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Abstract

The emerging in-context learning (ICL) ability
of large language models (LLMs) has prompted
their use for predictive tasks in various domains
with different data types, including tabular data,
facilitated by serialization methods. However,
with increasing applications in high-stakes do-
mains, it has been shown that LLMs can in-
herit social bias and discrimination from their
pre-training data. In this work, we investi-
gate inherent bias in LLMs during in-context
learning with tabular data. We focus on an
optimal demonstration selection approach that
utilizes latent concept variables for resource-
efficient task adaptation. We design data aug-
mentation strategies that reduce the correla-
tion between predictive outcomes and sensi-
tive variables, helping promote fairness dur-
ing latent concept learning. We utilize the
learned concept to select demonstrations and
obtain fair predictions. The latent concept vari-
ables are learned using a smaller internal LLM
and generalized to larger external LLMs. We
empirically verify that the fair latent variable
approach improves fairness results on tabular
datasets compared to multiple heuristic demon-
stration selection methods. Code and data
are available at https://anonymous.4open.
science/r/fairicl-AF6D.

1 Introduction

LLMs have demonstrated immense capabilities in
performing various natural language processing
(NLP) tasks. A factor contributing to widespread
LLM usage is their in-context learning (Brown
et al., 2020) ability, which allows adaptation to
downstream tasks without costly training or fine-
tuning. With a few demonstration examples, ICL
equips LLMs with the ability to infer task-specific
context and perform inference with impressive util-
ity. Recent research has also explored the applica-
bility of LLMs on tabular data through serialization
methods that facilitate ICL by transforming the

data into natural language formats (Hegselmann
et al., 2023). With the increasing integration of
LLM inference in domains such as healthcare (Wu
et al., 2023), finance (Li et al., 2023a), and the le-
gal sector (Sun, 2023) with various data formats, it
has become crucial to scrutinize their use from a
trustworthiness perspective.

LLMs have been shown to exhibit discrimina-
tory behavior in their outputs due to stereotypes
and prejudices inherent in pre-training data (Abid
et al., 2021; Basta et al., 2019). When used for de-
cisive tasks, LLMs may mirror social inequalities
and biases from the real world, leading to harm-
ful consequences. Furthermore, in ICL settings
with tabular data classification, recent research has
empirically verified the presence of bias in LLM
outputs. Liu et al. (2023) investigated unfairness in
ICL with tabular data by flipping the labels of in-
context demonstration examples and observed bias
reduction but with significant trade-offs in model
utility. Li et al. (2024) similarly implemented mul-
tiple heuristic methods for demonstration selec-
tion based on sensitive attributes and label distribu-
tion in the demonstrations. Hu et al. (2024) discov-
ered that increasing the representation of minority
groups and underrepresented labels in demonstra-
tions helps to improve fairness at some cost to util-
ity. They further developed a strategy that uses
clustering to extract representative samples and se-
lects demonstrations from the extracted samples
based on their performance on a validation set.

In this work, we similarly explore optimal
demonstration selection for ICL to promote fair-
ness in LLM predictions, but utilize the latent con-
cept variable mechanism (Wang et al., 2024) to
achieve fair in-context learning. Wang et al. (2024)
formulated ICL via a Bayesian perspective and
theorized that inference with a finite number of
demonstrations selected using latent concept ap-
proximates the optimal Bayes predictor. The latent
concept is learned from an observed set of task-
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specific training data with a small LLLM and used
to obtain demonstrations that can be generalized to
larger LLMs for improving performance.

Motivated by the influence of latent concepts on
model performance, we formulate a fair demon-
stration selection approach for in-context learning,
dubbed as FairICL. As the latent concepts are
learned from an observed set of task-specific ex-
amples, we conjecture that the training data distri-
bution may affect the quality of the learned latent
concepts and ultimately the model predictions from
both accuracy and fairness perspectives. There-
fore, in FairICL, we incorporate an effective data
augmentation technique that promotes decorrela-
tion between the sensitive attributes and the out-
come variables by randomizing the relationship
between them. This augmentation allows us to
obtain a fairer representation of the task-specific
data used to learn the fair latent concept variables
while preserving relevant information among non-
sensitive attributes and the label. We then utilize
the learned concepts to select demonstrations from
the observed training examples such that the prob-
ability of observing the learned latent variable is
maximized when conditioned on the corresponding
example. The selected demonstrations are used to
perform in-context learning with external LLMs
larger than the one used for learning. This frame-
work can support private businesses or organiza-
tions to obtain fair LLM predictions on their local
data without having to train/fine-tune large models
with fairness objectives. We empirically validate
FairICL on real-world tabular datasets known to
represent social biases and demonstrate that Fair-
ICL can effectively achieve fairness goals while
maintaining predictive utility. We compare the per-
formance of FairlCL with multiple heuristic ap-
proaches and conduct a comprehensive analysis of
the influence of different hyperparameters. Our
empirical results show that FairICL can general-
ize demonstration selection to external LL.Ms and
outperform baseline methods.

