Under Review - Proceedings Track 1-25, 2024 Symmetry and Geometry in Neural Representations

RelWire: Metric Based Rewiring

Editors: List of editors’ names

Abstract

Oversquashing is a major hurdle to the application of geometric deep learning and graph
neural networks to real world applications. Recent work has found connections between
oversquashing and commute times, effective resistance, and the eigengap (or spectral gap)
of the underlying graph. Graph rewiring is the most promising technique to alleviate this
issue. Some prior work adds edges locally to highly negatively curved subgraphs. These
local changes, however, have a small effect on global statistics such as commute times and
the eigengap. Other prior work uses the spectrum of the graph Laplacian to target rewiring
to increase the eigengap. These approaches, however, make large structural and topological
changes to the underlying graph. We use ideas from geometric group theory to present
RELWIRE, a rewiring technique based on the geometry of the graph. We explore topological
properties of different rewiring techniques and show that RELWIRE is Pareto optimal: it
has the best balance between improvement in eigengap and commute times and minimizing
changes in the topology of the underlying graph, while performing comparably well on
downstream tasks.

Keywords: Persistent Homology, Hierarchical Hyperbolic Spaces, Oversquashing

1. Introduction

Graph neural networks (GNNs) are a promising generalization of fully connected neural
networks based upon the premise that many real world data sets exhibit graphical structure.
That is, data points are related to one another in complex ways that are best captured by
relations on a graph, with vertices being the data points and edges the relations between
those points. Hence, GNNs are methods for aggregating information across the relation
graph and then propagating those updates. All of these methods, however, seem to suffer
from a structural problem: oversquashing.

Oversquashing is a challenging problem to define. The problem was initially observed in
[2], where the authors create the neighbors match problem in which the task is to match
a target subgraph with a template subgraph. They noticed that the feature vectors could
not store enough information, a problem that they called oversquashing. However, since

then, oversquashing has been defined in a different manner. Following [63], who defined the
az")

k3

920

J
layers of message passing, the perspective on oversquashing has shifted. Since then a variety

of papers [58, 45, 10, 21| have defined oversquashing to be the problem of having nodes
with small influence on each other (i.e., small Jacobian), including theoretical connections
between oversquashing and structural properties like commute time [21] and eigengaps. As a
result, many recent works have introduced the notion of “rewiring” a graph, adding edges or
relations between the data points so as to improve the performance of GNNs. These methods
leverage notions from spectral graph theory (e.g., effective resistance, spectral or eigengap),

, where xge) is the feature at the i*" node after ¢

influence of a node on another as

© 2024 .

discrete graph geometry (e.g., graph curvature), and random walks (via commute time). All
of these methods make large structural changes to the underlying graph, some more effective
than others, which are aimed at affecting one or more of the above quantities.

In this paper, we present a novel graph rewiring regime, RELWIRE, which imports
techniques from geometric group theory. We use the geometry of the underlying graph to
define two relations between the graph’s edges, one which roughly encodes negative curvature
and the other flat curvature. RELWIRE is effective at improving GNN performance not
only in terms of commute time and eigengap, but also on downstream tasks. Moreover, we
develop a novel framework for structure analysis. As with all rewiring techniques, our regime
intentionally changes a graph’s geometry. Nonetheless, it is a long-standing assumption in
the area that graph structure matters. This leads us to ask: What kind of non-geometric
structural information matters? We look to topology for an answer. By utilizing techniques
from topological data analysis, we develop two quantitative measures of topological distortion
and show that RELWIRE achieves a novel balance as compared to existing rewiring methods:
it effectively alleviates oversquashing while preserving graph structure.

Contributions The main contributions are as follows:

e We define two new topological distance called the rank and distance that can be used to
measure the structural changes to a graph after rewiring. (Section 3)

e We present a new method for rewiring graphs, RELWIRE. Our method uses new ideas
and concepts that have not been applied to the field of geometric deep learning before.
Specifically, it introduces a new global notion of curvature. (Section 4)

e We present topological differences between RELWIRE and prior rewiring techniques.
(Section 5). We extensively test on real world data to show that RELWIRE is Pareto
optimal for the graph statistics. That is, it performs the best at improving eigengap and
commute times while simultaneously preserving the graph topology.

Other Related Work: In this paper, we will compare against transductive methods, but
there are also inductive methods for graph rewiring such as [3, 27, 18] and other methods
such as [44, 11, 5]. The use of other geometries, especially hyperbolic geometries, has been
widely considered; embeddings [55, 46, 54, 47, 36|, and geometric graph neural networks |16,
15, 65, 37|. Finally, there are mixed curvature geometries [17, 56, 66, 64, 39, 38, 26].

2. Background and Problem Setup

Prior work has shown that the norm of Jacobian J (which controls oversquashing) can be
bounded by a variety of graph properties, deriving bounds of the following form: J :=
8:654)
(93:;.0)
Cact 18 @ constant from the architecture of the neural network, and 7;; is a topological statistic
of the graph. Specifically, T' can be dependent on commute times [21], the curvature [58,
45|, or the effective resistance of the graph [10], which is closely related to commute time,
see Appendix A.7. Following this, in recent work, [20] looked at the Hessian instead of
the Jacobian and again showed that its norm can be bounded using the commute times.
Importantly, prior work shows that these quantities can be improved via graph rewiring. In
this paper, we are interested in the problem of graph rewiring. That is, given a graph G, we

< cf;ctTij. Here xl@) is the feature at the i*" node after ¢ layers of message passing,

RELWIRE

want to add k edges to improve graph statistics mentioned above while preserving structural
formation.

Preserving structural information. One of the foundational principles of GNNs was
that the structure of the graph had important information, and there are many tasks that
illustrate this. One example of this is the NeighborsMatch problem from [2], which was the
first paper to identify oversquashing. For this, the task is to identify the labeled node whose
neighbor subgraph is exactly the same as the given query node. Hence, changing the graph
structure changes the answer, making structural integrity critical. Another example comes
from the (real world) ZINC dataset of molecules, where the task is to predict a value that
depends on the number of cycles with at least 6 atoms. Once again, changing the graph
structure would change the answer.

On the other hand, if we are trying to rewire a graph to alleviate oversquashing while
not caring about the graph structure, then a natural extreme conclusion might be to use
the complete graph. This was explored in [58, 32] among other papers, and they saw that
this did not have the best performance. At the very least, this indicates that the graph
structure is not always irrelevant and, moreover, that more fine-tuned approaches can get
better results. However, the process of graph rewiring changes this structure. Hence, we are
interested in quantifying this change and keeping it to a minimum. To do this, we introduce
two notions of distance that measure the change in relevant topological features of rewired
graphs relative to the base graph; see Section 3. The use of topology to measure distances
between graphs appears in [49, 52].

3. Capturing topological distortion: Distances from persistent homology

In this paper, we consider two notions of distances between graphs using topological infor-
mation. The first is based on comparing 1-dimensional information, which is already quite
powerful in the context of graphs. The second is based on techniques from topological data
analysis, which takes into account higher dimensional features of the graphs. This latter
machinery is called persistence homology, as it attempts to capture “persistent” homological
features as one takes larger samples of the space. The following is a minimal treatment of
persistent homology, see [53, 1] for more details.

These topological calculations involve integral homology groups. The integral d*-homology
group of a topological space X, denoted Hy(X;Z), is an abelian group which encodes certain
d-dimensional topological features up to a natural topological equivalence. The rank of
H,;(X;Z)—namely the number of its Z-factors—encodes the number of d-dimensional “holes”,
and is called the d** Betti number 4. Notably, in dimensions 0 and 1, these numbers have
concrete meanings: [y encodes the number of connected components of X, and 1 encodes
the number of loops on X (up to homotopy). In what follows, we will want to consider
the homology of simplicial complexes obtained by iteratively adding higher dimensional
simplices, with our starting point being a graph. This sequence of simplicial complexes,
called a filtration, as well as a notion of how topological features can appear and vanish along
the filtration, which is called persistence; see |35, 34, 6] and Appendix A.6

In this paper, we consider two different filtrations where the base complex is a graph. The
first is a standard filtration known as the Vietoris-Rips filtration. The idea behind the Vietoris-
Rips filtration is that it transforms a metric space into a filtration of simplicial complexes,

which, in the context of a graph, involves introducing higher dimensional topological features
that are derived from the geometry of the graph. The second is the filtration defined by the
subsequent addition of edges by a graph rewiring procedure, in which every level Gy is a
graph. We will use these filtrations to define distances, with the first type of distance being
similar to those used in prior work such as [53, 28]. Using a persistence diagram, we can
generalize Betti numbers to a more expressive quantity known as the Betti curve [31, 30].
We then use this to define the Betti distance between persistence diagrams. In practice, we
will use the Betti distance to compute the higher dimensional “topological distortion” from a
base graph G and some other graph G’ built from G by adding edges via a rewiring process.

