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Abstract001

The emerging in-context learning (ICL) ability002
of large language models (LLMs) has prompted003
their use for predictive tasks in various domains004
with different data types, including tabular data,005
facilitated by serialization methods. However,006
with increasing applications in high-stakes do-007
mains, it has been shown that LLMs can in-008
herit social bias and discrimination from their009
pre-training data. In this work, we investi-010
gate inherent bias in LLMs during in-context011
learning with tabular data. We focus on an012
optimal demonstration selection approach that013
utilizes latent concept variables for resource-014
efficient task adaptation. We design data aug-015
mentation strategies that reduce the correla-016
tion between predictive outcomes and sensi-017
tive variables, helping promote fairness dur-018
ing latent concept learning. We utilize the019
learned concept to select demonstrations and020
obtain fair predictions. The latent concept vari-021
ables are learned using a smaller internal LLM022
and generalized to larger external LLMs. We023
empirically verify that the fair latent variable024
approach improves fairness results on tabular025
datasets compared to multiple heuristic demon-026
stration selection methods. Code and data027
are available at https://anonymous.4open.028
science/r/fairicl-AF6D.029

1 Introduction030

LLMs have demonstrated immense capabilities in031

performing various natural language processing032

(NLP) tasks. A factor contributing to widespread033

LLM usage is their in-context learning (Brown034

et al., 2020) ability, which allows adaptation to035

downstream tasks without costly training or fine-036

tuning. With a few demonstration examples, ICL037

equips LLMs with the ability to infer task-specific038

context and perform inference with impressive util-039

ity. Recent research has also explored the applica-040

bility of LLMs on tabular data through serialization041

methods that facilitate ICL by transforming the042

data into natural language formats (Hegselmann 043

et al., 2023). With the increasing integration of 044

LLM inference in domains such as healthcare (Wu 045

et al., 2023), finance (Li et al., 2023a), and the le- 046

gal sector (Sun, 2023) with various data formats, it 047

has become crucial to scrutinize their use from a 048

trustworthiness perspective. 049

LLMs have been shown to exhibit discrimina- 050

tory behavior in their outputs due to stereotypes 051

and prejudices inherent in pre-training data (Abid 052

et al., 2021; Basta et al., 2019). When used for de- 053

cisive tasks, LLMs may mirror social inequalities 054

and biases from the real world, leading to harm- 055

ful consequences. Furthermore, in ICL settings 056

with tabular data classification, recent research has 057

empirically verified the presence of bias in LLM 058

outputs. Liu et al. (2023) investigated unfairness in 059

ICL with tabular data by flipping the labels of in- 060

context demonstration examples and observed bias 061

reduction but with significant trade-offs in model 062

utility. Li et al. (2024) similarly implemented mul- 063

tiple heuristic methods for demonstration selec- 064

tion based on sensitive attributes and label distribu- 065

tion in the demonstrations. Hu et al. (2024) discov- 066

ered that increasing the representation of minority 067

groups and underrepresented labels in demonstra- 068

tions helps to improve fairness at some cost to util- 069

ity. They further developed a strategy that uses 070

clustering to extract representative samples and se- 071

lects demonstrations from the extracted samples 072

based on their performance on a validation set. 073

In this work, we similarly explore optimal 074

demonstration selection for ICL to promote fair- 075

ness in LLM predictions, but utilize the latent con- 076

cept variable mechanism (Wang et al., 2024) to 077

achieve fair in-context learning. Wang et al. (2024) 078

formulated ICL via a Bayesian perspective and 079

theorized that inference with a finite number of 080

demonstrations selected using latent concept ap- 081

proximates the optimal Bayes predictor. The latent 082

concept is learned from an observed set of task- 083

1

https://anonymous.4open.science/r/fairicl-AF6D
https://anonymous.4open.science/r/fairicl-AF6D
https://anonymous.4open.science/r/fairicl-AF6D


