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Abstract

Although RAW images offer advantages over sSRGB by avoiding ISP-induced dis-
tortion and preserving more information in low-light conditions, their widespread
use is limited due to high storage costs, transmission burdens, and the need for
significant architectural changes for downstream tasks. To address the issues, this
paper explores a new raw-based machine vision paradigm, termed Compact RAW
Metadata-guided Image Refinement (CRM-IR). In particular, we propose a Ma-
chine Vision-oriented Image Refinement (MV-IR) module that refines SRGB images
to better suit machine vision preferences, guided by learned raw metadata. In detail,
we propose a Cross-Modal Contextual Entropy (CMCE) network for raw metadata
extraction and compression. It builds upon the latent representation and entropy
modeling framework of learned image compression methods, and uniquely exploits
the contextual correspondence between raw images and their SRGB counterparts
to achieve more efficient and compact metadata representation. Additionally, we
integrate priors derived from the ISP pipeline to simplify the refinement process,
enabling a more efficient design. Such a design allows the CRM-IR to focus on
extracting the most essential metadata from raw images to support downstream
machine vision tasks, while remaining plug-and-play and fully compatible with
existing imaging pipelines, without any changes to model architectures or ISP mod-
ules. We implement our CRM-IR scheme on various object detection networks, and
extensive experiments under low-light conditions demonstrate that it can signifi-
cantly improve performance with an additional bitrate cost of less than 10~ bits per
pixel. Code is available athttps://github.com/haifengjiao001/CRM- IR,

1 Introduction

Raw images refer to unprocessed and uncompressed data captured directly from a camera’s image
sensor. Their retained sensor readings preserve linear scene radiance and full bit-depth precision. Raw
images typically undergo in-camera Image Signal Processing (ISP) steps, including demosaicing,
white balancing, gamma correction and compression, to remove perceptual redundancy and enhance
visual appeal, ultimately producing the commonly seen SRGB images. However, as these ISP pipelines
are primarily designed to satisfy human perceptual preferences, they often perform suboptimally in
machine vision practice. Especially in low-light conditions, ISP pipelines apply nonlinear radiance
amplification to enhance details and textures, inevitably amplifying the inherent noise introduced
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Figure 1: Comparison of existing low-light object detection methodologies: (a) sSRGB-based methods,
(b) raw-based methods and (c) the proposed CRM-IR. (d) visual results of representative approaches
with respect to detection accuracy and transmission overhead, with the first and second rows repro-
duced from [16] and [17], respectively.

by physical factors during shooting, such as high ISO values, the use of flash and long exposure
times [, 12,13, 14} 5]]. Some studies apply low-light enhancement techniques to improve image quality
under laser illumination, but these methods are constrained by the information loss during ISP
processing [0, [7]. As a result, they can only adjust distributions and fail to fully recover many critical
details. Moreover, these methods typically address human perceptual needs but do not sufficiently
cater to the preferences or feature spaces required for machine vision, leaving this area of research
still open.

Therefore, recent studies have revisited the full utilization of raw images, aiming to exploit their
auxiliary and relatively clean visual information to improve machine vision applications [8, (9} [10].
Although the observed performance gains highlight the advantages of raw images over processed
sRGB images in machine vision tasks, raw-based methods have shown progress but still face signifi-
cant challenges that need to be addressed before they can be effectively applied in real applications.
In particular, current approaches tend to take raw images as direct input [[1 1, [12] and make substantial
architectural changes to accommodate the different image format, whereas other studies [[13} 14} [15]
modify the in-camera ISP modules instead. These strategies pose flexibility issues as sSRGB-based
pipelines remain mainstream and perform well under normal lighting conditions. Moreover, the
substantial storage and transmission resources requirements of raw images further hinder the practical
adoption of raw-based solutions.

