference) 3.80 0.26
POVID 2.15 0.47
VLFeedback 2.34 0.43

Table 11: Total runtime comparison across different methods.

Excluding inference time, our approach demonstrates higher efficiency with faster reward computation
compared to other methods. When considering overall runtime (including inference), the efficiency of
our method remains comparable to existing approaches such as POVID and VLFeedback. Importantly,
the use of token-level rewards enables more fine-grained performance improvements, highlighting
the practical benefits of our approach while maintaining computational feasibility.

Method MMEP MMEC SEED MMB MM-Vet SQAI POPE GQA Cap_val CHAIRS CHAIRI

Before expansion of C 1515.3 348.7 59.1 64.2 30.5 68.2 85.9 61.9 58.2 47.7 11.8
Original C 1522.6 349.0 60.6 64.8 30.7 69.3 85.7 62.0 61.2 39.9 9.9
After expansion of C 1536.1 351.1 60.9 64.7 30.6 69.8 85.8 62.1 61.0 41.1 10.2

Table 12: Performance comparison before and after the expansion of C.

2https://storage.googleapis.com/openimages/web/index.html
3https://www.objects365.org/overview.html
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A.3 WHY DOES FEEDBACK FROM PRETRAINED VISION ENCODERS CONTRIBUTE TO THE

MODEL’S PERFORMANCE - THEORETICAL ANALYSIS

A.3.1 PROOF OF THEOREM 3.1

We begin by considering the distribution of the generated response yp given by π∗
θt
(y | x). Since

yp = argmaxy R(y), this distribution is a point mass. The global minimizer will converge to
π∗
θt
(y | x).

By our method, we have

yp = argmax
y

[
(1− λ)

(
−∥y − (V ∗

1 v + V ∗
2 t)∥2

)
+ λ⟨U⊤

v v, U⊤
t y⟩

]
.

Simplifying, we rewrite the optimization problem as

yp = argmin
y

[
∥y − (V ∗

1 v + V ∗
2 t)∥2 − γ⟨U⊤

v v, U⊤
t y⟩

]
,

where γ = λ
1−λ . Taking the derivative with respect to y and setting it to zero yields

2 (y − (V ∗
1 v + V ∗

2 t))− γUtU
⊤
v v = 0.

Solving for yp, we obtain
yp = (V ∗

1 v + V ∗
2 t) +

γ

2
UtU

⊤
v v.

This shows that integrating vision feedback effectively increases the weight on the visual input.

Next, we consider the loss function

L(y) = min
β∈Rdt

E
[(
z − β⊤y

)2]
, (15)

where z = β∗⊤ytruth and ytruth = V ∗
1 v + V ∗

2 t+ ϵy .

Substituting the expressions for yp and ytruth, we have

L(yp) = min
β

E
[(
β∗⊤ytruth − β⊤yp

)2]
. (16)

Expanding, we get

L(yp) = min
β

E
[(

(β∗⊤ − β⊤)(V ∗
1 v + V ∗

2 t)− β⊤
(γ
2
UtU

⊤
v v
)
+ β∗⊤ϵy

)2]
. (17)

We introduce an assumption that ϵy contains a component that can be estimated via vision feedback.
Suppose

ϵy = κUtU
⊤
v v + ϵ̃, (18)

where ϵ̃ is noise independent of v, and κ is a scalar.

Therefore,
ytruth = V ∗

1 v + V ∗
2 t+ κUtU

⊤
v v + ϵ̃. (19)

Now, since
y(λ)p = V ∗

1 v + V ∗
2 t+

γ

2
UtU

⊤
v v, (20)

the vision feedback term helps to estimate part of ϵy .
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We define the mean squared error:

MSEλ = E
[∥∥∥y(λ)p − ytruth

∥∥∥2] . (21)

Substituting,

MSEλ = E
[∥∥∥(γ

2
− κ
)
UtU

⊤
v v − ϵ̃

∥∥∥2] . (22)

For λ = 0,
MSE0 = E

[∥∥−κUtU
⊤
v v − ϵ̃

∥∥2] . (23)

The difference is

∆MSE = MSEλ − MSE0 =

[(γ
2
− κ
)2

− κ2

]
E
[∥∥UtU

⊤
v v
∥∥2] . (24)

Setting γ = 2κ (which implies λ = 2κ
2κ+1 > 0), we have

∆MSE = −κ2E
[∥∥UtU

⊤
v v
∥∥2] < 0. (25)

Thus, there exists λ > 0 such that

Eπθ(λ)(y|x)[L(y)] < Eπθ(0)(y|x)[L(y)]. (26)

This proves the theorem.