specific training data with a small LLM and used084

to obtain demonstrations that can be generalized to085

larger LLMs for improving performance.086

Motivated by the influence of latent concepts on087

model performance, we formulate a fair demon-088

stration selection approach for in-context learning,089

dubbed as FairICL. As the latent concepts are090

learned from an observed set of task-specific ex-091

amples, we conjecture that the training data distri-092

bution may affect the quality of the learned latent093

concepts and ultimately the model predictions from094

both accuracy and fairness perspectives. There-095

fore, in FairICL, we incorporate an effective data096

augmentation technique that promotes decorrela-097

tion between the sensitive attributes and the out-098

come variables by randomizing the relationship099

between them. This augmentation allows us to100

obtain a fairer representation of the task-specific101

data used to learn the fair latent concept variables102

while preserving relevant information among non-103

sensitive attributes and the label. We then utilize104

the learned concepts to select demonstrations from105

the observed training examples such that the prob-106

ability of observing the learned latent variable is107

maximized when conditioned on the corresponding108

example. The selected demonstrations are used to109

perform in-context learning with external LLMs110

larger than the one used for learning. This frame-111

work can support private businesses or organiza-112

tions to obtain fair LLM predictions on their local113

data without having to train/fine-tune large models114

with fairness objectives. We empirically validate115

FairICL on real-world tabular datasets known to116

represent social biases and demonstrate that Fair-117

ICL can effectively achieve fairness goals while118

maintaining predictive utility. We compare the per-119

formance of FairICL with multiple heuristic ap-120

proaches and conduct a comprehensive analysis of121

the influence of different hyperparameters. Our122

empirical results show that FairICL can general-123

ize demonstration selection to external LLMs and124

outperform baseline methods.125

2 Preliminaries126

2.1 In-Context Learning127

The in-context learning (Brown et al., 2020) abil-128

ity of LLMs has prompted multiple works that129

investigate how LLMs learn from demonstration130

examples for certain tasks without being explic-131

itly trained. Let us denote a pre-trained LLM as132

M with parameters W. Let D = {(xi, yi)}ni=1133

denote a tabular dataset observed for an arbitrary 134

task where xi ∈ X represents attributes of the i-th 135

instance and yi ∈ Y its corresponding outcome. 136

Assume ai ∈ A denotes its sensitive attribute. For 137

in-context learning, the LLM is provided with k 138

examples from D as demonstrations to guide the 139

model in structuring its response for a test example 140

x. Conditioned on a task description inst, a set of 141

sampled demonstrations {(x1, y1), · · · , (xk, yk)}, 142

and a test query x, the prediction output ŷ fromM 143

can be formally formulated as 144

ŷ ←M(inst, g(x1, y1), · · · , g(xk, yk)︸ ︷︷ ︸
demonstration examples

, g(x)),

(1) 145

where g(xk, yk) denotes a prompt function (e.g., a 146

template) that transforms the k-th demonstration 147

into natural language text. To simplify, we omit the 148

task description and prompt function thereafter and 149

represent the output probability as 150

PM(y|(x1, y1), · · · , (xk, yk), x;W). (2) 151

ICL performance has been found to be significantly 152

influenced by demonstration examples and their or- 153

dering (Liu et al., 2021; Rubin et al., 2021; Su 154

et al., 2022; Lu et al., 2021; Ma et al., 2024). Con- 155

sequently, recent works explore effective demon- 156

stration selection based on similarity to query in- 157

put (Liu et al., 2021; Rubin et al., 2021; Su et al., 158

2022), entropy of predicted labels (Lu et al., 2021), 159

and low predictive bias (Ma et al., 2024). 160

2.2 Latent Concept Learning 161

An essential research question in in-context learn- 162

ing is effective demonstration selection to enable 163

optimal downstream performance. Towards this ob- 164

jective, (Xie et al., 2021) put forth an interpretation 165

of ICL based on latent concept variables, conclud- 166

ing that pre-trained models learn latent concepts 167

during next-token prediction training and infer a 168

shared latent concept among demonstrations used 169

for inference. They show that under assumptions 170

of a hidden Markovian data generation process, dis- 171

crete latent concept tokens, and an approximately 172

infinite number of demonstrations, in-context learn- 173

ing is an optimal predictor. Similarly, (Wang et al., 174

2024) studied latent concepts in LLMs but under a 175

more general assumption of continuous latent con- 176

cepts and that the data generation process is gov- 177

erned by an underlying causal mechanism given as 178

X → Y ← θ or Y → X ← θ where X represents 179

the input, Y the output, and θ the latent concept 180
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Figure 1: Overview of FairICL including steps from A to D, A: A hierarchical attribute sampling approach is
proposed to craft synthetic samples and create augmented training data D̄; B: Samples in D̄ are utilized to learn
latent concept tokens with an internal LLM; C: A corresponding likelihood score is computed for each sample in D,
and all samples are then ranked to choose k demonstrations from top-m candidates; D: Selected demonstrations and
test input x are used to prompt an external LLM to get prediction ŷ.

variable. Then, in-context learning can become an181

optimal predictor with a finite number of demon-182

strations chosen using the latent concept variable183

θ. To find the optimal value of θ when considering184

the X → Y ← θ direction, (Wang et al., 2024)185

formulated a latent concept variable framework for186

learning task-specific concept tokens that capture187

sufficient information for next-token prediction by188

minimizing a loss jointly conditioned on X and the189

learned θ̂ as190

l(x, y; θ̂) = − logPM(y|θ̂, x), (3)191

where θ̂ represents the learned latent concept vari-192

able, x denotes an input token sequence and y the193

discrete target variable. In practice, θ̂ is optimized194

by adding new tokens toM’s vocabulary with cor-195

responding embedding vectors, which we refer to196

as Wθ. During training, Wθ is updated using the197

loss defined above. The learned θ̂ is then used to198

select k most suitable demonstrations based on the199

likelihood of observing the concept tokens when200

conditioned on the demonstration pairs formulated201

as PM(θ̂|(xi, yi), . . . , (xk, yk)). Assuming inde-202

pendence among the sampled demonstrations, the203

top-ranked examples are obtained based on latent204

concept likelihood for individual examples,205

argmax
(xi,yi)∈D

PM(θ̂|xi, yi). (4)206

The selected demonstrations are used to perform207

in-context learning and are further generalizable208

for inference with LLMs larger than the ones used209

to learn θ̂.210

3 Fair Latent Concept Learning211

LLMs have been shown to replicate bias and preju-212

dice likely present in their pre-training corpus. Pro-213

viding LLMs with biased examples as demonstra- 214

tions during ICL may further corroborate the pre- 215

diction bias, potentially leading to discriminatory 216

outcomes in classification tasks. However, filtering 217

pre-training data and re-training/fine-tuning LLMs 218

on unbiased data is often practically infeasible due 219

to resource constraints. Moreover, removing dis- 220

crimination from pre-training data may not entirely 221

address the unfairness resulting from biased demon- 222

strations during inference. Here, we focus on the 223

demonstration selection process, which can guide 224

LLM predictions by providing task-specific con- 225

textual information. Researchers have empirically 226

shown that varying demonstrations can affect the 227

bias and fairness outcomes of LLMs (Hu et al., 228

2024; Ma et al., 2024). Furthermore, the propor- 229

tion of samples from minority and majority groups 230

in demonstrations affects the trade-off between fair- 231

ness and performance metrics (Hu et al., 2024). 232

3.1 Problem Setup 233

In the latent concept variable model, demonstra- 234

tions are selected based on the likelihood of observ- 235

ing latent concept variable θ̂ (Wang et al., 2024). 236

Generally, the concept variables capture format and 237

task information and can help improve in-context 238

learning performance. However, the quality of the 239

learned latent concept variables highly depends 240

on the observed data D. We hypothesize that us- 241

ing a biased dataset D to learn the latent concept 242

can lead to selecting demonstrations that favor the 243

majority group. For instance, consider a dataset 244

containing a comparatively higher number of pos- 245

itive/advantaged class instances for the majority 246

group, reflecting real societal bias. The latent con- 247

cept variables may associate the positive outcome 248
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with the majority class, as this biased prediction249