Definition 1 (Betti Distance) Given two graphs G,G’, the betti distance is the Loy norm
of the difference between their respective Betti curves for their respective Vietoris-Rips
filtrations {VR,(G)},er, and {VR,(G")}rer, -

Our second notion of distance measures 1-dimensional topological distortion. A graph
filtration Gy C Gy C --- has G; a simplicial graph for each ¢. Graph filtrations naturally
arise in the iterative graph rewiring procedures considered in this paper. Since simplicial
graphs have no homology beyond dimension 1 and all edges have length 1, the only relevant
features of a graph filtration are loops, and each birth and death happens at integer time
values. Hence, their Betti curves are step functions, and we obtain:

Lemma 2 (Rank distance) If Go C G1 C --- and G, C G| C --- are two graph filtra-
tions, then their persistence distance equals averagei|rank Hy(G;; Z) — rank Hy(G?; Z)|. Hence
we call the persistence distance between a pair of graph filtrations the rank distance.

4. RELWIRE: relations on graphs

Hierarchical hyperbolicity [8] is an axiomatic framework for studying hybrid spaces that exhibit
aspects of coarse negative, flat, and positive curvature. This hierarchical approach builds
on work in several areas of low dimensional topology, including mapping class groups ([40],
Teichmiiller spaces ([13, 51, 22|), and hyperbolic 3-manifolds ([41, 14]). These hierarchically
hyperbolic spaces (HHSes) are coarsely built out of hyperbolic spaces, which are combined in
both negative and flat curvature ways based on various relations between the spaces. We will
apply a simplified version of this hierarchical framework to study the curvature properties of
graphs. In particular, we will use the geometry of a fixed graph to induce two (mutually
exclusive) types of relations among its edges.

In our setting, the ambient space X = G is a simplicial graph, and this philosophy
becomes quite simple: the spaces in the hierarchy are the edges of the graph, and a projection
of a vertex of G to an edge FE is a collection of its endpoints. Specifically, given a vertex
v € GO and an edge E of G, the projection mp(v) C E©) of v to E is the endpoint of E which
is closest in G to v. When both endpoints are equidistant to v, then we set 7z (v) = E© to
be both endpoints. With these projections defined, we define our (simplified) relations.

The first relation, called orthogonal, encodes flat curvature. In the setting of an HHS
X, when two hyperbolic spaces U,V in the hierarchy are orthogonal, the product map
my X wy + X — U x V is surjective, and there is a coarsely isometrically embedded flat

RELWIRE

(a) 4 cycle (b) Cross

Figure 1: Here are two simple graphs in which: (a) all adjacent edges are independent and
(b) all edges are transverse.

subspace of X (see e.g. Subsection 5B of [7]). For instance, R? is an HHS where the hyperbolic
spaces are the coordinate axes (i.e., copies of R), and the flat subspace corresponding to
their product is the whole ambient space R x R = R2. We will say two edges Fi, Eo are
independent when g, X g, : G — E;O) X Ego) is surjective. Otherwise, we will say that
FE4, By are transverse. Roughly, this notion of transversality encodes negative curvature
(see, e.g., [9]). While the connection between independence/transversality and flat/negative
curvature is not exact, the connection is more than a vague analogy:

Lemma 3 Let Ey, Ey be edges of a simplicial graph G. If for E1, Ey we have that they
1. are contained in o clique subgraph of G, then E1, Eo are independent;
2. are separated by vertex v with wg, (v) and wg,(v) both singletons, then Ey, Eo are transverse.

Much more is true in practice. For instance, most edges in a given loop will be pairwise
independent. More refined geometric relations are capable of exactly encoding the equivalence
between independence and being in a loop, but these conditions are difficult to state and
even slower to implement algorithmically.

Remark 4 (Global vs. local curvature) As every pair of edges in a graph satisfies one
of our two relations, they are both capable of capturing local and global properties of the
graph. While item (2) of Lemma 3 says that independence is frequently more locally focused,
transversality captures negative curvature in a fundamentally different way than existing
notions of graph curvature.

RELWIRE We present our new rewiring technique RELWIRE(Algorithm 1). The basic
idea is to eliminate negative curvature by adding edges, so the main task is to identify pairs
of vertices which belong to the most transverse edge pairs, weighted by their distance in the
graph. We begin by determining for each pair of edges if they are independent or transverse.
Then for each pair of nodes u, a, we consider all neighboring edges of the form (u,v) and (a, b)
for all v € N(u) and b € N(a). Then we define r(u,a) := d(u,a) Z 1{(u,v) £ (a,b)}.

veN (u)
beN (a)
We then connect the k£ node pairs that are not adjacent in the graph that have the highest r

values, where k is our rewiring parameter. That is, for a pair of nodes, we count the number

of transverse edge pairs that the two nodes are in. We then weight this count by the distance
between the two nodes and connect the pairs of nodes with the highest weighted r value. As
discussed above, transversality captures some notion of negative curvature at both the local
and global scale of the graph. Hence, connecting a highly transverse distant pair morally
helps remove negative curvature at a global level. Time time complexity and empirical run
times can be found in Appendix A.8.

Algorithm 1 RELWIRE

Input: G - Graph, k - number of edges added

Compute shortest distance d(u,v) between all pairs of nodes u,v.
Compute T : E'x E — {0, 1} such that T'(e1,ez) = 1 if and only if e; [es.
Compute r(u,a) = d(u, @) 3_, e n(u) pen'(a) T((u,v), (a,b)).

Connect the k non-adjacent node pairs with largest r value.

Return: Rewired Graph

Connecting RelWire to topology. By Lemma 3, one should expect that RelWire,
applied to a very large graph, will identify a “maximally transverse” pair of vertices p, ¢ which
are very far apart in the graph. Many of the vertices v occurring along any geodesic between
p, q will likely be separators, in the sense of item 2 of that lemma. Adding an edge between
p,q then creates a number of loops containing these separators. On the other hand, one
should expect any such separator v to participate in a comparable number of transverse pairs
with both p, ¢, making it likely that RelWire will fill in the loops it creates. This philosophy
is most clearly illustrated in Figure 4.

5. Preserving the topology

In this section, we explore the topological differences between RELWIRE, FOSR, GTR, and
SDRF. We will do this using the standard example of a barbell graph G (two K5 connect
by a path with 6 edges) that has been used in prior work such as 32, 20, 21, 58]. We shall
use all four methods to add between one and nine edges, and we shall see that the results
are quite different. Some of the rewired graphs can be seen Figure 4 in the appendix. To
understand the topological distortion caused by rewiring, we compute both the rank and
Betti distances relative to the underlying graph.

b *
Yoo, of *

AR 1 v v v

+ v ¥ v v v v

-

¢

¥ ® v v ow® v v v v| ¥ v
R R T

B
-
AL
Avmeragde C(:mrr:uteETim:es
+
Betti I;lstance
-

ol coa

of # * + v v of + + v v
5

3Nunr:bersof E:iges7 v P JNun':bersof E::Iges7 e Y }Nun':ber50f Efjges7 : e xNunr:bersof E:iges7
(a) Ranks (b))\% (¢) Commute Times (d) Betti Distance
Figure 2: Figure showing the ranks of the first homology group of the rewired graphs,)\—12,
the average commute times, as well as the Betti distance between the rewired graph and the
original graph for RELWIRE, SDRF, GTR, and FOSR.

RELWIRE

Figure 2 in the appendix shows the ranks for adding up to 9 edges. Here, we see that
RELWIRE initially introduces a loop, and the rank increases to 1, while successive edges fill
in that loop. On the other hand, both FOSR and GTR create a loop with each successive
edge addition. Finally, it is not clear what SDRF does to the topology. We also analyze
how rewiring affects the statistics related to oversquashing, i.e., average commute times and
eigengaps of the graph. These quantities, along with the Betti distance to the original graph,
are plotted in Figure 2. As we can see, RELWIRE, GTR, and FOSR have the best average
commute times and eigengaps. On the other hand, we see that FOSR and GTR result in
large topological changes, whereas RELWIRE has relatively little effect on the topology.

Dataset Eigengap Betti Distance Commute Times
Relwire FOSR GTR SDRF‘ ‘Relwire FOSR GTR SDRF‘ ‘Relwire FOSR GTR SDRF
Zinc 0.09 0.07 0.13 0.03 2.7 35 52 09 10 11 92 13

ESOL 0.4 037 040 0.21 1.7 3.0 35 0.7 6.1 6.3 5.7 7.0
BACE 0.05 0.03 0.08 0.02 3.5 3.8 59 1.0 14 15 13 18
Lipo 0.08 | 0.06 0.12 0.03 3.1 3.7 53 1.0 - - - -
Tox21 0.24 | 0.22 0.26 0.12 2.2 3.2 43 0.7 - - - -
Mutag 0.18 0.15 0.23 0.10 2.2 3.2 42 13 7.7 8 7.2 88
Enzymes| 1.10 1.10 1.30 0.06 2.5 35 46 1.2 - - - -
AIDS 0.46 0.44 0.49 0.31 1.0 29 30 06 4.5 44 41 438
Alkane 0.46 047 043 0.24 0.4 29 30 04 4.8 46 42 52
Linux 0.60 0.62 0.57 0.3 0.6 29 27 04 3.9 3.8 36 4.3

Table 1: Eigengap Aq, average commute times, and Betti distance for the rewired graphs.