By selecting a suitable λ > 0, we have demonstrated that integrating vision feedback can reduce the
expected loss. Therefore, incorporating vision feedback helps the model to predict the output more
accurately, which proves Theorem 3.1.

A.3.2 THEORETICAL FRAMEWORK FOR INCORPORATING PRE-TRAINED VISION MODELS’
FEEDBACK INTO MODEL TRAINING

In this section, we present a theoretical framework demonstrating how integrating fine-grained
feedback from pre-trained vision models can enhance the performance of VLLMs.

To assess the quality of the text output y, following the seeting in Section 3.2, we approach it as a
regression problem where there is an associated outcome z linked to the ground-truth text output
ytruth: z = β∗⊤ytruth, with β∗ ∈ Rdt . The quality of y is evaluated using the loss function

L(y) = min
β∈Rdt

E[(z − β⊤y)2].

Note that in this context, a lower value of L(y) indicates better quality of the text output y. We define
two specific types of expected loss:

• The coarse-grained expected loss:

Lcoarse = L(ycoarse
p ) = E

[(
z − β∗⊤ycoarse

p

)2]
,

where ycoarse
p is the coarse-grained prediction.

• The fine-grained loss:

Lfine = L(yfine
p ) = E

[(
z − β∗⊤yfine

p

)2]
,

where yfine
p is the fine-grained prediction.

Based on the definitions and loss formulations above, we establish the following theorem.
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Theorem A.1. Fine-grained feedback enables more precise and accurate adjustments to y than
coarse-grained feedback. Consequently, the expected loss associated with fine-grained feedback
is strictly lower than that of coarse-grained feedback, leading to a positive difference in expected
losses:

∆L = Lcoarse − Lfine > 0.

Proof

We aim to prove that ∆L = Lcoarse − Lfine > 0.

1. Setup and Notation

- True Output:
ytruth = V ∗

1 v + V ∗
2 t+ ϵy,

where ϵy is a zero-mean noise term with covariance Σϵ.

- Model Predicted Outputs: - Coarse-Grained Prediction:

ycoarse
p = V ∗

1 v + V ∗
2 t+

γcoarse

2
UtU

⊤
v v.

- Fine-Grained Prediction:

yfine
p = V ∗

1 v + V ∗
2 t+

γfine

2

n∑
i=1

ut,i

(
u⊤
v,iv
)
,

where n is the number of components for which fine-grained feedback is provided,

- Loss Function: For a prediction yp, the loss function is defined as:

L(yp) = E
[(
z − β∗⊤yp

)2]
,

where z = β∗⊤ytruth and β∗ is the optimal coefficient vector.

Our goal is to compute ∆L = Lcoarse − Lfine and prove that ∆L > 0.

2. Expressing the Losses

(a) Coarse-Grained Expected Loss

Compute the error:

z − β∗⊤ycoarse
p = β∗⊤ytruth − β∗⊤ycoarse

p = β∗⊤ (ϵy − δcoarse) ,

where:
δcoarse =

γcoarse

2
UtU

⊤
v v.

Therefore, the coarse-grained loss is:

Lcoarse = E
[(
β∗⊤ (ϵy − δcoarse)

)2]
.

(b) Fine-Grained Expected Loss

Similarly, compute the error:

z − β∗⊤yfine
p = β∗⊤ytruth − β∗⊤yfine

p = β∗⊤ (ϵy − δfine) ,

where:

δfine =
γfine

2

n∑
i=1

ut,i

(
u⊤
v,iv
)
.
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Therefore, the fine-grained loss is:

Lfine = E
[(
β∗⊤ (ϵy − δfine)

)2]
.

3. Computing the Loss Difference ∆L

∆L = Lcoarse − Lfine = E
[(
β∗⊤ (ϵy − δcoarse)

)2]− E
[(
β∗⊤ (ϵy − δfine)

)2]
.