can lead to better prediction accuracy owing to im-250

balanced label distributions. Consequently, demon-251

strations selected using the latent concept variables252

can reinforce the bias originating from the dataset.253

In the following, we propose FairICL, a fair latent254

concept learning framework with data augmenta-255

tion to mitigate unfairness in ICL predictive out-256

comes arising from demonstration selection. An257

overview of the method is presented in Fig. 1.258

3.2 Constructing Augmented Training Data259

To ensure fair predictive outcomes, we consider the260

correlation between the sensitive attribute a and261

the outcome variable y in the dataset D used to262

learn the latent concept variable θ. We conjecture263

that learning latent concept variables from an unbi-264

ased dataset can prevent θ̂ from incorporating bias265

into the task-specific contextual information that266

improves ICL performance. To this end, we design267

and implement a data pre-processing strategy on D268

aimed at decorrelating the sensitive attribute and269

the label. Assuming we obtain a dataset D̃ that pre-270

serves task-relevant information from D and not271

the biased correlation between a and y, we then272

construct an augmented training dataset D̄ from273

both D and D̃ to promote fairness while learning274

task-specific contextual information in a fair rep-275

resentation of latent concepts θ̂f . Note that our276

focus is on LLM classification with ICL on tabu-277

lar data, which is the most commonly used data278

representation in fairness literature.279

For hierarchical attribute sampling, we define an280

order for all non-sensitive attributes and construct281

a synthetic sample based on the order. First, we282

randomly sample a label from a uniform distribu-283

tion and obtain a subset of D conditioned on the284

sampled label value. We then uniformly sample285

the first non-sensitive attribute in the ordered list286

from the values occurring in the subset. We further287

constrain the subset to include only the sampled288

value of the first non-sensitive attribute, and sample289

the second non-sensitive attribute uniformly, and290

so on. To populate the sensitive attribute value,291

we randomly sample it from a uniform distribu-292

tion independent of the label and any non-sensitive293

attributes. Furthermore, if D contains any proxy-294

sensitive attributes that may allude to the sensitive295

attribute, we condition its sampling on the sensitive296

attribute value to promote complete decorrelation.297

In this manner, we generate D̃ = {(xi, yi)}ñi=1 as298

an unbiased representation of D.299

We then construct our augmented training 300

dataset, which contains n + ñ instances, and 301

each augmented instance contains q demonstra- 302

tion examples from D and one query sample 303

from either D or D̃ to facilitate in-context learn- 304

ing. Formally each instance takes the form 305

⟨(x1, y1), · · · , (xq, yq), x, y⟩ which we denote as 306

(x, y) thereafter. We also denote this formatted 307

dataset containing augmented samples as D̄ = 308

{x̄i, yi}n+ñ
i=1 . The following discusses how we learn 309

the fair latent concept variables from D̄. 310

3.3 Learning Fair Latent Concept Variable 311

We learn the latent concept variables by implement- 312

ing prompt tuning to optimize a set of new token 313

embeddings that is prepended to each training in- 314

put token sequence (Wang et al., 2024). More im- 315

portantly, we utilize the augmented dataset D̄ to 316

construct input sequences for learning θf to pro- 317

mote improvements in fairness and utility simulta- 318

neously. Directly optimizing θf as a sequence of 319

words is inefficient due to the discrete nature of text 320

space. Typically, large language models (LLMs) 321

process inputs as sequences of tokens, which are 322

subsequently transformed into embeddings. There- 323

fore, we optimize the fair latent concept in the 324

LLM M’s embedding space, where θf is repre- 325

sented as a sequence of c learnable tokens, each 326

associated with an embedding vector. We denote 327

the subset of weights in W corresponding to θf 328

as Wθf . During training, we prepend θ̂f to the 329

input sequences and learn Wθf by minimizing the 330

negative log-likelihood objective as follows 331

L = −
n+ñ∑
i=1

logPM(yi|θ̂f , xi). (5) 332

During gradient optimization, parameters Wθf cor- 333

responding to θ̂f are updated, and all other parame- 334

ters are frozen. The ultimate goal of learning fair 335

latent concept variables is to derive the optimal 336

Ŵθf using the task-specific data D to improve 337

performance and the generated data D̃ to promote 338

fairness simultaneously. 339

3.4 Demonstration Example Selection with θf 340

Likelihood 341

The learned fair latent concept θ̂f is then used to 342

select top-ranking examples from D, which will be 343

provided as context to a larger external LLM dur- 344

ing inference via ICL. This demonstration selection 345

follows the rationale that training examples that 346
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maximize the likelihood of predicting the trained347