To further validate our method on real data!, we took ten different datasets with roughly
~ 50,000 graphs for rewiring (see the Appendix A). We rewired these datasets by adding
three edges using RELWIRE, FOSR, GTR, and SDRF. We then computed the spectral
gap for each of the graphs in the dataset and took the average spectral gap for each dataset.
Similarly, we computed the average commute times for each of the graphs and then averaged
that as well. Note that for three of the datasets (Lipo, Tox21, and Enzymes) all rewiring
strategies produced disconnected graphs, hence we did not compute the commute times for
these datasets. Finally, we computed the Betti distance. Table 1 has the various statistics.
The values in green are the best observed values, while those in blue are the second best.

Here, we can see there is a tradeoff between the eigengap and commute times with the
Betti distance. In particular, GTR greatly decreases the eigengap and commute times at
the expense of transforming the topology, as measured by large Betti distance. On the other
hand, SDRF relatively preserves the topology as well as the eigengap and commute times.
Hence, if we are to reduce oversquashing while preserving the graph structure, we must find
a balance. In this regard, we see that RELWIRE is Pareto optimal in that we have the second
best eigengap, commute times, and Betti distance.

Betti Curve for Rank Persistence In the previous experiments, we only added a fixed
number of edges to the graphs. As with the barbell graph example, it is interesting to see

1. All code can be found anonymized at Github

https://anonymous.4open.science/r/RelWire-620B/Copy_of_GNN_Graph_Prediction.ipynb

how the statistics change as we vary the number of edges added. Hence, we took Texas and
Cornell from the WebKb dataset [50| and added up to 100 edges. Figure 3 shows the results
for Texas. The one for Cornell can be seen in the Appendix. Here we see that RELWIRE has
the best eigengap, FOSR has the best rank distance, and GTR has the best commute times.
There are many other interesting aspects to the curves. The first is the jump discontinuity in
the rank of the first homology group from FOSR. This implies that FOSR reaches a critical
number of edges, after which adding loops is no longer beneficial and starts eliminating loops.
On the other, GTR and SDRF seem to always add loops. RELWIRE on the other hand,
seems to always want to eliminate topological loops. The jump discontinuity in the rank of
the first homology group for FOSR seems to correlate with the jump discontinuity in the
eigengap curve. However, interestingly, we see no discontinuity in the commute times curve.

v 32

70 FOSR 18 m [+*
: SDRF :"‘""‘“"“.'. *s. "-."“""e < 4 + - ,‘-l;t‘
— 16 - “.
T YT rewe * R R T o Ll o i asta e i -
£ - - +* @ 30
S so0 14 L & * g
g .
&0 12 o g 29
| e *
<
T 0 10 M 8 28
£
52 8 ——— V27
L v RelWire MW o)) Vv RelWire
K, ¢ & Fosk T ——— © 6l ¢ rosr
2 4 SDRF Q % SDRF
GTR m > GTR
0 <L 25

20 40 60 80 100 o 20 40 60 80 100
Number of Edges Number of Edges

(a) Rank distance (b) 1/A2 (¢) Commute Time

20 40 60 8
Number of Edges

Figure 3: Comparing the four rewiring methods: in (a), rank distance; (b) eigengap (A5 b,
and (c) the average commute times, each as a function of the number of edges added.

6. Graph Regression and Classification: When is topology important

We show that preserving the topology helps with downstream tasks. To do so, we take
11 datasets - ZINC, Peptides from the LRGB dataset, Lipo, BACE, and ESOL from the
MoleculeNet dataset, and the six datasets from the TUDataset. The six datasets from
the TUDataset are for graph classification, and the other datasets are for graph regression.
For each dataset, we considered twelve different models. Specifically, we use 4 different
architectures - GCN, GraphConv, GAT, and GIN, and depths of 3, 4, and 5 layers. For each
of the twelve different models, we trained the model five times for seven different rewiring
techniques - RELWIRE, FOSR, SDRF, GTR, no rewiring, replacing the graph with the
fully connected graph, and replacing the graph with the empty graph. We then picked the
trial with the best validation accuracy and looked at the corresponding test accuracy. Next,
we ranked the different rewiring techniques with ranks from 0 (best) to 6 (worst). Finally,
we computed the average rank over the twelve models. This is reported in Table 2.

As we can see, RELWIRE has the best mean rank for Graph Classification but doesn’t
do as well for Graph Regression. Further, since we tried four different architectures, it is
interesting to see how well the rewiring technique depends on the architecture used. Table
3 presents the mean rank averaged over all three depths and eleven datasets. Here, we see
that despite the fact that RELWIRE does not do well for Graph Regression, we see that
RELWIRE has the best overall performance when using the GCN architecture.

It is also interesting to note what happens when RELWIRE does badly. Specifically, if
we look at Lipo dataset, we see that RELWIRE does very badly. Hence, this suggests that

RELWIRE

preserving the topological structure is not relevant to this task. This is further verified by
seeing that the method with the best performance is replacing the graph with the complete
graph. Our experiment further highlights that the connection between rewiring and the
performance on the downstream task is not straightforward and can depend on many factors,

including the architecture of the model, the type of data, and the type of rewiring.

Dataset ‘

None Full

Empty ‘ ‘ RelWire

FOSR GTR SDRF

IMDB
Reddit
Collab
Mutag
Proteins
Enzymes

3.25+£0.57 3.25 £ 0.59 3.58 £ 0.58
2.00£046 N/A 5.00=£0.00
1.75+£0.45 N/A 5.00=£0.00
1.17 £ 0.58 3.33 £ 0.70/1.83 & 0.42
3.25+0.390.92 £ 0.56 6.00 = 0.00
1.33 £0.45 5.50 £ 0.19 4.67 £ 0.36

1.67 £ 0.50 4.25 £ 0.462.75 £ 0.69(2.25 £ 0.45
2.08 +£0.45[1.92 £ 0.38 1.75 £ 0.35 2.25 + 0.46
1.42 £0.40 2.33 £0.45 2.17£0.32 2.33 £ 0.43
3.424£0.53 4.08 £ 0.36 2.92 + 0.51 4.25 +0.41
2.00 £ 0.35/3.08 +0.42 2.33 + 0.40 3.42 + 0.51
2.50 £ 0.58 2.58 +0.47 2.58 + 0.451.83 &+ 0.41

Peptides
Lipo
BACE
ESOL

Zinc

4.00+0.12 N/A 4.92+0.08
4.92 £ 0.45 0.67 = 0.50 2.08 & 0.62
0.92 +0.29 5.42 +0.19 5.50 £ 0.15
2.58+0.63 3.33 £0.64 5.17£0.21
1.25 +0.39 5.67 £ 0.14 5.25 £ 0.18

1.58 £0.15/1.42 £ 0.15 0.00 £ 0.00 3.08 £ 0.08
4.00 +£0.43 2.58 £ 0.45 3.67 £ 0.31 3.08 £ 0.42
2.834+0.44 2.17 £ 0.32/1.58 £ 0.45 2.58 + 0.38
2.58 £0.50 1.50 £ 0.50 1.83 £ 0.37/4.00 £ 0.41
3.25 £ 0.39[2.08 £ 0.29 2.25 £+ 0.30 1.25 £+ 0.46

Table 2: Table with the mean rank and standard error for each dataset and rewiring method
averaged over the twelve different models considered for Graph Classification and Regression.
The cells in green are the best, while the cells in blue are the second best.

‘ None Full Empty H RelWire FOSR GTR SDRF

GCN|3.58 £0.354.79 £ 0.44 5.73 £ 0.24(|3.12 £ 0.28 3.97 £ 0.283.21 £ 0.28 3.61 £ 0.31
GC [3.42£0.355.91 £0.34 5.42 £ 0.34|3.36 == 0.27 3.36 &= 0.26 2.91 &+ 0.27 3.61 +0.25
GAT|3.24 + 0.33 4.88 + 0.42 5.09 4 0.33]|4.03 £ 0.353.45 £ 0.30 3.48 £ 0.27 3.82 £ 0.31
GIN [8.36 £ 0.36 5.18 £ 0.43 5.58 &£ 0.26|3.42 £ 0.24 3.39 £ 0.28 3.06 £ 0.31 4.00 £ 0.27

Table 3: Table with the mean rank and standard error for each architecture and rewiring
method averaged over the three different and eleven datasets.

7. Conclusion

We use ideas from geometric group theory to develop a new rewiring technique known as
RELWIRE using a new curvature-like relation on edges. We introduce a new topological
distance, which measures how rewiring changes the structure of a graph. We also show that
different rewiring techniques have different topological properties and that whether we should
preserve the topological information is dependent on the data and the task. We show that
compared to other methods, RELWIRE is Pareto optimal in that it makes small topological
changes to the graph and makes big changes to statistics connected to oversquashing, such
as eigengap and commute times. We test RELWIRE on the downstream task of graph
classification and report positive results.