This paper introduces the Compact RAW Metadata-guided Image Refinement (CRM-IR) paradigm
to tackle challenges in low-light machine vision, characterized by strong flexibility and compactness.
The approach extracts only essential raw image information, boosting downstream models, and
integrates seamlessly into existing vision pipelines without altering current architectures or ISP
procedures, as shown in Fig.[T} At its core, CRM-IR features a lightweight Image Refinement (MV-
IR) module, which uses raw metadata as external conditions for pixel-level modifications to processed
sRGB images flexibly. Through joint end-to-end training with metadata extraction and downstream
networks, the MV-IR module flexibly adapts to machine vision needs. To ensure compactness, a
raw-metadata encoder, based on Learned Image Compression (LIC), is introduced. This encoder
extracts and compresses raw metadata efficiently, utilizing a cross-modal contextual entropy coding
strategy that leverages semantic correspondence between the SRGB image and raw data for effective
compression. Additionally, we present the Raw in Dark (RID) dataset, containing 500 annotated RAW
sensor pairs from low-light daily scenes, further advancing RAW-based object detection. Extensive
experiments demonstrate that CRM-IR achieves superior performance compared to existing methods,
with minimal metadata transmission of less than 0.001 bits per pixel.

Our contributions are summarized as follows:

* We propose a novel raw-based machine vision paradigm that extracts only the most essential
information from raw images to guide machine-oriented SRGB image refinement. This



design enables seamless integration as a plug-in within existing SRGB-based vision pipelines
while maintaining minimal storage and transmission overhead.

* We introduce a novel raw-metadata encoder that effectively leverages the cross-modal
contextual information between processed sSRGB and raw images. This enables the proposed
scheme to transmit only a minimal amount of raw metadata while significantly enhancing
downstream performance.

* To advance RAW-based machine vision, we construct Raw in Dark (RID)—a diverse, large-
scale dataset of 500 annotated RAW-sRGB pairs captured in real-world low-light scenarios
across 8 object categories. RID fills key gaps in existing open-source datasets and serves as
a strong benchmark for evaluating generalization in RAW-guided object detection through
cross-dataset validation.

2 Related Work

2.1 Raw-based Machine Vision

The last decade has witnessed substantial progress in machine vision techniques, markedly improving
scene-understanding accuracy [18,[19} 120l 21, 122]] and inference speed [23} 24} 25| [26] and enabling
widespread adoption in real-world applications. Nevertheless, robust performance under low-light
conditions remains elusive. Dim illumination limits photon counts and produces a low signal-to-noise
ratio [3| 4], while compensatory measures such as high-ISO amplification or extended exposure
add sensor noise and motion blur [5]; together these factors shift the input distribution away from
the priors learned during training and sharply reduce model accuracy. Early studies inserted a
preprocessing stage to enhance semantic information before inference [27,[28], yet this approach
did not achieve satisfactory performance and constrained the models’ generalizability and scalability
across real-world benchmarks and diverse tasks. Consequently, recent research has turned to raw
images, seeking to harness their abundant unprocessed visual information to improve both image
enhancement and downstream machine-vision performance. For instance, some studies [[L1, [12]]
adopt a straightforward strategy by training or fine-tuning downstream models directly on raw
images, whereas others [[13 [14} [15] focus on the ISP pipeline and employ differentiable image signal
processors to generate SRGB images tailored for machine-vision tasks. Although these raw-based
methods deliver substantial gains, they require full access to raw data, which hampers deployment in
edge-to-cloud scenarios where transmitting full-resolution raw images is impractical.

2.2 Learned Image Compression

In recent years, Learned Image Compression (LIC) has progressed rapidly in step with deep-learning
breakthroughs. In particular, Ballé et al. [29] spearheaded this shift by replacing handcrafted
transforms, quantizers and entropy coders with a single, fully trainable pipeline. They later augmented
their framework with a hyperprior that conditions each latent on auxiliary hyper-latents, markedly
improving the rate-distortion trade-off over factorized-prior baselines [30]]. Follow-up studies refined
the entropy model by exploiting contextual cues: local part-of-image context [31]], context spanning
the entire image [32]], checkerboard inference patterns [33[], and channel-wise context [34}|35]] have
all been employed to boost accuracy or reduce computation. A recent exemplar, MLIC++ by Jiang
et al. [36]], fuses local, global and channel contexts in a multi-reference entropy model and already
surpasses the latest coding standard, Versatile Video Coding (VVC) [37]. Meanwhile, other LIC
works tend to enhance the analysis—synthesis backbone itself by adopting residual network [38]],
invertible network [39] and Swin-Transformer [40, 41]], yielding richer latent representations and
further gains in compression.