task-specific latent concept variables are optimal348

demonstrations for the corresponding task objec-349

tive (Wang et al., 2024). For each training example350

(xi, yi) ∈ D, the likelihood of θ̂f is expressed us-351

ing the probability distribution shown as352

PM(θ̂f |xi, yi). (6)353

In our implementation, we obtain this likelihood354

as the probability of observing the trained θ̂f when355

postfixed to a sample (xi, yi). Subsequently, train-356

ing examples are sorted based on their computed357

likelihood values. We then select the top m ex-358

amples that maximize the likelihood of θ̂f and359

form the demonstration candidate set. We sub-360

sample this candidate set to allow each test query361

to be paired with varying demonstrations during362

testing. Finally, we randomly select k demonstra-363

tion examples from the candidate set for each test364

instance, combining these to construct the final365

prompt for inference with an external LLM. The366

augmented dataset generation, latent concept learn-367

ing, and demonstration selection procedures are368

summarized in Algorithm 1 (Appendix B).369

4 Experimental Evaluation370

4.1 Datasets371

We evaluate the effectiveness of fair demonstra-372

tion selection with FairICL using three bench-373

mark fair machine learning datasets: Adult Income374

dataset (Becker and Kohavi, 1996), COMPAS (Lar-375

son et al., 2016), and LawSchool (Quy et al., 2022).376

We focus on the Adult dataset for the main exper-377

iments and include discussion and results for the378

other two in Appendix D and E. Following previ-379

ous work (Liu et al., 2023), we use a subset of 10380

attributes from the dataset named in Fig. 5a. We381

also subsample a training dataset of 30,000 records382

after preprocessing. We perform serialization on383

the tabular Adult dataset similar to (Hegselmann384

et al., 2023; Carey et al., 2024), i.e., we convert385

each row in the dataset to a natural language format386

to facilitate LLM prompting. The specific serial-387

ization template and in-context learning format are388

included in Appendix D.389

As discussed in Section 3.2, we generate an aug-390

mented dataset to enable fair latent concept learn-391

ing. For Adult, we use sex as the sensitive attribute392

and distinguish relationship and marital status as393

the proxy-sensitive attributes, as some instances of394

the relationship attribute contain gender-specific395

vocabulary and the attribute marital status may 396

depend on values of relationship. To generate aug- 397

mented samples, we specify a hierarchical order 398

for the non-sensitive attributes and a separate or- 399

der for the sensitive and proxy-sensitive attributes 400

based on the analysis in (Quy et al., 2022). Us- 401

ing this attribute sampling technique, we generate 402

ñ = n number of unique augmented data samples 403

and construct our training dataset D̄ by combining 404

D and D̃. For the test dataset, we randomly sample 405

1000 instances with equal representation for major- 406

ity and minority groups for each experimental run. 407

Please refer to Appendix D for details regarding 408

the attribute hierarchy and dataset distributions. 409

4.2 Baselines 410

We compare FairICL against several baselines that 411

implement different demonstration selection ap- 412

proaches. Random refers to standard in-context 413

learning where k training examples are ran- 414

domly sampled as demonstrations for each test in- 415

stance (Brown et al., 2020). Balanced implements 416

in-context learning with equal representation for 417

each sensitive attribute and class label combination 418

in the demonstrations (Li et al., 2023b). Instruction 419

is used to evaluate an LLM for fair and unbiased de- 420

cisions based on manual prompting-based guidance 421

with a balanced demonstration set (Li et al., 2023b; 422

Atwood et al., 2024). Removal omits the sensitive 423

attribute from the demonstrations of Balanced (Li 424

et al., 2023b). As we serialize tabular data, we fur- 425

ther replace gendered pronouns with gender-neutral 426

ones in the training data. Counterfactual is another 427

heuristic technique and constructs demonstrations 428

using k/2 examples from the majority (minority) 429

group and the remaining examples by flipping the 430

sensitive attribute of the previously sampled exam- 431

ples (Li et al., 2023b). LatentConcept is the la- 432

tent concept variable-based approach from (Wang 433

et al., 2024) where the latent concept variables are 434

learned using the training dataset and then used to 435

select top-k demonstrations. 436

4.3 Experimental Setup 437

In the FairICL framework, we use LLaMA-2- 438

7B (Touvron et al., 2023) as the internal LLM 439

for fair latent concept learning and LLaMA-2- 440

13B (Touvron et al., 2023) as the external LLM for 441

inference. We fix the learning rate at 0.0001 for all 442

experiments and optimize the concept token embed- 443

dings over 5 epochs. For main experiments on the 444

Adult dataset, we fix the number of added tokens 445
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Table 1: Performance and fairness metrics of FairICL on the Adult dataset compared with baselines on LLaMA-2-7B
and LLaMA-2-13B as external LLMs and LLaMA-2-7B as the internal LLM for latent concept learning; bold
denotes best performance among fairness-aware methods and underline denotes best performance among all models

External LLM Method Acc(%)↑ F1(%)↑ |∆SP| ↓ |∆EO| ↓

LLaMA-2-13B

Random (Brown et al., 2020) 76.001.19 75.751.44 0.140.04 0.110.08
LatentConcept (Wang et al., 2024) 77.480.70 77.220.74 0.160.02 0.120.01

Balanced (Li et al., 2023b) 74.581.38 71.922.19 0.130.05 0.100.07
Counterfactual (Li et al., 2023b) 68.182.05 57.394.55 0.130.06 0.170.08

Removal (Li et al., 2023b) 75.720.98 76.482.16 0.140.03 0.090.02
Instruction (Li et al., 2023b) 76.201.09 77.211.61 0.200.07 0.150.06

FairICL 75.721.60 77.611.35 0.080.02 0.030.03

LLaMA-2-7B

Random (Brown et al., 2020) 69.920.87 62.801.25 0.080.02 0.080.04
LatentConcept (Wang et al., 2024) 70.041.69 64.792.42 0.170.02 0.170.04

Balanced (Li et al., 2023b) 63.306.33 44.0917.37 0.040.03 0.040.03
Counterfactual (Li et al., 2023b) 59.581.02 34.442.87 0.080.01 0.130.02

Removal (Li et al., 2023b) 64.606.25 47.9217.34 0.090.05 0.110.06
Instruction (Li et al., 2023b) 63.866.35 46.6414.86 0.070.06 0.090.05