References

1]

2]

3]

4]

[5]

[6]

7]

8]

9]

[10]

[11]

[12]

[13]

Mehmet E Aktas, Esra Akbas, and Ahmed El Fatmaoui. “Persistence homology of
networks: methods and applications”. In: Applied Network Science 4.1 (2019), pp. 1-28
(cit. on p. 3).

Uri Alon and Eran Yahav. “On the Bottleneck of Graph Neural Networks and its
Practical Implications”. In: International Conference on Learning Representations.
2021. URL: https://openreview.net/forum?id=i800Ph0CVH2 (cit. on pp. 1, 3).

Adrian Arnaiz-Rodriguez et al. “DiffWire: Inductive Graph Rewiring via the Lovasz
Bound”. In: The First Learning on Graphs Conference. 2022. URL: https://openreview.
net/pdf?id=IXvfIexOmX6f (cit. on pp. 2, 16).

Yunsheng Bai et al. “Simgnn: A neural network approach to fast graph similarity
computation”. In: Proceedings of the twelfth ACM international conference on web
search and data mining. 2019, pp. 384-392 (cit. on p. 15).

Pradeep Kr Banerjee et al. “Oversquashing in GNNs through the lens of information
contraction and graph expansion”. In: 2022 58th Annual Allerton Conference on
Communication, Control, and Computing (Allerton). IEEE. 2022, pp. 1-8 (cit. on p. 2).

Ulrich Bauer and Michael Lesnick. “Induced Matchings of Barcodes and the Alge-
braic Stability of Persistence”. In: Proceedings of the Thirtieth Annual Symposium
on Computational Geometry. SOCG’14. Kyoto, Japan: Association for Computing
Machinery, 2014, pp. 355-364. 1SBN: 9781450325943. DOI: 10.1145/2582112.2582168.
URL: https://doi.org/10.1145/2582112.2582168 (cit. on p. 3).

Jason Behrstock, Mark Hagen, and Alessandro Sisto. “Hierarchically hyperbolic spaces
II: Combination theorems and the distance formula”. In: Pacific Journal of Mathematics
299.2 (2019), pp. 257-338 (cit. on p. 5).

Jason Behrstock, Mark Hagen, and Alessandro Sisto. “Hierarchically hyperbolic spaces,
I: Curve complexes for cubical groups”. In: Geometry & Topology 21.3 (2017), pp. 1731—
1804 (cit. on p. 4).

Mladen Bestvina, Ken Bromberg, and Koji Fujiwara. “Constructing group actions on
quasi-trees and applications to mapping class groups”. In: Publications mathématiques
de U'IHES 122.1 (2015), pp. 1-64 (cit. on p. 5).

Mitchell Black et al. “Understanding oversquashing in gnns through the lens of effective
resistance”. In: International Conference on Machine Learning. PMLR. 2023, pp. 2528—
2547 (cit. on pp. 1, 2, 18, 19).

Jakub Bober et al. “Rewiring Networks for Graph Neural Network Training Using
Discrete Geometry”. In: arXiv preprint arXiv:2207.08026 (2022) (cit. on p. 2).

Karsten M. Borgwardt et al. “Protein Function Prediction via Graph Kernels”. In: 21.1
(2005), pp. 47-56. 1SSN: 1367-4803. DOI: 10.1093/bioinformatics/bti1007. URL:
https://doi.org/10.1093/bioinformatics/bti1007 (cit. on p. 14).

Jeffrey Brock. “The Weil-Petersson metric and volumes of 3-dimensional hyperbolic
convex cores”. In: Journal of the American Mathematical Society 16.3 (2003), pp. 495
535 (cit. on p. 4).

10

https://openreview.net/forum?id=i80OPhOCVH2
https://openreview.net/pdf?id=IXvfIex0mX6f
https://openreview.net/pdf?id=IXvfIex0mX6f
https://doi.org/10.1145/2582112.2582168
https://doi.org/10.1145/2582112.2582168
https://doi.org/10.1093/bioinformatics/bti1007
https://doi.org/10.1093/bioinformatics/bti1007

[14]

[15]

[16]

[17]

[18]

[19]

[20]

21]

[22]

23]

[24]

[25]

[26]

RELWIRE

Jeffrey F Brock, Richard D Canary, and Yair N Minsky. “The classification of Kleinian
surface groups, II: The ending lamination conjecture”’. In: Annals of Mathematics
(2012), pp. 1-149 (cit. on p. 4).

Ines Chami et al. “Hyperbolic Graph Convolutional Neural Networks”. In: Advances in
neural information processing systems 32 (2019), pp. 4869-4880 (cit. on p. 2).

Weize Chen et al. “Fully Hyperbolic Neural Networks”. In: Proceedings of the 60th An-
nual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers).
Dublin, Ireland: Association for Computational Linguistics, May 2022, pp. 5672-5686.
DOI: 10.18653/v1/2022.acl-1long.389. URL: https://aclanthology.org/2022.
acl-long.389 (cit. on p. 2).

Xinyue Cui and Rishi Sonthalia. “Hyperbolic and Mixed Geometry Graph Neural
Networks”. In: NeurIPS 2022 Workshop on Symmetry and Geometry in Neural Repre-
sentations. 2022 (cit. on p. 2).

Andreea Deac, Marc Lackenby, and Petar Velickovié. “Expander Graph Propagation”.
In: Proceedings of the First Learning on Graphs Conference. Ed. by Bastian Rieck and
Razvan Pascanu. Vol. 198. Proceedings of Machine Learning Research. PMLR, 2022,
38:1-38:18. URL: https://proceedings.mlr.press/v198/deac22a.html (cit. on
p. 2).

Asim Kumar Debnath et al. “Structure-activity relationship of mutagenic aromatic
and heteroaromatic nitro compounds. Correlation with molecular orbital energies and
hydrophobicity.” In: Journal of medicinal chemistry 34 2 (1991), pp. 786-97. URL:
https://api.semanticscholar.org/CorpusID: 19990980 (cit. on p. 14).

Francesco Di Giovanni et al. “How does over-squashing affect the power of GNNs?” In:
arXiv preprint arXiv:2306.03589 (2023) (cit. on pp. 2, 6).

Francesco Di Giovanni et al. “On Over-Squashing in Message Passing Neural Networks:
The Impact of Width, Depth, and Topology”. In: Proceedings of the 40th International
Conference on Machine Learning. Ed. by Andreas Krause et al. Vol. 202. Proceedings
of Machine Learning Research. PMLR, 2023, pp. 7865-7885 (cit. on pp. 1, 2, 6).

Matthew Gentry Durham. “The augmented marking complex of a surface”. In: Journal
of the London Mathematical Society 94.3 (2016), pp. 933-969 (cit. on p. 4).

Lukas Fesser and Melanie Weber. “Mitigating over-smoothing and over-squashing using
augmentations of Forman-Ricci curvature”. In: Learning on Graphs Conference. PMLR.
2024, pp. 19-1 (cit. on p. 19).

Matthias Fey and Jan E. Lenssen. “Fast Graph Representation Learning with PyTorch
Geometric”. In: ICLR Workshop on Representation Learning on Graphs and Manifolds.
2019 (cit. on p. 16).

Rafael Gomez-Bombarelli et al. “Automatic chemical design using a data-driven con-
tinuous representation of molecules”. In: ACS central science 4.2 (2018), pp. 268276
(cit. on p. 14).

Albert Gu et al. “Learning Mixed-Curvature Representations in Product Spaces”. In: In-
ternational Conference on Learning Representations. 2019. URL: https://openreview.
net/forum?id=HJxeWnCcF7 (cit. on p. 2).

11

https://doi.org/10.18653/v1/2022.acl-long.389
https://aclanthology.org/2022.acl-long.389
https://aclanthology.org/2022.acl-long.389
https://proceedings.mlr.press/v198/deac22a.html
https://api.semanticscholar.org/CorpusID:19990980
https://openreview.net/forum?id=HJxeWnCcF7
https://openreview.net/forum?id=HJxeWnCcF7

[27]

28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]
[37]

[38]

[39]

[40]

Benjamin Gutteridge et al. “DRew: Dynamically Rewired Message Passing with Delay”.
In: Proceedings of the 40th International Conference on Machine Learning. Ed. by
Andreas Krause et al. Vol. 202. Proceedings of Machine Learning Research. PMLR, 2023,
pp. 12252-12267. URL: https://proceedings.mlr.press/v202/gutteridge23a.html
(cit. on p. 2).

Max Horn et al. “Topological Graph Neural Networks”. In: International Conference
on Learning Representations. 2022. URL: https://openreview .net/forum?id=
oxxUMeFwEHd (cit. on p. 4).