Expanding the squared terms:

∆L =
(
E
[(
β∗⊤ϵy

)2]− 2E
[
β∗⊤ϵy · β∗⊤δcoarse

]
+ E

[(
β∗⊤δcoarse

)2])
−
(
E
[(
β∗⊤ϵy

)2]− 2E
[
β∗⊤ϵy · β∗⊤δfine

]
+ E

[(
β∗⊤δfine

)2])
.

Simplifying:

∆L =
(
E
[(
β∗⊤δcoarse

)2]− E
[(
β∗⊤δfine

)2])− 2E
[
β∗⊤ϵy · β∗⊤ (δcoarse − δfine)

]
.

Since ϵy has zero mean and is independent of v and t, the cross term vanishes:

E
[
β∗⊤ϵy · β∗⊤ (δcoarse − δfine)

]
= 0.

Therefore,
∆L = E

[(
β∗⊤δcoarse

)2]− E
[(
β∗⊤δfine

)2]
.

4. Computing E
[(
β∗⊤δ

)2]
Compute β∗⊤δcoarse:

β∗⊤δcoarse =
γcoarse

2
β∗⊤UtU

⊤
v v =

γcoarse

2

r∑
i=1

(
β∗⊤ut,i

) (
u⊤
v,iv
)
.

Compute β∗⊤δfine:

β∗⊤δfine =
γfine

2

n∑
i=1

(
β∗⊤ut,i

) (
u⊤
v,iv
)
.

Let
ai =

(
β∗⊤ut,i

) (
u⊤
v,iv
)
.

Assuming γcoarse = γfine = γ, we have:

β∗⊤δcoarse =
γ

2

r∑
i=1

ai, β∗⊤δfine =
γ

2

n∑
i=1

ai.

Compute the Variances:

Assuming v is a zero-mean random vector with covariance Σv , and uv,i are orthonormal vectors, we
have:

E [ai] = 0, Var [ai] =
(
β∗⊤ut,i

)2 · Var
(
u⊤
v,iv
)
.

Assuming Var
(
u⊤
v,iv
)
= σ2

v (a constant), we get:

Var [ai] = σ2
v

(
β∗⊤ut,i

)2
.
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Therefore,

E
[(
β∗⊤δcoarse

)2]
=
(γ
2

)2 r∑
i=1

Var [ai] =
(γ
2

)2
σ2
v

r∑
i=1

(
β∗⊤ut,i

)2
.

Similarly,

E
[(
β∗⊤δfine

)2]
=
(γ
2

)2
σ2
v

n∑
i=1

(
β∗⊤ut,i

)2
.

Thus, the loss difference is:

∆L =
(γ
2

)2
σ2
v

(
r∑

i=1

(
β∗⊤ut,i

)2 − n∑
i=1

(
β∗⊤ut,i

)2)
=
(γ
2

)2
σ2
v

r∑
i=n+1

(
β∗⊤ut,i

)2
.

5. Theoretical Implications and Conclusion

Since each term
(
β∗⊤ut,i

)2 ≥ 0, and unless β∗⊤ut,i = 0 for all i = n+1, . . . , r, the sum is positive.
Therefore,

∆L > 0.

This shows that the expected loss using coarse-grained feedback is greater than that using fine-grained
feedback:

Lcoarse > Lfine.

Our theoretical analysis extends Theorem 3.1 by demonstrating that fine-grained feedback, which
provides more precise adjustments to y, leads to a lower expected loss compared to coarse-grained
feedback. This supports the effectiveness of integrating detailed feedback from pre-trained vision
models into the training of VLLMs, enhancing their performance over models that rely solely on less
precise feedback mechanisms.

A.4 RELATED WORK

A.4.1 VISION-LARGE LANGUAGE MODEL

Recently, the development of large language models (Brown et al., 2020; Touvron et al., 2023)and
pre-trained vision models (Radford et al., 2021a), has paved the way for Vision-Large Language
Model(VLLMs). These advanced models, which can comprehend both text and images, have
greatly enhanced our capacity to automate complex tasks accross various areas such as medical
application (Liu et al., 2023b), autonomous driving (Zhou et al., 2023a) and embodied agent (Peng
et al., 2023). The fundamental architecture of VLLMs typically integrates both language and vision
models. This integration involves aligning the embedding spaces of both modalities using Qformer
or a simple fully connected layer (Zhu et al., 2023; Ye et al., 2023a; Li et al., 2023b). However,
Vision-Language Large Models (VLLMs) still face the problem of misalignment, as both models
are typically pre-trained independently before being aligned through vision-language joint training.
This misalignment can lead to several issues, such as safety concerns, where the model may produce
inappropriate or biased content (Gong et al., 2023; Tu et al., 2023), hallucinations in VLLMs,
where the model generates information not grounded in the images, thus deviating from observable
reality (Wang et al., 2023), and deficiencies in logical reasoning (Ghosh et al., 2024), where the
model fails to coherently integrate visual and textual information, resulting in inaccurate outputs.