FairICL 68.480.89 64.421.01 0.020.03 0.010.04

c at 10, and the number of demonstrations during446

training q at 2. We randomly sample k = 4 demon-447

strations from a top-ranked candidate set of m =448

100 training examples for each test query. We con-449

duct our experiments on NVIDIA A100 GPUs with450

40GB RAM. We report performance as an average451

of 5 runs with standard deviations for different test452

splits. For model utility, we report accuracy and453

F1 scores. To evaluate fairness, we compute com-454

monly used fairness metrics, namely, Statistical455

Parity (∆SP) (Dwork et al., 2012) and Equalized456

Odds (∆EO) (Hardt et al., 2016). Please refer to457

Appendix C for a detailed description and formula-458

tion of the fairness metrics.459

We also evaluate the learned fair latent concepts460

with LLaMA-2-7B as the external LLM. We in-461

vestigate the impact of FairICL hyperparameters462

on fair latent concept learning via its overall per-463

formance. To this end, we report results when464

varying q as {0, 2, 4} and evaluate the effect of ñ,465

i.e., the size of the generated dataset D̃, on Fair-466

ICL. To analyze the effectiveness of latent concept467

learning with an augmented dataset, we conduct an468

ablation study where the augmented samples are469

created via complete random sampling as opposed470

to hierarchy-based sampling. We also evaluate the471

learned fair latent concepts directly by prepending472

them to test queries during inference. Finally, we473

vary k among {2, 4, 6, 8} to analyze the influence474

of ICL demonstration size on inference results.475

4.4 Results476

Model Performance and Comparison with Base-477

lines We report results for the Adult dataset from478

inference with LLaMA-2-7B and LLaMA-2-13B 479

in Table 1. Firstly, we observe the performance of 480

Random, where LLaMA-2-13B has increased util- 481

ity compared to LLaMA-2-7B, undoubtedly due 482

to the model’s complexity. However, the fairness 483

metrics ∆SP and ∆EO are larger, indicating a sig- 484

nificant presence of bias in the outputs generated by 485

LLaMA-2-13B. With the LatentConcept method, 486

which optimizes demonstration selection for utility, 487

performance is improved, but the bias is further am- 488

plified for both 7B and 13B models. These results 489

motivate our study of bias in LLMs specifically for 490

tabular classification and methods that can promote 491

fairness in a resource-efficient manner. 492

In Table 1, we observe that FairICL can notice- 493

ably improve SP and EO measures for LLaMA- 494

2-7B compared to the Random and LatentCon- 495

cept methods while achieving comparable perfor- 496

mance. Similarly, FairICL significantly reduces 497

unfairness for LLaMA-2-13B with minimal loss 498

of utility. Note that the latent concept variables 499

are learned using the smaller LLaMA-2-7b as the 500

internal model, and the selected demonstrations are 501

utilized to construct inference prompts for LLaMA- 502

2-13b. This shows that FairICL can generalize 503

the fair demonstration selection process to larger 504

LLMs, thus making the method resource-efficient. 505

Since the external LLMs are used only for few-shot 506

inference, FairICL also enables generalization to 507

black-box LLMs. 508

We also evaluate the effectiveness of FairICL 509

compared to multiple fair demonstration selection 510

baselines. As discussed in Section 4.2, these meth- 511
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(a) Performance metrics (b) Fairness metrics

Figure 2: FairICL performance on LLaMA-2-13B for varying number of demonstrations (q) during learning

(a) Performance metrics (b) Fairness metrics

Figure 3: FairICL performance with LLaMA-2-13B for varying number of demonstrations (k) during inference

ods address the LLM fairness issue via heuristic512

approaches. For LLaMA-2-7B, the fair baselines513

reduce some unfairness compared to LatentCon-514

cept but incur a significant loss in performance.515

Compared to Random, only the Balanced approach516

shows a notable reduction in SP and EO. FairICL,517

however, achieves the best fairness results without518

negatively affecting utility. For LLaMA-2-13B, the519

baselines mostly maintain performance but do not520

achieve fair outcomes. In contrast, FairICL shows a521

large decline in fairness metrics with similar or im-522

proved accuracy and F1. Our results for the COM-523

PAS and LawSchool show similar trends of lower524

fairness metrics without utility losses (Appendix E).525

For a more granular analysis in the appendix, we526

also show how FairICL gradually reduces fairness527

metrics as training progresses while maintaining528

utility. These results demonstrate that decorrelation529

of sensitive attributes and outcomes helps learn fair530

latent concepts, resulting in demonstration selec-531

tion that promotes fair predictions.532

Number of Demonstrations We investigate the533

influence of the number of demonstrations during534

latent concept learning, denoted by q, and during535

inference, denoted by k, on the overall performance536

of FairICL with the Adult dataset. First, we vary537

q among {0, 2, 4} and report results in Fig. 2 for 538

LLaMA-2-13B while keeping the other parameters 539

fixed at c = 10 and k = 4. From Fig. 2, we ob- 540

serve that accuracy and F1 remain fairly unchanged 541

across different values of q. However, SP and EO 542

are noticeably higher at q = 4, with the best met- 543

rics observed at q = 2. Since the q demonstrations 544

for training are obtained from the original dataset 545

containing biased examples, training prompts con- 546

structed with more biased samples negatively af- 547

fect fairness during inference. In contrast, fewer 548

demonstrations do not affect model utility as the 549

augmented samples preserve useful correlations 550

from the original dataset. 551

We then vary k among {2, 4, 6, 8} for LLaMA- 552

2-13B with fixed q = 2 and c = 10, and include the 553

results in Fig. 3. Here, the fairness metrics demon- 554

strate a sharper decline as the number of demonstra- 555

tions during inference increases. We also observe 556

a slight decrease in utility as the number of demon- 557

strations increases, most likely due to the trade-off 558

between utility and fairness. Since the k demon- 559

strations are obtained from the top-m training ex- 560

amples ranked by the fair latent concept variable, 561

having a larger k allows the inference prompt to 562

guide the LLM towards fairer predictions. 563
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(a) Performance metrics (b) Fairness metrics

Figure 4: Performance and fairness metrics of FairICL with LLaMA-2-13B for different sizes of D̃

Table 2: Ablation results on LLaMA-2-7B

Method Acc(%)↑ F1(%)↑ |∆SP| ↓ |∆EO| ↓

FairICL 68.480.89 64.421.01 0.020.03 0.010.04
FairICL-LC 75.961.20 70.701.67 0.060.01 0.080.02
FairICL-R 58.580.62 31.720.94 0.010.01 0.000.03