Sergei Ivanov, Sergei Sviridov, and Evgeny Burnaev. “Understanding isomorphism bias
in graph data sets”. In: arXiv preprint arXiv:1910.12091 (2019) (cit. on p. 14).

Megan Johnson and Jae-Hun Jung. “Instability of the betti sequence for persis-
tent homology and a stabilized version of the betti sequence”. In: arXiv preprint
arXiv:2109.09218 (2021) (cit. on p. 4).

Alperen Karan and Atabey Kaygun. “Time series classification via topological data
analysis”. In: Expert Systems with Applications 183 (2021), p. 115326 (cit. on p. 4).

Kedar Karhadkar, Pradeep Kr. Banerjee, and Guido Montufar. “FoSR: First-order
spectral rewiring for addressing oversquashing in GNNs”. In: The Eleventh International
Conference on Learning Representations. 2023. URL: https://openreview.net/forum?
1d=3YjQfCLdrzz (cit. on pp. 3, 6, 18, 19).

Thomas N. Kipf and Max Welling. “Semi-Supervised Classification with Graph Convo-
lutional Networks”. In: JCLR. 2017 (cit. on p. 16).

Michael Lesnick. “The theory of the interleaving distance on multidimensional persis-
tence modules”. In: Foundations of Computational Mathematics 15.3 (2015), pp. 613~
650 (cit. on p. 3).

Sunhyuk Lim, Facundo Memoli, and Osman Berat Okutan. “Vietoris-rips persis-

tent homology, injective metric spaces, and the filling radius”. In: arXiv preprint
arXiv:2001.07588 (2020) (cit. on p. 3).

Ya-Wei Eileen Lin et al. “Hyperbolic Diffusion Embedding and Distance for Hierarchical
Representation Learning”. In: ArXiv abs/2305.18962 (2023) (cit. on p. 2).

Qi Liu, Maximilian Nickel, and Douwe Kiela. “Hyperbolic Graph Neural Networks”. In:
NeurIPS. 2019 (cit. on p. 2).

Federico Lopez et al. “Symmetric Spaces for Graph Embeddings: A Finsler-Riemannian
Approach”. In: Proceedings of the 38th International Conference on Machine Learning.
Ed. by Marina Meila and Tong Zhang. Vol. 139. Proceedings of Machine Learning
Research. PMLR, 2021, pp. 7090-7101. URL: https://proceedings.mlr.press/v139/
lopez2la.html (cit. on p. 2).

Federico Lopez et al. “Vector-valued distance and gyrocalculus on the space of symmetric
positive definite matrices”. In: Advances in Neural Information Processing Systems 34
(2021), pp. 18350-18366 (cit. on p. 2).

Howard A Masur and Yair N Minsky. “Geometry of the complex of curves I1: Hierarchical
structure”. In: Geometric and Functional Analysis 10.4 (2000), pp. 902-974 (cit. on
p. 4).

12

https://proceedings.mlr.press/v202/gutteridge23a.html
https://openreview.net/forum?id=oxxUMeFwEHd
https://openreview.net/forum?id=oxxUMeFwEHd
https://openreview.net/forum?id=3YjQfCLdrzz
https://openreview.net/forum?id=3YjQfCLdrzz
https://proceedings.mlr.press/v139/lopez21a.html
https://proceedings.mlr.press/v139/lopez21a.html

[41]
[42]

[43]

[44]

[45]

[46]
[47]
48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

RELWIRE

Yair Minsky. “The classification of Kleinian surface groups, I: Models and bounds”. In:
Annals of Mathematics (2010), pp. 1-107 (cit. on p. 4).

Christopher Morris et al. “Tudataset: A collection of benchmark datasets for learning
with graphs”. In: arXiv preprint arXiv:2007.08663 (2020) (cit. on p. 14).

Christopher Morris et al. “Weisfeiler and leman go neural: Higher-order graph neural
networks”. In: Proceedings of the AAAI conference on artificial intelligence. Vol. 33. 01.
2019, pp. 4602-4609 (cit. on p. 16).

Huda Nassar, Kyle Kloster, and David F. Gleich. “Strong Localization in Personalized
PageRank Vectors”. In: WAW 2015. Eindhoven, The Netherlands: Springer-Verlag,
2015, pp. 190-202. 1SBN: 9783319267838. DOL: 10.1007/978-3-319-26784-5_15. URL:
https://doi.org/10.1007/978-3-319-26784-5_15 (Cit. on p. 2).

Khang Nguyen et al. “Revisiting Over-smoothing and Over-squashing Using Ollivier-
Ricci Curvature”. In: International Conference on Machine Learning. PMLR. 2023,
pp. 2595625979 (cit. on pp. 1, 2, 18).

Maximilian Nickel and Douwe Kiela. “Learning Continuous Hierarchies in the Lorentz
Model of Hyperbolic Geometry”. In: ArXiv abs/1806.03417 (2018) (cit. on p. 2).

Maximilian Nickel and Douwe Kiela. “Poincaré Embeddings for Learning Hierarchical
Representations”. In: ArXiv abs/1705.08039 (2017) (cit. on p. 2).

Yann Ollivier. “Ricci curvature of Markov chains on metric spaces”. In: Journal of
Functional Analysis 256.3 (2009), pp. 810-864 (cit. on p. 18).

Sun Woo Park et al. “The PWLR graph representation: A Persistent Weisfeiler-Lehman
scheme with Random Walks for graph classification”. In: Topological, Algebraic and
Geometric Learning Workshops 2022. PMLR. 2022, pp. 287-297 (cit. on p. 3).

Hongbin Pei et al. “Geom-GCN: Geometric Graph Convolutional Networks”. In:
ArXiv abs/2002.05287 (2020). URL: https://api.semanticscholar.org/CorpusID:
210843644 (cit. on p. 8).

Kasra Rafi. “Hyperbolicity in Teichmiiller space”. In: Geometry € Topology 18.5 (2014),
pp. 3025-3053 (cit. on p. 4).

Bastian Rieck, Christian Bock, and Karsten Borgwardt. “A persistent weisfeiler-lehman
procedure for graph classification”. In: International Conference on Machine Learning.
PMLR. 2019, pp. 5448-5458 (cit. on p. 3).

Bastian Rieck et al. “Neural Persistence: A Complexity Measure for Deep Neural
Networks Using Algebraic Topology”. In: International Conference on Learning Rep-
resentations. 2019. URL: https://openreview.net/forum?id=ByxkijC5FQ (cit. on

pp. 3, 4).
Frederic Sala et al. “Representation Tradeoffs for Hyperbolic Embeddings”. In: Proceed-
ings of machine learning research 80 (2018), pp. 4460-4469 (cit. on p. 2).

Rishi Sonthalia and Anna Gilbert. “Tree! i am no tree! i am a low dimensional hyperbolic
embedding”. In: Advances in Neural Information Processing Systems 33 (2020), pp. 845
856 (cit. on p. 2).

13

https://doi.org/10.1007/978-3-319-26784-5_15
https://doi.org/10.1007/978-3-319-26784-5_15
https://api.semanticscholar.org/CorpusID:210843644
https://api.semanticscholar.org/CorpusID:210843644
https://openreview.net/forum?id=ByxkijC5FQ

[56] Rishi Sonthalia, Anna C Gilbert, and Matthew Durham. “CubeRep: Learning Relations
Between Different Views of Data”. In: Topological, Algebraic and Geometric Learning
Workshops 2022. PMLR. 2022, pp. 298-303 (cit. on p. 2).

[57] T. Sterling and John J. Irwin. “ZINC 15 — Ligand Discovery for Everyone”. In: Journal
of Chemical Information and Modeling 55 (2015), pp. 2324-2337. URL: https://api.
semanticscholar.org/CorpusID:327319 (cit. on p. 14).

[58] Jake Topping et al. “Understanding over-squashing and bottlenecks on graphs via
curvature”. In: International Conference on Learning Representations. 2022. URL:
https://openreview.net/forum?id=7UmjRGzp-A (cit. on pp. 1-3, 6, 18, 19).

[59] Domenico Tortorella and Alessio Micheli. “Is Rewiring Actually Helpful in Graph
Neural Networks?” In: arXiw preprint arXiw:2305.19717 (2023) (cit. on p. 16).

[60] Petar Velickovié et al. “Graph Attention Networks”. In: ICLR. 2018 (cit. on p. 16).

[61] Zhengin Wu et al. “MoleculeNet: a benchmark for molecular machine learning”. In:
Chemical science 9.2 (2018), pp. 513-530 (cit. on p. 14).

[62] Keyulu Xu et al. “How powerful are graph neural networks?” In: arXiv preprint
arXiv:1810.00826 (2018) (cit. on p. 16).

[63] Keyulu Xu et al. “Representation Learning on Graphs with Jumping Knowledge
Networks”. In: Proceedings of the 35th International Conference on Machine Learning.
Ed. by Jennifer Dy and Andreas Krause. Vol. 80. Proceedings of Machine Learning
Research. PMLR, 2018, pp. 5453-5462 (cit. on p. 1).