3 Method

3.1 Motivation and Overview

To address the limitations of existing raw-based methods in terms of flexibility and compactness, we
propose a novel framework called Compact RAW Metadata-guided Image Refinement (CRM-IR).
CRM-IR aims to fully leverage raw images to enhance downstream machine vision tasks while



maintaining a lightweight and pluggable structure compatible with existing vision pipelines. The
overall framework is illustrated in Fig.[2] consisting of three key components.

1) Raw Metadata Extraction. Let =, denote the input raw image and x, represent its SRGB
counterpart. At the imaging stage, we employ a raw metadata encoder G(-; w) parameterized by w
that takes as input x,» while being conditioned on z, to identify and extract the raw metadata y,

Yy = G(ms,x,-;w). (1)

2) Metadata Coding. Subsequently, a hyperprior-based entropy encoder E(-, @) parameterized by 0
is adopted to capture the statistical property of ¢ under a multivariate Gaussian distribution, while
simultaneously estimating and constraining its entropy, denoted as F(y; 0) for simplicity, which will
be elaborated later.

3) Image Refinement for Vision Tasks. At the application end, an image refinement model M (-; ¢)
is incorporated, being responsible for adapting x, to align with the requirements of downstream
machine-vision tasks guided by vy,

T :M(xsay§ ¢)7 2
where T is the refined SRGB image, ¢ denotes the model parameter.

By feeding the < to the downstream machine vision models A(-, %)), the entire CRM-IR scheme is
capable of end-to-end training under the following constraint,

0,6,%,0=argmin Y A La(z, A(M(zs,G(xs, 7,5 w); 9); %)) + E(y;0),  (3)
(¢,9,0,0) (xr,x5,2)ED

where D denotes the training set, consisting of the raw image x,., SRGB image x, and annotation z
for machine vision task. £ 4 measures the task performance, while X is the Lagrange parameter to
balance the bits cost and downstream task performance.

To meet the dual goals of compactness and flexibility, we incorporate the following designs:

* Compactness: We introduce a Cross-Modal Contextual Entropy Encoder (CMCE). The raw
metadata must comprise only essential information from x,, while remaining independent of
x5 with respect to machine vision requirements. CMCE employs the sSRGB image z; as a
contextual prior during raw metadata compression. This approach effectively captures the
inter-redundancy between the raw and the sSRGB images.

* Flexibility: We design a lightweight Machine Vision-oriented Image Refinement (MV-IR)
module, which modifies z at the pixel level under the guidance of metadata y. MV-IR
introduces no changes to the image format, allowing seamless integration into existing
pipelines without altering downstream architectures.

Detailed descriptions of the proposed CMCE and MV-IR are provided in the following subsections.

3.2 Cross-modal Contextual Entropy Encoder

In the field of LIC, context-based entropy modeling involves utilizing surrounding contexts, i.e.,
information from already encoded latent elements, to dynamically estimate the probability distribution
for encoding subsequent elements. This approach leverages complex correlations in the input images
to improve compression efficiency. Motivated by this, we utilize the cross-modal dependency between
the SRGB image = and raw image z.., both available at the imaging end, to further enhance the
compression process. In particular, the x; would be first concatenated with the x,. while ensure
that its latent elements are leveraged as contextual priors for estimating the probability distribution
of the latent representation of z,.. After obtaining their joint latent representation y via Eqn. (T)),
a hyperencoder is introduced to extract side information z = h,(y), which captures the spatial
dependencies among the elements of y.

In coding practice, y and z are typically passed through a uniform quantization process to obtain their

integer forms ¢ and 2 for compression purposes. During training, this quantization is approximated
1

using uniform noise U ~ (—%, 5)- As such, the actual rate estimation can be formulated as,

R(9) + R(2) = E[~loga(py:(9]2))] + E[—logz(pz(2))]- )
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Figure 2: (a) Overall framework of the proposed CRM-IR framework. (b) and (c) details the inverse
mapping and the remapping process of the proposed MV-IR module, respectively.