2 Preliminaries

2.1 In-Context Learning

The in-context learning (Brown et al., 2020) abil-
ity of LLMs has prompted multiple works that
investigate how LLMs learn from demonstration
examples for certain tasks without being explic-
itly trained. Let us denote a pre-trained LLM as
M with parameters W. Let D = {(z;,v:)}1-,

denote a tabular dataset observed for an arbitrary
task where x; € X represents attributes of the i-th
instance and y; € ) its corresponding outcome.
Assume a; € A denotes its sensitive attribute. For
in-context learning, the LLM is provided with k
examples from D as demonstrations to guide the
model in structuring its response for a test example
x. Conditioned on a task description inst, a set of
sampled demonstrations {(z1,41), - , (Tk, Yx) }
and a test query x, the prediction output g from M
can be formally formulated as

Z; — M(inStvg(x17y1)7 e 7g(xk7yk)ag(x))a

demonstration examples

ey
where g(xy, yx) denotes a prompt function (e.g., a
template) that transforms the k-th demonstration
into natural language text. To simplify, we omit the
task description and prompt function thereafter and
represent the output probability as

PM(nylayl)) 7(xkayk))wi) (2)

ICL performance has been found to be significantly
influenced by demonstration examples and their or-
dering (Liu et al., 2021; Rubin et al., 2021; Su
et al., 2022; Lu et al., 2021; Ma et al., 2024). Con-
sequently, recent works explore effective demon-
stration selection based on similarity to query in-
put (Liu et al., 2021; Rubin et al., 2021; Su et al.,
2022), entropy of predicted labels (Lu et al., 2021),
and low predictive bias (Ma et al., 2024).

2.2 Latent Concept Learning

An essential research question in in-context learn-
ing is effective demonstration selection to enable
optimal downstream performance. Towards this ob-
jective, (Xie et al., 2021) put forth an interpretation
of ICL based on latent concept variables, conclud-
ing that pre-trained models learn latent concepts
during next-token prediction training and infer a
shared latent concept among demonstrations used
for inference. They show that under assumptions
of a hidden Markovian data generation process, dis-
crete latent concept tokens, and an approximately
infinite number of demonstrations, in-context learn-
ing is an optimal predictor. Similarly, (Wang et al.,
2024) studied latent concepts in LLMs but under a
more general assumption of continuous latent con-
cepts and that the data generation process is gov-
erned by an underlying causal mechanism given as
X =Y+ 0orY — X < 0 where X represents
the input, Y the output, and 6 the latent concept
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Figure 1: Overview of FairICL including steps from A to D, A: A hierarchical attribute sampling approach is
proposed to craft synthetic samples and create augmented training data D; B: Samples in D are utilized to learn
latent concept tokens with an internal LLM; C: A corresponding likelihood score is computed for each sample in D,
and all samples are then ranked to choose k£ demonstrations from top-m candidates; D: Selected demonstrations and
test input x are used to prompt an external LLM to get prediction .

variable. Then, in-context learning can become an
optimal predictor with a finite number of demon-
strations chosen using the latent concept variable
0. To find the optimal value of § when considering
the X — Y < 6 direction, (Wang et al., 2024)
formulated a latent concept variable framework for
learning task-specific concept tokens that capture
sufficient information for next-token prediction by
minimizing a loss jointly conditioned on X and the
learned 6 as

I(z,y;0) = —log Pm(yld, z), 3)

where 0 represents the learned latent concept vari-
able, z denotes an input token sequence and y the
discrete target variable. In practice, g is optimized
by adding new tokens to M’s vocabulary with cor-
responding embedding vectors, which we refer to
as Wy. During training, Wy is updated using the
loss defined above. The learned 6 is then used to
select k most suitable demonstrations based on the
likelihood of observing the concept tokens when
conditioned on the demonstration pairs formulated
as Pv(0|(xi,9i), - -+, (Tk, yg)). Assuming inde-
pendence among the sampled demonstrations, the
top-ranked examples are obtained based on latent
concept likelihood for individual examples,
argmax Py (0], ;). “4)
(wi,yi)€D
The selected demonstrations are used to perform
in-context learning and are further generalizable
for inference with LLMs larger than the ones used
to learn 6.

3 Fair Latent Concept Learning

LLMs have been shown to replicate bias and preju-
dice likely present in their pre-training corpus. Pro-

viding LLMs with biased examples as demonstra-
tions during ICL may further corroborate the pre-
diction bias, potentially leading to discriminatory
outcomes in classification tasks. However, filtering
pre-training data and re-training/fine-tuning LLMs
on unbiased data is often practically infeasible due
to resource constraints. Moreover, removing dis-
crimination from pre-training data may not entirely
address the unfairness resulting from biased demon-
strations during inference. Here, we focus on the
demonstration selection process, which can guide
LLM predictions by providing task-specific con-
textual information. Researchers have empirically
shown that varying demonstrations can affect the
bias and fairness outcomes of LLMs (Hu et al.,
2024; Ma et al., 2024). Furthermore, the propor-
tion of samples from minority and majority groups
in demonstrations affects the trade-off between fair-
ness and performance metrics (Hu et al., 2024).

3.1 Problem Setup

In the latent concept variable model, demonstra-
tions are selected based on the likelihood of observ-
ing latent concept variable 6 (Wang et al., 2024).
Generally, the concept variables capture format and
task information and can help improve in-context
learning performance. However, the quality of the
learned latent concept variables highly depends
on the observed data D. We hypothesize that us-
ing a biased dataset D to learn the latent concept
can lead to selecting demonstrations that favor the
majority group. For instance, consider a dataset
containing a comparatively higher number of pos-
itive/advantaged class instances for the majority
group, reflecting real societal bias. The latent con-
cept variables may associate the positive outcome



with the majority class, as this biased prediction
can lead to better prediction accuracy owing to im-
balanced label distributions. Consequently, demon-
strations selected using the latent concept variables
can reinforce the bias originating from the dataset.
In the following, we propose FairICL, a fair latent
concept learning framework with data augmenta-
tion to mitigate unfairness in ICL predictive out-
comes arising from demonstration selection. An
overview of the method is presented in Fig. 1.