[64] Xiaoyu Xu et al. “Joint hyperbolic and Euclidean geometry contrastive graph neural
networks”. In: Inf. Sci. 609 (2022), pp. 799-815 (cit. on p. 2).

[65] Yiding Zhang et al. “Hyperbolic Graph Attention Network”. In: ArXiv abs/1912.03046
(2021) (cit. on p. 2).

[66] Weichen Zhao et al. “Modeling Graphs Beyond Hyperbolic: Graph Neural Networks in
Symmetric Positive Definite Matrices”. In: ArXiv abs/2306.14064 (2023) (cit. on p. 2).

Appendix A. Appendix

A.1. Barbell Experiment
Figure 4 shows the rewired graphs for £ = 1,2, 3.

A.2. Datasets

Specifically, we look at The ZINC dataset [57, 25], which consists of 10,000 molecular graphs.
From [61], we look at ESOL, which is the water solubility of 1,128 compounds, BACE, which
1,522 compounds representing the inhibitors or human S-secretase 1, Lipophilicity, which
is 4,200 drug compounds, and Tox21 measure the toxicity of 7831 compounds. From the
TUDataset [42, 29|, we use MUTAG [19], which consists of 188 nitroaromatic compounds
and ENZYMES [12] which is a dataset of 600 protein tertiary structures obtained from
the BRENDA enzyme database. We also use Proteins [12]|, which is a collection 1113 to
determine if a protein is an enzyme. Additionally, Reddit, Collab, and IMDB are social

14

https://api.semanticscholar.org/CorpusID:327319
https://api.semanticscholar.org/CorpusID:327319
https://openreview.net/forum?id=7UmjRGzp-A

RELWIRE

(b) k=1 (c) k=2
(a) RELWIRE rewiring of the barbell graph

(f) k=1 (9) k=2 (h) k=3
(e) FOSR rewiring of the barbell graph

() k=1 (k) k=2 () k=3
(i) GTR rewiring of the barbell graph

(n) k=1 (0) k=2 (p) k=3
(m) SDRF rewiring of the barbell graph

Figure 4: Rewired barbell graph.

networks. Finally, we use three datasets from [4] consisting of 1520 graphs in total. The
statistics for the datasets can be seen in Table 4.

15

AIDS Alkane Linux Proteins Collab IMDB Reddit

Nodes 8.9 8.9 7.6 39.1 74.5 19.8 429.6
Edges 17.6 15.8 13.9 145.6 49144 193.1 995.5
Graphs | 700 150 1000 1113 5000 1000 2000

‘ Zinc ESOL BACE Lipo Tox21 Mutag Enzymes

Nodes 23.2 13.3 34.1 27 18.6 17.9 32.6
Edges 49.8 274 73.7 59 38.6 39.6 124.3
Graphs | 10000 1128 1513 4200 7831 188 600

Table 4: Table showing the average sizes of the graphs in each dataset.

A.3. Graph Tasks

As we see from the Table, we don’t have any consistent trends. However, we do see that
RELWIRE does perform well on average. This lack of trends is further supported by [59],
where they do node classification tests on different data sets. This suggests that more work
needs to be done to understand when graph rewiring is helpful.

Data Split For each dataset, we used an 80/10/10 split random split.

Models All of the models had the following structure we had ¢ convolutional layers for
¢ € {2,3,4}. This is followed by global mean pooling and then a linear layer. The hidden
dim for each model is 64 dimensional.

The architectures we used are GCN [33], GraphConv [43], GAT [60], and GIN [62|. For
GIn we used a 2-layer ReLU network with hidden dim 64.

Optimization For all methods, we used Adam optimizer with the default parameters. We
also used cosine annealing as the learning rate decay.

For the smaller datasets, we used batch sizes of 10 to 25 and trained them for 100 epochs,
and for the bigger datasets, we used a batch size of 100 and trained it for 100 epochs.

For the graph regression tasks, we used the mean squared. For graph classification, we
used the cross entropy loss to train the modes.

For testing, we used the MSE loss and accuracy to rank the models.

Computing Test Error We trained each model five times. We then picked the trial with
the smallest validation accuracy and then reported the corresponding test accuracy.

Computer Resource All datasets were accessed using Pytorch Geometric [24]. The
models were all trained on Google Colab using a V100 GPU and pytorch geometric.

For rewiring, for used the official implementations of FOSR and GTR. For SDRF, we
used the implementation from the LOG conference tutorial on graph rewiring [3].

A.4. WebKd Experiments

In Figure 5, we show the graphs for Cornell.

16

RELWIRE

3

2
g

“
g

IS
&

i iginal
Bt — g
s

20 [
10 6 ym gzs I s;‘;’;‘re

[& SDRF
o W <>(25 GTR

[20 40 60 80 100 [20 40 60 80 100 o 20 40 60 80 100
Number of Edges Number of Edges Number of Edges
a) Rank Betti Curve b) 1/\ ¢) Commute Time
2

Figure 5: Graph properties for Cornell for the different rewiring methods.

A.5. Proof

Lemma 5 Let E1, Fy be edges of a simplicial graph G. If for Ey, Es we have that they
1. are contained in a clique subgraph of G, then E1, Eo are independent;
2. are separated by vertex v with g, (v) and T, (v) both singletons, then E1, Es are transverse.

Proof We start by proving (1). For this let E; = (u,v) and Es = (a,b). Then since this is a
clique with all edge weights equal to 1. We have that

g, (a) = {u,v} and 7, (u) = {a, b}.

Thus, we have independence.

For (2), we note that since v separates tthe graph into at least two components Gy, G
such that F; € G7 and Ey € Go. Then we see that for all x € G, we have that

TE, (fL‘) = TE; (U)

Similarly for all x € Ga, we have that

g (T) = 7R (V).

Then since g, (v), Tg,(v) are singletons, we see that we cannot get all four projection pairs.
Thus, the edges are transverse. |

A.6. Topology Definitions

Definition 6 (Simplicial Complexes) A k-simplex C' is the convex hull of k + 1 affinely
independent vectors. A simplicial complex IC is a collection of simplices such that for every
C € C every face of C is in IC and for every C1,Cy € K, if C1 N Cy is not empty then
C, N Cy is a face of both. The d-skeleton of K, denoted KD, is the simplicial subcomplex of
K consisting of simplices of dimension at most d.

Definition 7 (Filtration) A filtration of simplicial complexes is a collection of nested
simplicial complexes Gy C Gy C ---. The complex Gy, is called the k" level of the filtration.

17

Definition 8 (Persistence) Given a filtration Gy C G1 C -+ C G, we can compute the
homology groups for each G;. Then, for any feature (homology class), we can compute the
first level k at which the feature appears, called the birth of the feature, and the level at which
the feature disappears, called the death. This collection of birth and death tuples is known as
the persistence diagram.

Definition 9 (Vietoris-Rips filtration) Let X = {z1,...,xz,} be a collection of data
points and d a metric on X. Then for any r € R, the Vietoris-Rips simplicial complex
VR,.(X) is defined by

VR (X) = {[7iy,.. 23] : Vj, £, d(zi;, w5,) <7}
We call {VR,(X)},er, the Vietoris-Rips Filtration.

Definition 10 (Betti Curve) Let P be a persistence diagram. The Betti curve §: R — N
is a function where B(r) is the number of features (counted with multiplicity) whose birth b
and death d satisfy b < r < d.

A.7. Prior Rewiring Works: SDRF, FOSR, and GTR

raphEigengap, Commute time, and Curvature.

In this section, we detail connections between oversquashing and different statistics. See
Appendix A.7 for a description of prior work that we compare against. We start by setting
up notation for the paper. Throughout the paper, G = (V, E) will refer to a graph on the
vertex set V with edges . We shall have that G has n nodes and m edges. Let A denote the
adjacency matrix of the graph, and let D denote the degree matrix of the graph. Then the
Combinatorial Laplacian is L(G) := D — A. The eigengap or spectral gap A\2(G) is the second
largest eigenvalue of the Combinatorial Laplacian L(G). Finally, the Cheeger constant hg is
defined as min(c, c,) % Here cut cut(Cq,Cy) is a disjoint partition of the nodes V'
and the size of a cut is |cut(Cy, Ca)| := |[{(u,v) € E,u € C1,v € Ca}|. We can see that the
Cheeger constant tells how connected the graph is, giving it a clear relation to oversquashing.
However, the Cheeger constant is difficult to compute but can be well approximated by the
eigengap.

A2(G)
2

Having a large A2(G) results in a large Cheeger constant and a better connected graph.
Methods such as [32] optimize for the eigengap.

Another measure that is believed to be related to oversquashing is commute time. Consider
a random walk on G with transition probabilities given by P = D~'A. The hitting time
H(i,j) is the expected time for a random walk starting at node i to hit node j. The commute
time is CT'(i,7) = H(i,7) + H(j, 7). These notions are very related to effective resistance of
a graph and are directly optimized by some rewiring techniques [10].