Ablation Study We investigate the role of data564

augmentation and latent concept learning by im-565

plementing two variations of FairICL. FairICL-LC566

directly evaluates the learned latent concepts as567

we prepend them to test prompts containing k ran-568

domly sampled demonstrations. FairICL-R adopts569

a random sampling mechanism for all attributes to570

create the augmented dataset and follows an infer-571

ence procedure similar to FairICL. In other words,572

the generated dataset does not preserve the useful573

correlation between the non-sensitive attributes and574

outcomes. We report ablation results in Table 2575

for LLaMA-2-7B since FairICL-LC can be evalu-576

ated only for the internal LLM whose vocabulary577

contains additional tokens corresponding to the la-578

tent concept variable. FairICL-LC achieves the579

best accuracy and F1 score, indicating that the la-580

tent concept learns information relevant to the task.581

Also, the low fairness metrics imply that training582

with the augmented dataset prompts the latent con-583

cept to favor fair predictions. FairICL-R achieves584

almost ideal fairness metrics but does not maintain585

model accuracy as the randomly generated dataset586

removes even the useful correlation between non-587

sensitive attributes and labels. FairICL, however,588

preserves relevant information in D̃, thus achieving589

fair and accurate predictive results.590

Size of Augmented data In this section, we con-591

duct a sensitivity analysis of ñ, the size of D̃, to592

evaluate the influence of the augmented dataset593

on FairICL’s performance. We vary ñ as {0, 25,594

50, 100}% of its original size of 30,000 generated 595

samples in the Adult dataset. We fix the other pa- 596

rameters q at 2, c at 10, and k at 10 to perform latent 597

concept learning and obtain results for LLaMA-2- 598

13B shown in Fig. 4. Note that the ñ = 0% setting 599

corresponds to the LatentConcept baseline method 600

in Table 1. From the results, we notice that the 601

accuracy and F1-scores are generally unchanged 602

when more augmented examples are included in 603

the training prompt. This indicates that the data 604

augmentation process in FairICL does not nega- 605

tively affect an LLM’s predictive performance. We 606

further observe significant drops in the fairness met- 607

rics as the size of D̃ used for latent concept learning 608

is increased. This demonstrates the positive impact 609

of the data augmentation strategy in FairICL. 610

5 Conclusion 611

We investigated the issue of fairness in large lan- 612

guage models during in-context learning for tabular 613

data classification. We focused on a latent concept 614

learning framework that optimizes the demonstra- 615

tion selection process for improved model utility 616

via latent concept variables learned from a training 617

dataset. We hypothesized that learning latent con- 618

cepts from a biased dataset can cause the selection 619

of biased demonstrations, resulting in unfair pre- 620

dictions, and empirically verified this phenomenon. 621

To tackle this issue, we explored resource-efficient 622

ways to influence LLM outputs without modifying 623

model parameters and presented a fairness-aware 624

latent concept learning framework, FairICL, that 625

incorporates data augmentation to enable learning 626

concept tokens that promote fairness while preserv- 627

ing task-relevant contextual information. Our ex- 628

perimental analysis showed that FairICL can effec- 629

tively mitigate unfairness without causing signifi- 630

cant tradeoffs in model utility for multiple datasets. 631
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Limitations632

We acknowledge certain limitations of the proposed633

framework. As FairICL utilizes a latent concept634

learning framework, it requires white-box access to635

a small LLM and resources to train latent variables.636

Our framework allows the generalization of the se-637

lected demonstrations, circumventing costly access638

to larger LLMs, but optimizing smaller LLMs may639

also incur significant resources. Also, FairICL may640

not satisfy other fairness goals as the framework641

does not specifically encode fairness constraints.642

However, results indicate FairICL improves com-643

monly targeted statistical parity and equal opportu-644

nity metrics.645

Broader Impacts646

In this study, our focus is to achieve fairness in647

LLM outputs in a resource-efficient manner while648

maintaining predictive utility. The datasets used for649

evaluation are publicly available and implemented650

within their intended use. Our usage of publicly651

available pre-trained LLMs also adheres to the as-652

sociated licenses. We hope our study can further653

the research and literature on methods to ensure654

fairness in LLMs.655
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A Related Work 799

Fairness in LLMs 800

As LLM integration into decision-making systems 801

continues to rise, it becomes essential for them to 802

be evaluated from a fairness perspective. Multi- 803

ple works have highlighted discriminatory behav- 804

ior in LLM outputs originating from societal bi- 805

ases contained in pre-training data (Abid et al., 806

2021; Wang et al., 2023) or under-representation of 807

minority population (Gallegos et al., 2023). For 808

instance, Huang et al. (2021) analyzed implicit 809

gender-based stereotypes in LLM outputs via com- 810

monsense inference. Wang et al. (2023) evaluated 811

the influence of normal and adversarial prompts 812

on bias in GPT models. Abid et al. (2021) demon- 813

strated unfairness in LLM outputs with respect to 814

religious groups. 815

Following these works, the study of LLM fair- 816

ness has also extended to tabular data inference 817

with pre-trained language models (Li et al., 2023b; 818

Liu et al., 2023; Chhikara et al., 2024; Hu et al., 819

2024; Atwood et al., 2024). These works focus 820

on LLM inference with in-context learning and 821

formulate ways to select demonstration examples 822

while promoting fairness or ensuring representa- 823

tion for minority groups. Li et al. (2023b) evaluated 824

multiple heuristic methods of selecting demonstra- 825

tions and a guardrail technique instructing LLM 826

to be fair in its decision-making. Liu et al. (2023) 827

implemented label-flipping for demonstration ex- 828

amples and achieved fair predictions with signifi- 829

cant utility loss. Chhikara et al. (2024) evaluated 830

LLM’s familiarity with commonly known fairness 831

notions and utilized a similarity-based demonstra- 832

tion selection approach. (Hu et al., 2024) aimed to 833

increase minority group representation in demon- 834

strations and selected demonstrations based on cor- 835

responding validation set performance. (Atwood 836

et al., 2024) explored remediation techniques for 837

fairness and compared prompt-based techniques 838

with in-processing and post-processing methods. 839

Similar to some earlier works, we aim to ad- 840

dress bias in LLM predictions in tabular data by 841

10



selecting demonstration examples that promote fair-842

ness. However, we utilize the latent concept vari-843

able model and present a framework to learn fair844

representations of the latent concept. The demon-845

strations selected by the latent concept are used846

for ICL to obtain fair outcomes while maintaining847

predictive utility.848

B Algorithm849

Algorithm 1 Fair Latent Concept Learning and
Demonstration Selection

Input: Training dataset D, generated dataset D̃,
test query x, LLM M, number of tokens
c, learning rate λ, training epochs T , num-
ber of demonstrations for training q, number
of demonstration candidates m, number of
demonstrations for inference k

Output: k demonstrations for test query x
/* Constructing Augmented Data */

1: for (xi, yi) ∈ {D ∪ D̃} do
2: Sample (x1, y1), · · · , (xq, yq) from D
3: x̄i = (x1, y1, · · · , xq, yq, xi)
4: Add (x̄i, yi) to D̄
5: end for

/* Learning Fair Latent Concept */
6: Add c new tokens to M’s vocabulary repre-

senting θf
7: FreezeM’s pre-trained parameters and initial-

ize Wθf

8: for t = 1 . . . T do
9: for (x̄i, yi) ∈ D̄ do

10: ŷi = PM(yi|θ̂f , xi)
11: end for

12: L = −
n+ñ∑
i=1

logPM(yi|θ̂f , xi)