A.4.2 VISION-LANGUAGE ALIGNMENT

Traditional vision-language models (VLMs) have primarily aimed to enhance image-text alignment
using methods such as the co-attention framework (Lu et al., 2019), anchor points (Li et al., 2020),
and contrastive learning (Radford et al., 2021b). With the significant advancements in large language
models (LLMs), recent approaches have explored novel directions to integrate visual encoders with
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LLMs, enabling better comprehension of vision-language multi-modal tasks. Aligning visual and
linguistic modalities can primarily be categorized into two approaches: alignment from training data
and alignment from feedback. Alignment from training data involves using high-quality datasets for
SFT (Supervised Fine-Tuning) training, including diverse instructions and dataset compression. This
method relies on the diversity and quality of the training data to improve the model’s performance.
Alignment from feedback focuses on fine-tuning the model using feedback of human (Sun et al.,
2023; Yu et al., 2023a) or other models like CLIP (Zhou et al., 2024a) and large models (Li et al.,
2023d; Zhao et al., 2023). Two primary methods for learning from feedback in VLLMs are Proximal
Policy Optimization (PPO) (Sun et al., 2023) and Direct Preference Optimization (DPO) (Zhao et al.,
2023; Li et al., 2023d; Chen et al., 2024a). However, these methods encounter challenges. They
may generate out-of-distribution data that fails to significantly enhance the model’s performance and
entail significant expenses in dataset construction.

A.4.3 TOKEN-LEVEL REWARDS IN LLMS AND VLMS

Recent studies have explored token-level rewards as an alternative to sentence-level scoring, aim-
ing to achieve finer-grained control and improved alignment. In Large Language Models(LLMs),
token-level reward models such as TLCR (Yoon et al., 2024) and selective preference optimiza-
tion methods (Yang et al., 2024b) have demonstrated the benefits of rewarding individual tokens
for fine-grained reinforcement learning, enabling better performance on tasks requiring nuanced
token-wise feedback. In the context of Vision-Language Models(VLMs), concurrent works such as
TLDR (Fu et al., 2024b) and GenARM (Xu et al., 2024) have proposed token-level reward strategies
for improving alignment and reducing hallucinations in large vision-language models. Despite their
potential, existing feedback-based methods face challenges such as high costs in dataset construction
and the need for external tools.

A.5 LIMITATIONS

One limitation of FiSAO is its dependency on the quality and robustness of the pre-trained vision
models. While pre-trained vision encoders are highly effective at object recognition, they are generally
less adept at capturing more complex aspects such as actions or spatial relationships [1,2]. As a result,
FiSAO may not fully address hallucinations related to these areas, as they require more advanced
contextual reasoning capabilities that current pre-trained encoders are not specifically optimized for.

Furthermore, if the visual encoder contains inherent biases or inaccuracies, these issues can be
propagated through the reward model, potentially affecting the overall alignment process. Addressing
these limitations requires either enhancing the visual encoder’s capabilities to handle complex
relational reasoning or exploring additional strategies to incorporate contextual reasoning into the
alignment framework.

Additionally, Our method faces challenges in tasks like MM-Vet, which primarily involve simple QA
scenarios with single-word ground truths, limiting the benefits of token-level rewards.

A.6 BROADER IMPACTS

The proposed enhancement in Vision-Language Large Models (VLLMs) through fine-grained policy
optimization presents several significant broader impacts across various fields and societal dimensions.
FiSAOcontributes to the field of AI by providing a novel approach to self-training without the need
for additional data. This can inspire further research into data-efficient training methods, fostering
innovation and reducing the environmental impact associated with large-scale data collection and
processing. Besides, enhanced vision-language alignment can significantly improve the performance
of assistive technologies, such as screen readers and automated transcription services, making digital
content more accessible to people with disabilities. This aligns with global efforts to promote
inclusivity and equal access to information and technology.
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