3.2 Constructing Augmented Training Data

To ensure fair predictive outcomes, we consider the
correlation between the sensitive attribute a and
the outcome variable y in the dataset D used to
learn the latent concept variable 6. We conjecture
that learning latent concept variables from an unbi-
ased dataset can prevent 6 from incorporating bias
into the task-specific contextual information that
improves ICL performance. To this end, we design
and implement a data pre-processing strategy on D
aimed at decorrelating the sensitive attribute and
the label. Assuming we obtain a dataset D that pre-
serves task-relevant information from D and not
the biased correlation between a and y, we then
construct an augmented training dataset D from
both D and D to promote fairness while learning
task-specific contextual information in a fair rep-
resentation of latent concepts 6 ¢. Note that our
focus is on LLM classification with ICL on tabu-
lar data, which is the most commonly used data
representation in fairness literature.

For hierarchical attribute sampling, we define an
order for all non-sensitive attributes and construct
a synthetic sample based on the order. First, we
randomly sample a label from a uniform distribu-
tion and obtain a subset of D conditioned on the
sampled label value. We then uniformly sample
the first non-sensitive attribute in the ordered list
from the values occurring in the subset. We further
constrain the subset to include only the sampled
value of the first non-sensitive attribute, and sample
the second non-sensitive attribute uniformly, and
so on. To populate the sensitive attribute value,
we randomly sample it from a uniform distribu-
tion independent of the label and any non-sensitive
attributes. Furthermore, if D contains any proxy-
sensitive attributes that may allude to the sensitive
attribute, we condition its sampling on the sensitive
attribute value to promote complete decorrelation.
In this manner, we generate D = {(x;,y;)}7_, as
an unbiased representation of D.

We then construct our augmented training
dataset, which contains n + 7 instances, and
each augmented instance contains ¢ demonstra-
tion examples from D and one query sample
from either D or D to facilitate in-context learn-
ing. Formally each instance takes the form
((z1,y1),- -+, (zq,¥q), x,y) Which we denote as
(Z,y) thereafter. We also denote this formatted
dataset containing augmented samples as D =
{Z;, v }74". The following discusses how we learn
the fair latent concept variables from D.

3.3 Learning Fair Latent Concept Variable

We learn the latent concept variables by implement-
ing prompt tuning to optimize a set of new token
embeddings that is prepended to each training in-
put token sequence (Wang et al., 2024). More im-
portantly, we utilize the augmented dataset D to
construct input sequences for learning 6 to pro-
mote improvements in fairness and utility simulta-
neously. Directly optimizing ¢y as a sequence of
words is inefficient due to the discrete nature of text
space. Typically, large language models (LLMs)
process inputs as sequences of tokens, which are
subsequently transformed into embeddings. There-
fore, we optimize the fair latent concept in the
LLM M’s embedding space, where 0 is repre-
sented as a sequence of c learnable tokens, each
associated with an embedding vector. We denote
the subset of weights in W corresponding to 6
as Wy,. During training, we prepend 0 ¢ to the
input sequences and learn Wy, by minimizing the
negative log-likelihood objective as follows

n-—+n

L= —ZlogPM(yi\éf,fi). 5)
i=1

During gradient optimization, parameters Wy, cor-

responding to 6 + are updated, and all other parame-
ters are frozen. The ultimate goal of learning fair
latent concept variables is to derive the optimal
Wy, using the task-specific data D to improve

performance and the generated data Dto promote
fairness simultaneously.

3.4 Demonstration Example Selection with 0
Likelihood

The learned fair latent concept 6 ¢ is then used to
select top-ranking examples from D, which will be
provided as context to a larger external LLM dur-
ing inference via ICL. This demonstration selection
follows the rationale that training examples that



maximize the likelihood of predicting the trained
task-specific latent concept variables are optimal
demonstrations for the corresponding task objec-
tive (Wang et al., 2024). For each training example
(x4,9:) € D, the likelihood of éf is expressed us-
ing the probability distribution shown as

Pr(Oylwi, i) (6)

In our implementation, we obtain this likelihood
as the probability of observing the trained 6 + when
postfixed to a sample (z;, y;). Subsequently, train-
ing examples are sorted based on their computed
likelihood values. We then select the top m ex-
amples that maximize the likelihood of éf and
form the demonstration candidate set. We sub-
sample this candidate set to allow each test query
to be paired with varying demonstrations during
testing. Finally, we randomly select £ demonstra-
tion examples from the candidate set for each test
instance, combining these to construct the final
prompt for inference with an external LLM. The
augmented dataset generation, latent concept learn-
ing, and demonstration selection procedures are
summarized in Algorithm 1 (Appendix B).

4 Experimental Evaluation

4.1 Datasets

We evaluate the effectiveness of fair demonstra-
tion selection with FairlCL using three bench-
mark fair machine learning datasets: Adult Income
dataset (Becker and Kohavi, 1996), COMPAS (Lar-
son et al., 2016), and LawSchool (Quy et al., 2022).
We focus on the Adult dataset for the main exper-
iments and include discussion and results for the
other two in Appendix D and E. Following previ-
ous work (Liu et al., 2023), we use a subset of 10
attributes from the dataset named in Fig. 5a. We
also subsample a training dataset of 30,000 records
after preprocessing. We perform serialization on
the tabular Adult dataset similar to (Hegselmann
et al., 2023; Carey et al., 2024), i.e., we convert
each row in the dataset to a natural language format
to facilitate LLM prompting. The specific serial-
ization template and in-context learning format are
included in Appendix D.

As discussed in Section 3.2, we generate an aug-
mented dataset to enable fair latent concept learn-
ing. For Adult, we use sex as the sensitive attribute
and distinguish relationship and marital status as
the proxy-sensitive attributes, as some instances of
the relationship attribute contain gender-specific

vocabulary and the attribute marital status may
depend on values of relationship. To generate aug-
mented samples, we specify a hierarchical order
for the non-sensitive attributes and a separate or-
der for the sensitive and proxy-sensitive attributes
based on the analysis in (Quy et al., 2022). Us-
ing this attribute sampling technique, we generate
n = n number of unique augmented data samples
and construct our training dataset D by combining
D and D. For the test dataset, we randomly sample
1000 instances with equal representation for major-
ity and minority groups for each experimental run.
Please refer to Appendix D for details regarding
the attribute hierarchy and dataset distributions.