The final property related to oversquashing is graph curvature. As discussed in [58], the
Ricci curvature is a natural method for measuring information dispersion on a manifold.
Similar to the Ricci curvature on manifolds, Ricci curvature has also been defined for graphs
[48] and has been used for rewiring [58]. This has been formalized by recent work such as [45],

h2
< hg < /2X2(G) and 2hg > A2(G) > 7G

18

RELWIRE

where the authors show that negative curvature results in the sharply decaying importance
of distant nodes. Thus, increasing the curvature of the graphs helps alleviate oversquashing.
Methods such as [58, 23| optimize for this quantity.

A.7.1. PRIOR METHODS

We review the existing rewiring methods against which we compare our own method REL-

WIRE.

SDRF As we have seen, the curvature of a graph is related to oversquashing. Thus, [58|
design a method to increase the curvature of negatively curved areas. However, the Ollivier
Ricci curvature is computationally expensive to calculate, hence they approximate it using a
notion called Balanced Forman Curvature Ric(7,). In [58] show that if Ric(i,j) > k for all

k
edges then we have that 5 < hg< ?2 Thus, showing the connection between the curvature

and other quantities such as the eigengap and the Cheeger constant. They then create a
method that finds the most negatively curved edge and then add the edge that increases the
curvature of this edge the most.

FOSR In [32], they showed that if f is the second eigenvector for the normalized Laplacian
(I — D=Y2AD='/2)) then adding an edge i, increases the second eigenvalue by
2fif;

o Vi o[V4
a2 F (A 1>+fj<m l>]

They use this method to design an algorithm FOSR, that maximizes the first order term.

+ 22

GTR Another notion of relevance is the total resistance of a graph, G. Let L be the
Combinatorial Laplacian of a graph. Then the resistance R(i,j) between nodes i and j is
given by R(i,5) = (1; — 1;)TLT(1; — 1;). Here 1; is the indicator vector for the ith node
and L is the pseudoinverse of the Combinatorial Laplacian. The total resistance Ry is
Rt = Z R(i,j). Then the biharmonic distance B(i,j) between nodes ¢ and j is given by
i,
Bi.j) = /(L = 1)T(LD2(1; — 1),
[10] show that the increase in the total resistance of adding an edge (i,7) is given by
Ly
1?%(32‘),]‘)
related to the eigengap as well [10], where the maximum resistance between any two pairs of
nodes R,,q; is bounded by

. Hence they design a method GTR that maximizes this quantity. This quantity is

1 1
— < R < —.
niy — max_/\2

A.8. Run Time

Time complexity. Let n be the number of nodes in the graph, m be the number of edges
we start with, and k& the number of edges we want to add. For RelWire, there are 4 steps.
The first step is the All Pair Shortest Path, which takes O(n?log(n) + nm). Next is to
determine independence, this can be done naively in O(m?n) time. Specifically for each pair

of edges E1, Eo, we look at all the projections and see if the map 7g, x7g, : G — Eio) X Eéo)

19

is surjective. Finally, determining which edges to add can be done in O(klog(m)) time. Thus
the total time complexity is O(n?log(n) +m?n + klog(m)).

In addition to time complexity, we see the amount of time taken in practice. We note that
different methods require different forms of computation. For SDRF, FOSR, and GTR we
use pytorch on a machine with V100 GPU and 50GB RAM on Google Cloud. For RelWire,
python is not the best language due to the combinatorial nature of the method, hence we
use Julia. For this we use a personal laptop with an i5 processor, no GPU, and 8gb of RAM.

For practical use cases, we would need to do a hyperparameter search for the number of
edges added. Hence we see how much time it takes to get rewired graphs for each number of
edges from 1 to k.

Dataset Added Edges GTR FoSR SDRF RelWire

Wisconsin 300 < 1second ~ 20 seconds ~ 12 minutes < 1 second
Wisconsin 3000 < 1 second ~ 8.5 minutes > 1 hour < 1 second
Cora 1000 ~ 6 seconds > 1 hour > 1 hour ~ 7 minutes
CiteSeer 1000 ~ 4 seconds > 1 hour > 1 hour ~ 6 minutes

Table 5: Runtime Comparison of Different Algorithms on Various Datasets for different
number of added edges.

From the above we can see that GTR is fastest. However, the point of this experiment is
not to determine which method is fastest but as to whether RelWire can scale well. Here we
can clearly see that the method does scale well.

Implementation notes: We use the official implementation go GTR and FOSR, and the
implementation of SDRF from the LOG 2022 rewiring tutorial.

A.9. Raw Tables

As mentioned, we do extensive experimentation. Specifically, we consider 6 comparison
methods (7 methods, including ours), 11 datasets, 4 different GNN architectures, and 3
different depths for each network. Hence, we have 924 data points for comparison. For
each of these 924 experimental settings, we did five trials. To succinctly present these and
interpret the results, we presented the results in Tables 2, 3, and 4 in the paper. Here, we
provide the raw tables.

Here, we present one table for each of the 12 architectures (model type and depth). We
present the test mse/accuracy for the trial with the best validation mse/accuracy. Note that
we are doing graph regression for Peptides, Lipo, BACE, ESOL, and ZINC. So we present
MSE, and smaller is better. We are doing graph classification for IMDB, MUTAG, REDDIT,
PROTEIN, COLLAB, and ENZYMES. So, we present classification accuracy, and larger is
better.

20

RELWIRE

Dataset None Full Empty RelWire FOSR GTR SDRF
PeptidesStruct 0.635 NA 0.634 0.528 0.556 0.500 0.566
Lipo 1.571 1.525 1.567 1.534 1.539 1.563 1.532
BACE 0.224 0.231 0.235 0.225 0.222 0.221 0.219
ESOL 1.639 1.547 1.650 1.291 1.282 1.482 1.748
Zinc 4.951 5.937 5.620 5.268 5.096 4.695 4.380
IMDB 0.500 0.550 0.530 0.570 0.420 0.510 0.480
Reddit 0.650 NA 0.555 0.630 0.625 0.645 0.680
Collab 0.622 NA 0.296 0.614 0.596 0.596 0.606
Mutag 0.842 0.895 0.842 0.895 0.842 0.895 0.842
Proteins 0.736 0.745 0.566 0.736 0.736 0.745 0.728
Enzymes 0.267 0.183 0.233 0.267 0.233 0.283 0.233
Table 6: GCN Depth 3
Dataset None Full Empty RelWire FOSR GTR SDRF
PeptidesStruct 0.503 NA 0.548 0.440 0.456 0.391 0.502
Lipo 1.710 1.529 1.715 1.635 1.601 1.612 1.605
BACE 0.212 0.228 0.228 0.217 0.212 0.199 0.206
ESOL 1.210 1.369 1.532 1.374 1.223 1.210 1.322
Zinc 4.874 5.776 5.753 4.439 4.709 4948 4.823
IMDB 0.470 0.430 0.450 0.590 0.410 0.450 0.430
Reddit 0.615 NA 0.560 0.650 0.570 0.595 0.655
Collab 0.628 NA 0.258 0.606 0.608 0.614 0.654
Mutag 0.842 0.842 0.842 0.842 0.842 0.842 0.842
Proteins 0.705 0.753 0.566 0.736 0.745 0.720 0.705
Enzymes 0.250 0.200 0.233 0.233 0.233 0.217 0.233
Table 7: GCN Depth 4
Dataset None Full Empty RelWire FOSR GTR SDRF
PeptidesStruct 0.494 NA 0.535 0.416 0.434 0.358 0.445
Lipo 1.756 1.525 1.738 1.648 1.630 1.653 1.695
BACE 0.192 0.205 0.226 0.208 0.198 0.188 0.199
ESOL 0.943 1.408 1.410 1.202 1.635 1.254 1.232
Zinc 4.749 5.025 5.262 4.622 4.439 4.561 4.422
IMDB 0.440 0.460 0.480 0.480 0.470 0.510 0.520
Reddit 0.580 NA 0.560 0.635 0.645 0.690 0.615
Collab 0.634 NA 0.220 0.636 0.618 0.626 0.616
Mutag 0.842 0.842 0.842 0.789 0.842 0.842 0.789
Proteins 0.711 0.753 0.566 0.720 0.696 0.688 0.705
Enzymes 0.250 0.150 0.233 0.250 0.183 0.200 0.217