To obtain py:(¢|£), a multivariate Gaussian prior is introduced, parameterized by a hyperdecoder
h () >
where the 6 denotes the parameters of h(-). Within this process, an autoregressive context model
h. is employed to capture the contextual information within g. It utilizes both the side information
2 and already processed and the already processed portion of ¢ to predict the distribution of the
remaining elements. Accordingly, the causal context c; for a given latent element is obtained via
¢i = he(Y.;;50.), where y_; denotes the causal context of y;. The prediction of the Gaussian
parameters can be roughly formulated as a function involving the hyper-decoder, context model and
entropy parameter network,

Hiy 04 = he(hs(2§95)aci§96)7 (6)
where h.(+; 0.) denotes the entropy parameter network with parameter 6. Thus, we obtained

s 11
1) = T (M) s t=3.3)) 30 0
As for the entropy coding of the side information Z, i.e., the estimation of E[—loga(pz(Z2)) in Eqn. @)
since no hyperprior is available for this process, a simple factorized density model is employed. This

model is directly adopted from existing LIC works and is not elaborated upon here.

3.3 Machine Vision-oriented Image Refinement based on Raw Metadata

As revealed by existing raw-based works [1], within the ISP process, white balancing and gamma
correction are the main modules that negatively affect downstream machine vision tasks, as both
involve nonlinear mapping of pixel luminance to a discrete domain aligned with human perceptual
preferences. Therefore, the main idea of the proposed MV-IR is to first convert the SRGB image
back to a linear space, guided by the raw metadata. Subsequently, an additional remapping process
is introduced to enhance details and structures in low-light regions, specifically tailored to machine
vision requirements.

In particular, during the inverse remapping process, to simplify the task, we introduce an additional
prior based on gamma correction, i.e., we aim to predict an image-wise gamma correction parameter
that is also aligned with the ISP process. Thus, the inverse mapping process can be formulated by,

xyp = (Is)’ya’}/ = Fim(?))v (8)



Figure 3: Samples from the RID dataset: The first row shows RAW images and the second row shows
sRGB images processed by the camera’s internal ISP.

where x; denotes the linear representation of x4, and F,,(+) is responsible for predicting the gamma
parameter. This prediction is straightforward with the assistance of the raw metadata and can be
efficiently implemented using only a few convolutional layers, as shown in Fig. [2|(b).

As for the remapping process illustrated in Fig. [2|(c), F,(+) is employed with the aim of learning
a pixel-wise modulation map m, conditional on = and ¢. Considering that our method is specifi-
cally designed for low-light scenarios, we introduce a luminance region-wise learning strategy, i.e.,
explicitly learning distinct modulation maps [m1, ms| corresponding to low-light and normal-light
regions.

mi:Frm(xsag)7i€ (132)7 (9)

where F,.,,,(+) is for the modulation map prediction. They would be subsequently merged to m via
through luminance intensity-bypass filtering operations.

2

m="mibi(r), (10)

i=1

where 01(+) and 02 (+) denote pixel-wise bypass filters that selectively pass the corresponding elements
of the learned maps when the pixel intensities fall within the low-light and normal-light regions, re-
spectively. Afterward, the modulation map m is applied to the linear representation x; via summation
and subsequently fed into lightweight fusion layers F;(-) for further adjustment, producing the final
output.

Ty = Fp(m + ;). (11)

3.4 Raw in Dark(RID) Dataset

This subsection introduces the RID dataset to enable cross-dataset generalization validation, given
the scarcity of open-source real-world benchmarks. Compared with the widely employed raw-based
object detection dataset LOD [42], RID broadens the range of scenes and object categories and places
particular emphasis on images captured under extremely low-light conditions. As for the source image
collection, a Canon EOS80D was used to capture 500 paired samples, each consisting of a RAW image
and its SRGB-JPEG counterpart. We selected scenes that span a range of everyday environments,
including dimly lit underground parking garages, nighttime roadsides and poorly illuminated indoor
rooms, all characterized by deep shadows and severely limited visibility. We selected ISO settings
of 50 and 100 and exposure times of 1/125s and 1/250s to replicate the photon-starved conditions
typical of extremely dark surveillance scenarios.