4.2 Baselines

We compare FairlCL against several baselines that
implement different demonstration selection ap-
proaches. Random refers to standard in-context
learning where k training examples are ran-
domly sampled as demonstrations for each test in-
stance (Brown et al., 2020). Balanced implements
in-context learning with equal representation for
each sensitive attribute and class label combination
in the demonstrations (Li et al., 2023b). Instruction
is used to evaluate an LLM for fair and unbiased de-
cisions based on manual prompting-based guidance
with a balanced demonstration set (Li et al., 2023b;
Atwood et al., 2024). Removal omits the sensitive
attribute from the demonstrations of Balanced (Li
et al., 2023b). As we serialize tabular data, we fur-
ther replace gendered pronouns with gender-neutral
ones in the training data. Counterfactual is another
heuristic technique and constructs demonstrations
using k/2 examples from the majority (minority)
group and the remaining examples by flipping the
sensitive attribute of the previously sampled exam-
ples (Li et al., 2023b). LatentConcept is the la-
tent concept variable-based approach from (Wang
et al., 2024) where the latent concept variables are
learned using the training dataset and then used to
select top-k demonstrations.

4.3 Experimental Setup

In the FairlCL framework, we use LLaMA-2-
7B (Touvron et al., 2023) as the internal LLM
for fair latent concept learning and LLaMA-2-
13B (Touvron et al., 2023) as the external LLM for
inference. We fix the learning rate at 0.0001 for all
experiments and optimize the concept token embed-
dings over 5 epochs. For main experiments on the
Adult dataset, we fix the number of added tokens



Table 1: Performance and fairness metrics of FairICL on the Adult dataset compared with baselines on LLaMA-2-7B
and LLaMA-2-13B as external LLMs and LLaMA-2-7B as the internal LLM for latent concept learning; bold
denotes best performance among fairness-aware methods and underline denotes best performance among all models

External LLM | Method | Acc(%)t | F1(%)t | |ASP| | | |AEO| |
Random (BI‘OWH et al., 2020) 76.001‘19 75.751,44 0.140,04 0.1 lvog
LatentConcept (Wang et al., 2024) | 77.48070 | 77.22074 0.160.02 0.120.01
I Balanced (Li et al., 2023b) 74.581,33 71 ,922,19 0.130,05 0. 100,()7
LLaMA-2-13B Counterfactual (Li et al., 2023b) 68.185.05 57.39455 0.130.06 0.170.08
Removal (Li et al., 2023b) 75.720.98 76.485.16 0.140,03 0.090.02
Instruction (Li et al., 2023b) 76.201 09 77.21161 0.200.07 0.150.06
FairICL 75.721.60 77.611,35 0.080,02 0.030,03
Random (Brown et al., 2020) 69.92037 62.801_25 0.080_02 0.08()‘04
LatentConcept (Wang et al., 2024) | 70.04160 | 64.79242 | 0.17002 0.170.04
A Balanced (Li et al., 2023b) 63.306.33 44.091737 0.040.03 0.040.03
LLaMA-2-7B Counterfactual (Li et al., 2023b) 59.58102 | 34.44,47 0.080.01 0.130.02
Removal (Li et al., 2023b) 64.606.25 47.921734 0.090.05 0.11006
Instruction (Li et al., 2023b) 63.86635 | 46.641486 | 0.070.06 0.090.05
FairlCL 68.48()‘89 64.421,01 0.020,03 0.01()‘04

c at 10, and the number of demonstrations during
training ¢ at 2. We randomly sample k£ = 4 demon-
strations from a top-ranked candidate set of m =
100 training examples for each test query. We con-
duct our experiments on NVIDIA A100 GPUs with
40GB RAM. We report performance as an average
of 5 runs with standard deviations for different test
splits. For model utility, we report accuracy and
F1 scores. To evaluate fairness, we compute com-
monly used fairness metrics, namely, Statistical
Parity (ASP) (Dwork et al., 2012) and Equalized
Odds (AEO) (Hardt et al., 2016). Please refer to
Appendix C for a detailed description and formula-
tion of the fairness metrics.

We also evaluate the learned fair latent concepts
with LLaMA-2-7B as the external LLM. We in-
vestigate the impact of FairlCL hyperparameters
on fair latent concept learning via its overall per-
formance. To this end, we report results when
varying q as {0, 2, 4} and evaluate the effect of 7,
i.e., the size of the generated dataset D, on Fair-
ICL. To analyze the effectiveness of latent concept
learning with an augmented dataset, we conduct an
ablation study where the augmented samples are
created via complete random sampling as opposed
to hierarchy-based sampling. We also evaluate the
learned fair latent concepts directly by prepending
them to test queries during inference. Finally, we
vary k among {2, 4, 6, 8} to analyze the influence
of ICL demonstration size on inference results.

4.4 Results

Model Performance and Comparison with Base-
lines We report results for the Adult dataset from

inference with LLaMA-2-7B and LLaMA-2-13B
in Table 1. Firstly, we observe the performance of
Random, where LLaMA-2-13B has increased util-
ity compared to LLaMA-2-7B, undoubtedly due
to the model’s complexity. However, the fairness
metrics ASP and AEO are larger, indicating a sig-
nificant presence of bias in the outputs generated by
LLaMA-2-13B. With the LatentConcept method,
which optimizes demonstration selection for utility,
performance is improved, but the bias is further am-
plified for both 7B and 13B models. These results
motivate our study of bias in LLMs specifically for
tabular classification and methods that can promote
fairness in a resource-efficient manner.