13: Ŵθf ← Ŵθf − λ ∂L
∂Wθf

14: end for
/* Selecting demonstrations */

15: for (xi, yi) ∈ D do
16: Calculate likelihood as PM(θ̂f |xi, yi)
17: end for
18: Sort D by likelihood
19: Select top-m (x, y) pairs as demonstration can-

didates
20: Randomly choose k demonstrations from can-

didate set
21: Return Demonstrations for test sample x

C Fairness Metrics 850

Here, we briefly describe two fairness notions used 851

to determine LLM’s bias w.r.t the majority and 852

minority groups represented by sensitive attribute 853

a when predicting a binary outcome variable y. 854

Statistical Parity Statistical parity (Dwork et al., 855

2012) requires the predictions to be independent of 856

the sensitive attribute and can be evaluated as 857

∆SP = P (ŷ|s = 0)− P (ŷ|s = 1). (7) 858

Equal Opportunity Equal opportunity (Hardt 859

et al., 2016) requires that for members of majority 860

and minority groups, the probability of being as- 861

signed a positive outcome is the same. We evaluate 862

equal opportunity using group-based TPRs as 863

∆EO = P (ŷ = 1|y = 1, s = 0) (8) 864

− P (ŷ = 1|y = 1, s = 1). (9) 865

For datasets where the negative outcome is the fa- 866

vorable one, we evaluate ∆EO as the difference in 867

group-based TNRs. 868

D Datasets 869

D.1 Additional Details 870

We evaluate FairICL on three tabular datasets used 871

to benchmark fairness in machine learning: Adult 872

Income (Becker and Kohavi, 1996), COMPAS (Lar- 873

son et al., 2016), and LawSchool (Quy et al., 2022). 874

The respective binary prediction tasks are to pre- 875

dict whether an individual has an annual income 876

greater than 50,000 US dollars based on demo- 877

graphic and economic attributes, predict the risk of 878

recidivism based on a defendant’s screening survey 879

responses, and predict whether a student passes the 880

bar exam based on their admission records. We 881

consider sex as the sensitive attribute for Adult 882

and race for COMPAS and LawSchool. As dis- 883

cussed prior, we define a hierarchical order for 884

the attributes derived from (Quy et al., 2022); the 885

respective orders are shown in Fig. 5. As COM- 886

PAS and LawSchool datasets do not contain proxy- 887

sensitive attributes, we sample only the sensitive 888

attribute independently. We generate ñ = n number 889

of augmented samples for both datasets; the statis- 890

tics are included in Table 3. We also serialize these 891

tabular datasets in a templated manner shown in 892

Figures 6 - 8. 893
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D.2 Choice of Datasets and Models894

Pre-trained LLMs may already be familiar with the895

Adult, COMPAS, and LawSchool datasets which896

could lead to biased experiment results. To ver-897

ify this, we prompt the models used in our work,898

i.e, Llama-2-7B and Llama-2-13B, and test their899

familiarity with these datasets. Example outputs900

for the Adult dataset with Llama-2-13B are shown901

in Fig. 9. We obtained non-meaningful outputs902

for Adult and Law School from both models. The903

models, however, provided details about COMPAS,904

most likely due to multiple news articles available905

online discussing it. From the outputs for Adult906

and LawSchool, we conjecture that Llama-2-7B907

and Llama-2-13B do not suffer from data leakage908

for these datasets, as the models have not memo-909

rized specific information and cannot extract mean-910

ingful information related to these datasets during911

inference. Therefore, our observations reflect the912

influence of in-context examples used in inference913

and/or any bias originating from the LLM.914

E Additional Results915

E.1 FairICL performance over training916

epochs917

We analyze the performance of FairICL as latent918

concept learning progresses over training epochs919

and present results in Fig. 10 for inference on920

LLaMA-2-13B with Adult dataset. We fix the pa-921

rameters q at 2, c at 10, and k at 4. We observe922

that the accuracy and F1 experience a small de-923

cline after the first epoch but remain fairly stable924

thereafter. SP and EO on the other hand have a de-925

creasing trend as the latent concepts are further op-926

timized. This indicates that FairICL effectively al-927

lows the concept tokens to learn fairness-promoting928

context from the augmented examples and utility-929

preserving information from the original training930

samples. This ultimately leads to a demonstration931

selection process that improves both fairness and932

performance in LLMs.933

E.2 Results on COMPAS and LawSchool934

Datasets935

We train a local LLaMA-2-7B model with hyperpa-936

rameters q=2 and c=10 for latent concept learning937

and report FairICL experiment results with k = 4938

demonstrations during inference using LLaMA-2-939

13B as the external model. The results for FairICL940

and baseline methods are included in Table 4. Note941

that for the COMPAS dataset, the negative outcome 942

is favorable so we report EO in terms of TNR. 943

In Table 4 for the COMPAS dataset, FairICL 944

achieves better fairness metrics than the Random 945

and LatentConcept baselines while maintaining the 946

utility scores. Compared to heuristic fairness base- 947

lines, FairICL achieves smaller values for SP and 948

EO with comparable or even higher utility metrics. 949

For the LawSchool dataset, random demonstration 950

selection results in seemingly low fairness metrics, 951

but we note that the utility metrics, especially the 952

F1 score, are quite low. We conjecture this per- 953

formance to the highly imbalanced nature of the 954

training dataset from which the demonstrations are 955

randomly sampled. This assumption is further sup- 956

ported by the results obtained for the Balanced 957

method which randomly selects demonstrations 958

with equal representation for each class and sensi- 959

tive attribute. This method significantly improves 960

the F1 score compared to random selection. How- 961

ever, we also observe a noticeable increase in both 962

SP and EO metrics for this and other baseline meth- 963

ods including the LatentConcept method. On the 964

other hand, FairICL significantly improves these 965

metrics while obtaining the highest F1 metric. Al- 966

though the SP and EO values of FairICL are consid- 967

erably high, we note that our method achieves the 968

lowest fairness metrics among the methods target- 969

ing fairness and significantly improves SP and EO 970

compared to LatentConcept. These results indicate 971

that FairICL maintains the best trade-off between 972

utility and fairness across different datasets. 973
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(a) Adult dataset

(b) COMPAS dataset

(c) LawSchool dataset

Figure 5: Hierarchical order of attributes for augmented data generation

Table 3: Dataset statistics

Dataset Label Train (D) Augmented (D̃) Test (Dt)

Priv. Unpriv. Priv. Unpriv. Priv. Unpriv.