Regarding the annotations, professional annotators are employed to create accurate instance-level
labels for widely studied classes, i.e., car, bicycle, chair, to support cross-task generalization validation,
and further categories including person, zebra crossing, emergency exit sign, fire extinguisher and
dustbin are included to extend the dataset’s coverage. Representative examples are exhibited in Fig. [3]
It is worth noting that RID is an ongoing project. We plan to further expand the dataset by employing
various shooting devices, including different cameras and smartphones, with the goal of investigating
the influence of diverse ISP procedures. Additionally, we will include more annotations for other
critical machine vision tasks, such as semantic segmentation and instance segmentation, aiming to
support the broader machine vision research community.



Table 1: Quantitative comparison results on the YOLOv3 backbone. The bold and underlined font
indicate the best and second-best results, respectively. For reference, JPEG-format sSRGB images
have an average bpp of 0.15, whereas raw images require 48 bpp.

Method In-Dataset Val. (LOD) Cross-Dataset Val. (RID)
mAP mAP50 mAP75 bpp mAP mAP50 mAP75 bpp
YOLOv3 40.00 67.67 43.44 - 45.67  65.80 63.75 -
Zero-DCE 41.19  67.79 45.79 - 4526  64.38 62.76 -
KinD 4122  67.03 44.60 - 4437  63.76 58.55 -
YOLA 41.00 68.49 45.87 - 3829  60.22 46.29 -
RAOD 41.60  70.49 42.29 - 39.74  68.49 41.36 -

Ours 42.14 69.11 46.02 4.88¢4 51.72  65.81 63.85 4.86e-4

4 Experiments

At the experimental stage, we implemented our CRM-IR scheme on a set of object detection models
and conducted extensive comparisons with other low-light object detection paradigms, including
both sRGB-based and raw-based methods, to demonstrate the superiority of our approach. Moreover,
comprehensive ablation studies were performed to validate the effectiveness of the proposed CMCE
and MV-IR modules.

4.1 Experimental Settings

Datasets. Low-light Object-Detection (LOD) dataset [42] is employed as our benchmark, which
contains 2230 paired RAW and sRGB-JPEG format image pairs collected by a Canon EOS 5D Mark
IV camera, covering both low-light and normal daylight scenes, where only the low-light parts are
selected in our experiments. In particular, 1,784 training pairs and 446 test pairs are selected for
model training and evaluation, respectively. These images contain a total of 9,726 labeled instances
spanning 8 common object classes: car, motorbike, bicycle, chair, dining table, bottle, TV monitor
and bus. In addition, our proposed RID dataset is employed to perform cross-dataset testing, aiming
to evaluate the generalization capability of the employed methods.

Baselines. Three milestone object detection models are employed as baseline models, including
YOLOV3 [43]], Faster R-CNN [44]] and CenterNet [21]. Moreover, four state-of-the-art low-light
object detection schemes are evaluated, including three sSRGB-based methods: Zero-DCE [16]],
KinD [45] and YOLA [46], all of which follow a similar pipeline that first enhances low-light images
before feeding them into downstream object detection models. Moreover, one raw-based method
RAQOD [17] is also adopted. It follows a similar enhancement-based pipeline by leveraging raw
images to guide the enhancement process, but it overlooks the transmission cost of raw data. For a
fair comparison, all competing schemes are implemented on the same baseline models as our method
and trained from scratch using the same dataset.

Evaluation Criterion. We adopt the commonly used mean average precision regarding mAP, mAP50
and mAP75 to measure the downstream task performance. Moreover, to demonstrate the compactness
of our method, we report the bpp as an indicator of storage or transmission resource requirements
across different methods. For the employed methods, we report the bpp of SRGB images and raw
images for sSRGB-based and raw-based approaches, respectively. In contrast, for our method, we
additionally report the bpp of the raw metadata alongside the SRGB image.

Implementation Details. During training, data augmentation strategies are employed, including
random horizontal flips and random scale jitter during resizing. All models were trained for 300
epochs using the Adam optimizer [47]]. A linear scaling learning rate with a cosine decay schedule
was employed, starting from an initial learning rate of Se-4. The weight decay was set to 0, momentum
was 0.9 and the training batch size was set to 8. During both training and testing, all input images
were resized to 512 x 512. All experiments were conducted using PyTorch on an NVIDIA RTX 6000
Ada Generation GPU with 48 GB of memory.