In Table 1, we observe that FairlCL can notice-
ably improve SP and EO measures for LLaMA-
2-7B compared to the Random and LatentCon-
cept methods while achieving comparable perfor-
mance. Similarly, FairlCL significantly reduces
unfairness for LLaMA-2-13B with minimal loss
of utility. Note that the latent concept variables
are learned using the smaller LLaMA-2-7b as the
internal model, and the selected demonstrations are
utilized to construct inference prompts for LLaMA-
2-13b. This shows that FairICL can generalize
the fair demonstration selection process to larger
LLMSs, thus making the method resource-efficient.
Since the external LLMs are used only for few-shot
inference, FairICL also enables generalization to
black-box LLM:s.

We also evaluate the effectiveness of FairlCL
compared to multiple fair demonstration selection
baselines. As discussed in Section 4.2, these meth-
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Figure 2: FairICL performance on LLaMA-2-13B for varying number of demonstrations (¢) during learning
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Figure 3: FairlCL performance with LLaMA-2-13B for varying number of demonstrations (k) during inference

ods address the LLM fairness issue via heuristic
approaches. For LLaMA-2-7B, the fair baselines
reduce some unfairness compared to LatentCon-
cept but incur a significant loss in performance.
Compared to Random, only the Balanced approach
shows a notable reduction in SP and EO. FairICL,
however, achieves the best fairness results without
negatively affecting utility. For LLaMA-2-13B, the
baselines mostly maintain performance but do not
achieve fair outcomes. In contrast, FairlCL shows a
large decline in fairness metrics with similar or im-
proved accuracy and F1. Our results for the COM-
PAS and LawSchool show similar trends of lower
fairness metrics without utility losses (Appendix E).
For a more granular analysis in the appendix, we
also show how FairICL gradually reduces fairness
metrics as training progresses while maintaining
utility. These results demonstrate that decorrelation
of sensitive attributes and outcomes helps learn fair
latent concepts, resulting in demonstration selec-
tion that promotes fair predictions.

Number of Demonstrations We investigate the
influence of the number of demonstrations during
latent concept learning, denoted by ¢, and during
inference, denoted by k, on the overall performance
of FairICL with the Adult dataset. First, we vary

q among {0, 2, 4} and report results in Fig. 2 for
LLaMA-2-13B while keeping the other parameters
fixed at ¢ = 10 and k£ = 4. From Fig. 2, we ob-
serve that accuracy and F1 remain fairly unchanged
across different values of ¢. However, SP and EO
are noticeably higher at ¢ = 4, with the best met-
rics observed at ¢ = 2. Since the ¢ demonstrations
for training are obtained from the original dataset
containing biased examples, training prompts con-
structed with more biased samples negatively af-
fect fairness during inference. In contrast, fewer
demonstrations do not affect model utility as the
augmented samples preserve useful correlations
from the original dataset.

We then vary k£ among {2, 4, 6, 8} for LLaMA-
2-13B with fixed ¢ =2 and ¢ = 10, and include the
results in Fig. 3. Here, the fairness metrics demon-
strate a sharper decline as the number of demonstra-
tions during inference increases. We also observe
a slight decrease in utility as the number of demon-
strations increases, most likely due to the trade-off
between utility and fairness. Since the & demon-
strations are obtained from the top-m training ex-
amples ranked by the fair latent concept variable,
having a larger k allows the inference prompt to
guide the LLM towards fairer predictions.
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Figure 4: Performance and fairness metrics of FairlCL with LLaMA-2-13B for different sizes of D

Table 2: Ablation results on LLaMA-2-7B

Method ‘ Acc(%)t ‘ F1(%)t ‘ |ASP| | ‘ |AEO| |
FairICL 68.480_89 64.42],0] 0.020,03 0.010_04
FairICL-LC | 7596120 | 70.70;67 0.060.01 0.080.02
FairICL-R 58.58062 | 31.72094 | 0.010.01 0.000.03

Ablation Study We investigate the role of data
augmentation and latent concept learning by im-
plementing two variations of FairICL. FairICL-LC
directly evaluates the learned latent concepts as
we prepend them to test prompts containing k ran-
domly sampled demonstrations. FairlCL-R adopts
a random sampling mechanism for all attributes to
create the augmented dataset and follows an infer-
ence procedure similar to FairICL. In other words,
the generated dataset does not preserve the useful
correlation between the non-sensitive attributes and
outcomes. We report ablation results in Table 2
for LLaMA-2-7B since FairICL-LC can be evalu-
ated only for the internal LLM whose vocabulary
contains additional tokens corresponding to the la-
tent concept variable. FairlCL-LC achieves the
best accuracy and F1 score, indicating that the la-
tent concept learns information relevant to the task.
Also, the low fairness metrics imply that training
with the augmented dataset prompts the latent con-
cept to favor fair predictions. FairlCL-R achieves
almost ideal fairness metrics but does not maintain
model accuracy as the randomly generated dataset
removes even the useful correlation between non-
sensitive attributes and labels. FairICL, however,
preserves relevant information in D, thus achieving
fair and accurate predictive results.

Size of Augmented data In this section, we con-
duct a sensitivity analysis of 7, the size of D, to
evaluate the influence of the augmented dataset
on FairICL’s performance. We vary n as {0, 25,

50, 100} % of its original size of 30,000 generated
samples in the Adult dataset. We fix the other pa-
rameters ¢ at 2, c at 10, and k at 10 to perform latent
concept learning and obtain results for LLaMA-2-
13B shown in Fig. 4. Note that the n = 0% setting
corresponds to the LatentConcept baseline method
in Table 1. From the results, we notice that the
accuracy and F1-scores are generally unchanged
when more augmented examples are included in
the training prompt. This indicates that the data
augmentation process in FairICL does not nega-
tively affect an LLM’s predictive performance. We
further observe significant drops in the fairness met-
rics as the size of D used for latent concept learning
is increased. This demonstrates the positive impact
of the data augmentation strategy in FairICL.