Adult Positive 6363 1105 7574 7468 250 250
Negative 13897 8635 7534 7424 250 250

COMPAS Positive 654 1333 1061 1089 125 125
Negative 1036 1199 1042 1030 125 125

LawSchool Positive 11281 527 3263 3314 125 125
Negative 965 311 3309 3198 125 125

### Instruction: Based on the profile description of an individual recorded in the 1994 U.S. census, answer the question
about their income.

### Profile: This person is a 38 years old female. She has attended a professional school and works in the pri-
vate sector. Her occupation is in professional specialty. She works 50 hours per week. She had a capital gain of 0 and a
capital loss of 0 last year. She has never been married. She is not related to the other person in her household.

### Question: Does this person have an income of more than 50,000 U.S. dollars?
### Answer: Yes
...
### Profile: This person is a 28 years old male. He has an academic associate’s degree and works in local government. His
occupation is in protective services. He works 40 hours per week. He had a capital gain of 0 and a capital loss of 0 last year.
He is married to a civilian. He is the husband of the other person in his household.

### Question: Does this person have an income of more than 50,000 U.S. dollars?
### Answer:

Figure 6: Serialization and prompt format for tabular Adult Income dataset.
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### Instruction: The following description of a criminal defendant includes demographic information and crime statistics. It
also includes a potential risk computed based on the defendant’s response to a COMPAS screening survey. Using the given
information, determine whether the defendant would recidivate in two years.

### Description: The defendant is a 26 years old Caucasian male. The defendant is charged with a felony. The
defendant was arrested 1 day before the screening date and has stayed in jail for 0 days. The defendant has previously
committed 0 crimes and 0 crimes as a juvenile. Based on the screening, the defendant has a low risk of recidivating.
### Question: Will the defendant recidivate in two years?
### Answer: No
...
### Description: The defendant is a 40 years old African-American male. The defendant is charged with a misdemeanor.
The defendant was arrested 1 day before the screening date and has stayed in jail for 0 days. The defendant has previously
committed 2 crimes and 0 crimes as a juvenile. Based on the screening, the defendant has a low risk of recidivating.
### Question: Will the defendant recidivate in two years?
### Answer:

Figure 7: Serialization and prompt format for tabular COMPAS dataset.

### Instruction: Based on the information provided about a law school student, determine whether the student passes the bar
exam.

### Profile: The student is white and male. The student’s family income falls into the third income bracket. The
student will work full-time. The student had an undergraduate GPA of 3.8. The student attended a fifth tier law school. In law
school, the student had a GPA of -0.32 in the first year and a cumulative GPA of 0.18. In first year of law school, the student
was in the fourth decile and in third year of law school, the student was in the sixth decile. The student had an LSAT score of
44.0.
### Question: Does the student pass the bar exam on the first try?
### Answer: Yes
...
### Profile: The student is white and female. The student’s family income falls into the fourth income bracket. The student
will work full-time. The student had an undergraduate GPA of 2.3. The student attended a second tier law school. In law
school, the student had a GPA of 0.04 in the first year and a cumulative GPA of -0.55. In first year of law school, the student
was in the fifth decile and in third year of law school, the student was in the fourth decile. The student had an LSAT score of
33.0.
### Question: Does the student pass the bar exam on the first try?
### Answer:

Figure 8: Serialization and prompt format for tabular LawSchool dataset.

Table 4: Performance and fairness metrics of FairICL on COMPAS and LawSchool compared with baselines; bold
denotes best performance among fairness-aware methods and underline denotes best performance among all models

Dataset Method Acc(%)↑ F1(%)↑ |∆SP| ↓ |∆EO| ↓

COMPAS

Random (Brown et al., 2020) 61.520.59 57.501.88 0.170.03 0.160.07
LatentConcept (Wang et al., 2024) 56.000.60 65.380.52 0.130.02 0.150.03

Balanced (Li et al., 2023b) 60.681.00 57.985.15 0.160.04 0.120.03
Counterfactual (Li et al., 2023b) 61.280.76 57.185.48 0.150.04 0.110.02

Removal (Li et al., 2023b) 58.521.91 61.093.81 0.180.05 0.180.04
Instruction (Li et al., 2023b) 61.602.17 60.553.34 0.170.05 0.150.05

FairICL 57.322.11 66.111.29 0.100.02 0.110.04

LawSchool

Random (Brown et al., 2020) 55.160.99 25.073.00 0.130.03 0.190.04
LatentConcept (Wang et al., 2024) 59.301.79 59.831.34 0.490.03 0.510.03

Balanced (Li et al., 2023b) 61.402.01 60.515.39 0.390.04 0.390.06
Counterfactual (Li et al., 2023b) 56.961.85 53.612.84 0.470.06 0.480.13

Removal (Li et al., 2023b) 60.641.60 56.474.05 0.410.03 0.490.05
Instruction (Li et al., 2023b) 60.481.04 61.562.15 0.430.05 0.440.08

FairICL 55.761.82 65.571.27 0.360.03 0.290.04
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Prompt: Can you tell me what the Adult Income dataset is?

Response: It has something to do with Medicaid. I tried to check that info out. I also checked online to see
if Medicaid has a website.anyone know of a specific website for each County/State? Also, I believe they use some-
thing called the 2000 Census Data to provide their numbers. I know the Census Data has a ton of info on it. It’s hard to find . . .

Prompt: The Adult Income dataset is

Response: 6-months lagged and reports the income for each person in a household in the previous calendar year.
The dataset includes the median income, percent change over time, and the percent of income that is earned. The median
income is the amount at which half of households earn more, and half earn less. The percentage year over year change is the
year-over-year difference between median incomes in the current reporting period and the prior reporting period . . .

Prompt: Predict whether annual income of an individual exceeds $50K/yr based on census data. Also known as
"Census Income" dataset.

Response:
import numpy as np
from sklearn import svm
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error, roc_auc_score
# DataFrame
df = pd.read_csv(input_data_path, index_col=0)
# split data into training and testing data
X_trn, X_test, y_trn, y_test = train_test_split(df, df["Income"],
test_size=0.2, random_state=1) . . .

Figure 9: Example outputs from prompting LLaMA-2-13B with queries about the Adult dataset.

(a) Performance metrics (b) Fairness metrics

Figure 10: FairICL performance with LLaMA-2-13B over training epochs
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