Table 2: Quantitative comparison results on the Faster R-CNN backbone. The bold and underlined
font indicate the best and second-best results, respectively.

Method In-Dataset Val. (LOD) Cross-Dataset Val. (RID)
mAP mAP50 mAP75 bpp mAP mAP50 mAP75 bpp

Faster R-CNN 3996 67.12 41.74 - 3723  63.79 39.30 -

Zero-DCE 40.50 67.94 42.56 - 3773  64.57 40.07 -

KinD 39.83  66.86 42.23 - 37.11  63.54 39.76 -

YOLA 4031 63822 42.31 - 37.55 64.83 39.84 -

RAOD 41.32  69.79 43.14 - 38.50 66.33 40.62 -
Ours 41.75 68.49 4394 3.26e-4 38.89 65.09 41.37 3.23e-4

Table 3: Quantitative comparison results on the CenterNet backbone. The bold and underlined font
indicate the best and second-best results, respectively.

Method In-Dataset Val. (LOD) Cross-Dataset Val. (RID)
mAP mAP50 mAP75 bpp mAP mAP50 mAP75 bpp
CenterNet 40.41  65.36 42.60 - 40.33  62.63 44.67 -
Zero-DCE 41.44  65.85 44.90 - 40.30 62.64 44.53 -
KinD 40.10  62.49 44.23 - 40.28  62.48 44.52 -
YOLA 4174  66.18 44.55 - 42.04 6648 44.85 -
RAOD 42.89 69.25 43.94 - 4345 70.28 43.22 -

Ours 42.05  68.09 4452  1.38e-3 4231  68.28 44.91 1.39e-3

4.2 Experimental Results

The quantitative evaluation results regarding the baseline models of YOLOV3, Faster R-CNN and
CenterNet are established in Table [T Table 2] Table [3] respectively. First, the effectiveness of the
proposed method can be easily observed comparing with the baseline models, as leading to an average
mAP improvement of 2.14%, 1.79% and 1.64% regarding YOLOv3, Faster R-CNN and Centernet,
respectively. Considering bitrate performance, our method introduces only 4.88e-4, 3.26e-4 and
1.38e-3 bpp of raw-metadata overhead for the three baseline models, respectively. Relative to the
original SRGB bitrate of 0.15 bpp, this increase is under 0.5 percent and therefore negligible in
practice, thanks to the CMCE module’s ability to capture and exploit the contextual correspondence
between each raw image and its SRGB counterpart.

Compared with state-of-the-art SRGB-based methods Zero-DCE, KinD and YOLA, our scheme
achieves an average mAP improvement of about 0.94%, 1.60% and 0.96%, confirming that lever-
aging raw-image information effectively overcomes the limitations of conventional ISP processing.
Compared with the raw-based method RAOD, our approach achieves comparable performance while
transmitting only a compact metadata stream instead of the entire raw image. RAOD benefits from
full access to the 48 bpp raw data, yet this requirement imposes a prohibitive storage and transmission
load, making the scheme impractical for many real-world deployments. Cross-dataset evaluations
confirm the strong generalization capability of our method, as it maintains nearly the same level of
object-detection accuracy in unseen scenarios.

Fig. ] provides a set of intuitive comparisons. Things have to be mentioned that, distinct visualization
strategies were adopted for a clear representation. For the Ground Truth, detection bounding boxes
are visualized directly on the original low-light input. For the other approaches that follow the
“enhancement-then-detection” pipeline, detection results are shown on their corresponding enhanced
images. Fig.[d]demonstrates that low light sSRGB images contain considerable environmental noise
that the enhancement stage cannot fully remove, causing frequent mis-detections. By contrast,
incorporating raw information reduces noise in the enhance version and substantially improves
downstream detection accuracy.



Ground Truth Zero-DCE KinD YOLA RAOD Ours

Figure 4: Visualization of object-detection results: the first, second and third rows correspond to
methods based on YOLOvV3, Faster R-CNN and CenterNet, respectively.