5 Conclusion

We investigated the issue of fairness in large lan-
guage models during in-context learning for tabular
data classification. We focused on a latent concept
learning framework that optimizes the demonstra-
tion selection process for improved model utility
via latent concept variables learned from a training
dataset. We hypothesized that learning latent con-
cepts from a biased dataset can cause the selection
of biased demonstrations, resulting in unfair pre-
dictions, and empirically verified this phenomenon.
To tackle this issue, we explored resource-efficient
ways to influence LLM outputs without modifying
model parameters and presented a fairness-aware
latent concept learning framework, FairICL, that
incorporates data augmentation to enable learning
concept tokens that promote fairness while preserv-
ing task-relevant contextual information. Our ex-
perimental analysis showed that FairICL can effec-
tively mitigate unfairness without causing signifi-
cant tradeoffs in model utility for multiple datasets.



Limitations

We acknowledge certain limitations of the proposed
framework. As FairICL utilizes a latent concept
learning framework, it requires white-box access to
a small LLM and resources to train latent variables.
Our framework allows the generalization of the se-
lected demonstrations, circumventing costly access
to larger LLMs, but optimizing smaller LLMs may
also incur significant resources. Also, FairlCL may
not satisfy other fairness goals as the framework
does not specifically encode fairness constraints.
However, results indicate FairICL improves com-
monly targeted statistical parity and equal opportu-
nity metrics.

Broader Impacts

In this study, our focus is to achieve fairness in
LLM outputs in a resource-efficient manner while
maintaining predictive utility. The datasets used for
evaluation are publicly available and implemented
within their intended use. Our usage of publicly
available pre-trained LLMs also adheres to the as-
sociated licenses. We hope our study can further
the research and literature on methods to ensure
fairness in LLMs.
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A Related Work

Fairness in LLMs

As LLM integration into decision-making systems
continues to rise, it becomes essential for them to
be evaluated from a fairness perspective. Multi-
ple works have highlighted discriminatory behav-
ior in LLM outputs originating from societal bi-
ases contained in pre-training data (Abid et al.,
2021; Wang et al., 2023) or under-representation of
minority population (Gallegos et al., 2023). For
instance, Huang et al. (2021) analyzed implicit
gender-based stereotypes in LLM outputs via com-
monsense inference. Wang et al. (2023) evaluated
the influence of normal and adversarial prompts
on bias in GPT models. Abid et al. (2021) demon-
strated unfairness in LLM outputs with respect to
religious groups.

Following these works, the study of LLM fair-
ness has also extended to tabular data inference
with pre-trained language models (Li et al., 2023b;
Liu et al., 2023; Chhikara et al., 2024; Hu et al.,
2024; Atwood et al., 2024). These works focus
on LLM inference with in-context learning and
formulate ways to select demonstration examples
while promoting fairness or ensuring representa-
tion for minority groups. Li et al. (2023b) evaluated
multiple heuristic methods of selecting demonstra-
tions and a guardrail technique instructing LLM
to be fair in its decision-making. Liu et al. (2023)
implemented label-flipping for demonstration ex-
amples and achieved fair predictions with signifi-
cant utility loss. Chhikara et al. (2024) evaluated
LLM’s familiarity with commonly known fairness
notions and utilized a similarity-based demonstra-
tion selection approach. (Hu et al., 2024) aimed to
increase minority group representation in demon-
strations and selected demonstrations based on cor-
responding validation set performance. (Atwood
et al., 2024) explored remediation techniques for
fairness and compared prompt-based techniques
with in-processing and post-processing methods.

Similar to some earlier works, we aim to ad-
dress bias in LLM predictions in tabular data by



selecting demonstration examples that promote fair-
ness. However, we utilize the latent concept vari-
able model and present a framework to learn fair
representations of the latent concept. The demon-
strations selected by the latent concept are used
for ICL to obtain fair outcomes while maintaining
predictive utility.

B Algorithm

Algorithm 1 Fair Latent Concept Learning and
Demonstration Selection

Input: Training dataset D, generated dataset D,
test query x, LLM M, number of tokens
¢, learning rate A, training epochs 7', num-
ber of demonstrations for training ¢, number
of demonstration candidates m, number of
demonstrations for inference &

Output: & demonstrations for test query x

/* Constructing Augmented Data */

. for (z;,y;) € {DUD} do

1

2: Sample (z1,y1),- - , (24, yq) from D

3 T =(21,Y1, 0, Ty Ygr Ti)

4. Add (.fi, yl) to D

5: end for
/* Learning Fair Latent Concept */

6: Add c new tokens to M’s vocabulary repre-
senting 07

7: Freeze M’s pre-trained parameters and initial-
ize ng

8: fortzl...Tdoi
for (z;,y;) € D do
9i = Pm(yil0r, Ti)

end for
n+n

L=—3 log Prl(yilfy, )

=1

‘/7‘\79 f — ng -
end for
/* Selecting demonstrations */
for (z;,v;) € D do

Calculate likelihood as Puy( |z, ;)
end for
Sort D by likelihood
Select top-m (x, y) pairs as demonstration can-
didates
Randomly choose k demonstrations from can-
didate set
Return Demonstrations for test sample x

10:
11:

12:

oL

13:
8ng

14:

15:
16:
17:
18:
19:

20:

21:
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C Fairness Metrics

Here, we briefly describe two fairness notions used
to determine LLLM’s bias w.r.t the majority and
minority groups represented by sensitive attribute
a when predicting a binary outcome variable y.