Table 8: GCN Depth 5

21

Dataset None Full Empty RelWire FOSR GTR SDRF
PeptidesStruct 0.496 NA 0.655 0.389 0.374 0.308 0.451
Lipo 1.774 1.598 1.550 1.748 1.705 1.765 1.693
BACE 0.173 0.227 0.233 0.176 0.168 0.158 0.174
ESOL 1.177 0.879 1.772 0.980 0.905 1.032 0.983
Zinc 3.901 6.461 5.380 4.322 3.986 4.246 3.747
IMDB 0.540 0.400 0.480 0.490 0.520 0.570 0.540
Reddit 0.675 NA 0.570 0.570 0.640 0.670 0.655
Collab 0.578 NA 0.504 0.564 0.598 0.568 0.570
Mutag 0.789 0.842 0.895 0.842 0.789 0.842 0.842
Proteins 0.680 0.793 0.566 0.703 0.695 0.711 0.720
Enzymes 0.350 0.217 0.200 0.383 0.367 0.317 0.317
Table 9: GraphConv Depth 3
Dataset None Full Empty RelWire FOSR GTR SDRF
PeptidesStruct 0.471 NA 0.570 0.369 0.346 0.285 0.417
Lipo 2.074 1.596 1.646 2.023 1.892 1.950 1.971
BACE 0.134 0.279 0.229 0.164 0.165 0.157 0.191
ESOL 0.638 1.282 1.599 0.896 0.799 0.863 1.128
Zinc 3.142 9.793 5.756 3.548 3.837 3.559 3.435
IMDB 0.510 0.420 0.520 0.560 0.430 0.530 0.560
Reddit 0.685 NA 0.540 0.730 0.725 0.710 0.685
Collab 0.614 NA 0.514 0.622 0.620 0.626 0.602
Mutag 0.842 0.684 0.842 0.842 0.789 0.842 0.789
Proteins 0.758 0.668 0.566 0.742 0.710 0.711 0.693
Enzymes 0.367 0.183 0.117 0.333 0.333 0.333 0.400
Table 10: GraphConv Depth 4
Dataset None Full Empty RelWire FOSR GTR SDRF
PeptidesStruct 0.446 NA 0.543 0.362 0.331 0.275 0.404
Lipo 2.147 8.155 1.718 2.104 1.985 2.193 2.130
BACE 0.125 0.238 0.232 0.160 0.183 0.183 0.182
ESOL 1.415 3.061 1.427 0.728 0.852 0.682 0.978
Zinc 3.279 125.248 5.584 3.436 3.422 3.265 3.085
IMDB 0.480 0.520 0.460 0.540 0.480 0.600 0.510
Reddit 0.705 NA 0.560 0.705 0.725 0.710 0.750
Collab 0.620 NA 0.504 0.592 0.630 0.608 0.578
Mutag 0.895 0.737 0.842 0.737 0.789 0.842 0.789
Proteins 0.725 0.580 0.574 0.767 0.727 0.727 0.727
Enzymes 0.533 0.200 0.117 0.367 0.367 0.317 0.350

Table 11: GraphConv Depth 5

22

RELWIRE

Dataset None Full Empty RelWire FOSR GTR SDRF
PeptidesStruct 0.519 NA 0.629 0.463 0.507 0.434 0.539
Lipo 1.673 1.616 1.573 1.663 1.682 1.639 1.667
BACE 0.206 0.229 0.233 0.218 0.204 0.215 0.214
ESOL 1.334 1.464 1.675 1.500 1.037 1.324 1.867
Zinc 4.898 5.968 5.066 5.567 4.424 4989 4.345
IMDB 0.400 0.410 0.530 0.480 0.440 0.520 0.450
Reddit 0.605 NA 0.560 0.650 0.650 0.605 0.585
Collab 0496 NA 0.362 0.568 0.540 0.516 0.548
Mutag 0.842 0.842 0.842 0.737 0.842 0.842 0.789
Proteins 0.720 0.745 0.566 0.728 0.736 0.736 0.711
Enzymes 0.250 0.167 0.200 0.233 0.200 0.200 0.233
Table 12: GAT Depth 3
Dataset None Full Empty RelWire FOSR GTR SDRF
PeptidesStruct 0.518 NA 0.549 0.406 0.407 0.375 0.460
Lipo 1.788 1.610 1.695 1.863 1.863 1.776 1.796
BACE 0.163 0.238 0.232 0.200 0.193 0.192 0.205
ESOL 0.805 1.087 1.472 1.443 1.115 0925 1.332
Zinc 4563 5.937 5.177 5.023 4.619 4.955 4.554
IMDB 0.480 0.610 0.510 0.510 0.480 0.510 0.580
Reddit 0.645 NA 0.560 0.675 0.610 0.570 0.600
Collab 0.598 NA 0.306 0.578 0.554 0.522 0.564
Mutag 0.842 0.842 0.842 0.842 0.842 0.842 0.842
Proteins 0.695 0.753 0.566 0.711 0.688 0.696 0.671
Enzymes 0.217 0.183 0.233 0.233 0.267 0.250 0.267
Table 13: GAT Depth 4
Dataset None Full Empty RelWire FOSR GTR SDRF
PeptidesStruct 0.502 NA 0.539 0.396 0.393 0.355 0.424
Lipo 1.907 1.676 1.736 1.935 1.756 1.869 1.831
BACE 0.186 0.224 0.231 0.182 0.204 0.204 0.196
ESOL 1.042 1.407 1.378 1.383 1.001 0.894 1.293
Zinc 3.851 5.131 5.681 4.459 4.379 4.435 4.182
IMDB 0.490 0.510 0.460 0.490 0.480 0.570 0.650
Reddit 0.715 NA 0.535 0.630 0.630 0.640 0.605
Collab 0.548 NA 0.346 0.558 0.592 0.550 0.546
Mutag 0.842 0.789 0.842 0.737 0.842 0.789 0.842
Proteins 0.688 0.738 0.566 0.705 0.688 0.688 0.703
Enzymes 0.217 0.217 0.250 0.217 0.267 0.267 0.267

Table 14: GAT Depth 5

23

Dataset None Full Empty RelWire FOSR GTR SDRF
PeptidesStruct 0.480 NA 0.540 0.383 0.362 0.305 0.434
Lipo 1.823 1.552 1.708 1.723 1.670 1.723 1.669
BACE 0.148 0.236 0.237 0.166 0.163 0.144 0.173
ESOL 1.585 0.886 1.520 1.035 1.180 1.354 1.529
Zinc 4.080 4.966 5.598 4.511 4.179 4.234 4.838
IMDB 0.490 0.500 0.500 0.520 0.520 0.440 0.510
Reddit 0.635 NA 0.590 0.650 0.655 0.705 0.660
Collab 0.514 NA 0474 0.582 0.564 0.566 0.564
Mutag 0.842 0.684 0.842 0.842 0.737 0.842 0.789
Proteins 0.680 0.793 0.566 0.693 0.710 0.718 0.680
Enzymes 0.300 0.167 0.167 0.217 0.233 0.317 0.267
Table 15: GIN Depth 3
Dataset None Full Empty RelWire FOSR GTR SDRF
PeptidesStruct 0.457 NA 0.564 0.371 0.346 0.283 0.413
Lipo 1.704 1.541 1.742 1.851 1.845 1.846 1.959
BACE 0.138 0.279 0.242 0.165 0.177 0.176 0.183
ESOL 1.469 0.954 1.494 1.033 0.934 1.133 1.620
Zinc 3.630 5.117 5.341 4.019 4.031 3.967 4.235
IMDB 0.480 0.510 0.450 0.520 0.490 0.480 0.500
Reddit 0.710 NA 0.625 0.625 0.640 0.660 0.670
Collab 0.650 NA 0.496 0.636 0.618 0.642 0.622
Mutag 0.842 0.684 0.842 0.842 0.789 0.895 0.789
Proteins 0.703 0.777 0.566 0.710 0.727 0.727 0.693
Enzymes 0.300 0.150 0.167 0.300 0.283 0.317 0.400
Table 16: GIN Depth 4
Dataset None Full Empty RelWire FOSR GTR SDRF
PeptidesStruct 0.462 NA 0.566 0.366 0.340 0.284 0.408
Lipo 1.973 1.600 1.731 1.934 1.807 1.951 1.861
BACE 0.147 0.247 0.239 0.195 0.177 0.198 0.183
ESOL 1.284 1.848 1.443 0.797 0.691 0.976 1.114
Zinc 3.639 6.103 5.022 4.019 3.707 3.668 3.776
IMDB 0.590 0.530 0.510 0.540 0.540 0.500 0.570
Reddit 0.650 NA 0.550 0.695 0.735 0.710 0.680
Collab 0.650 NA 0.500 0.656 0.648 0.656 0.674
Mutag 0.895 0.737 0.842 0.789 0.789 0.842 0.895
Proteins 0.718 0.739 0.574 0.711 0.710 0.735 0.742
Enzymes 0.400 0.167 0.183 0.267 0.333 0.350 0.333

Table 17: GIN Depth 5

24

RELWIRE

25

	Introduction
	Background and Problem Setup
	Capturing topological distortion: Distances from persistent homology
	RelWire: relations on graphs
	Preserving the topology
	Graph Regression and Classification: When is topology important
	Conclusion
	Appendix
	Barbell Experiment
	Datasets
	Graph Tasks
	WebKd Experiments
	Proof
	Topology Definitions
	Prior Rewiring Works: SDRF, FOSR, and GTR
	Prior Methods

	Run Time
	Raw Tables