4.3 Ablation Studies

To evaluate the distinct contributions of our proposed modules and the utility of leveraging raw image
data, we performed a detailed ablation study on the LOD datasets. We compare our full model against
several ablated variants:

w/o CMCE: In this configuration, the metadata extraction and compression stages are disabled, so
no raw metadata are passed to the MV-IR module. The MV-IR remains active but is driven by a
non-informative placeholder implemented as a zero tensor.

w/o MV-IR: We retain the CMCE module but employ the enhancement module with simple concate-
nation, where the extracted metadata and the SRGB image features are combined via concatenation.

The ablation results are presented in Table [d] where the effectiveness of each specially designed
module is evident. As shown, excluding the raw metadata yields an average mAP50 decrease of
about 0.58%, 2.99% and 2.24% regarding YOLOvV3, Faster R-CNN and CenterNet, respectively.
Meanwhile, omitting the MV-IR module results in an overall 1.91%, 3.26% and 1.77% decrease in
YOLOV3, Faster R-CNN and CenterNet, respectively.

Table 4: Ablation Study Results of CMCE and MV-IR modules

Detector CMCE MV-IR mAP mAP50 mAP75

40.00  67.67 43.44
41.06  68.53 44.78
41.19  67.20 45.21
42.14  69.11 46.02

39.96 67.12 41.74
39.65  65.85 42.40
38.84  65.23 41.13
4175  68.49 43.94

40.41  65.36 42.60
41.16  65.85 43.67
41.64  66.32 44.25
42.05  68.09 44.52

YOLOV3

Faster R-CNN

CenterNet

AN X[ CAUXX|CAUxx
AXAX[AUXAUR|CUx A%

5 Conclusion

To conclude, this paper explores a new raw-based object-detection paradigm called Raw
Metadata-guided Image Refinement (CRM-IR). Compared with existing raw-based approaches,



CRM-IR is characterized by its flexibility and compactness: it integrates seamlessly into current
machine vision pipelines while explicitly accounting for the transmission and storage overhead of
raw information. For flexibility, we introduce a Machine Vision-oriented Image Refinement (MV-IR)
module that adjusts SRGB images to better match machine vision preferences, functioning as a stan-
dalone preprocessing step without altering network architectures or in-camera ISP modules. CRM-IR
further leverages raw metadata collected at the imaging stage; by extracting only the essential raw
information and using the paired SRGB image as contextual prior, it delivers significant gains in
downstream object-detection accuracy with negligible additional bitrate.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In the abstract and introduction, we delineate our research scope, address the
limitations of RAW image utilization, and highlight our proposed methodology and key
contributions.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

 The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It s fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer:

Justification: Potential limitations of our method may include inference latency. This was
not detailed in the main body of the paper due to page limits.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

¢ The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: This paper does not introduce novel theoretical contributions. The equations
used in the paper are intended to explain the working principles of each module.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

¢ Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide a comprehensive description of our experimental setup in Section
4, which covers datasets, baselines, evaluation metrics, and pertinent experimental details.
To further support reproducibility, our code will be released as open source.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Data and code for our proposed method are publicly available. Please refer to
the Abstract for links to the code repository and dataset.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: In Section 4, we have provided our experimental settings, such as datasets
and optimizers. We will subsequently organize and open-source our code, making detailed
specifics/information available.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Owing to constraints on time and page length, the current presentation of our
experimental results does not include an analysis of error or other statistical significance
measures.

Guidelines:

* The answer NA means that the paper does not include experiments.

16


https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: In section 4, we specified in our implementation details that an NVIDIA RTX
6000 Ada Generation GPU with 48 GB of memory was used for training.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The research conducted in this paper fully complies with the NeurIPS Code of
Ethics (https://neurips.cc/public/EthicsGuidelines).

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
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11.

12.

Justification: We introduce a novel RAW-based machine vision paradigm that offers a new
approach for industrial applications, which we consider a positive societal contribution.
Furthermore, this work is not expected to have any adverse societal impacts.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All assets (code, data, models) employed in this paper have been appropriately
credited/cited.

Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.
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13.

14.

15.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Our work introduces new methods and datasets, while have alredy been
released.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:
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* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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