Statistical Parity Statistical parity (Dwork et al.,
2012) requires the predictions to be independent of
the sensitive attribute and can be evaluated as
ASP = P(y|s =0) — P(g|s = 1). @)
Equal Opportunity Equal opportunity (Hardt
et al., 2016) requires that for members of majority
and minority groups, the probability of being as-
signed a positive outcome is the same. We evaluate
equal opportunity using group-based TPRs as

For datasets where the negative outcome is the fa-
vorable one, we evaluate AEO as the difference in
group-based TNRs.

D Datasets

D.1 Additional Details

We evaluate FairICL on three tabular datasets used
to benchmark fairness in machine learning: Adult
Income (Becker and Kohavi, 1996), COMPAS (Lar-
son et al., 2016), and LawSchool (Quy et al., 2022).
The respective binary prediction tasks are to pre-
dict whether an individual has an annual income
greater than 50,000 US dollars based on demo-
graphic and economic attributes, predict the risk of
recidivism based on a defendant’s screening survey
responses, and predict whether a student passes the
bar exam based on their admission records. We
consider sex as the sensitive attribute for Adult
and race for COMPAS and LawSchool. As dis-
cussed prior, we define a hierarchical order for
the attributes derived from (Quy et al., 2022); the
respective orders are shown in Fig. 5. As COM-
PAS and LawSchool datasets do not contain proxy-
sensitive attributes, we sample only the sensitive
attribute independently. We generate 1 = n number
of augmented samples for both datasets; the statis-
tics are included in Table 3. We also serialize these
tabular datasets in a templated manner shown in
Figures 6 - 8.



D.2 Choice of Datasets and Models

Pre-trained LLMs may already be familiar with the
Adult, COMPAS, and LawSchool datasets which
could lead to biased experiment results. To ver-
ify this, we prompt the models used in our work,
i.e, Llama-2-7B and Llama-2-13B, and test their
familiarity with these datasets. Example outputs
for the Adult dataset with Llama-2-13B are shown
in Fig. 9. We obtained non-meaningful outputs
for Adult and Law School from both models. The
models, however, provided details about COMPAS,
most likely due to multiple news articles available
online discussing it. From the outputs for Adult
and LawSchool, we conjecture that Llama-2-7B
and Llama-2-13B do not suffer from data leakage
for these datasets, as the models have not memo-
rized specific information and cannot extract mean-
ingful information related to these datasets during
inference. Therefore, our observations reflect the
influence of in-context examples used in inference
and/or any bias originating from the LLM.

E Additional Results

E.1 FairICL performance over training
epochs

We analyze the performance of FairICL as latent
concept learning progresses over training epochs
and present results in Fig. 10 for inference on
LLaMA-2-13B with Adult dataset. We fix the pa-
rameters ¢ at 2, ¢ at 10, and k at 4. We observe
that the accuracy and F1 experience a small de-
cline after the first epoch but remain fairly stable
thereafter. SP and EO on the other hand have a de-
creasing trend as the latent concepts are further op-
timized. This indicates that FairICL effectively al-
lows the concept tokens to learn fairness-promoting
context from the augmented examples and utility-
preserving information from the original training
samples. This ultimately leads to a demonstration
selection process that improves both fairness and
performance in LLMs.

E.2 Results on COMPAS and LawSchool
Datasets

We train a local LLaMA-2-7B model with hyperpa-
rameters g=2 and c=10 for latent concept learning
and report FairlCL experiment results with k& = 4
demonstrations during inference using LLaMA-2-
13B as the external model. The results for FairICL
and baseline methods are included in Table 4. Note
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that for the COMPAS dataset, the negative outcome
is favorable so we report EO in terms of TNR.

In Table 4 for the COMPAS dataset, FairICL
achieves better fairness metrics than the Random
and LatentConcept baselines while maintaining the
utility scores. Compared to heuristic fairness base-
lines, FairICL achieves smaller values for SP and
EO with comparable or even higher utility metrics.
For the LawSchool dataset, random demonstration
selection results in seemingly low fairness metrics,
but we note that the utility metrics, especially the
F1 score, are quite low. We conjecture this per-
formance to the highly imbalanced nature of the
training dataset from which the demonstrations are
randomly sampled. This assumption is further sup-
ported by the results obtained for the Balanced
method which randomly selects demonstrations
with equal representation for each class and sensi-
tive attribute. This method significantly improves
the F1 score compared to random selection. How-
ever, we also observe a noticeable increase in both
SP and EO metrics for this and other baseline meth-
ods including the LatentConcept method. On the
other hand, FairICL significantly improves these
metrics while obtaining the highest F1 metric. Al-
though the SP and EO values of FairICL are consid-
erably high, we note that our method achieves the
lowest fairness metrics among the methods target-
ing fairness and significantly improves SP and EO
compared to LatentConcept. These results indicate
that FairlCL maintains the best trade-off between
utility and fairness across different datasets.
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Figure 5: Hierarchical order of attributes for augmented data generation

Table 3: Dataset statistics

Dataset ‘ Label ‘ Train (D) ‘ Augmented (D) ‘ Test (D)
| | Priv.  Unpriv. | Priv. ~ Unpriv. | Priv.  Unpriv.

Adult Positive 6363 1105 7574 7468 250 250
Negative | 13897 8635 7534 7424 250 250

Positive 654 1333 1061 1089 125 125

COMPAS ‘ Negative 1036 1199 ‘ 1042 1030 ‘ 125 125
LawSchool Positive | 11281 527 3263 3314 125 125
Negative 965 311 3309 3198 125 125

### Instruction: Based on the profile description of an individual recorded in the 1994 U.S. census, answer the question
about their income.

### Profile: This person is a 38 years old female. She has attended a professional school and works in the pri-
vate sector. Her occupation is in professional specialty. She works 50 hours per week. She had a capital gain of 0 and a
capital loss of 0 last year. She has never been married. She is not related to the other person in her household.

### Question: Does this person have an income of more than 50,000 U.S. dollars?
### Answer: Yes

#i## Profile: This person is a 28 years old male. He has an academic associate’s degree and works in local government. His
occupation is in protective services. He works 40 hours per week. He had a capital gain of 0 and a capital loss of 0 last year.
He is married to a civilian. He is the husband of the other person in his household.

### Question: Does this person have an income of more than 50,000 U.S. dollars?
#i# Answer:

Figure 6: Serialization and prompt format for tabular Adult Income dataset.
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### Instruction: The following description of a criminal defendant includes demographic information and crime statistics. It
also includes a potential risk computed based on the defendant’s response to a COMPAS screening survey. Using the given
information, determine whether the defendant would recidivate in two years.

### Description: The defendant is a 26 years old Caucasian male. The defendant is charged with a felony. The
defendant was arrested 1 day before the screening date and has stayed in jail for 0 days. The defendant has previously
committed O crimes and O crimes as a juvenile. Based on the screening, the defendant has a low risk of recidivating.

### Question: Will the defendant recidivate in two years?

### Answer: No

#i## Description: The defendant is a 40 years old African-American male. The defendant is charged with a misdemeanor.
The defendant was arrested 1 day before the screening date and has stayed in jail for O days. The defendant has previously
committed 2 crimes and O crimes as a juvenile. Based on the screening, the defendant has a low risk of recidivating.

### Question: Will the defendant recidivate in two years?

### Answer:

Figure 7: Serialization and prompt format for tabular COMPAS dataset.

### Instruction: Based on the information provided about a law school student, determine whether the student passes the bar
exam.

### Profile: The student is white and male. The student’s family income falls into the third income bracket. The
student will work full-time. The student had an undergraduate GPA of 3.8. The student attended a fifth tier law school. In law
school, the student had a GPA of -0.32 in the first year and a cumulative GPA of 0.18. In first year of law school, the student
was in the fourth decile and in third year of law school, the student was in the sixth decile. The student had an LSAT score of
44.0.

### Question: Does the student pass the bar exam on the first try?

### Answer: Yes

#i## Profile: The student is white and female. The student’s family income falls into the fourth income bracket. The student
will work full-time. The student had an undergraduate GPA of 2.3. The student attended a second tier law school. In law
school, the student had a GPA of 0.04 in the first year and a cumulative GPA of -0.55. In first year of law school, the student
was in the fifth decile and in third year of law school, the student was in the fourth decile. The student had an LSAT score of
33.0.

### Question: Does the student pass the bar exam on the first try?

### Answer:

Figure 8: Serialization and prompt format for tabular LawSchool dataset.

Table 4: Performance and fairness metrics of FairlCL on COMPAS and LawSchool compared with baselines; bold
denotes best performance among fairness-aware methods and underline denotes best performance among all models

Dataset | Method Acc(%)t | FI(%)T | |ASP| ] | |AEO] |

Random (BI‘OWH et al., 2020) 61 .52(),59 57.501,33 0.170,03 0.160,07
LatentConcept (Wang et al., 2024) | 56.00060 | 65.38052 | 0.130.02 0.150.03

Balanced (Li et al., 2023b) 60.68100 | 57.98515 | 0.16004 0.120.03

COMPAS Counterfactual (Li et al., 2023b) 61.280.76 57.185.48 0.150.04 Mo,oz
Removal (Li et al., 2023b) 58.52191 | 61.09351 | 0.180.0s 0.180.04

Instruction (Li et al., 2023b) 61.60, 17 60.55334 0.170.05 0.15¢.05

FairlCL 57.32o41 | 66.11129 | 0.10002 | 0.11004

Random (BI‘OWH et al., 2020) 55.16¢.99 25.073.00 0.130.03 0.190.04
LatentConcept (Wang et al., 2024) | 59.30179 | 59.83134 | 0.490.03 0.510.03

Balanced (Li et al., 2023]3) 61.402,01 60.5 15‘39 0.390,04 0-390.06

LawSchool Counterfactual (Li et al., 2023b) 56.96, 85 53.61284 0.470.06 0.48¢.13
Removal (Li et al., 2023b) 60.641,60 56.474‘05 0.410,03 0.490,05

Instruction (Li et al., 2023b) 60.48104 | 61.56515 | 0.4300s5 0.44¢08

FairlCL 55.761,32 @1‘27 0.360,03 0.29(),04
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Prompt: Can you tell me what the Adult Income dataset is?

Response: It has something to do with Medicaid. I tried to check that info out. I also checked online to see
if Medicaid has a website.anyone know of a specific website for each County/State? Also, I believe they use some-
thing called the 2000 Census Data to provide their numbers. I know the Census Data has a ton of info on it. It’s hard to find . . .

Prompt: The Adult Income dataset is

Response: 6-months lagged and reports the income for each person in a household in the previous calendar year.
The dataset includes the median income, percent change over time, and the percent of income that is earned. The median
income is the amount at which half of households earn more, and half earn less. The percentage year over year change is the
year-over-year difference between median incomes in the current reporting period and the prior reporting period . . .

Prompt: Predict whether annual income of an individual exceeds $50K/yr based on census data. Also known as
"Census Income" dataset.

Response:

import numpy as np

from sklearn import svm

from sklearn.model_selection import train_test_split

from sklearn.metrics import mean_squared_error, roc_auc_score
# DataFrame

df = pd.read_csv(input_data_path, index_col=0)

# split data into training and testing data

X_trn, X_test, y_trn, y_test = train_test_split(df, df["Income"],
test_size=0.2, random_state=1) ...

Figure 9: Example outputs from prompting LLaMA-2-13B with queries about the Adult dataset.
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Figure 10: FairICL performance with LLaMA-2-13B over training epochs
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